Author: Paul Brown

About Paul Brown

Paul Brown, a founding editor of Climate News Network, is a former environment correspondent of The Guardian newspaper, and still writes columns for the paper.

Europe’s new nuclear plants hit more snags

Plans for two new nuclear plants in Western Europe have met more setbacks in the last week, risking the industry’s future here.

LONDON, 16 April, 2019 − Two new nuclear plants, one in Finland and the other in France, which for years have been limping towards start-up, have just encountered further problems, with worrying wider implications for the nuclear industry.

They are two almost completed prototype European Pressurised Water reactors (EPRs), already years late and massively over budget, whose new problems are causing further expensive delays.

The so-called third generation reactors, of 1,600 megawatts each, are the most powerful in the world and are the flagship project of EDF, the French state energy company. But they are proving extremely difficult to build and far more costly than forecast.

EDF has just begun building two more EPR reactors in the UK and has plans to add another two, but there must be doubts whether this scheme is now credible. Since the stations were planned a decade ago wind and solar power have now both become far cheaper than nuclear, even without what seem to be its inevitable cost overruns.

Ten years late

The first EPR, Olkiluoto 3 in Finland, was due to be up and running in 2009, but concerns about the quality of construction and legal disputes caused a series of cost escalations and delays. This had already meant the postponement of the first grid connection until October 2018, and the growth of the plant’s cost to more than three times the original estimate of €3 billion (£2.6 bn).

Last week, however, it was reported that even this timetable could not be met and at least another two months delay was likely, although it could be longer. The Finnish utility TVO for whom the plant is being built promises a new schedule in June.

For the second reactor, under construction at Flamanville in northern France, the situation is potentially far more serious. For months dozens of faulty welds discovered during inspections have been the subject of investigation by experts to see if they need to be redone to ensure the reactor’s safety.

EDF was already re-welding 53 of them but hoped to convince France’s Nuclear Safety Authority (ASN) that another ten difficult-to-reach welds were safe and could be left. However, the French Institute for Radiological Protection and Nuclear Safety (IRSN), the technical arm of ASN, has said that these should also be replaced.

While this recommendation is not binding on the regulator it will be hard to ignore, and it is doubtful that ASN would allow EDF to go ahead and start the reactor with faulty welds. It has said it will make a decision in June.

Threefold price rise

Since the pipes containing the welds are fundamental to the operation of the reactor, and repairing them would take up to two years, this can only add further to the escalating costs.

The single reactor was due to open in 2012 and cost €3 bn, but is already estimated to cost €10.9 bn and to start in mid-2020, although the new weld problem could delay the start for another two years.

This, on top of earlier doubts about safety caused by there being too much carbon in the steel pressure vessel, has made the French government postpone any plans to build any more EPRs at home. Instead, for the first time, it is encouraging heavy investment in renewable energy.

As a result EDF is putting all its efforts into building two giant EPR reactors at Hinkley Point in south-west England, to prove that its design can be built on time and on budget.

“The site is … on a vulnerable coast and will need massive sea defences to protect the reactors from the expected sea level rise of up to two metres in their planned lifetime”

It has a guarantee from the UK government for a price for electricity from the station which is twice the current market tariff in Britain. That makes building the station a money-spinner for EDF − and will push up consumer bills.

This is, of course, if the twin reactors each producing 1,600 megawatts, about 7% of the UK’s electricity needs, enough for six million homes, can indeed be built on time and on budget by 2025. They will rapidly become white elephants if they reach anything like the 10-year delay that the reactors in Finland and France seem destined to achieve.

Currently thousands of workers are already employed at Hinkley Point and so far everything seems to be going to plan, with EDF claiming 25,000 people will soon be working on the project.

Despite its setbacks in France, the company is also pressing ahead with plans to build two more reactors at Sizewell on the east coast of England, where there is increasing and determined local opposition which fears the destruction of the local tourist industry and wildlife sanctuaries.

The site is also on a vulnerable coast and will need massive sea defences to protect the reactors from the expected sea level rise of up to two metres in their planned lifetime.

Avoiding another Hinkley

A way of financing them has yet to be agreed with the UK government, which has been stung by the criticism of the excessive prices promised for Hinkley Point’s output and has decided not to repeat its mistake.

As part of its strategy to bolster the company’s finances EDF has gone into partnership with the Chinese state nuclear companies which are part-funding both projects. Ultimately the Chinese and French hope to build yet another reactor at Bradwell in Essex, east of London, this time of Chinese design. But that seems even further away on the horizon.

The success or failure of EDF’s plans is crucial to the future of nuclear power in Western Europe. Japan, the US and all other western European states apart from France have given up the idea of building large stations. Only China and Russia are now building 1,000 megawatt stations and offering generous terms to any country in the world that will allow them to be built on their soil.

In both cases cost seems secondary to gaining influence in the countries concerned, which will be dependent on either Russia or China for nuclear supplies for a generation or longer if they are to keep the lights on. − Climate News Network

Plans for two new nuclear plants in Western Europe have met more setbacks in the last week, risking the industry’s future here.

LONDON, 16 April, 2019 − Two new nuclear plants, one in Finland and the other in France, which for years have been limping towards start-up, have just encountered further problems, with worrying wider implications for the nuclear industry.

They are two almost completed prototype European Pressurised Water reactors (EPRs), already years late and massively over budget, whose new problems are causing further expensive delays.

The so-called third generation reactors, of 1,600 megawatts each, are the most powerful in the world and are the flagship project of EDF, the French state energy company. But they are proving extremely difficult to build and far more costly than forecast.

EDF has just begun building two more EPR reactors in the UK and has plans to add another two, but there must be doubts whether this scheme is now credible. Since the stations were planned a decade ago wind and solar power have now both become far cheaper than nuclear, even without what seem to be its inevitable cost overruns.

Ten years late

The first EPR, Olkiluoto 3 in Finland, was due to be up and running in 2009, but concerns about the quality of construction and legal disputes caused a series of cost escalations and delays. This had already meant the postponement of the first grid connection until October 2018, and the growth of the plant’s cost to more than three times the original estimate of €3 billion (£2.6 bn).

Last week, however, it was reported that even this timetable could not be met and at least another two months delay was likely, although it could be longer. The Finnish utility TVO for whom the plant is being built promises a new schedule in June.

For the second reactor, under construction at Flamanville in northern France, the situation is potentially far more serious. For months dozens of faulty welds discovered during inspections have been the subject of investigation by experts to see if they need to be redone to ensure the reactor’s safety.

EDF was already re-welding 53 of them but hoped to convince France’s Nuclear Safety Authority (ASN) that another ten difficult-to-reach welds were safe and could be left. However, the French Institute for Radiological Protection and Nuclear Safety (IRSN), the technical arm of ASN, has said that these should also be replaced.

While this recommendation is not binding on the regulator it will be hard to ignore, and it is doubtful that ASN would allow EDF to go ahead and start the reactor with faulty welds. It has said it will make a decision in June.

Threefold price rise

Since the pipes containing the welds are fundamental to the operation of the reactor, and repairing them would take up to two years, this can only add further to the escalating costs.

The single reactor was due to open in 2012 and cost €3 bn, but is already estimated to cost €10.9 bn and to start in mid-2020, although the new weld problem could delay the start for another two years.

This, on top of earlier doubts about safety caused by there being too much carbon in the steel pressure vessel, has made the French government postpone any plans to build any more EPRs at home. Instead, for the first time, it is encouraging heavy investment in renewable energy.

As a result EDF is putting all its efforts into building two giant EPR reactors at Hinkley Point in south-west England, to prove that its design can be built on time and on budget.

“The site is … on a vulnerable coast and will need massive sea defences to protect the reactors from the expected sea level rise of up to two metres in their planned lifetime”

It has a guarantee from the UK government for a price for electricity from the station which is twice the current market tariff in Britain. That makes building the station a money-spinner for EDF − and will push up consumer bills.

This is, of course, if the twin reactors each producing 1,600 megawatts, about 7% of the UK’s electricity needs, enough for six million homes, can indeed be built on time and on budget by 2025. They will rapidly become white elephants if they reach anything like the 10-year delay that the reactors in Finland and France seem destined to achieve.

Currently thousands of workers are already employed at Hinkley Point and so far everything seems to be going to plan, with EDF claiming 25,000 people will soon be working on the project.

Despite its setbacks in France, the company is also pressing ahead with plans to build two more reactors at Sizewell on the east coast of England, where there is increasing and determined local opposition which fears the destruction of the local tourist industry and wildlife sanctuaries.

The site is also on a vulnerable coast and will need massive sea defences to protect the reactors from the expected sea level rise of up to two metres in their planned lifetime.

Avoiding another Hinkley

A way of financing them has yet to be agreed with the UK government, which has been stung by the criticism of the excessive prices promised for Hinkley Point’s output and has decided not to repeat its mistake.

As part of its strategy to bolster the company’s finances EDF has gone into partnership with the Chinese state nuclear companies which are part-funding both projects. Ultimately the Chinese and French hope to build yet another reactor at Bradwell in Essex, east of London, this time of Chinese design. But that seems even further away on the horizon.

The success or failure of EDF’s plans is crucial to the future of nuclear power in Western Europe. Japan, the US and all other western European states apart from France have given up the idea of building large stations. Only China and Russia are now building 1,000 megawatt stations and offering generous terms to any country in the world that will allow them to be built on their soil.

In both cases cost seems secondary to gaining influence in the countries concerned, which will be dependent on either Russia or China for nuclear supplies for a generation or longer if they are to keep the lights on. − Climate News Network

Indian voters demand environmental clean-up

A huge exercise in democracy starts on 11 April as 900 million Indian voters turn out, many seeking a cleaner environment.

CHENNAI, 10 April, 2019 − Candidates promising to fight for clean drinking water and a halt to pollution are likely to gain the support of millions of Indian voters.

Environmental issues, particularly clean water and air, traffic congestion and better public transport, are among the top priorities of urban voters as they prepare to vote in the world’s largest general election.

In India it is no longer religion or caste that tops the poll of issues that concern voters, but policies that affect their daily lives, still blighted by some of the worst pollution in the world which is also contributing to climate change and the shortage of clean water.

Although for both rural and urban voters job opportunities and the need to make a living are the number one priority, a whole list of environmental issues are more important than terrorism or strong military defence, both of which appear to be of little concern to the electorate.

With air pollution a major cause of illness and death in both town and country, the voters are also demanding better hospitals and health care centres to help them with breathing difficulties.

The elections start on 11 April, and with 900 million people able to vote it will not be until 23 May that the result is finally declared in 29 states to elect the 543 members of the lower house of Parliament, the Lok Sabha, which in turn elects the prime minister for a five-year term. Astonishingly, there will be 84 million new voters, those who have reached the age of 18 since the last general election.

“My daughter has sacrificed her life to save future generations from pollution . . . We won’t let go of her goal’’

In rural areas, where a majority of Indian voters still live, new jobs are still the main priority, but voters’ next five issues involve agriculture, especially the availability of water, and loans and subsidies to help farmers to buy seeds, fertiliser and electricity.

An enormous survey among nearly 300,000 voters conducted by ADR (Association for Democratic Reforms),  a non-government organisation which campaigns for election reforms, has found that Indian voters will opt for candidates who will bring in solutions for basic environmental needs rather than those addressing terrorism.

This trend has encouraged one current Lok Sabha candidate, environmentalist T. Arul Selvam, who says the culture of voting based on the performance of their candidate in battling environmental degradation will improve governance at the ground level.

“The ADR survey shows that there is a positive trend among voters who earlier considered religion and caste as important factors in casting their votes. The drinking water crisis remains unaddressed in scores of villages and urban areas across the country.

“Negligence in preserving water bodies is the origin of the water crisis in this nation. People were fed up with politicians who did not care enough to protect nature, which eventually added problems during calamities like floods and drought,’’ he said.

Smelter opponents shot

Arul Selvam recalled protests held by voluntary groups for more than 100 days in Tamil Nadu, a state in the southern part of India seeking the closure of nuclear power plants and the Sterlite copper smelter, the centre of recent controversy.

“These days people are ready to unite to save nature because their daily survival is becoming tough. People are forced to pay a heavy price for drinking water and food.

“Increasing medical bills for people living in industrial areas are a major cause of concern. These instances have brought a change in voting behaviour among the people’’.

Arul Selvam’s views were echoed when Climate News Network met families who had lost children who were fired on by police during the protest against the smelter in Tamil Nadu’s Thoothukudi district.

Thirteen protestors were killed by police in May 2018 when they sought the closure of the copper plant, accusing the owners of degrading land, air and water resources.  Now the families say that their relatives and many in the villages in Thoothukudi, a port city, have decided to vote for a party that promises permanent closure of the plant and action against pollution that has affected them for over two decades.

Permanent closure sought

“My daughter was shot in her throat. We fought against pollution caused by Sterlite. Now the plant has been closed down temporarily. We want to vote for a political party that will ensure permanent closure of this plant and save our town from pollution.

“My daughter has sacrificed her life to save future generations from pollution. She told me many died in our village due to cancer and also suffered severe asthma problems because of pollution. We won’t let go of her goal,’’ says Vanitha, mother of Snowlin, aged 19, who was killed during the shooting.

Some politicians welcome the new priorities of voters in these elections. J. Jayavardhan, India’s youngest member of parliament, elected by the South Chennai constituency, says he is happy to see the survey result with voters “going green.”

“It’s an emerging trend in India among people to go green in their lives and taking small steps for sustainable living. Though this seems to be a small number now, it will grow in a phased manner. Voters considering candidates based on environmental conservation show how pollution has affected their daily lives.

“I am campaigning for cloth bags and waste segregation at source and opened compost plants in my constituency. This has impacted residents here to cut down on usage of plastic bags and to use composting facilities in their neighbourhood.’’ − Climate News Network

* * * * *

Paul Brown wrote this report with our Chennal correspondent.

A huge exercise in democracy starts on 11 April as 900 million Indian voters turn out, many seeking a cleaner environment.

CHENNAI, 10 April, 2019 − Candidates promising to fight for clean drinking water and a halt to pollution are likely to gain the support of millions of Indian voters.

Environmental issues, particularly clean water and air, traffic congestion and better public transport, are among the top priorities of urban voters as they prepare to vote in the world’s largest general election.

In India it is no longer religion or caste that tops the poll of issues that concern voters, but policies that affect their daily lives, still blighted by some of the worst pollution in the world which is also contributing to climate change and the shortage of clean water.

Although for both rural and urban voters job opportunities and the need to make a living are the number one priority, a whole list of environmental issues are more important than terrorism or strong military defence, both of which appear to be of little concern to the electorate.

With air pollution a major cause of illness and death in both town and country, the voters are also demanding better hospitals and health care centres to help them with breathing difficulties.

The elections start on 11 April, and with 900 million people able to vote it will not be until 23 May that the result is finally declared in 29 states to elect the 543 members of the lower house of Parliament, the Lok Sabha, which in turn elects the prime minister for a five-year term. Astonishingly, there will be 84 million new voters, those who have reached the age of 18 since the last general election.

“My daughter has sacrificed her life to save future generations from pollution . . . We won’t let go of her goal’’

In rural areas, where a majority of Indian voters still live, new jobs are still the main priority, but voters’ next five issues involve agriculture, especially the availability of water, and loans and subsidies to help farmers to buy seeds, fertiliser and electricity.

An enormous survey among nearly 300,000 voters conducted by ADR (Association for Democratic Reforms),  a non-government organisation which campaigns for election reforms, has found that Indian voters will opt for candidates who will bring in solutions for basic environmental needs rather than those addressing terrorism.

This trend has encouraged one current Lok Sabha candidate, environmentalist T. Arul Selvam, who says the culture of voting based on the performance of their candidate in battling environmental degradation will improve governance at the ground level.

“The ADR survey shows that there is a positive trend among voters who earlier considered religion and caste as important factors in casting their votes. The drinking water crisis remains unaddressed in scores of villages and urban areas across the country.

“Negligence in preserving water bodies is the origin of the water crisis in this nation. People were fed up with politicians who did not care enough to protect nature, which eventually added problems during calamities like floods and drought,’’ he said.

Smelter opponents shot

Arul Selvam recalled protests held by voluntary groups for more than 100 days in Tamil Nadu, a state in the southern part of India seeking the closure of nuclear power plants and the Sterlite copper smelter, the centre of recent controversy.

“These days people are ready to unite to save nature because their daily survival is becoming tough. People are forced to pay a heavy price for drinking water and food.

“Increasing medical bills for people living in industrial areas are a major cause of concern. These instances have brought a change in voting behaviour among the people’’.

Arul Selvam’s views were echoed when Climate News Network met families who had lost children who were fired on by police during the protest against the smelter in Tamil Nadu’s Thoothukudi district.

Thirteen protestors were killed by police in May 2018 when they sought the closure of the copper plant, accusing the owners of degrading land, air and water resources.  Now the families say that their relatives and many in the villages in Thoothukudi, a port city, have decided to vote for a party that promises permanent closure of the plant and action against pollution that has affected them for over two decades.

Permanent closure sought

“My daughter was shot in her throat. We fought against pollution caused by Sterlite. Now the plant has been closed down temporarily. We want to vote for a political party that will ensure permanent closure of this plant and save our town from pollution.

“My daughter has sacrificed her life to save future generations from pollution. She told me many died in our village due to cancer and also suffered severe asthma problems because of pollution. We won’t let go of her goal,’’ says Vanitha, mother of Snowlin, aged 19, who was killed during the shooting.

Some politicians welcome the new priorities of voters in these elections. J. Jayavardhan, India’s youngest member of parliament, elected by the South Chennai constituency, says he is happy to see the survey result with voters “going green.”

“It’s an emerging trend in India among people to go green in their lives and taking small steps for sustainable living. Though this seems to be a small number now, it will grow in a phased manner. Voters considering candidates based on environmental conservation show how pollution has affected their daily lives.

“I am campaigning for cloth bags and waste segregation at source and opened compost plants in my constituency. This has impacted residents here to cut down on usage of plastic bags and to use composting facilities in their neighbourhood.’’ − Climate News Network

* * * * *

Paul Brown wrote this report with our Chennal correspondent.

Termites show humans how to keep their cool

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

China and India are making a greener Earth

Human efforts are producing a greener Earth. But the news is not all good, because some of the greening comes from fertiliser pollution.

LONDON, 26 March, 2019 − Despite climate change, water scarcity and the many ills affecting the planet, this generation is living on an increasingly greener Earth.

Measurements from space show that some parts of the northern hemisphere, notably China and India, are a lot greener than they used to be, which is potentially very good news for the climate.

Growing vegetation takes up a great deal of carbon dioxide from the atmosphere, so the more that plants and trees can use, the greater the chance of slowing global warming.

The new findings appear especially positive in the light of earlier studies of global vegetation trends. Science has already found that climate change can affect the Earth’s vegetation pattern adversely.

There is also concern that the effort to grow crops to combat climate change will itself leave less space for other vegetation. And changes in Arctic vegetation are prompting concern that they could promote an increase in releases of greenhouse gases.

“A third of the vegetated land on Earth is becoming greener, in other words more productive”

Up to now scientists who have already noted the appearance of global greening thought it was because plants were responding to the fact there was more carbon dioxide in the atmosphere (which is needed for photosynthesis) and so were growing faster, in a process known as the fertiliser effect.

This turns out to be only partly true, because a new study reported in the online community Nature Research Sustainability has shown that it is more intensive agriculture and the use of much more artificial farm fertilisers that is one of the main contributors to greening.

This is causing its own environmental damage by polluting watercourses and damaging biodiversity.

But despite these reservations there is much good news in the latest research. Since the turn of the century China has shown a remarkable growth in its green areas because of the planting of new forests and the intensification of agriculture. Although the country contains only 6.6% of the global vegetated area, it alone accounts for 25% of the net increase in leaf area of the planet in that time.

Of this, 42% of the increase in green areas was from newly planted forest and 32% from croplands. The forests are designed to hold back the deserts, cut air pollution and reduce climate change.

Food production leaps

The 32% rise of greening in croplands was caused by intense agriculture, more irrigation with multiple cropping, and heavy fertiliser use, often causing damage to the local environment.

In India, also far greener than in 2000, larger forests account for only a 4.4% increase in greening, while 82% comes from croplands. In both countries food production has increased 35% in the same period as both governments have sought to feed their people.

The European Union also has experienced considerable greening over the same period, third behind China and India in the global league table. In this case 55% was due to increased cropland and 34% to more forests.

Sadly, despite the increased uptake of carbon dioxide from the atmosphere in the northern hemisphere, the greening this represents did not make up for the loss of leaf area in tropical forests.

Brazil, the Democratic Republic of the Congo and Indonesia continued destroying their forests, and in doing so more than made up for the gains elsewhere, apart from the damage this did to ecosystems and biodiversity, the scientists note.

Brazil leads browners

They compiled a league table of greening and the reverse – browning – where satellites show countries have degraded or abandoned land and so reduced the vegetation cover.

Brazil, which has more green land than any other country on the planet, came top of the browning table, having degraded 11.6% of its green land since 2000. Indonesia came second in the browning table with 6.8%, Argentina a close third with 6.7%, and Canada fourth with 5.7%.

This does not tell the whole story, because while some land became browner other patches became greener, so in nearly all countries the browning was balanced out by greening. Altogether the Earth became a lot greener in this period, particularly in the northern hemisphere.

The Nature study concludes that a third of the vegetated land on Earth is becoming greener, in other words more productive, but this is not simply the effect of more carbon dioxide in the atmosphere.

Most of the greening is down to more intensive agricultural practices, as in China and India, and more planting of forests. This, rather than the fertiliser effect, is responsible for at least a third or probably more of the greening of the Earth this century. − Climate News Network

Human efforts are producing a greener Earth. But the news is not all good, because some of the greening comes from fertiliser pollution.

LONDON, 26 March, 2019 − Despite climate change, water scarcity and the many ills affecting the planet, this generation is living on an increasingly greener Earth.

Measurements from space show that some parts of the northern hemisphere, notably China and India, are a lot greener than they used to be, which is potentially very good news for the climate.

Growing vegetation takes up a great deal of carbon dioxide from the atmosphere, so the more that plants and trees can use, the greater the chance of slowing global warming.

The new findings appear especially positive in the light of earlier studies of global vegetation trends. Science has already found that climate change can affect the Earth’s vegetation pattern adversely.

There is also concern that the effort to grow crops to combat climate change will itself leave less space for other vegetation. And changes in Arctic vegetation are prompting concern that they could promote an increase in releases of greenhouse gases.

“A third of the vegetated land on Earth is becoming greener, in other words more productive”

Up to now scientists who have already noted the appearance of global greening thought it was because plants were responding to the fact there was more carbon dioxide in the atmosphere (which is needed for photosynthesis) and so were growing faster, in a process known as the fertiliser effect.

This turns out to be only partly true, because a new study reported in the online community Nature Research Sustainability has shown that it is more intensive agriculture and the use of much more artificial farm fertilisers that is one of the main contributors to greening.

This is causing its own environmental damage by polluting watercourses and damaging biodiversity.

But despite these reservations there is much good news in the latest research. Since the turn of the century China has shown a remarkable growth in its green areas because of the planting of new forests and the intensification of agriculture. Although the country contains only 6.6% of the global vegetated area, it alone accounts for 25% of the net increase in leaf area of the planet in that time.

Of this, 42% of the increase in green areas was from newly planted forest and 32% from croplands. The forests are designed to hold back the deserts, cut air pollution and reduce climate change.

Food production leaps

The 32% rise of greening in croplands was caused by intense agriculture, more irrigation with multiple cropping, and heavy fertiliser use, often causing damage to the local environment.

In India, also far greener than in 2000, larger forests account for only a 4.4% increase in greening, while 82% comes from croplands. In both countries food production has increased 35% in the same period as both governments have sought to feed their people.

The European Union also has experienced considerable greening over the same period, third behind China and India in the global league table. In this case 55% was due to increased cropland and 34% to more forests.

Sadly, despite the increased uptake of carbon dioxide from the atmosphere in the northern hemisphere, the greening this represents did not make up for the loss of leaf area in tropical forests.

Brazil, the Democratic Republic of the Congo and Indonesia continued destroying their forests, and in doing so more than made up for the gains elsewhere, apart from the damage this did to ecosystems and biodiversity, the scientists note.

Brazil leads browners

They compiled a league table of greening and the reverse – browning – where satellites show countries have degraded or abandoned land and so reduced the vegetation cover.

Brazil, which has more green land than any other country on the planet, came top of the browning table, having degraded 11.6% of its green land since 2000. Indonesia came second in the browning table with 6.8%, Argentina a close third with 6.7%, and Canada fourth with 5.7%.

This does not tell the whole story, because while some land became browner other patches became greener, so in nearly all countries the browning was balanced out by greening. Altogether the Earth became a lot greener in this period, particularly in the northern hemisphere.

The Nature study concludes that a third of the vegetated land on Earth is becoming greener, in other words more productive, but this is not simply the effect of more carbon dioxide in the atmosphere.

Most of the greening is down to more intensive agricultural practices, as in China and India, and more planting of forests. This, rather than the fertiliser effect, is responsible for at least a third or probably more of the greening of the Earth this century. − Climate News Network

For offshore wind turbines size matters

As turbines grow in size and costs tumble, offshore wind turbines, both floating and fixed to the seabed, have vast potential.

LONDON, 7 March, 2019 − Offshore wind power is set to become one of the world’s largest electricity producers in the next decade as costs fall and turbines grow in size.

Up till now turbines standing on the seabed near to the coast in Europe have been seen as the most promising technology for offshore wind farms. But the success of floating machines that can be deployed in deeper water has meant many more coastal communities can benefit. Japan and the US are among the countries with the greatest potential.

The speed with which the industry has grown in the last decade has defied all expectations. Large turbines used to have a two to three megawatt output, but now the standard size is 7.5 megawatts and turbines capable of generating up to 10 megawatts are in the pipeline.

As a result the output of one offshore turbine is thirty times greater than with the first ones deployed in 1991 − and the cost has fallen to half that of new nuclear power.

This, coupled with experience showing that the wind blows more steadily out to sea and produces far more consistent power than turbines on land, has led many more countries to see offshore wind as a major potential source of renewable energy. The turbines have shown themselves to be robust even in extreme storm conditions.

“Previous estimates of the growth of renewables, at least wind and solar power, have always been underestimates”

Production has just begun from the world’s largest offshore wind farm in the North Sea, where construction started only in January 2018 and which began feeding power ashore in England 13 months later. The project is enormous, all four phases covering nearly 2,000 square miles, and will produce up to 6 GW of power, the same as five large nuclear power stations.

Apart from the sheer size, the plan is to have the whole development completed by 2025, before the partly-constructed Hinkley Point C nuclear power station in the West of England will start up, and providing return on capital for the investors years before its nuclear rivals.

While the market for turbines fixed to the seabed is expected to continue to grow very fast, it is floating turbines that will be the next big player. These are again huge machines, taking advantage of the steadier
winds out to sea, and not needing expensive seabed foundations.

It took 15 years for the Norwegian state oil company Statoil, now rebranded as Equinor to emphasise its partial move to renewables, to develop the first offshore wind farm 15 miles of the coast of Aberdeen in Scotland.

Outrunning expectations

There are five turbines with blades 175 metres long and a counterweight extending 78 metres below the surface, which is chained to the seabed. The turbines started feeding into the grid in October 2017 and output was soon exceeding expectations.

The fact that it was Statoil that designed and developed the floating turbines is significant. The offshore wind industry uses many of the skills developed by offshore gas and oil ventures and provides an investment opportunity for oil majors under pressure to diversify and show they have green credentials.

A report, Wind Power to Spare, produced last year by a research and campaigning group, Environment America, showed that there was enough potential wind power just off the US east coast to provide more electricity than was currently used in the region’s maritime states – plus enough for powering electric cars and for providing heating for the entire population of the eastern coastal states in the future.

Since the report was published developers, looking at the success of Europe in exploiting this resource, have shown an escalation of interest. The same is true of Japan, where the nuclear industry remains in deep trouble as a result of the Fukushima accident in 2011, with many of its reactors not expected to restart.

Potential ignored

Back in Europe, where offshore wind was first developed, manufacturers are eyeing up potential new markets both in the North Sea and elsewhere. France for example has no offshore wind farms but could deploy hundreds of floating turbines.

Research suggests that water depths in the North Sea are ideal for floating turbines. If half the area available could be covered in turbines they would make enough electricity to power the whole EU four times over.

That prediction is made by Equinor. It also estimates in the same report that by 2030 Japan could have 3.5 gigawatts of floating wind power, France 2.9 GW and the US 2 GW, with a further 1.9 GW in the UK and Ireland.

This would make a significant contribution to reducing the world’s burning of fossil fuels, particularly since previous estimates of the growth of renewables, at least wind and solar power, have always been underestimates. − Climate News Network

As turbines grow in size and costs tumble, offshore wind turbines, both floating and fixed to the seabed, have vast potential.

LONDON, 7 March, 2019 − Offshore wind power is set to become one of the world’s largest electricity producers in the next decade as costs fall and turbines grow in size.

Up till now turbines standing on the seabed near to the coast in Europe have been seen as the most promising technology for offshore wind farms. But the success of floating machines that can be deployed in deeper water has meant many more coastal communities can benefit. Japan and the US are among the countries with the greatest potential.

The speed with which the industry has grown in the last decade has defied all expectations. Large turbines used to have a two to three megawatt output, but now the standard size is 7.5 megawatts and turbines capable of generating up to 10 megawatts are in the pipeline.

As a result the output of one offshore turbine is thirty times greater than with the first ones deployed in 1991 − and the cost has fallen to half that of new nuclear power.

This, coupled with experience showing that the wind blows more steadily out to sea and produces far more consistent power than turbines on land, has led many more countries to see offshore wind as a major potential source of renewable energy. The turbines have shown themselves to be robust even in extreme storm conditions.

“Previous estimates of the growth of renewables, at least wind and solar power, have always been underestimates”

Production has just begun from the world’s largest offshore wind farm in the North Sea, where construction started only in January 2018 and which began feeding power ashore in England 13 months later. The project is enormous, all four phases covering nearly 2,000 square miles, and will produce up to 6 GW of power, the same as five large nuclear power stations.

Apart from the sheer size, the plan is to have the whole development completed by 2025, before the partly-constructed Hinkley Point C nuclear power station in the West of England will start up, and providing return on capital for the investors years before its nuclear rivals.

While the market for turbines fixed to the seabed is expected to continue to grow very fast, it is floating turbines that will be the next big player. These are again huge machines, taking advantage of the steadier
winds out to sea, and not needing expensive seabed foundations.

It took 15 years for the Norwegian state oil company Statoil, now rebranded as Equinor to emphasise its partial move to renewables, to develop the first offshore wind farm 15 miles of the coast of Aberdeen in Scotland.

Outrunning expectations

There are five turbines with blades 175 metres long and a counterweight extending 78 metres below the surface, which is chained to the seabed. The turbines started feeding into the grid in October 2017 and output was soon exceeding expectations.

The fact that it was Statoil that designed and developed the floating turbines is significant. The offshore wind industry uses many of the skills developed by offshore gas and oil ventures and provides an investment opportunity for oil majors under pressure to diversify and show they have green credentials.

A report, Wind Power to Spare, produced last year by a research and campaigning group, Environment America, showed that there was enough potential wind power just off the US east coast to provide more electricity than was currently used in the region’s maritime states – plus enough for powering electric cars and for providing heating for the entire population of the eastern coastal states in the future.

Since the report was published developers, looking at the success of Europe in exploiting this resource, have shown an escalation of interest. The same is true of Japan, where the nuclear industry remains in deep trouble as a result of the Fukushima accident in 2011, with many of its reactors not expected to restart.

Potential ignored

Back in Europe, where offshore wind was first developed, manufacturers are eyeing up potential new markets both in the North Sea and elsewhere. France for example has no offshore wind farms but could deploy hundreds of floating turbines.

Research suggests that water depths in the North Sea are ideal for floating turbines. If half the area available could be covered in turbines they would make enough electricity to power the whole EU four times over.

That prediction is made by Equinor. It also estimates in the same report that by 2030 Japan could have 3.5 gigawatts of floating wind power, France 2.9 GW and the US 2 GW, with a further 1.9 GW in the UK and Ireland.

This would make a significant contribution to reducing the world’s burning of fossil fuels, particularly since previous estimates of the growth of renewables, at least wind and solar power, have always been underestimates. − Climate News Network

Off-the-shelf nuclear reactors seek buyers

The nuclear industry’s fierce fight for survival is leading several countries to develop smaller, off-the-shelf nuclear reactors.

LONDON, 5 March, 2019 − As costs escalate, several countries with nuclear ambitions have abandoned plans for large reactors. But the industry is adapting, seeking to reinvent itself by mass-producing small off-the-shelf nuclear reactors instead.

If nuclear enthusiasts are to be believed, the world is on the edge of a building boom for a range of new reactors designed to produce electricity, district heating and desalination.

The idea of small modular reactors (SMRs), as they are known, has been around for years. But an in-depth analysis, a so-called White Paper produced by a UK newsletter, the Nuclear Energy Insider, says the technology is reaching take-off point in Argentina, Canada, China, Russia, the US and the UK.

Unlike their big cousins, which are falling out of favour because they take more than a decade to build and often have massive cost overruns, the concept behind small modular reactors is that the parts can be factory-made in large numbers to be cheaply and rapidly assembled on site. So far this is only theory; currently the industry is at the prototype stage.

The idea of siting nuclear reactors close to residential areas has not been tried in practice, at least not in democracies where voters have the right to object

The idea is to place the SMRs close to where they will provide power so that if necessary they can provide district heating as well as electricity, or − if on the coast − seawater desalination. They can also be deployed on barges and towed to remote locations to provide power for island communities or military installations where ordinary grids cannot reach.

The Russians have already launched one of these, which Greenpeace immediately dubbed “The Floating Chernobyl” and “The Nuclear Titanic”. Opinions are divided about the safety of SMRs. Supporters point out that icebreakers and submarines powered by small reactors have been at sea for decades.

The Russians say the plants will provide electricity for up to 100,000 people in remote Arctic regions but so far, despite being open to offers for some years, Rosatom, the state nuclear company, has not yet had a rush of orders.

While factories for small reactors sound as innocuous as the mass production of cars, the idea of siting nuclear reactors close to residential areas has not been tried in practice, at least not in democracies where voters have the right to object. It seems unlikely that a reactor placed close enough to a city to provide district heating would not raise objections, from some citizens at least.

Cost dilemma

Another consideration is cost. The theory is that once the first prototypes are deployed and have proved they work, the cost of future models will tumble as they are mass-produced. SMRs vary in size from about 30 megawatts (around the same output as four large offshore wind turbines) to 300 megawatts, and they can be deployed in groups like wind turbines to provide as much power output as required.

What has not been tested is whether there would ever be enough orders for any one sort of small modular reactor to justify setting up a factory to produce dozens of them. This is the only way to get the unit cost down sufficiently to compete with renewables, which are continuing to get cheaper and already dominate the market.

None of these doubts seems to assail the industry. According to the White Paper, the International Atomic Energy Agency has information on 50 possible SMR designs, with Argentina, Russia and China all expected to start up their first prototypes this year or next. Both Canada and the US are already going through the licensing and construction of prototypes and expect to have them operational by 2026.

Military links

Although it is not mentioned in the White Paper it is clear that at least in the US, UK, China and Russia there is a close relationship between the development of SMRs and the military need for nuclear-powered submarines − and, in the case of the US and Russia, icebreakers. The technology for both is very similar and the personnel to operate them need similar training and expertise.

Next month in Atlanta in the US the world’s SMR enthusiasts, including governments and the many companies developing and hoping to market SMRs, are gathering to hear the latest developments. The meeting is to be held on 2 and 3 April.

Participants include speakers from the US Department of Energy, the chief strategist for the US Army, and one from  the UK government’s department of business, energy and industrial strategy. Their task is to tell the conference how their governments are planning to deploy SMRs.

The UK is running a workshop so that attendees can “hear directly from the UK government on how they are ensuring that the UK becomes one of the top global destinations for SMRs”, according to the conference brochure. − Climate News Network

The nuclear industry’s fierce fight for survival is leading several countries to develop smaller, off-the-shelf nuclear reactors.

LONDON, 5 March, 2019 − As costs escalate, several countries with nuclear ambitions have abandoned plans for large reactors. But the industry is adapting, seeking to reinvent itself by mass-producing small off-the-shelf nuclear reactors instead.

If nuclear enthusiasts are to be believed, the world is on the edge of a building boom for a range of new reactors designed to produce electricity, district heating and desalination.

The idea of small modular reactors (SMRs), as they are known, has been around for years. But an in-depth analysis, a so-called White Paper produced by a UK newsletter, the Nuclear Energy Insider, says the technology is reaching take-off point in Argentina, Canada, China, Russia, the US and the UK.

Unlike their big cousins, which are falling out of favour because they take more than a decade to build and often have massive cost overruns, the concept behind small modular reactors is that the parts can be factory-made in large numbers to be cheaply and rapidly assembled on site. So far this is only theory; currently the industry is at the prototype stage.

The idea of siting nuclear reactors close to residential areas has not been tried in practice, at least not in democracies where voters have the right to object

The idea is to place the SMRs close to where they will provide power so that if necessary they can provide district heating as well as electricity, or − if on the coast − seawater desalination. They can also be deployed on barges and towed to remote locations to provide power for island communities or military installations where ordinary grids cannot reach.

The Russians have already launched one of these, which Greenpeace immediately dubbed “The Floating Chernobyl” and “The Nuclear Titanic”. Opinions are divided about the safety of SMRs. Supporters point out that icebreakers and submarines powered by small reactors have been at sea for decades.

The Russians say the plants will provide electricity for up to 100,000 people in remote Arctic regions but so far, despite being open to offers for some years, Rosatom, the state nuclear company, has not yet had a rush of orders.

While factories for small reactors sound as innocuous as the mass production of cars, the idea of siting nuclear reactors close to residential areas has not been tried in practice, at least not in democracies where voters have the right to object. It seems unlikely that a reactor placed close enough to a city to provide district heating would not raise objections, from some citizens at least.

Cost dilemma

Another consideration is cost. The theory is that once the first prototypes are deployed and have proved they work, the cost of future models will tumble as they are mass-produced. SMRs vary in size from about 30 megawatts (around the same output as four large offshore wind turbines) to 300 megawatts, and they can be deployed in groups like wind turbines to provide as much power output as required.

What has not been tested is whether there would ever be enough orders for any one sort of small modular reactor to justify setting up a factory to produce dozens of them. This is the only way to get the unit cost down sufficiently to compete with renewables, which are continuing to get cheaper and already dominate the market.

None of these doubts seems to assail the industry. According to the White Paper, the International Atomic Energy Agency has information on 50 possible SMR designs, with Argentina, Russia and China all expected to start up their first prototypes this year or next. Both Canada and the US are already going through the licensing and construction of prototypes and expect to have them operational by 2026.

Military links

Although it is not mentioned in the White Paper it is clear that at least in the US, UK, China and Russia there is a close relationship between the development of SMRs and the military need for nuclear-powered submarines − and, in the case of the US and Russia, icebreakers. The technology for both is very similar and the personnel to operate them need similar training and expertise.

Next month in Atlanta in the US the world’s SMR enthusiasts, including governments and the many companies developing and hoping to market SMRs, are gathering to hear the latest developments. The meeting is to be held on 2 and 3 April.

Participants include speakers from the US Department of Energy, the chief strategist for the US Army, and one from  the UK government’s department of business, energy and industrial strategy. Their task is to tell the conference how their governments are planning to deploy SMRs.

The UK is running a workshop so that attendees can “hear directly from the UK government on how they are ensuring that the UK becomes one of the top global destinations for SMRs”, according to the conference brochure. − Climate News Network

UK urged to remove carbon from gas

As coal in Europe yields to solar and wind power, UK politicians argue it should remove carbon from gas..

LONDON, 20 February, 2019 − To remove carbon from gas, which is used in vast quantities across Europe for heating and cooking, is one of the great technical difficulties that must be overcome to save the planet from dangerous overheating.

Gas distributed across thousands of miles of pipes has been put forward by oil companies as a necessary interim fuel while governments move away from coal as a power source, replacing it with renewables. But a new report says gas use must also be curtailed, and quickly.

Now come claims that work must start immediately to cut carbon emissions from the gas network if targets are to be met to keep carbon dioxide in the atmosphere to acceptable levels.

Bright Blue describes itself as “an independent think tank and pressure group for liberal conservatism.” It has published a report, Pressure in the Pipeline, which suggests a number of ways that gas use could be reduced and replaced with alternatives that do not involve pumping carbon dioxide into the atmosphere.

Although it is endorsed by leading members of the ruling  Conservative party, including the minister of state for energy and clean growth, Claire Perry, the report is clear that the government the party supports needs to reform existing legislation and do far more to encourage decarbonising gas if this energy revolution is to happen.

One of the key parts of the report is about the drive to replace natural gas with hydrogen. Currently the UK’s gas supplies are pumped from below the North Sea or piped from as far away as Russia. If the country can manage the transition, it could provide a blueprint for the rest of Europe, which is heavily reliant on Siberian gas and the goodwill of Russia for most of its heating.

“The government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity”

Antoinette Sandbach MP, a member of the House of Commons business, energy and industrial strategy committee, said: “This report is a significant contribution to the task of planning Britain’s energy future. Decarbonising our extensive gas network is an important priority. Over 80% of UK homes depend on gas for heating and cooking.”

Although presently hydrogen is mostly produced for commercial use by extracting it from natural gas, which is carbon-intensive, it is equally easy to extract hydrogen from freshwater or seawater using electrolysis − a process that involves passing an electric current through water to obtain hydrogen and oxygen. When the hydrogen is burned it produces only water as waste, and no carbon dioxide.

Currently gas is used to produce hydrogen because it is far cheaper than electricity, but this may change. The UK, with its growth of offshore wind power, is now frequently producing surpluses of electricity at non-peak times, and this “free” power could be used to produce hydrogen to pump into the gas network.

Several trials are already taking place in the UK with existing gas distribution networks to supply homes with a mixture of up to 20% of hydrogen and natural gas, and others are developing networks that can burn 100% hydrogen, the report says.

However, current legislation bans more than 0.1% of hydrogen in the gas network, so the report points out that if either or both of these trials prove successful the government will have to change legislation to allow the schemes to be rolled out to consumers.

No technical bar

The authors cannot see a technical barrier to allowing more hydrogen into the network, since before natural gas was tapped the UK used gas for cooking and heating after deriving it from coal that was more than 50% hydrogen.

Given the right regulations and market incentives, around 60% of the heat supplied to domestic, commercial and industry consumers could come from hydrogen in the gas network by 2050.

To help achieve this the government is urged to improve the energy efficiency of UK homes, where it has had a number of programmes in the past, now abandoned.

The report says that energy efficiency could reduce gas use by a quarter by 2035 in domestic buildings, the largest current user of gas, but that to achieve that the government would need to provide active support.

Apart from the discussion about hydrogen the report details existing progress with gas produced from waste food that is already injected into the network. Much more of this gas, and low carbon gas from other sources, could also be used as a fossil fuel substitute, but again the government needs to change legislation to enable it to work.

New remit needed

The report also says that the independent gas regulator that is supposed to protect consumers, Ofgem, needs to have its remit changed so that it can force companies to include hydrogen and other alternatives to natural gas in supplies to homes.

Wilf Lytton, senior researcher at Bright Blue and co-author of the report, said: “Existing gas regulations that were designed decades ago, and a lack of investment and incentives, are hampering deeper decarbonisation.

“Now, with time running out, the government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity. It is an urgent priority to ensure that Ofgem’s next price control framework from April 2021 includes stronger incentives and greater investment to support deeper decarbonisation.”

Claire Perry, endorsing the report, said: “Hydrogen and biomethane can help deliver serious climate action through our existing infrastructure, keeping consumers on board and maintaining the flexibility and resilience provided by the gas system.

“The UK has grown its economy whilst cutting carbon faster than any other country in the G7; but if we are going to build on this success, we need to get serious in tackling heat.” − Climate News Network

As coal in Europe yields to solar and wind power, UK politicians argue it should remove carbon from gas..

LONDON, 20 February, 2019 − To remove carbon from gas, which is used in vast quantities across Europe for heating and cooking, is one of the great technical difficulties that must be overcome to save the planet from dangerous overheating.

Gas distributed across thousands of miles of pipes has been put forward by oil companies as a necessary interim fuel while governments move away from coal as a power source, replacing it with renewables. But a new report says gas use must also be curtailed, and quickly.

Now come claims that work must start immediately to cut carbon emissions from the gas network if targets are to be met to keep carbon dioxide in the atmosphere to acceptable levels.

Bright Blue describes itself as “an independent think tank and pressure group for liberal conservatism.” It has published a report, Pressure in the Pipeline, which suggests a number of ways that gas use could be reduced and replaced with alternatives that do not involve pumping carbon dioxide into the atmosphere.

Although it is endorsed by leading members of the ruling  Conservative party, including the minister of state for energy and clean growth, Claire Perry, the report is clear that the government the party supports needs to reform existing legislation and do far more to encourage decarbonising gas if this energy revolution is to happen.

One of the key parts of the report is about the drive to replace natural gas with hydrogen. Currently the UK’s gas supplies are pumped from below the North Sea or piped from as far away as Russia. If the country can manage the transition, it could provide a blueprint for the rest of Europe, which is heavily reliant on Siberian gas and the goodwill of Russia for most of its heating.

“The government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity”

Antoinette Sandbach MP, a member of the House of Commons business, energy and industrial strategy committee, said: “This report is a significant contribution to the task of planning Britain’s energy future. Decarbonising our extensive gas network is an important priority. Over 80% of UK homes depend on gas for heating and cooking.”

Although presently hydrogen is mostly produced for commercial use by extracting it from natural gas, which is carbon-intensive, it is equally easy to extract hydrogen from freshwater or seawater using electrolysis − a process that involves passing an electric current through water to obtain hydrogen and oxygen. When the hydrogen is burned it produces only water as waste, and no carbon dioxide.

Currently gas is used to produce hydrogen because it is far cheaper than electricity, but this may change. The UK, with its growth of offshore wind power, is now frequently producing surpluses of electricity at non-peak times, and this “free” power could be used to produce hydrogen to pump into the gas network.

Several trials are already taking place in the UK with existing gas distribution networks to supply homes with a mixture of up to 20% of hydrogen and natural gas, and others are developing networks that can burn 100% hydrogen, the report says.

However, current legislation bans more than 0.1% of hydrogen in the gas network, so the report points out that if either or both of these trials prove successful the government will have to change legislation to allow the schemes to be rolled out to consumers.

No technical bar

The authors cannot see a technical barrier to allowing more hydrogen into the network, since before natural gas was tapped the UK used gas for cooking and heating after deriving it from coal that was more than 50% hydrogen.

Given the right regulations and market incentives, around 60% of the heat supplied to domestic, commercial and industry consumers could come from hydrogen in the gas network by 2050.

To help achieve this the government is urged to improve the energy efficiency of UK homes, where it has had a number of programmes in the past, now abandoned.

The report says that energy efficiency could reduce gas use by a quarter by 2035 in domestic buildings, the largest current user of gas, but that to achieve that the government would need to provide active support.

Apart from the discussion about hydrogen the report details existing progress with gas produced from waste food that is already injected into the network. Much more of this gas, and low carbon gas from other sources, could also be used as a fossil fuel substitute, but again the government needs to change legislation to enable it to work.

New remit needed

The report also says that the independent gas regulator that is supposed to protect consumers, Ofgem, needs to have its remit changed so that it can force companies to include hydrogen and other alternatives to natural gas in supplies to homes.

Wilf Lytton, senior researcher at Bright Blue and co-author of the report, said: “Existing gas regulations that were designed decades ago, and a lack of investment and incentives, are hampering deeper decarbonisation.

“Now, with time running out, the government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity. It is an urgent priority to ensure that Ofgem’s next price control framework from April 2021 includes stronger incentives and greater investment to support deeper decarbonisation.”

Claire Perry, endorsing the report, said: “Hydrogen and biomethane can help deliver serious climate action through our existing infrastructure, keeping consumers on board and maintaining the flexibility and resilience provided by the gas system.

“The UK has grown its economy whilst cutting carbon faster than any other country in the G7; but if we are going to build on this success, we need to get serious in tackling heat.” − Climate News Network

Growing nuclear waste legacy defies disposal

Supporters say more nuclear power will combat climate change, but the industry is still failing to tackle its nuclear waste legacy.

LONDON, 7 February, 2019 − The nuclear industry, and governments across the world, have yet to find a solution to the nuclear waste legacy, the highly dangerous radioactive remains that are piling up in unsafe stores in many countries.

A report commissioned by Greenpeace France says there is now a serious threat of a major accident or terrorist attack in several of the countries most heavily reliant on nuclear power, including the US, France and the UK.

The report fears for what may be to come: “When the stability of nations is measured in years and perhaps decades into the future, what will be the viability of states over the thousands-of-year timeframes required to manage nuclear waste?”

Hundreds of ageing nuclear power stations now have dry stores or deep ponds full of old used fuel, known as spent fuel, from decades of refuelling reactors.

The old fuel has to be cooled for 30 years or more to prevent it spontaneously catching fire and sending a deadly plume of radioactivity hundreds of miles downwind.

Some idea of the dangerous radiation involved is the fact that standing one metre away from a spent fuel assembly removed from a reactor a year previously could kill you in about one minute, the Greenpeace report says.

Official guesswork

The estimates of costs for dealing with the waste in the future are compiled by government experts but vary widely from country to country, and all figures are just official guesswork. All are measured in billions of dollars.

To give an example of actual annual costs for one waste site in the UK, Sellafield in north-west England, the budget just for keeping it safe is £3 bn (US$3.9 bn) a year.

It is estimated that disposing of the waste at Sellafield would cost £80 bn, but that is at best an informed guess since no way of disposing of it has been found.

The report details the waste from the whole nuclear cycle. This begins with the billions of tons of mildly radioactive uranium mine tailings that are left untended in spoil heaps in more than a dozen countries.

Then there are the stores of thousands of tons of depleted uranium left over after producing nuclear fuel and weapons. Last, there is the highly radioactive fuel removed from the reactors, some of it reprocessed to obtain plutonium, leaving behind extremely dangerous liquid waste.

Although the environmental damage from uranium mining is massive, the major danger comes from fires or explosions in spent fuel stores, which need constant cooling to prevent “catastrophic releases” of radioactivity into urban areas.

“Standing one metre away from a spent fuel assembly removed from a reactor a year previously could kill you in about one minute”

There are now an estimated quarter of a million tons of spent fuel stored at dozens of power stations in 14 nuclear countries.

The report concentrates on Belgium, Finland, France, Japan, Sweden, the UK and the US. What happens in Russia and China is not open to public scrutiny.

All countries have severe problems, but those with the most reactors that have also gone in for reprocessing spent fuel to extract plutonium for nuclear weapons face the worst.

The report says of France, which has 58 reactors, a number of which are soon to be retired: “There is currently no credible solution for long-term disposal of nuclear waste in France; the urgent matter is reducing risks from existing waste, including spent fuel.”

In the 60 years since the nuclear industry began producing highly dangerous waste, some of it has been dumped in the sea or vented into the atmosphere, but most has been stored, waiting for someone to come up with the technology to neutralise it or a safe way of disposing of it.

Sea dumping outlawed

Since the option of dumping it in the sea was closed off in the 1980s because of alarm about the increase in cancers this would cause, governments have concentrated on the idea of building deep depositories in stable rock or clay formations to allow the radioactivity to decay to safe levels.

The problem with this solution is that high-level waste stays dangerous for hundreds of thousands of years, so future generations may be put in danger.

Only two countries, Finland and Sweden, which both have stable rock formations, are building repositories, but in both cases there are still doubts and controversy over whether these schemes will be robust enough to contain the radioactivity indefinitely.

In democratic countries, in every case where a depository has been or is proposed, there is a public backlash from nearby communities. This is true in all the countries studied, many of which have been forced to abandon plans to bury the waste

As a result of this resistance from the public the report says that the US “lacks a coherent policy” and the American Department of Energy suggests that “extended storage for 300 years” is the current plan. − Climate News Network

Supporters say more nuclear power will combat climate change, but the industry is still failing to tackle its nuclear waste legacy.

LONDON, 7 February, 2019 − The nuclear industry, and governments across the world, have yet to find a solution to the nuclear waste legacy, the highly dangerous radioactive remains that are piling up in unsafe stores in many countries.

A report commissioned by Greenpeace France says there is now a serious threat of a major accident or terrorist attack in several of the countries most heavily reliant on nuclear power, including the US, France and the UK.

The report fears for what may be to come: “When the stability of nations is measured in years and perhaps decades into the future, what will be the viability of states over the thousands-of-year timeframes required to manage nuclear waste?”

Hundreds of ageing nuclear power stations now have dry stores or deep ponds full of old used fuel, known as spent fuel, from decades of refuelling reactors.

The old fuel has to be cooled for 30 years or more to prevent it spontaneously catching fire and sending a deadly plume of radioactivity hundreds of miles downwind.

Some idea of the dangerous radiation involved is the fact that standing one metre away from a spent fuel assembly removed from a reactor a year previously could kill you in about one minute, the Greenpeace report says.

Official guesswork

The estimates of costs for dealing with the waste in the future are compiled by government experts but vary widely from country to country, and all figures are just official guesswork. All are measured in billions of dollars.

To give an example of actual annual costs for one waste site in the UK, Sellafield in north-west England, the budget just for keeping it safe is £3 bn (US$3.9 bn) a year.

It is estimated that disposing of the waste at Sellafield would cost £80 bn, but that is at best an informed guess since no way of disposing of it has been found.

The report details the waste from the whole nuclear cycle. This begins with the billions of tons of mildly radioactive uranium mine tailings that are left untended in spoil heaps in more than a dozen countries.

Then there are the stores of thousands of tons of depleted uranium left over after producing nuclear fuel and weapons. Last, there is the highly radioactive fuel removed from the reactors, some of it reprocessed to obtain plutonium, leaving behind extremely dangerous liquid waste.

Although the environmental damage from uranium mining is massive, the major danger comes from fires or explosions in spent fuel stores, which need constant cooling to prevent “catastrophic releases” of radioactivity into urban areas.

“Standing one metre away from a spent fuel assembly removed from a reactor a year previously could kill you in about one minute”

There are now an estimated quarter of a million tons of spent fuel stored at dozens of power stations in 14 nuclear countries.

The report concentrates on Belgium, Finland, France, Japan, Sweden, the UK and the US. What happens in Russia and China is not open to public scrutiny.

All countries have severe problems, but those with the most reactors that have also gone in for reprocessing spent fuel to extract plutonium for nuclear weapons face the worst.

The report says of France, which has 58 reactors, a number of which are soon to be retired: “There is currently no credible solution for long-term disposal of nuclear waste in France; the urgent matter is reducing risks from existing waste, including spent fuel.”

In the 60 years since the nuclear industry began producing highly dangerous waste, some of it has been dumped in the sea or vented into the atmosphere, but most has been stored, waiting for someone to come up with the technology to neutralise it or a safe way of disposing of it.

Sea dumping outlawed

Since the option of dumping it in the sea was closed off in the 1980s because of alarm about the increase in cancers this would cause, governments have concentrated on the idea of building deep depositories in stable rock or clay formations to allow the radioactivity to decay to safe levels.

The problem with this solution is that high-level waste stays dangerous for hundreds of thousands of years, so future generations may be put in danger.

Only two countries, Finland and Sweden, which both have stable rock formations, are building repositories, but in both cases there are still doubts and controversy over whether these schemes will be robust enough to contain the radioactivity indefinitely.

In democratic countries, in every case where a depository has been or is proposed, there is a public backlash from nearby communities. This is true in all the countries studied, many of which have been forced to abandon plans to bury the waste

As a result of this resistance from the public the report says that the US “lacks a coherent policy” and the American Department of Energy suggests that “extended storage for 300 years” is the current plan. − Climate News Network

Pyrenees pipeline veto is setback for gas

The global gas industry’s prospects will suffer from the Pyrenees pipeline veto imposed by regulators, say opponents of fossil fuels.

LONDON, 30 January, 2019 − The Pyrenees pipeline veto announced by regulators in France and Spain, rejecting plans to complete a €3 billion (£2.6 bn) gas link between both countries, is being hailed as a major victory by climate change protestors.

The pipeline, which would have doubled the capacity for transporting natural gas through the mountains on the Franco-Spanish border, was supported by the European Union as a way to reduce its reliance on Russian gas, but the project now appears doomed.

Campaigners in both countries said it was a defeat for the fossil fuel industry and a major step in preventing the EU from continuing to rely on gas instead of renewables.

“MidCat”, as the proposed Midi-Catalunya pipeline was known, would have allowed the flow of gas in both directions across the Pyrenees. Significantly, it would have allowed liquefied gas from terminals in Spain to be pumped north to France to replace an estimated 10% of the gas coming south from Russia.

Energy corporations Enagás and Teréga have been promoting its construction since 2005, and in 2013 the European Commission added the project to its list of favoured “Projects of Common Interest”.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels”

The companies presented the pipeline as a necessary piece of infrastructure to improve Europe’s energy security and to fight against climate change, but protestors said the money should instead have been invested in renewables.

Although it was only one of 90 projects designed to improve the transport of gas in the EU, it was one of the largest. Gas companies have lobbied hard everywhere in Europe to get the Commission and politicians to see gas as an interim step between coal and renewables, but campaigners say the climate cannot afford to burn gas either.

Clemence Dubois, a campaigner at 350.org, said: “All across Europe, we are building a future free of fossil fuels. Together we are making it harder and harder for dirty energy companies to build their pipelines and impose a destructive and outdated model of business.

“We have won an important victory because we have prevented the construction of a major piece of infrastructure that is totally incompatible with a liveable climate.”

Last week the French Energy Regulatory Commission (CRE) and the Spanish National Commission on Markets and Competition  (CNMC) issued a joint statement rejecting the scheme, not on climate grounds but because they said it was too costly and they could not see a sufficient need for it.

Red card

Antoine Simon, fossil free campaigner for Friends of the Earth Europe, said: “This dramatic red card to the MidCat gas pipeline marks a major victory in the fight to stop a new climate-wrecking fossil gas project. Activists, NGOs and local communities have been fighting this useless project for years, knowing it’s bad for taxpayers, consumers, local people, and the climate – and today they’ve been proved right.

“This is a major setback for the gas industry, and calls into question the hundred other gas projects that the EU has prioritised for support, all of which are similarly unviable. Gas is a dangerous fossil fuel which is killing the climate.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels.”

Although there has been fierce opposition from environment groups in the region, the pipeline’s future was in doubt from the moment the Spanish Conservative government lost power in June last year and socialists took over the environment ministry.

When last November Spain pledged to switch to 100% renewable electricity by 2050 and to become carbon-neutral soon afterwards, it was clear that the new pipeline was unlikely to find favour. − Climate News Network

The global gas industry’s prospects will suffer from the Pyrenees pipeline veto imposed by regulators, say opponents of fossil fuels.

LONDON, 30 January, 2019 − The Pyrenees pipeline veto announced by regulators in France and Spain, rejecting plans to complete a €3 billion (£2.6 bn) gas link between both countries, is being hailed as a major victory by climate change protestors.

The pipeline, which would have doubled the capacity for transporting natural gas through the mountains on the Franco-Spanish border, was supported by the European Union as a way to reduce its reliance on Russian gas, but the project now appears doomed.

Campaigners in both countries said it was a defeat for the fossil fuel industry and a major step in preventing the EU from continuing to rely on gas instead of renewables.

“MidCat”, as the proposed Midi-Catalunya pipeline was known, would have allowed the flow of gas in both directions across the Pyrenees. Significantly, it would have allowed liquefied gas from terminals in Spain to be pumped north to France to replace an estimated 10% of the gas coming south from Russia.

Energy corporations Enagás and Teréga have been promoting its construction since 2005, and in 2013 the European Commission added the project to its list of favoured “Projects of Common Interest”.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels”

The companies presented the pipeline as a necessary piece of infrastructure to improve Europe’s energy security and to fight against climate change, but protestors said the money should instead have been invested in renewables.

Although it was only one of 90 projects designed to improve the transport of gas in the EU, it was one of the largest. Gas companies have lobbied hard everywhere in Europe to get the Commission and politicians to see gas as an interim step between coal and renewables, but campaigners say the climate cannot afford to burn gas either.

Clemence Dubois, a campaigner at 350.org, said: “All across Europe, we are building a future free of fossil fuels. Together we are making it harder and harder for dirty energy companies to build their pipelines and impose a destructive and outdated model of business.

“We have won an important victory because we have prevented the construction of a major piece of infrastructure that is totally incompatible with a liveable climate.”

Last week the French Energy Regulatory Commission (CRE) and the Spanish National Commission on Markets and Competition  (CNMC) issued a joint statement rejecting the scheme, not on climate grounds but because they said it was too costly and they could not see a sufficient need for it.

Red card

Antoine Simon, fossil free campaigner for Friends of the Earth Europe, said: “This dramatic red card to the MidCat gas pipeline marks a major victory in the fight to stop a new climate-wrecking fossil gas project. Activists, NGOs and local communities have been fighting this useless project for years, knowing it’s bad for taxpayers, consumers, local people, and the climate – and today they’ve been proved right.

“This is a major setback for the gas industry, and calls into question the hundred other gas projects that the EU has prioritised for support, all of which are similarly unviable. Gas is a dangerous fossil fuel which is killing the climate.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels.”

Although there has been fierce opposition from environment groups in the region, the pipeline’s future was in doubt from the moment the Spanish Conservative government lost power in June last year and socialists took over the environment ministry.

When last November Spain pledged to switch to 100% renewable electricity by 2050 and to become carbon-neutral soon afterwards, it was clear that the new pipeline was unlikely to find favour. − Climate News Network

Nuclear sunset overtakes fading dreams

As atomic energy gets ever more difficult to afford and renewables become steadily cheaper, a nuclear sunset awaits plans for new plants.

LONDON, 21 January, 2019 − Once hailed as a key part of the energy future of the United Kingdom and several other countries, the high-tech atomic industry is now heading in the opposite direction, towards nuclear sunset.

It took another body blow last week when plans to build four new reactors on two sites in the UK were abandoned as too costly by the Japanese company Hitachi. This was even though it had already sunk £2.14 billion (300 bn yen) in the scheme.

Following the decision in November by another Japanese giant, Toshiba, to abandon an equally ambitious scheme to build three reactors at Moorside in the north-west of England, the future of the industry in the UK looks bleak.

The latest withdrawal means the end of the Japanese dream of keeping its nuclear industry alive by exporting its technology overseas. With the domestic market killed by the Fukushima disaster in 2011, overseas sales were to have been its salvation.

UK policy needed

It also leaves the British plan to lead an international nuclear renaissance by building ten new nuclear stations in the UK in tatters, with the government facing an urgent need for a new energy policy.

Across the world the nuclear industry is faring badly, with costs continuing to rise while the main competitors, renewables, both wind and solar, fall in price. The cost of new nuclear is now roughly three times that of both wind and solar, and even existing nuclear stations are struggling to compete.

Plans by another Japanese giant, Mitsubishi Heavy Industries, to build four reactors at Sinop on the Black Sea coast of Turkey in partnership with the French were also abandoned in December because of ever-escalating costs.

These reverses mean that the main players left in the business of building large reactors are state-owned – EDF in France, Kepco in South Korea, Rosatom in Russia, and a number of Chinese companies. No private company is now apparently large enough to bear the costs and risk of building nuclear power stations.

Sole survivor

In the UK only one of the original 10 planned nuclear stations is currently under construction. This is the twin reactor plant at Hinkley Point in Somerset in the West of England being built by EDF, a construction project twice as big as the Channel Tunnel, and at a cost of £20 bn (US$25.7 bn).

Already, almost before the first concrete was poured, and with 3,000 people working on the project, it is two years behind schedule and its completion date has been put back to 2027.

The problem for EDF and Kepco is that both France and South Korea have gone cool on nuclear power, both governments realising that renewables are a cheaper and better option to reduce carbon emissions.

“The cost of new nuclear is now roughly three times that of both wind and solar, and even existing nuclear stations are struggling to compete”

To keep expanding, both companies need to export their technology, which means finding other governments prepared to subsidise them, a tall order when the price is so high.

EDF’s current export markets are China and the UK. In England, in addition to Hinkley Point, EDF plans another two reactors on the east coast. How the heavily-indebted company will finance this is still to be negotiated with the UK government. China has bought two French reactors, but there are no signs of new orders.

Kepco is building four reactors in the United Arab Emirates,  a contract obtained in 2009 and worth $20 bn, but it has obtained no orders since.

That leaves Russia and China as the main players. Since nuclear exports for both countries are more a means of exerting political influence than making any financial gain, the cost is of secondary importance and both countries are prepared to offer soft loans to anyone who wants one of their nuclear power stations.

Growth points

On this basis Russia is currently building two reactors in Bangladesh and has a number of agreements with other countries to export stations. Last year construction started on a Russian reactor in Turkey.

China has been the main engine for growth in the nuclear industry, partly to feed the country’s ever-growing need for more electricity. In 2018 only two countries started new reactors – eight were in China and two in Russia.

Significantly, while China has accounted for 35 of the 59 units started up in the world in the last decade and has another dozen reactors under construction, the country has not opened any new construction site for a reactor since December 2016.

By contrast, in both 2017 and 2018 the Chinese have dramatically increased installation of both solar and wind farms, obviously a much quicker route to reducing the country’s damaging air pollution.

Maintenance problems

While there are 417 nuclear reactors still operating across the world and still a significant contributor to electricity production in some countries, many of them are now well past their original design life and increasingly difficult to maintain to modern safety standards.

There is little sign of political will outside China and Russia to replace them with new ones.

Even in the UK, with a government that has encouraged nuclear power, there is increasing resistance from consumers to new nuclear plants, as they will be asked to pay dearly through their utility bills for the privilege.

Despite the fact that the UK nuclear lobby is strong, its influence may wane when consumers realise that the country has ample opportunities to deploy off-shore and on-shore wind turbines, solar and tidal power at much lower cost. − Climate News Network

As atomic energy gets ever more difficult to afford and renewables become steadily cheaper, a nuclear sunset awaits plans for new plants.

LONDON, 21 January, 2019 − Once hailed as a key part of the energy future of the United Kingdom and several other countries, the high-tech atomic industry is now heading in the opposite direction, towards nuclear sunset.

It took another body blow last week when plans to build four new reactors on two sites in the UK were abandoned as too costly by the Japanese company Hitachi. This was even though it had already sunk £2.14 billion (300 bn yen) in the scheme.

Following the decision in November by another Japanese giant, Toshiba, to abandon an equally ambitious scheme to build three reactors at Moorside in the north-west of England, the future of the industry in the UK looks bleak.

The latest withdrawal means the end of the Japanese dream of keeping its nuclear industry alive by exporting its technology overseas. With the domestic market killed by the Fukushima disaster in 2011, overseas sales were to have been its salvation.

UK policy needed

It also leaves the British plan to lead an international nuclear renaissance by building ten new nuclear stations in the UK in tatters, with the government facing an urgent need for a new energy policy.

Across the world the nuclear industry is faring badly, with costs continuing to rise while the main competitors, renewables, both wind and solar, fall in price. The cost of new nuclear is now roughly three times that of both wind and solar, and even existing nuclear stations are struggling to compete.

Plans by another Japanese giant, Mitsubishi Heavy Industries, to build four reactors at Sinop on the Black Sea coast of Turkey in partnership with the French were also abandoned in December because of ever-escalating costs.

These reverses mean that the main players left in the business of building large reactors are state-owned – EDF in France, Kepco in South Korea, Rosatom in Russia, and a number of Chinese companies. No private company is now apparently large enough to bear the costs and risk of building nuclear power stations.

Sole survivor

In the UK only one of the original 10 planned nuclear stations is currently under construction. This is the twin reactor plant at Hinkley Point in Somerset in the West of England being built by EDF, a construction project twice as big as the Channel Tunnel, and at a cost of £20 bn (US$25.7 bn).

Already, almost before the first concrete was poured, and with 3,000 people working on the project, it is two years behind schedule and its completion date has been put back to 2027.

The problem for EDF and Kepco is that both France and South Korea have gone cool on nuclear power, both governments realising that renewables are a cheaper and better option to reduce carbon emissions.

“The cost of new nuclear is now roughly three times that of both wind and solar, and even existing nuclear stations are struggling to compete”

To keep expanding, both companies need to export their technology, which means finding other governments prepared to subsidise them, a tall order when the price is so high.

EDF’s current export markets are China and the UK. In England, in addition to Hinkley Point, EDF plans another two reactors on the east coast. How the heavily-indebted company will finance this is still to be negotiated with the UK government. China has bought two French reactors, but there are no signs of new orders.

Kepco is building four reactors in the United Arab Emirates,  a contract obtained in 2009 and worth $20 bn, but it has obtained no orders since.

That leaves Russia and China as the main players. Since nuclear exports for both countries are more a means of exerting political influence than making any financial gain, the cost is of secondary importance and both countries are prepared to offer soft loans to anyone who wants one of their nuclear power stations.

Growth points

On this basis Russia is currently building two reactors in Bangladesh and has a number of agreements with other countries to export stations. Last year construction started on a Russian reactor in Turkey.

China has been the main engine for growth in the nuclear industry, partly to feed the country’s ever-growing need for more electricity. In 2018 only two countries started new reactors – eight were in China and two in Russia.

Significantly, while China has accounted for 35 of the 59 units started up in the world in the last decade and has another dozen reactors under construction, the country has not opened any new construction site for a reactor since December 2016.

By contrast, in both 2017 and 2018 the Chinese have dramatically increased installation of both solar and wind farms, obviously a much quicker route to reducing the country’s damaging air pollution.

Maintenance problems

While there are 417 nuclear reactors still operating across the world and still a significant contributor to electricity production in some countries, many of them are now well past their original design life and increasingly difficult to maintain to modern safety standards.

There is little sign of political will outside China and Russia to replace them with new ones.

Even in the UK, with a government that has encouraged nuclear power, there is increasing resistance from consumers to new nuclear plants, as they will be asked to pay dearly through their utility bills for the privilege.

Despite the fact that the UK nuclear lobby is strong, its influence may wane when consumers realise that the country has ample opportunities to deploy off-shore and on-shore wind turbines, solar and tidal power at much lower cost. − Climate News Network