Author: Tim Radford

About Tim Radford

Tim Radford, a founding editor of Climate News Network, worked for The Guardian for 32 years, for most of that time as science editor. He has been covering climate change since 1988.

Supply chains generate massive carbon emissions

When it comes to cutting carbon emissions, think global. Think multinational. Think Coca-Cola, or Total. But don’t fly.

LONDON, 25 September, 2020 – Chinese and European researchers have identified the source of almost one-fifth of all the world’s carbon emissions. They come from the supply chains of giant multinational companies.

Not only does global business export investment, it exports carbon dioxide emissions as well. And the big players play it really big.

The US business Walmart, the world’s biggest retailer, with 11,500 stores in 28 countries, in 2016 generated more emissions abroad than the whole of Germany’s foreign-owned retail sector.

That year Coca-Cola’s global emissions matched those from the entire foreign food-and-drink industry in China. Total SA’s foreign affiliates generated more than a tenth of the total emissions of France. Altogether, the multinational giants accounted for 18.7% of global emissions.

By contrast, and to provide perspective, the entire global aviation industry contributes just 3.5% of the forces that drive climate change – and that includes the impact of condensation trails and soot and sulphur exhausts as well as carbon dioxide emissions.

“If the world’s leading companies exercised leadership on climate change they could have a transformative effect on global efforts to reduce emissions”

In fact, in eight decades, the aviation industry’s total carbon dioxide discharges add up to only 1.5% of all humankind’s total carbon emissions up to 2018, according to British researchers.

These two very different studies illuminate the great challenge of climate change: it’s not enough for a country to claim it has reduced its carbon footprint, if its big achievement has been to export the burden of emissions to a labour force somewhere else.

And it’s not enough to measure just carbon dioxide. Tomorrow’s planners, investors, economists, designers and engineers must also think about the whole package of anthropogenic change that has begun to raise the planetary temperature to dangerous levels. And in each case the message is the same: think of it as a transnational challenge.

“Multinational companies have enormous influence stretching far beyond national borders,” said Dabo Guan of University College London. “If the world’s leading companies exercised leadership on climate change – for instance by requiring energy efficiency in their supply chains – they could have a transformative effect on global efforts to reduce emissions.”

Outsourced responsibility

Professor Guan and colleagues from Beijing and Norway report in the journal Nature Climate Change that they looked for a new way to measure the impact of big business.

They followed the money. They found that when investment flowed from developed to developing countries, those businesses were also outsourcing the responsibility for carbon emissions. So a fair way of accounting carbon responsibility would be to return it to the investor nation.

For example in 2011, US investment in India resulted in emissions of more than 43 million tonnes. By 2016, this figure had passed more than 70 million tonnes. In 2011, emissions from multinational investment stood at 22% of all emissions worldwide. By 2016 this figure had fallen to 18.7% – partly because of improvements in energy efficiency, and partly because of a fall in foreign investment.

Although carbon dioxide emissions have become a standard measure for potential climate change, they are only part of the story. The climate damage from a jet flight is more than just the greenhouse gas from burning high-octane fuel.

New analysis in the journal Atmospheric Environment confirms that aviation’s biggest contribution to global warming is the effects on clouds: cirrus condensation trails formed by the almost-explosive growth in air traffic reflect and trap heat escaping from the atmosphere on a massive scale.

International flights exempted

The discharge of water vapour, soot and sulphate particles from the engines is also part of what the researchers call “effective radiative forcing,” or ERF.

And when these aspects are factored in, it seems that aviation on a global scale adds up to 3.5% of all human activities that drive climate change. The Paris Agreement on climate change – a global resolve to contain global heating by 2100 to “well below” 2°C above the norm for most of human history – includes domestic aviation within national targets to reduce emissions.

But it does not address international aviation, which adds up to 64% of all air traffic.

“The new study means that aviation’s impact on climate change can be compared with other sectors such as maritime shipping, ground transportation and energy generation, as it has a consistent set of ERF measurements,” said David Lee, of Manchester Metropolitan University, who led the research. – Climate News Network

When it comes to cutting carbon emissions, think global. Think multinational. Think Coca-Cola, or Total. But don’t fly.

LONDON, 25 September, 2020 – Chinese and European researchers have identified the source of almost one-fifth of all the world’s carbon emissions. They come from the supply chains of giant multinational companies.

Not only does global business export investment, it exports carbon dioxide emissions as well. And the big players play it really big.

The US business Walmart, the world’s biggest retailer, with 11,500 stores in 28 countries, in 2016 generated more emissions abroad than the whole of Germany’s foreign-owned retail sector.

That year Coca-Cola’s global emissions matched those from the entire foreign food-and-drink industry in China. Total SA’s foreign affiliates generated more than a tenth of the total emissions of France. Altogether, the multinational giants accounted for 18.7% of global emissions.

By contrast, and to provide perspective, the entire global aviation industry contributes just 3.5% of the forces that drive climate change – and that includes the impact of condensation trails and soot and sulphur exhausts as well as carbon dioxide emissions.

“If the world’s leading companies exercised leadership on climate change they could have a transformative effect on global efforts to reduce emissions”

In fact, in eight decades, the aviation industry’s total carbon dioxide discharges add up to only 1.5% of all humankind’s total carbon emissions up to 2018, according to British researchers.

These two very different studies illuminate the great challenge of climate change: it’s not enough for a country to claim it has reduced its carbon footprint, if its big achievement has been to export the burden of emissions to a labour force somewhere else.

And it’s not enough to measure just carbon dioxide. Tomorrow’s planners, investors, economists, designers and engineers must also think about the whole package of anthropogenic change that has begun to raise the planetary temperature to dangerous levels. And in each case the message is the same: think of it as a transnational challenge.

“Multinational companies have enormous influence stretching far beyond national borders,” said Dabo Guan of University College London. “If the world’s leading companies exercised leadership on climate change – for instance by requiring energy efficiency in their supply chains – they could have a transformative effect on global efforts to reduce emissions.”

Outsourced responsibility

Professor Guan and colleagues from Beijing and Norway report in the journal Nature Climate Change that they looked for a new way to measure the impact of big business.

They followed the money. They found that when investment flowed from developed to developing countries, those businesses were also outsourcing the responsibility for carbon emissions. So a fair way of accounting carbon responsibility would be to return it to the investor nation.

For example in 2011, US investment in India resulted in emissions of more than 43 million tonnes. By 2016, this figure had passed more than 70 million tonnes. In 2011, emissions from multinational investment stood at 22% of all emissions worldwide. By 2016 this figure had fallen to 18.7% – partly because of improvements in energy efficiency, and partly because of a fall in foreign investment.

Although carbon dioxide emissions have become a standard measure for potential climate change, they are only part of the story. The climate damage from a jet flight is more than just the greenhouse gas from burning high-octane fuel.

New analysis in the journal Atmospheric Environment confirms that aviation’s biggest contribution to global warming is the effects on clouds: cirrus condensation trails formed by the almost-explosive growth in air traffic reflect and trap heat escaping from the atmosphere on a massive scale.

International flights exempted

The discharge of water vapour, soot and sulphate particles from the engines is also part of what the researchers call “effective radiative forcing,” or ERF.

And when these aspects are factored in, it seems that aviation on a global scale adds up to 3.5% of all human activities that drive climate change. The Paris Agreement on climate change – a global resolve to contain global heating by 2100 to “well below” 2°C above the norm for most of human history – includes domestic aviation within national targets to reduce emissions.

But it does not address international aviation, which adds up to 64% of all air traffic.

“The new study means that aviation’s impact on climate change can be compared with other sectors such as maritime shipping, ground transportation and energy generation, as it has a consistent set of ERF measurements,” said David Lee, of Manchester Metropolitan University, who led the research. – Climate News Network

Lentils can feed the world – and save wildlife too

Wildlife could flourish if humans opted for a better diet. Think of humble, healthy lentils as the green choice.

LONDON, 24 September, 2020 – US scientists have worked out how to feed nine billion people and save wildlife from extinction, both at the same time – thanks to healthy lentils.

The answer is starkly simple: if humans got their protein from lentils, beans and nuts rather than beef, pork and chicken, they could return colossal tracts of grazing land back to the wilderness.

Nearly 40% of the planet’s land surface is now committed to agriculture. And almost 83% of this proportion is used to graze animals, or grow food for animals.

If it was returned to natural habitat, then humankind might be able to prevent the extinction of perhaps a million species now under imminent threat.

The same transition would dramatically reduce greenhouse gas emissions, help contain climate change, and perhaps even reduce the risks of new pandemics.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics. There is potential for giving large areas of land back to wildlife”

And best of all, the burden of action could sensibly fall on the better-off nations rather than the poorest.

“The greatest potential for forest regrowth, and the climate benefits it entails, exists in high and upper-middle income countries, places where scaling back on land-hungry meat and dairy would have relatively minor impacts on food security,” said Matthew Hayek of New York University.

He and colleagues report in the journal Nature Sustainability that vegetation regrowth on once-grazed land could gulp down between nine and 16 years of human carbon dioxide emissions from fossil fuel combustion, and buy time for a worldwide switch to renewable energy.

“We can think of shifting our eating habits towards land-friendly diets as a supplement to shifting energy rather than a substitute,” he argued.  “Restoring native forests could buy some much-needed time for countries to transition their energy grids to renewable, fossil-free infrastructure.”

The warning is only the latest in a long line of studies which conclude that if humans ate less meat, the world would be a safer, healthier and better place.

Russia-sized area

The switch is unlikely to happen soon, or completely – in some places, animals are the principal food source – or very effectively. It isn’t clear that in a rapidly warming world, forests would recolonise all farmed land, or that those forests would efficiently absorb the hoped-for atmospheric carbon.

But Dr Hayek and his colleagues mapped only an area over which seeds could disperse naturally, and deliver dense and diverse forest. They identified an area that added up to seven million square kilometres, in places moist enough to thrive naturally. This is an area the size of Russia.

The simple act of abandoning selected ranchland or pasture could work wonders for water quality, wildlife habitat and biodiversity. And it would work for human health as well.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics,” said his co-author Helen Harwatt of Harvard Law School.

“Our research shows that there is potential for giving large areas of land back to wildlife. Restoring native ecosystems not only helps the climate; when coupled with reduced livestock populations, restoration reduced disease transmission from wildlife to pigs, chickens and cows, and ultimately to humans.” – Climate News Network

Wildlife could flourish if humans opted for a better diet. Think of humble, healthy lentils as the green choice.

LONDON, 24 September, 2020 – US scientists have worked out how to feed nine billion people and save wildlife from extinction, both at the same time – thanks to healthy lentils.

The answer is starkly simple: if humans got their protein from lentils, beans and nuts rather than beef, pork and chicken, they could return colossal tracts of grazing land back to the wilderness.

Nearly 40% of the planet’s land surface is now committed to agriculture. And almost 83% of this proportion is used to graze animals, or grow food for animals.

If it was returned to natural habitat, then humankind might be able to prevent the extinction of perhaps a million species now under imminent threat.

The same transition would dramatically reduce greenhouse gas emissions, help contain climate change, and perhaps even reduce the risks of new pandemics.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics. There is potential for giving large areas of land back to wildlife”

And best of all, the burden of action could sensibly fall on the better-off nations rather than the poorest.

“The greatest potential for forest regrowth, and the climate benefits it entails, exists in high and upper-middle income countries, places where scaling back on land-hungry meat and dairy would have relatively minor impacts on food security,” said Matthew Hayek of New York University.

He and colleagues report in the journal Nature Sustainability that vegetation regrowth on once-grazed land could gulp down between nine and 16 years of human carbon dioxide emissions from fossil fuel combustion, and buy time for a worldwide switch to renewable energy.

“We can think of shifting our eating habits towards land-friendly diets as a supplement to shifting energy rather than a substitute,” he argued.  “Restoring native forests could buy some much-needed time for countries to transition their energy grids to renewable, fossil-free infrastructure.”

The warning is only the latest in a long line of studies which conclude that if humans ate less meat, the world would be a safer, healthier and better place.

Russia-sized area

The switch is unlikely to happen soon, or completely – in some places, animals are the principal food source – or very effectively. It isn’t clear that in a rapidly warming world, forests would recolonise all farmed land, or that those forests would efficiently absorb the hoped-for atmospheric carbon.

But Dr Hayek and his colleagues mapped only an area over which seeds could disperse naturally, and deliver dense and diverse forest. They identified an area that added up to seven million square kilometres, in places moist enough to thrive naturally. This is an area the size of Russia.

The simple act of abandoning selected ranchland or pasture could work wonders for water quality, wildlife habitat and biodiversity. And it would work for human health as well.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics,” said his co-author Helen Harwatt of Harvard Law School.

“Our research shows that there is potential for giving large areas of land back to wildlife. Restoring native ecosystems not only helps the climate; when coupled with reduced livestock populations, restoration reduced disease transmission from wildlife to pigs, chickens and cows, and ultimately to humans.” – Climate News Network

Wilder shores of science yield new ideas on climate

New ideas on climate mean earthquake scientists know more about global heating and astronomers worry over rising warmth.

LONDON, 22 September, 2020 – Science has extended research into the global heating crisis, thanks to new ideas on climate. And, conversely, climate change has extended science in unexpected ways.

Seismologists believe they may have a new way to take the temperature of the world’s oceans. And astronomers focused on distant galaxies have unwittingly amassed a 30-year record of climate change in the Earth’s own atmosphere.

Both discoveries, in the same week, start with the simple physics of sight and sound. US and Chinese researchers report in the journal Science that records from submarine earthquakes could now deliver an unexpected way of measuring the warmth of the water.

Submarine earthquakes create a pattern of sound that can be transmitted immense distances through the ocean without much weakening. And, since the speed of sound in water increases as the temperature of the water rises, the length of time the sound takes to reach detector equipment is itself an indicator of ocean temperature.

Seismologists know – from waves travelling through the Earth’s crust and its deep interior – when and where the earthquakes happen. Seismic waves sprint through rock at rates measured in kilometres per second. Sound waves propagate through oceans at rates measured in kilometres per hour.

“It is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B”

Just as the differences between the speed of lightning and the speed of thunder can establish the distance of an electrical storm, so if researchers know the time and distance of the sea floor event, they have a way of taking the temperature of the water. The constant rumbling of a living planet could offer a new set of easily assembled readings.

“The key is that we use repeating earthquakes – earthquakes that happen again and again in the same place,” said Wenbo Wu, of the California Institute of Technology, who led the Science study.

“We’re looking at earthquakes that occur off Sumatra in Indonesia, and we measure when they arrive in the central Indian Ocean. It takes about half an hour for them to travel that distance, with water temperature causing about one tenth of a second difference. It’s a very small fractional change, but we can measure it.”

The finding matters because – although humans have been recording local ground and air temperatures for at least 300 years, and worldwide for more than a century – it is much harder to be sure about ocean temperatures: the seas cover 70% of the planet, to an average depth of more than 3 kms, and the temperatures vary with both depth and latitude.

Sound goes deep

Oceanographic research is costly, technically challenging, and uneven. Researchers know that the oceans are responding to climate change driven by global heating as a consequence of greenhouse gas emissions: they do not, however, yet have an assured measure of how much heat the oceans have absorbed, and will go on absorbing.

“The ocean plays a role in the rate that the climate is changing,” said Jörn Callies of Caltech, a co-author. “The ocean is the main reservoir of energy in the climate system, and the deep ocean in particular is important to monitor. One advantage of our method is that the sound waves sample depths below 2,000 metres where there are very few conventional measurements.”

Paradoxically, astronomers need to know a great deal about the first few thousand metres of planet Earth as they peer into the furthest reaches of the universe: what they see and how well they see it is affected by atmospheric temperature, turbulence and moisture.

As ground-based telescopes become bigger and more sensitive – the Extremely Large Telescope now under construction at Paranal in northern Chile will collect light with a mirror 39 metres across – so do the challenges of eliminating the atmospheric turbulence that puts the twinkle in the stars of the night sky: cold air and warm air refract light differently, to create a blur. The bigger the telescope, the greater will be the problem of blur.

For three decades, scientists in the highest and driest part of Chile have been recording subtle and not so subtle atmospheric change. And according to the journal Nature Astronomy, climate change is already beginning to affect astronomical research, and will go on creating problems.

Terrestrial disturbances

“The data showed a 1.5°C increase in near-ground temperature over the last four decades at the Paranal Observatory,” said Susanne Crewell of the University of Cologne. “This is slightly higher than the worldwide average of 1°C since the pre-industrial age.”

Average wind speeds – wind also affects the precision of observations – have increased by 3 or 4 metres per second in the same period. Humidity, too, is expected to change as the world moves to what could be a 4°C average rise in temperature by the century’s end.

The message is that conditions on Earth can disturb the observations and mask the understanding of events billions of light years away and billions of years ago. Astronomers, too, need to sound the alarm about climate change, she and her colleagues write.

“To do so, a massive cultural shift is needed,” they conclude, “and it is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B.” – Climate News Network

New ideas on climate mean earthquake scientists know more about global heating and astronomers worry over rising warmth.

LONDON, 22 September, 2020 – Science has extended research into the global heating crisis, thanks to new ideas on climate. And, conversely, climate change has extended science in unexpected ways.

Seismologists believe they may have a new way to take the temperature of the world’s oceans. And astronomers focused on distant galaxies have unwittingly amassed a 30-year record of climate change in the Earth’s own atmosphere.

Both discoveries, in the same week, start with the simple physics of sight and sound. US and Chinese researchers report in the journal Science that records from submarine earthquakes could now deliver an unexpected way of measuring the warmth of the water.

Submarine earthquakes create a pattern of sound that can be transmitted immense distances through the ocean without much weakening. And, since the speed of sound in water increases as the temperature of the water rises, the length of time the sound takes to reach detector equipment is itself an indicator of ocean temperature.

Seismologists know – from waves travelling through the Earth’s crust and its deep interior – when and where the earthquakes happen. Seismic waves sprint through rock at rates measured in kilometres per second. Sound waves propagate through oceans at rates measured in kilometres per hour.

“It is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B”

Just as the differences between the speed of lightning and the speed of thunder can establish the distance of an electrical storm, so if researchers know the time and distance of the sea floor event, they have a way of taking the temperature of the water. The constant rumbling of a living planet could offer a new set of easily assembled readings.

“The key is that we use repeating earthquakes – earthquakes that happen again and again in the same place,” said Wenbo Wu, of the California Institute of Technology, who led the Science study.

“We’re looking at earthquakes that occur off Sumatra in Indonesia, and we measure when they arrive in the central Indian Ocean. It takes about half an hour for them to travel that distance, with water temperature causing about one tenth of a second difference. It’s a very small fractional change, but we can measure it.”

The finding matters because – although humans have been recording local ground and air temperatures for at least 300 years, and worldwide for more than a century – it is much harder to be sure about ocean temperatures: the seas cover 70% of the planet, to an average depth of more than 3 kms, and the temperatures vary with both depth and latitude.

Sound goes deep

Oceanographic research is costly, technically challenging, and uneven. Researchers know that the oceans are responding to climate change driven by global heating as a consequence of greenhouse gas emissions: they do not, however, yet have an assured measure of how much heat the oceans have absorbed, and will go on absorbing.

“The ocean plays a role in the rate that the climate is changing,” said Jörn Callies of Caltech, a co-author. “The ocean is the main reservoir of energy in the climate system, and the deep ocean in particular is important to monitor. One advantage of our method is that the sound waves sample depths below 2,000 metres where there are very few conventional measurements.”

Paradoxically, astronomers need to know a great deal about the first few thousand metres of planet Earth as they peer into the furthest reaches of the universe: what they see and how well they see it is affected by atmospheric temperature, turbulence and moisture.

As ground-based telescopes become bigger and more sensitive – the Extremely Large Telescope now under construction at Paranal in northern Chile will collect light with a mirror 39 metres across – so do the challenges of eliminating the atmospheric turbulence that puts the twinkle in the stars of the night sky: cold air and warm air refract light differently, to create a blur. The bigger the telescope, the greater will be the problem of blur.

For three decades, scientists in the highest and driest part of Chile have been recording subtle and not so subtle atmospheric change. And according to the journal Nature Astronomy, climate change is already beginning to affect astronomical research, and will go on creating problems.

Terrestrial disturbances

“The data showed a 1.5°C increase in near-ground temperature over the last four decades at the Paranal Observatory,” said Susanne Crewell of the University of Cologne. “This is slightly higher than the worldwide average of 1°C since the pre-industrial age.”

Average wind speeds – wind also affects the precision of observations – have increased by 3 or 4 metres per second in the same period. Humidity, too, is expected to change as the world moves to what could be a 4°C average rise in temperature by the century’s end.

The message is that conditions on Earth can disturb the observations and mask the understanding of events billions of light years away and billions of years ago. Astronomers, too, need to sound the alarm about climate change, she and her colleagues write.

“To do so, a massive cultural shift is needed,” they conclude, “and it is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B.” – Climate News Network

Seas and forests are muddying the carbon budget

As climates change, forests may not absorb more carbon as expected. But a new carbon budget could appeal to the oceans.

LONDON, 18 September 2020 – Two new studies could throw long-term climate forecasts into confusion. The planetary carbon budget – the all-important traffic of life’s first element between rocks, water, atmosphere and living things – that underpins planetary temperatures and maintains a stable climate needs a rethink.

A warming climate makes trees grow faster. The awkward finding is that  faster-growing trees die younger. Therefore they must surrender their carbon back to the atmosphere quicker.

So tomorrow’s forests may not be quite such reliable long-term banks of carbon pumped into the atmosphere as a consequence of profligate fossil fuel use by human economies.

The more reassuring news is that the ocean – that’s almost three fourths of the planet’s surface – may absorb and store a lot more atmospheric carbon than previous estimates suggest.

All calculations about the future rate of global heating, and the potential consequences of climate change, rest upon the carbon budget.

Forest doubts

This is the intricate accounting of the mass of carbon in continuous circulation from air to plant to animal and then to shell, skeleton and sediment, and the expected flow of carbon emissions from the combustion of fossil fuels stored hundreds of millions of years ago, and exhumed in the last two centuries.

To make sense of the factors at work, climate scientists have to make calculations about all the carbon stored in the permafrost, in the soils, in the forests, dissolved in the oceans, free in the atmosphere and being released from power station chimneys, vehicle exhausts and ploughed or scorched land.

But for decades, one component of the equation has been automatically accepted: more forests must mean more carbon absorbed, and better protected natural forests would store the most carbon, the most efficiently.

Now a new report in the journal Nature Communications introduces some doubt into this cornerstone of the carbon budget. In an already warming world, much more of the carbon stored in tomorrow’s forests might find its way back into the atmosphere.

Researchers looked at 200,000 tree ring records from 82 tree species from sites around the planet. They found what they describe as trade-offs that are near universal: faster-growing trees have shorter lives.

“There is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality”

This was true in cool climates and warm ones, and in all species. So the hope that natural vegetation will respond to warmer temperatures by absorbing even more carbon becomes insecure, especially if it means that the more vigorous growth means simply swifter death and decay.

“Our modeling suggests that there is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality,” said Roel Brienen of the University of Leeds in the UK, who led the research. “They estimate that global increases in tree death don’t kick in until after sites show accelerated growth.”

All such research is provisional: the findings gain currency only when supported by other teams using different approaches. So it has yet to be confirmed.

But recent studies have suggested that climate change has already begun to complicate calculations. Just in recent months, research teams have found that forest trees are growing shorter and dying younger; that higher temperatures may affect plant germination; and that forests already hit by drought may start surrendering carbon more swiftly than they absorb it. Planting more trees is not an alternative to reducing greenhouse gas emissions.

On the other hand, the carbon budget may still make sense: the oceans may be responding to ever-higher concentrations of carbon dioxide by absorbing more from the atmosphere, which also makes the oceans more acidic, which is not necessarily helpful.

Oceans’ effect

All such calculations are based on sea surface temperatures. Gases such as carbon dioxide and oxygen dissolve well in colder water, not so well in warm lagoons and tropical tides.

But a British group reports in the same journal that calculations so far may have been under-estimates. This is because, on balance, researchers have tended to ignore the small difference between the temperatures at the surface, and a few metres down, where the measurements of dissolved greenhouse gas were actually made.

A team from the University of Exeter worked from a global database to make new estimates of the oceans’ appetite for carbon between 1992 and 2018.

“We used satellite data to correct for these temperature differences, and when we do that, it makes a big difference – we get a substantially larger flux going into the ocean,” said Andrew Watson, who led the study.

“The difference in ocean uptake we calculate amounts to 10% of global fossil fuel emissions.” – Climate News Network

As climates change, forests may not absorb more carbon as expected. But a new carbon budget could appeal to the oceans.

LONDON, 18 September 2020 – Two new studies could throw long-term climate forecasts into confusion. The planetary carbon budget – the all-important traffic of life’s first element between rocks, water, atmosphere and living things – that underpins planetary temperatures and maintains a stable climate needs a rethink.

A warming climate makes trees grow faster. The awkward finding is that  faster-growing trees die younger. Therefore they must surrender their carbon back to the atmosphere quicker.

So tomorrow’s forests may not be quite such reliable long-term banks of carbon pumped into the atmosphere as a consequence of profligate fossil fuel use by human economies.

The more reassuring news is that the ocean – that’s almost three fourths of the planet’s surface – may absorb and store a lot more atmospheric carbon than previous estimates suggest.

All calculations about the future rate of global heating, and the potential consequences of climate change, rest upon the carbon budget.

Forest doubts

This is the intricate accounting of the mass of carbon in continuous circulation from air to plant to animal and then to shell, skeleton and sediment, and the expected flow of carbon emissions from the combustion of fossil fuels stored hundreds of millions of years ago, and exhumed in the last two centuries.

To make sense of the factors at work, climate scientists have to make calculations about all the carbon stored in the permafrost, in the soils, in the forests, dissolved in the oceans, free in the atmosphere and being released from power station chimneys, vehicle exhausts and ploughed or scorched land.

But for decades, one component of the equation has been automatically accepted: more forests must mean more carbon absorbed, and better protected natural forests would store the most carbon, the most efficiently.

Now a new report in the journal Nature Communications introduces some doubt into this cornerstone of the carbon budget. In an already warming world, much more of the carbon stored in tomorrow’s forests might find its way back into the atmosphere.

Researchers looked at 200,000 tree ring records from 82 tree species from sites around the planet. They found what they describe as trade-offs that are near universal: faster-growing trees have shorter lives.

“There is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality”

This was true in cool climates and warm ones, and in all species. So the hope that natural vegetation will respond to warmer temperatures by absorbing even more carbon becomes insecure, especially if it means that the more vigorous growth means simply swifter death and decay.

“Our modeling suggests that there is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality,” said Roel Brienen of the University of Leeds in the UK, who led the research. “They estimate that global increases in tree death don’t kick in until after sites show accelerated growth.”

All such research is provisional: the findings gain currency only when supported by other teams using different approaches. So it has yet to be confirmed.

But recent studies have suggested that climate change has already begun to complicate calculations. Just in recent months, research teams have found that forest trees are growing shorter and dying younger; that higher temperatures may affect plant germination; and that forests already hit by drought may start surrendering carbon more swiftly than they absorb it. Planting more trees is not an alternative to reducing greenhouse gas emissions.

On the other hand, the carbon budget may still make sense: the oceans may be responding to ever-higher concentrations of carbon dioxide by absorbing more from the atmosphere, which also makes the oceans more acidic, which is not necessarily helpful.

Oceans’ effect

All such calculations are based on sea surface temperatures. Gases such as carbon dioxide and oxygen dissolve well in colder water, not so well in warm lagoons and tropical tides.

But a British group reports in the same journal that calculations so far may have been under-estimates. This is because, on balance, researchers have tended to ignore the small difference between the temperatures at the surface, and a few metres down, where the measurements of dissolved greenhouse gas were actually made.

A team from the University of Exeter worked from a global database to make new estimates of the oceans’ appetite for carbon between 1992 and 2018.

“We used satellite data to correct for these temperature differences, and when we do that, it makes a big difference – we get a substantially larger flux going into the ocean,” said Andrew Watson, who led the study.

“The difference in ocean uptake we calculate amounts to 10% of global fossil fuel emissions.” – Climate News Network

Melting Arctic needs new name to match reality

Change in the far north is happening so fast that soon the melting Arctic won’t be arctic any more.

LONDON, 16 September, 2020 − The word Arctic may be up for redefinition. The conditions within the melting Arctic Circle are changing so fast that what was once a frozen seascape could now be entering a new climate regime in which nothing is predictable.

Even in an unusually cold year, the sea ice may not return to the summer limits normal in the last century. For some months of autumn and even winter, rain will fall instead of snow, US scientists report in the journal Nature Climate Change.

“The rate of change is remarkable,” said Laura Landrum, of the US National Centre for Atmospheric Research, who led the study.

“It’s a period of such rapid change that observations of past weather patterns no longer show what you can expect next year. The Arctic is already entering a completely different climate than just a few decades ago.”

She and a colleague looked at four decades of satellite data and ground observations and hundreds of computer simulations to confirm that polar warming is happening at such a rate that any change year to year is no longer within the extremes of the past. Conditions that were once normally changeable are now abnormally so.

“The Arctic is already entering a completely different climate than just a few decades ago … We need to change our definition of what the Arctic is”

Climate in the northern hemisphere is moderated by temperature differences that vary with latitude: between them, a torrid equator and a frozen Arctic drive the prevailing winds and ocean currents and the mix of cloud, sunshine, rainfall, frost, windstorm, dry spells and seasonal flooding in which agriculture, industry and civilisation have evolved for the last 10,000 years.

But as carbon dioxide levels in the atmosphere soar in response to rapidly-increasing use of fossil fuels, the melting Arctic has been warming far more swiftly than the planet as a whole.

The extent of summer sea ice in each of the last 13 years has been lower than any minimum observed since 1979, when systematic observation began. Winters have been warmer, winter sea ice has been reduced, rain has been falling on snow ever earlier.

The climate scientists posed themselves the simple question: “While these changes appear extreme compared with the recent past, are they climate extremes in a statistical sense, or do they represent expected events in a new Arctic climate?”

New climate develops

The answer seems to be: yes. The researchers tested their statistical techniques on five different climate simulations. Each of these showed the sea ice retreating so dramatically that a new climate had emerged some time in the late 20th and early 21st centuries.

The finding fits a pattern of foreboding delivered by recent research. In the last two months, researchers have warned that ice loss in the Arctic regions has been so severe that the region’s most charismatic predator, the polar bear, may be gone by the century’s end.

Another group has warned that the Arctic ocean in late summer may be effectively ice-free within the next 15 years.

One group has concluded that ice loss from Greenland is now at such a rate as to be irreversible, and another has confirmed that the rate of ice melt from the northern hemisphere’s biggest reserve – enough to raise sea levels six or seven metres – last year reached new records.

And this month an international research team reported that the rate of change in the Arctic has exceeded the “worst-case” scenario proposed by climate researchers.

Unknown extremes ahead

Dr Landrum and her colleague report that − if greenhouse gas emissions continue at their present rate − some of their climate forecasts predict a mostly ice-free Arctic for between three and 10 months a year, every year, by the end of the century.

Air temperatures over the ocean in autumn and winter will become warmer before or by mid-century, and then start warming over land in the second half.

In a warmer world, more water will evaporate and fall again as rain. Over Alaska, northern Canada and northern Siberia there will be more rain rather than snow: by mid-century, perhaps an extra 20 to 60 days, and by 2100, perhaps from 60 to an extra 90 days. In some parts of the Arctic, by the century’s end, rain might fall in any month of the year.

“The Arctic is likely to experience extremes in sea ice, temperature and precipitation that are far outside anything we’ve experienced before,” Dr Landrum said. “We need to change our definition of what the Arctic is.” − Climate News Network

Change in the far north is happening so fast that soon the melting Arctic won’t be arctic any more.

LONDON, 16 September, 2020 − The word Arctic may be up for redefinition. The conditions within the melting Arctic Circle are changing so fast that what was once a frozen seascape could now be entering a new climate regime in which nothing is predictable.

Even in an unusually cold year, the sea ice may not return to the summer limits normal in the last century. For some months of autumn and even winter, rain will fall instead of snow, US scientists report in the journal Nature Climate Change.

“The rate of change is remarkable,” said Laura Landrum, of the US National Centre for Atmospheric Research, who led the study.

“It’s a period of such rapid change that observations of past weather patterns no longer show what you can expect next year. The Arctic is already entering a completely different climate than just a few decades ago.”

She and a colleague looked at four decades of satellite data and ground observations and hundreds of computer simulations to confirm that polar warming is happening at such a rate that any change year to year is no longer within the extremes of the past. Conditions that were once normally changeable are now abnormally so.

“The Arctic is already entering a completely different climate than just a few decades ago … We need to change our definition of what the Arctic is”

Climate in the northern hemisphere is moderated by temperature differences that vary with latitude: between them, a torrid equator and a frozen Arctic drive the prevailing winds and ocean currents and the mix of cloud, sunshine, rainfall, frost, windstorm, dry spells and seasonal flooding in which agriculture, industry and civilisation have evolved for the last 10,000 years.

But as carbon dioxide levels in the atmosphere soar in response to rapidly-increasing use of fossil fuels, the melting Arctic has been warming far more swiftly than the planet as a whole.

The extent of summer sea ice in each of the last 13 years has been lower than any minimum observed since 1979, when systematic observation began. Winters have been warmer, winter sea ice has been reduced, rain has been falling on snow ever earlier.

The climate scientists posed themselves the simple question: “While these changes appear extreme compared with the recent past, are they climate extremes in a statistical sense, or do they represent expected events in a new Arctic climate?”

New climate develops

The answer seems to be: yes. The researchers tested their statistical techniques on five different climate simulations. Each of these showed the sea ice retreating so dramatically that a new climate had emerged some time in the late 20th and early 21st centuries.

The finding fits a pattern of foreboding delivered by recent research. In the last two months, researchers have warned that ice loss in the Arctic regions has been so severe that the region’s most charismatic predator, the polar bear, may be gone by the century’s end.

Another group has warned that the Arctic ocean in late summer may be effectively ice-free within the next 15 years.

One group has concluded that ice loss from Greenland is now at such a rate as to be irreversible, and another has confirmed that the rate of ice melt from the northern hemisphere’s biggest reserve – enough to raise sea levels six or seven metres – last year reached new records.

And this month an international research team reported that the rate of change in the Arctic has exceeded the “worst-case” scenario proposed by climate researchers.

Unknown extremes ahead

Dr Landrum and her colleague report that − if greenhouse gas emissions continue at their present rate − some of their climate forecasts predict a mostly ice-free Arctic for between three and 10 months a year, every year, by the end of the century.

Air temperatures over the ocean in autumn and winter will become warmer before or by mid-century, and then start warming over land in the second half.

In a warmer world, more water will evaporate and fall again as rain. Over Alaska, northern Canada and northern Siberia there will be more rain rather than snow: by mid-century, perhaps an extra 20 to 60 days, and by 2100, perhaps from 60 to an extra 90 days. In some parts of the Arctic, by the century’s end, rain might fall in any month of the year.

“The Arctic is likely to experience extremes in sea ice, temperature and precipitation that are far outside anything we’ve experienced before,” Dr Landrum said. “We need to change our definition of what the Arctic is.” − Climate News Network

Hotter oceans harm seabed life survival prospects

Seabed life is tough: only the young can migrate. But climate change is taking many of them the wrong way.

LONDON, 14 September, 2020 – It can be hard being a junior part of seabed life – a young starfish, say, or an adolescent worm. Down in the ocean depths, the environment is conspiring against you.

Marine biologists have just identified – and explained – a climate change paradox: while most fish are migrating towards the poles as the world’s oceans warm, one part of a potentially valuable commercial fishery is heading in the wrong direction – and perhaps to extinction.

Why? Once again, the finger of suspicion points to global climate change, and its impact on ocean tides and currents.

Throughout this century, researchers have repeatedly confirmed a pattern of ocean warming – and acidification – driven by ever-rising ratios of carbon dioxide in the atmosphere; a pattern that could affect both established commercial fishing industries and ocean life as a whole.

Tropical fish have been shifting away from the equator; further north and south, pelagic (open-ocean) and demersal (seabed-dwelling) fish have been seeking more suitable grounds. Warmer seas can affect spawning patterns.

“As the seas continue to warm, spawning times will get ever earlier and the currents will sweep many of the next generation to oblivion”

But the ocean is a vast living space, and the speed at which it warms tends to vary with depth.

US researchers report in the journal Nature Climate Change that they worked through 60 years of data on 50 species of benthic invertebrates – creatures without backbones that dwell on the sea floor – to find that the populations of four-fifths of these had begun to disappear from the shelves and fishing grounds of the Georges Bank and the outer shelf that runs from New Jersey and east of the Delmarva Peninsula occupied by the states of Delaware, Maryland and Virginia.

More to the point, they identified the mechanism that had begun to limit life on the submarine sediments. Bottom-dwellers – shellfish, snails, starfish, worms and so on – can’t migrate: they are stuck where they are. But their larvae can, and at spawning time the infant shellfish are at the mercy of the ocean currents.

The waters of the north-east Atlantic coast are warming at three times the global average rate. Warming has affected the time at which benthic invertebrates spawn. Because the larvae appear earlier in spring and summer, they are swept away by currents they would not encounter in a cooler, more stable world.

And these currents, driven by river discharge and seasonal winds, tend to bring them south-west and inshore, where waters are warmer and the larvae are even less likely to survive.

Nowhere to go

Those adults that remain are stuck where they are: as the seas continue to warm, spawning times will get ever earlier and the currents will sweep many of the next generation to oblivion.

These bottom-dwelling denizens could survive, if they could colonise cooler waters. Instead they are condemned to a submarine version of what terrestrial biologists call the elevator to extinction: on land, hotter temperatures drive birds and butterflies and plants ever further uphill: in the end, nearer the summit, there’s nowhere to go.

The researchers, from Rutgers University in New Brunswick, call it the downwelling effect, and identify a paradox: as the area habitable by bottom-dwellers gets bigger, their ranges dwindle.

The finding so far is true only for the north-east Atlantic waters, and some species seem less affected. Scallops could flourish, because they spawn at a wider range of temperatures. But clams and mussels are adapted to low temperatures, and their ranges have warmed and contracted.

And, the scientists warn, as global heating reduces yields from traditional fisheries, the seafood industry is likely to rely increasingly on shellfish. But this industry, too, is vulnerable to ocean change. – Climate News Network

Seabed life is tough: only the young can migrate. But climate change is taking many of them the wrong way.

LONDON, 14 September, 2020 – It can be hard being a junior part of seabed life – a young starfish, say, or an adolescent worm. Down in the ocean depths, the environment is conspiring against you.

Marine biologists have just identified – and explained – a climate change paradox: while most fish are migrating towards the poles as the world’s oceans warm, one part of a potentially valuable commercial fishery is heading in the wrong direction – and perhaps to extinction.

Why? Once again, the finger of suspicion points to global climate change, and its impact on ocean tides and currents.

Throughout this century, researchers have repeatedly confirmed a pattern of ocean warming – and acidification – driven by ever-rising ratios of carbon dioxide in the atmosphere; a pattern that could affect both established commercial fishing industries and ocean life as a whole.

Tropical fish have been shifting away from the equator; further north and south, pelagic (open-ocean) and demersal (seabed-dwelling) fish have been seeking more suitable grounds. Warmer seas can affect spawning patterns.

“As the seas continue to warm, spawning times will get ever earlier and the currents will sweep many of the next generation to oblivion”

But the ocean is a vast living space, and the speed at which it warms tends to vary with depth.

US researchers report in the journal Nature Climate Change that they worked through 60 years of data on 50 species of benthic invertebrates – creatures without backbones that dwell on the sea floor – to find that the populations of four-fifths of these had begun to disappear from the shelves and fishing grounds of the Georges Bank and the outer shelf that runs from New Jersey and east of the Delmarva Peninsula occupied by the states of Delaware, Maryland and Virginia.

More to the point, they identified the mechanism that had begun to limit life on the submarine sediments. Bottom-dwellers – shellfish, snails, starfish, worms and so on – can’t migrate: they are stuck where they are. But their larvae can, and at spawning time the infant shellfish are at the mercy of the ocean currents.

The waters of the north-east Atlantic coast are warming at three times the global average rate. Warming has affected the time at which benthic invertebrates spawn. Because the larvae appear earlier in spring and summer, they are swept away by currents they would not encounter in a cooler, more stable world.

And these currents, driven by river discharge and seasonal winds, tend to bring them south-west and inshore, where waters are warmer and the larvae are even less likely to survive.

Nowhere to go

Those adults that remain are stuck where they are: as the seas continue to warm, spawning times will get ever earlier and the currents will sweep many of the next generation to oblivion.

These bottom-dwelling denizens could survive, if they could colonise cooler waters. Instead they are condemned to a submarine version of what terrestrial biologists call the elevator to extinction: on land, hotter temperatures drive birds and butterflies and plants ever further uphill: in the end, nearer the summit, there’s nowhere to go.

The researchers, from Rutgers University in New Brunswick, call it the downwelling effect, and identify a paradox: as the area habitable by bottom-dwellers gets bigger, their ranges dwindle.

The finding so far is true only for the north-east Atlantic waters, and some species seem less affected. Scallops could flourish, because they spawn at a wider range of temperatures. But clams and mussels are adapted to low temperatures, and their ranges have warmed and contracted.

And, the scientists warn, as global heating reduces yields from traditional fisheries, the seafood industry is likely to rely increasingly on shellfish. But this industry, too, is vulnerable to ocean change. – Climate News Network

Slightest heat increase magnifies hurricane risk

The poorer and more vulnerable you are, the greater your hurricane risk. Even a tiny heat rise can spell disaster.

LONDON, 11 September, 2020 – Any climate change at all will mean a hurricane risk for the storm-prone Caribbean, even if global average temperatures are contained to a rise of no more than 1.5°C by 2100. But a rise of 2°C could be disastrous: the hurricane hazard could grow fivefold.

The figures – each representing a rise above the long-term average for most of human history – are significant. In 2015 195 nations, including the US, signed up to the Paris Agreement – a promise to contain the rise in global heating to “well below 2°C” by the century’s end. The undeclared but widely-understood intention was a limit of 1.5°C.

In the last century, in response to a rise in carbon dioxide emissions from fossil fuel use, planetary average temperatures have already risen by 1°C, and the Atlantic states of the US and the islands of the Caribbean have been hit by a series of ever more devastating windstorms, as ocean temperatures warm and make hurricanes more probable.

And researchers warn that as global heating continues – with forecasts of a rise of more than 3°C by 2100 – more are on the way.

But the US is wealthy and resilient. British scientists report in the journal Environmental Research Letters that they decided to take a look at the probability of windstorm and heavy rainfall assault on the Caribbean, where half of the 44 million people of the archipelago live within 1.5kms of the coast, and where devastation can be so intense it could take six years to recover.

“The findings are alarming and illustrate the urgent need to tackle global warming to reduce the likelihood of extreme rainfall events”

So they used computer simulations to generate thousands of synthetic hurricanes, under three climate scenarios: present day conditions; a world that kept global heating to no more than 1.5C; and one in which nations let rip and hit the 2°C limit.

They found that extreme rainfall events of the kind which typically happen once every hundred years at present do indeed become more numerous in a world that sticks to its implicit Paris promise. But in a 2°C warmer world, calamitous hurricanes became five times more frequent.

When Hurricane Maria hit Puerto Rico in 2017, it delivered a quarter of a year’s average rainfall all at once, with appalling consequences. In a two-degree warmer world, such a storm could happen every 43 years. The storm that hit the Bahamas in 2019 could become 4.5 times more likely.

“The findings are alarming and illustrate the urgent need to tackle global warming to reduce the likelihood of extreme rainfall events and their catastrophic consequences, particularly for poorer countries which take many years to recover,” said Emily Vosper of the University of Bristol, who led the study.

“We expected extreme hurricanes to be more prevalent in the 2°C global warming scenario, but the scale of the projected increases was surprising, and should serve as a stark warning across the globe, underscoring the importance of keeping climate change under control.” – Climate News Network

The poorer and more vulnerable you are, the greater your hurricane risk. Even a tiny heat rise can spell disaster.

LONDON, 11 September, 2020 – Any climate change at all will mean a hurricane risk for the storm-prone Caribbean, even if global average temperatures are contained to a rise of no more than 1.5°C by 2100. But a rise of 2°C could be disastrous: the hurricane hazard could grow fivefold.

The figures – each representing a rise above the long-term average for most of human history – are significant. In 2015 195 nations, including the US, signed up to the Paris Agreement – a promise to contain the rise in global heating to “well below 2°C” by the century’s end. The undeclared but widely-understood intention was a limit of 1.5°C.

In the last century, in response to a rise in carbon dioxide emissions from fossil fuel use, planetary average temperatures have already risen by 1°C, and the Atlantic states of the US and the islands of the Caribbean have been hit by a series of ever more devastating windstorms, as ocean temperatures warm and make hurricanes more probable.

And researchers warn that as global heating continues – with forecasts of a rise of more than 3°C by 2100 – more are on the way.

But the US is wealthy and resilient. British scientists report in the journal Environmental Research Letters that they decided to take a look at the probability of windstorm and heavy rainfall assault on the Caribbean, where half of the 44 million people of the archipelago live within 1.5kms of the coast, and where devastation can be so intense it could take six years to recover.

“The findings are alarming and illustrate the urgent need to tackle global warming to reduce the likelihood of extreme rainfall events”

So they used computer simulations to generate thousands of synthetic hurricanes, under three climate scenarios: present day conditions; a world that kept global heating to no more than 1.5C; and one in which nations let rip and hit the 2°C limit.

They found that extreme rainfall events of the kind which typically happen once every hundred years at present do indeed become more numerous in a world that sticks to its implicit Paris promise. But in a 2°C warmer world, calamitous hurricanes became five times more frequent.

When Hurricane Maria hit Puerto Rico in 2017, it delivered a quarter of a year’s average rainfall all at once, with appalling consequences. In a two-degree warmer world, such a storm could happen every 43 years. The storm that hit the Bahamas in 2019 could become 4.5 times more likely.

“The findings are alarming and illustrate the urgent need to tackle global warming to reduce the likelihood of extreme rainfall events and their catastrophic consequences, particularly for poorer countries which take many years to recover,” said Emily Vosper of the University of Bristol, who led the study.

“We expected extreme hurricanes to be more prevalent in the 2°C global warming scenario, but the scale of the projected increases was surprising, and should serve as a stark warning across the globe, underscoring the importance of keeping climate change under control.” – Climate News Network

Lethal price of climate inertia far exceeds action

Climate change will impose a lethal price if we do not all pay the far smaller cost of confronting it.

LONDON, 10 September, 2020 – In the hotter world of climate change, it won’t just be the glaciers that melt: national and regional economies, big business, government and even the multinationals will all pay a lethal price.

If the planet becomes 4°C warmer by 2100, then many regions could see a 10% fall in economic output. They’d be the lucky ones. In the tropics, the economic losses could be double that.

There are of course ways to limit losses and save lives. US researchers believe that if a quarter of all motorists in the US switched to electric vehicles, the nation could save $17bn a year in the costs of climate change and air pollution. If three fourths of drivers switched to cars fuelled by renewable electricity, savings could tip $70bn.

Both studies are specimens of the kind of economic reasoning – always arguable and often intensely-argued – that necessarily must make “what-if” calculations about the notional costs to society of carbon dioxide emissions and the notional value of human lives blighted by heat-related illnesses and air pollution a lifetime from now.

But both are just the latest in a long line of calculations that demonstrate, repeatedly, that the costs to the next generation of doing nothing about climate change far outweigh the costs now of shifting from fossil fuels to clean sources of energy.

“Rising temperatures make us less productive, which is relevant in particular for outdoor work in the construction industry or agriculture”

The latest exploration of the price of doing nothing is published in the Journal of Environmental Economics and Management.

German scientists report that they looked, in detail, at the possible consequences of a 4°C warning, not on national economies but on 1500 states, provinces, departments and other political subdivisions within 77 nations around the globe.

Their finding – that more intense global heating could cost all of them 10% of their output and those in the warmer regions more than 20% – is, they say, conservative.

That is because their calculations do not take into account the potential catastrophic damage from extreme weather events and sea level rise – both of which could be substantial.

“Climate damages hit our businesses and our jobs, not just polar bears and coral reefs,” said Leonie Wenz, of the Postdam Institute for Climate Impact Research.

Tangible value

“Rising temperatures make us less productive, which is relevant in particular for outdoor work in the construction industry or agriculture. They affect our harvests and they mean extra stress, and thus costs for our infrastructure.”

But, according to a study in the journal GeoHealth, even the purchase of a new car could soften the impact: providing the car is electric and the power for its batteries is delivered by wind or solar energy.

If electric vehicles replaced 25% of all cars on US roads, the country could save $17bn a year in the notional costs of climate change and health damage – asthma, emphysema, chronic bronchitis and premature death – from choking exhausts. Triple that, and the savings would reach $70bn.

“The social cost of carbon and value of statistical life are much studied and much debated metrics,” said Daniel Horton, of Northwestern University in Illinois, one of the authors.

“But they are used regularly to make policy decisions. It helps to put a tangible value on the consequences of emitting largely intangible gases into the public sphere that is our shared atmosphere.” – Climate News Network

Climate change will impose a lethal price if we do not all pay the far smaller cost of confronting it.

LONDON, 10 September, 2020 – In the hotter world of climate change, it won’t just be the glaciers that melt: national and regional economies, big business, government and even the multinationals will all pay a lethal price.

If the planet becomes 4°C warmer by 2100, then many regions could see a 10% fall in economic output. They’d be the lucky ones. In the tropics, the economic losses could be double that.

There are of course ways to limit losses and save lives. US researchers believe that if a quarter of all motorists in the US switched to electric vehicles, the nation could save $17bn a year in the costs of climate change and air pollution. If three fourths of drivers switched to cars fuelled by renewable electricity, savings could tip $70bn.

Both studies are specimens of the kind of economic reasoning – always arguable and often intensely-argued – that necessarily must make “what-if” calculations about the notional costs to society of carbon dioxide emissions and the notional value of human lives blighted by heat-related illnesses and air pollution a lifetime from now.

But both are just the latest in a long line of calculations that demonstrate, repeatedly, that the costs to the next generation of doing nothing about climate change far outweigh the costs now of shifting from fossil fuels to clean sources of energy.

“Rising temperatures make us less productive, which is relevant in particular for outdoor work in the construction industry or agriculture”

The latest exploration of the price of doing nothing is published in the Journal of Environmental Economics and Management.

German scientists report that they looked, in detail, at the possible consequences of a 4°C warning, not on national economies but on 1500 states, provinces, departments and other political subdivisions within 77 nations around the globe.

Their finding – that more intense global heating could cost all of them 10% of their output and those in the warmer regions more than 20% – is, they say, conservative.

That is because their calculations do not take into account the potential catastrophic damage from extreme weather events and sea level rise – both of which could be substantial.

“Climate damages hit our businesses and our jobs, not just polar bears and coral reefs,” said Leonie Wenz, of the Postdam Institute for Climate Impact Research.

Tangible value

“Rising temperatures make us less productive, which is relevant in particular for outdoor work in the construction industry or agriculture. They affect our harvests and they mean extra stress, and thus costs for our infrastructure.”

But, according to a study in the journal GeoHealth, even the purchase of a new car could soften the impact: providing the car is electric and the power for its batteries is delivered by wind or solar energy.

If electric vehicles replaced 25% of all cars on US roads, the country could save $17bn a year in the notional costs of climate change and health damage – asthma, emphysema, chronic bronchitis and premature death – from choking exhausts. Triple that, and the savings would reach $70bn.

“The social cost of carbon and value of statistical life are much studied and much debated metrics,” said Daniel Horton, of Northwestern University in Illinois, one of the authors.

“But they are used regularly to make policy decisions. It helps to put a tangible value on the consequences of emitting largely intangible gases into the public sphere that is our shared atmosphere.” – Climate News Network

Rivers flood, seas rise – and land faces erosion

Polar melting cannot be separated from farmland soil erosion and estuarine flooding. All are part of climate change.

LONDON, 7 September, 2020 – Climate heating often ensures that calamities don’t come singly: so don’t forget what erosion can do.

In a warmer world the glaciers will melt ever faster to raise global sea levels ever higher. In a wetter world, more and more topsoil will be swept off the farmlands and downriver into the ever-rising seas.

And the pay-off of silt-laden rivers and rising sea levels could be catastrophic floods, as swollen rivers suddenly change course. Since many of the world’s greatest cities are built on river estuaries, lives and economies will be at risk.

Three new studies in two journals deliver a sharp reminder that the consequences of global heating are not straightforward: the world responds to change in unpredictable ways.

First: the melting of the ice sheets and the mountain glaciers. Researchers warn in the journal Nature Climate Change that if the loss of ice from Antarctica, Greenland and the frozen rivers continues, then climate forecasters and government agencies will have to think again: sea levels could rise to at least 17cms higher than the worst predictions so far.

“Avulsions are the earthquakes of rivers. They are sudden and sometimes catastrophic. We are trying to understand where and when the next avulsions will occur”

That means an additional 16 million people at hazard from estuarine floods and storm surges.

In the last 30 years, the flow from the Antarctic ice cap has raised sea levels by 7.2mm, and from Greenland by 10.6mm. Every year, the world’s oceans are 4mm higher than they were the year before.

“Although we anticipated the ice sheets would lose increasing amounts of ice in response to the warming of the oceans and the atmosphere, the rate at which they are melting has accelerated faster than we could have imagined,” said Tom Slater of the University of Leeds, in the UK, who led the research.

“The melting is overtaking the climate models we use to guide us, and we are in danger of being unprepared for the risks posed by sea level rise.”

Dr Slater and his colleagues are the third team to warn in the last month that observations of climate already match the worst-case scenarios dreamed up by forecasters preparing for a range of possible climate outcomes.

Erosion risk rises

The latest reading of glacial melt rates suggests that the risk of storm surges for many of the world’s greatest cities will double by the close of the century. But coastal cities – and the farmers who already work 38% of the terrestrial surface to feed almost 8bn people – have another more immediate problem.

In a warmer world, more water evaporates. In a warmer atmosphere, the capacity of the air to hold moisture also increases, so along with more intense droughts, heavier rainfall is on the way for much of the world. And the heavier the rain, or the more prolonged the drought, the higher the risk of soil erosion.

In 2015 the world’s farmers and foresters watched 43 billion tonnes of topsoil wash away from hillsides or blow away from tilled land and into the sea. By 2070, this burden of silt swept away by water or blown by wind will have risen by between 30% and 66%: probably more than 28 bn tons of additional loss.

This could only impoverish the farmland, according to a study by Swiss scientists in the Proceedings of the National Academy of Sciences. It could also impoverish people, communities and countries. The worst hit could be in the less developed nations of the tropics and subtropics.

But the flow of ever-higher silt levels into ever-rising seas also raises a new hazard: hydrologists call it river avulsion. It’s a simple and natural process. As conditions change, so rivers will naturally change their flow to spill over new floodplains and extend coastal lands.

Survival in question

But river avulsions can also be helped along by rising sea levels. Since 10% of humanity is crowded into rich, fertile delta lands, and since some of the deadliest floods in human history – two in China in 1887 and 1931 claimed six million lives – have been caused by river avulsions, the question becomes a matter of life and death.

US scientists report, also in the Proceedings of the National Academy of Sciences, that rising sea levels alone could make abrupt river avulsion more probable, especially as delta lands could be subsiding, because of groundwater and other extraction.

The dangers of avulsion are affected by the rate of sediment deposit in the river channels, and this is likely to rise with sea levels. This in turn raises the level of the river and eventually a breach of a levee or other flood defence will force the river to find a swifter, steeper path to the sea.

Cities such as New Orleans and the coastal communities of the Mississippi delta are already vulnerable. “Avulsions are the earthquakes of rivers,” said Michael Lamb, of California Institute of Technology, one of the authors.

“They are sudden and sometimes catastrophic natural events that occur with statistical regularity, shifting the direction of major rivers. We are trying to understand where and when the next avulsions will occur.” – Climate News Network

Polar melting cannot be separated from farmland soil erosion and estuarine flooding. All are part of climate change.

LONDON, 7 September, 2020 – Climate heating often ensures that calamities don’t come singly: so don’t forget what erosion can do.

In a warmer world the glaciers will melt ever faster to raise global sea levels ever higher. In a wetter world, more and more topsoil will be swept off the farmlands and downriver into the ever-rising seas.

And the pay-off of silt-laden rivers and rising sea levels could be catastrophic floods, as swollen rivers suddenly change course. Since many of the world’s greatest cities are built on river estuaries, lives and economies will be at risk.

Three new studies in two journals deliver a sharp reminder that the consequences of global heating are not straightforward: the world responds to change in unpredictable ways.

First: the melting of the ice sheets and the mountain glaciers. Researchers warn in the journal Nature Climate Change that if the loss of ice from Antarctica, Greenland and the frozen rivers continues, then climate forecasters and government agencies will have to think again: sea levels could rise to at least 17cms higher than the worst predictions so far.

“Avulsions are the earthquakes of rivers. They are sudden and sometimes catastrophic. We are trying to understand where and when the next avulsions will occur”

That means an additional 16 million people at hazard from estuarine floods and storm surges.

In the last 30 years, the flow from the Antarctic ice cap has raised sea levels by 7.2mm, and from Greenland by 10.6mm. Every year, the world’s oceans are 4mm higher than they were the year before.

“Although we anticipated the ice sheets would lose increasing amounts of ice in response to the warming of the oceans and the atmosphere, the rate at which they are melting has accelerated faster than we could have imagined,” said Tom Slater of the University of Leeds, in the UK, who led the research.

“The melting is overtaking the climate models we use to guide us, and we are in danger of being unprepared for the risks posed by sea level rise.”

Dr Slater and his colleagues are the third team to warn in the last month that observations of climate already match the worst-case scenarios dreamed up by forecasters preparing for a range of possible climate outcomes.

Erosion risk rises

The latest reading of glacial melt rates suggests that the risk of storm surges for many of the world’s greatest cities will double by the close of the century. But coastal cities – and the farmers who already work 38% of the terrestrial surface to feed almost 8bn people – have another more immediate problem.

In a warmer world, more water evaporates. In a warmer atmosphere, the capacity of the air to hold moisture also increases, so along with more intense droughts, heavier rainfall is on the way for much of the world. And the heavier the rain, or the more prolonged the drought, the higher the risk of soil erosion.

In 2015 the world’s farmers and foresters watched 43 billion tonnes of topsoil wash away from hillsides or blow away from tilled land and into the sea. By 2070, this burden of silt swept away by water or blown by wind will have risen by between 30% and 66%: probably more than 28 bn tons of additional loss.

This could only impoverish the farmland, according to a study by Swiss scientists in the Proceedings of the National Academy of Sciences. It could also impoverish people, communities and countries. The worst hit could be in the less developed nations of the tropics and subtropics.

But the flow of ever-higher silt levels into ever-rising seas also raises a new hazard: hydrologists call it river avulsion. It’s a simple and natural process. As conditions change, so rivers will naturally change their flow to spill over new floodplains and extend coastal lands.

Survival in question

But river avulsions can also be helped along by rising sea levels. Since 10% of humanity is crowded into rich, fertile delta lands, and since some of the deadliest floods in human history – two in China in 1887 and 1931 claimed six million lives – have been caused by river avulsions, the question becomes a matter of life and death.

US scientists report, also in the Proceedings of the National Academy of Sciences, that rising sea levels alone could make abrupt river avulsion more probable, especially as delta lands could be subsiding, because of groundwater and other extraction.

The dangers of avulsion are affected by the rate of sediment deposit in the river channels, and this is likely to rise with sea levels. This in turn raises the level of the river and eventually a breach of a levee or other flood defence will force the river to find a swifter, steeper path to the sea.

Cities such as New Orleans and the coastal communities of the Mississippi delta are already vulnerable. “Avulsions are the earthquakes of rivers,” said Michael Lamb, of California Institute of Technology, one of the authors.

“They are sudden and sometimes catastrophic natural events that occur with statistical regularity, shifting the direction of major rivers. We are trying to understand where and when the next avulsions will occur.” – Climate News Network

Eat an orange and save an old lithium-ion battery

You could reclaim a lithium-ion battery with help from orange peel and juice – or make fuel directly from sunlight and air.

LONDON, 4 September, 2020 – Singapore scientists have found a way to recover valuable metals from a discarded lithium-ion battery – with minimal waste and serious help from old orange peel and a solution of citric acid.

And in Great Britain researchers have tested a simple solar reactor that can turn sunlight, carbon dioxide and water into the raw material for synthetic fuel.

Neither technology is anywhere near ready for commercial exploitation. But each could be scaled up.

The first confronts two global challenges: the devastating burden of uneaten food and the alarming build-up of electronic waste each year. The second improves on an idea from nature and turns sunlight and atmosphere directly into energy without the lengthy business of growing and burying forests and waiting 100 million years before they turn into fossil fuels.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better”

And each is a reminder of the startling levels of ingenuity and resource in the world’s laboratories, in the search for solutions to the seemingly intractable challenge of climate change, and the shift to clean energy.

Right now, batteries surrender their valuable component metals by being heated to 500°C, or dissolved in strong acids, or in solutions of hydrogen peroxide: there are secondary pollutants and health and safety risks at each stage.

Researchers from Nanyang Technological University in Singapore report in the journal Environmental Science and Technology that they made a kind of paste of crushed batteries, mixed it with powdered orange peel and added citric acid – almost any citrus fruit produces the stuff naturally – and at a temperature of 100°C recovered around 90% of the cobalt, lithium, nickel and manganese from the waste without producing any further new waste that could be toxic.

To make their point, the researchers then used those recovered metals to make new lithium-ion batteries.

Cellulose the key

By 2026, the market for the batteries in smartphones, notebooks, cameras, medical devices and electronic vehicles is expected to reach US$139bn (£105bn).

In Europe, only about 5% of the waste from these batteries is recycled. The key to the success of the experiment, the researchers say, proved to be the cellulose in the orange peel. It turned to sugar under heat during the reaction process, to help leach the important metals from the waste slurry.

The world is not short of disposable cellulose. Humans generate 1.3bn tonnes a year in the form of food waste. The world also generates 50 million tonnes of electronic waste every year. The Singapore studies suggest the real possibility of a circular economy with zero waste: so far, an environmentalist’s dream.

Another recurring environmentalist dream has been to steal a leaf from nature’s book and turn sunlight and carbon dioxide directly into stored energy. Carbon dioxide is a building block of all fuels.

Minimal waste

There have been repeated experiments to develop an “artificial leaf”. Researchers in the UK have announced a variant approach. They report in Nature Energy that they have tested a set of photo-catalysts on sheets made up of semi-conductor powders, to convert carbon dioxide and water to formic acid, which is a precursor to a range of possible synthetic fuels.

Sunlight delivers the power. There is no electric current involved, no wiring, no chemical reagents that have to be deployed, and the only waste is atomic oxygen. Right now, the test unit is only 20cms square. It could however be scaled up to several metres to produce clean fuel on energy farms.

“We were surprised how well it worked in terms of its selectivity – it produced almost no by-products,” said Qian Wang, a chemist at the University of Cambridge, who led the study.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better.” Climate News Network

You could reclaim a lithium-ion battery with help from orange peel and juice – or make fuel directly from sunlight and air.

LONDON, 4 September, 2020 – Singapore scientists have found a way to recover valuable metals from a discarded lithium-ion battery – with minimal waste and serious help from old orange peel and a solution of citric acid.

And in Great Britain researchers have tested a simple solar reactor that can turn sunlight, carbon dioxide and water into the raw material for synthetic fuel.

Neither technology is anywhere near ready for commercial exploitation. But each could be scaled up.

The first confronts two global challenges: the devastating burden of uneaten food and the alarming build-up of electronic waste each year. The second improves on an idea from nature and turns sunlight and atmosphere directly into energy without the lengthy business of growing and burying forests and waiting 100 million years before they turn into fossil fuels.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better”

And each is a reminder of the startling levels of ingenuity and resource in the world’s laboratories, in the search for solutions to the seemingly intractable challenge of climate change, and the shift to clean energy.

Right now, batteries surrender their valuable component metals by being heated to 500°C, or dissolved in strong acids, or in solutions of hydrogen peroxide: there are secondary pollutants and health and safety risks at each stage.

Researchers from Nanyang Technological University in Singapore report in the journal Environmental Science and Technology that they made a kind of paste of crushed batteries, mixed it with powdered orange peel and added citric acid – almost any citrus fruit produces the stuff naturally – and at a temperature of 100°C recovered around 90% of the cobalt, lithium, nickel and manganese from the waste without producing any further new waste that could be toxic.

To make their point, the researchers then used those recovered metals to make new lithium-ion batteries.

Cellulose the key

By 2026, the market for the batteries in smartphones, notebooks, cameras, medical devices and electronic vehicles is expected to reach US$139bn (£105bn).

In Europe, only about 5% of the waste from these batteries is recycled. The key to the success of the experiment, the researchers say, proved to be the cellulose in the orange peel. It turned to sugar under heat during the reaction process, to help leach the important metals from the waste slurry.

The world is not short of disposable cellulose. Humans generate 1.3bn tonnes a year in the form of food waste. The world also generates 50 million tonnes of electronic waste every year. The Singapore studies suggest the real possibility of a circular economy with zero waste: so far, an environmentalist’s dream.

Another recurring environmentalist dream has been to steal a leaf from nature’s book and turn sunlight and carbon dioxide directly into stored energy. Carbon dioxide is a building block of all fuels.

Minimal waste

There have been repeated experiments to develop an “artificial leaf”. Researchers in the UK have announced a variant approach. They report in Nature Energy that they have tested a set of photo-catalysts on sheets made up of semi-conductor powders, to convert carbon dioxide and water to formic acid, which is a precursor to a range of possible synthetic fuels.

Sunlight delivers the power. There is no electric current involved, no wiring, no chemical reagents that have to be deployed, and the only waste is atomic oxygen. Right now, the test unit is only 20cms square. It could however be scaled up to several metres to produce clean fuel on energy farms.

“We were surprised how well it worked in terms of its selectivity – it produced almost no by-products,” said Qian Wang, a chemist at the University of Cambridge, who led the study.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better.” Climate News Network