Author: Tim Radford

About Tim Radford

Tim Radford, a founding editor of Climate News Network, worked for The Guardian for 32 years, for most of that time as science editor. He has been covering climate change since 1988.

Ultra-fast computers could avert global disaster

The world can be saved. It needs global co-operation, careful research and the building of ultra-fast computers.

LONDON, 13 December, 2019 – The way to steer the planet safely away from overwhelming climate crisis may sound familiar, though it’s staggeringly ambitious: just use incredibly powerful and ultra-fast computers.

Studies in two separate journals have called for new thinking about global change. One warns that only a genuine accommodation with nature can save humankind from catastrophic change. The other argues that present understanding of the trajectories of global heating is so uncertain that what is needed is a global co-operation to deliver what scientists call exascale supercomputer climate modelling: exascale means calculations at rates of a billion billion operations a second.

There’s a snag: nobody has yet built a working exascale computer, though several groups hope to succeed within a few years. But when it’s done it could transform the prospects of life on Earth.

“We cannot save the planet – and ourselves – until we understand how tightly woven people and the natural benefits that allow us to survive are,” said Jianguo Liu of Michigan State University, one of the authors of a paper in the journal Science.

“We have learned new ways to understand these connections, even as they spread across the globe. This strategy has given us the power to understand the full scope of the problem, which allows us to find true solutions.”

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”

And Tim Palmer of Oxford University, an author of a perspective paper in the Proceedings of the National Academy of Sciences, has called for a new and international investment in sophisticated climate modelling, exploiting a new generation of computers, in much the same way that physicists at CERN in Geneva co-operated to explore the sequence of events in the first microsecond of creation.

“By comparison with new particle colliders or space telescopes, the amount needed, maybe around $100 million a year, is very modest indeed. In addition, the benefit/cost ratio to society of having a much clearer picture of the dangers we are facing in the coming decades by our ongoing actions, seems extraordinarily large,” he said.

“To be honest, all is needed is the will to work together across nations, on such a project. Then it will happen.”

The point made by authors of the Science study is that humankind depends acutely on the natural world for at least 18 direct benefits: these include pollination and the dispersal of seeds, the regulation of clean air, and of climate, and of fresh water, the protection of topsoils, the control of potential pests and diseases, the supplies of energy, food and animal fodder, the supplies of materials and fabrics and yields of new medicines and biochemical compounds.

Massive change

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”, the authors warn.

“Human actions have directly altered at least 70% of land surface; 66% of ocean surface is experiencing cumulative impacts; around 85% of wetland area has been lost since the 1700s and 77% of rivers longer than 1000 km no longer flow freely from source to sea.”

There was a need for “transformative action” on a global scale to address root economic, social and technological causes and to avert catastrophic decline of the living world. “Although the challenge is formidable, every delay will make the task harder”, they warn.

But in a world of rapid change – with species at increasing risk of extinction and global heating about to trigger catastrophic climate change – there is still the challenge of working out what the implications of any change might be.

The argument is that human society must change, and so too must the scientific community. Climate modelling might deliver broad answers, but researchers would still need to be sure what might work best in any particular circumstances, and that would require new and vastly more complex levels of mathematical calculation and data interpretation.

Space-race urgency

Professor Palmer and his colleague Bjorn Stevens of the Max Planck Institute for Meteorology in Hamburg call for better understanding of the need for change.

“What is needed is the urgency of the space race aimed, not at the Moon or Mars, but rather toward harnessing the promise of exascale supercomputing to reliably simulate Earth’s regional climate (and associated extremes) globally”, they argue.

“This will only be possible if the broader climate science community begins to articulate its dissatisfaction with business as usual – not just among themselves, but externally to those who seek to use the models for business, policy, or humanitarian reasons.

“Failing to do so becomes an ethical issue in that it saddles us with the status quo: a strategy that hopes, against all evidence, to surmount the abyss between scientific capability and societal needs.” – Climate News Network

The world can be saved. It needs global co-operation, careful research and the building of ultra-fast computers.

LONDON, 13 December, 2019 – The way to steer the planet safely away from overwhelming climate crisis may sound familiar, though it’s staggeringly ambitious: just use incredibly powerful and ultra-fast computers.

Studies in two separate journals have called for new thinking about global change. One warns that only a genuine accommodation with nature can save humankind from catastrophic change. The other argues that present understanding of the trajectories of global heating is so uncertain that what is needed is a global co-operation to deliver what scientists call exascale supercomputer climate modelling: exascale means calculations at rates of a billion billion operations a second.

There’s a snag: nobody has yet built a working exascale computer, though several groups hope to succeed within a few years. But when it’s done it could transform the prospects of life on Earth.

“We cannot save the planet – and ourselves – until we understand how tightly woven people and the natural benefits that allow us to survive are,” said Jianguo Liu of Michigan State University, one of the authors of a paper in the journal Science.

“We have learned new ways to understand these connections, even as they spread across the globe. This strategy has given us the power to understand the full scope of the problem, which allows us to find true solutions.”

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”

And Tim Palmer of Oxford University, an author of a perspective paper in the Proceedings of the National Academy of Sciences, has called for a new and international investment in sophisticated climate modelling, exploiting a new generation of computers, in much the same way that physicists at CERN in Geneva co-operated to explore the sequence of events in the first microsecond of creation.

“By comparison with new particle colliders or space telescopes, the amount needed, maybe around $100 million a year, is very modest indeed. In addition, the benefit/cost ratio to society of having a much clearer picture of the dangers we are facing in the coming decades by our ongoing actions, seems extraordinarily large,” he said.

“To be honest, all is needed is the will to work together across nations, on such a project. Then it will happen.”

The point made by authors of the Science study is that humankind depends acutely on the natural world for at least 18 direct benefits: these include pollination and the dispersal of seeds, the regulation of clean air, and of climate, and of fresh water, the protection of topsoils, the control of potential pests and diseases, the supplies of energy, food and animal fodder, the supplies of materials and fabrics and yields of new medicines and biochemical compounds.

Massive change

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”, the authors warn.

“Human actions have directly altered at least 70% of land surface; 66% of ocean surface is experiencing cumulative impacts; around 85% of wetland area has been lost since the 1700s and 77% of rivers longer than 1000 km no longer flow freely from source to sea.”

There was a need for “transformative action” on a global scale to address root economic, social and technological causes and to avert catastrophic decline of the living world. “Although the challenge is formidable, every delay will make the task harder”, they warn.

But in a world of rapid change – with species at increasing risk of extinction and global heating about to trigger catastrophic climate change – there is still the challenge of working out what the implications of any change might be.

The argument is that human society must change, and so too must the scientific community. Climate modelling might deliver broad answers, but researchers would still need to be sure what might work best in any particular circumstances, and that would require new and vastly more complex levels of mathematical calculation and data interpretation.

Space-race urgency

Professor Palmer and his colleague Bjorn Stevens of the Max Planck Institute for Meteorology in Hamburg call for better understanding of the need for change.

“What is needed is the urgency of the space race aimed, not at the Moon or Mars, but rather toward harnessing the promise of exascale supercomputing to reliably simulate Earth’s regional climate (and associated extremes) globally”, they argue.

“This will only be possible if the broader climate science community begins to articulate its dissatisfaction with business as usual – not just among themselves, but externally to those who seek to use the models for business, policy, or humanitarian reasons.

“Failing to do so becomes an ethical issue in that it saddles us with the status quo: a strategy that hopes, against all evidence, to surmount the abyss between scientific capability and societal needs.” – Climate News Network

Racing ice loss strips Greenland of mass

Greenland is shrinking, losing ice seven times faster than a generation ago. Scientists have taken a new and ominous measure of polar loss.

LONDON, 11 December, 2019 – Greenland – the largest body of frozen water in the northern hemisphere – is now losing ice seven times faster than it did during the last decade of the 20th century.

From 1990 to 1999, the Greenland ice sheet spilled an average of 33 billion tonnes of ice into the oceans every year. In the last decade the rate of loss has accelerated to an average of 254 billion tonnes a year.

Altogether, the Greenland ice cap has surrendered 3.8 trillion tonnes of ice since 1992. This alone is enough to raise global sea levels by 10.6 millimetres.

Glaciers and icecaps are in retreat in two hemispheres, and on every continent, as a consequence of profligate human combustion of fossil fuels, to drive up greenhouse gas levels in the atmosphere, and accelerate global heating.

Devastating

“As a rule of thumb, for every centimetre rise in global sea level another six million people are exposed to coastal flooding around the planet”, said Andrew Shepherd of the University of Leeds in the UK.

“On current trends, Greenland ice melting will cause 100 million people to be flooded each year by the end of the century, so 400 million in total due to all sea level rise. These are not unlikely events of small impacts; they are happening and will be devastating for coastal communities.”

Professor Shepherd is one of 96 polar scientists from 50 international organisations in a partnership known by the cumbrous name IMBIE, which stands for Ice Sheet Mass Balance Intercomparison Exercise. They made this assessment, based on data from 11 satellite missions and 26 separate surveys between 1992 and 2018, and published their conclusions in the journal Nature.

Greenland is not just the largest ice mass in the Arctic, it is probably the polar landscape studied for the longest time, and the most intensively.
Researchers have monitored the rate of summer melt, tried to match increases with other phenomena – for instance the darkening of snow by sub-Arctic wildfires – and tried to explore the mechanisms by which volumes of water that might in the past have frozen again each winter now accelerate glacier melt and escape into the ocean.

No surprise

The icecap is so big that – were it all to melt, which would take centuries – it would raise sea levels by as much as seven metres.

The news of a dramatic increase in rates of melting is not a surprise, and certainly not to the people who live in Greenland.

In 2013, the Intergovernmental Panel on Climate Change warned that global sea levels would rise by 60 cms by 2100. What matters about the latest survey is that it confirms the worst fears of many climate scientists and suggests that sea level rise is heading for the high end of the 2013 projections.

That is, by the end of this century, seas could have risen by nearer 70 cms. Around 100 million people already live at levels below the highest tides: the numbers increasingly at risk may be much higher.

The same study also explores the rates of change. Although the warmest years ever recorded have happened in the last century, as fossil fuel emissions and rainforest losses have continued to increase, the impact of global heating has been uneven.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale”

The greatest loss of Greenland ice in any one year was in 2011, when the island lost 335 billion tonnes. Nor does the survey include all the data from 2019, and researchers could yet find that this summer’s ice loss has set new records.

Greenland’s loss of ice has been mirrored by continued loss of sea ice during successive Arctic summers, and since the world’s seasonal weather patterns have – for most of human history – been driven by the temperature difference between tropics and poles, the continued loss of ice will almost certainly impose worldwide costs in harvest losses, freak storms, droughts, wildfires and of course coastal flooding.

And ultimately, the study is a test of computer simulations of change in the northern hemisphere. Climate models have consistently predicted polar ice loss and sea level rise. But the latest study is a confirmation that such loss is real, and beyond argument.

“While computer simulation allows us to make projections from climate change scenarios, the satellite measurements provide prima facie, rather irrefutable evidence,” said Erik Ivins of Nasa’s Jet Propulsion Laboratory in California, and a co-author.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale.” – Climate News Network

Greenland is shrinking, losing ice seven times faster than a generation ago. Scientists have taken a new and ominous measure of polar loss.

LONDON, 11 December, 2019 – Greenland – the largest body of frozen water in the northern hemisphere – is now losing ice seven times faster than it did during the last decade of the 20th century.

From 1990 to 1999, the Greenland ice sheet spilled an average of 33 billion tonnes of ice into the oceans every year. In the last decade the rate of loss has accelerated to an average of 254 billion tonnes a year.

Altogether, the Greenland ice cap has surrendered 3.8 trillion tonnes of ice since 1992. This alone is enough to raise global sea levels by 10.6 millimetres.

Glaciers and icecaps are in retreat in two hemispheres, and on every continent, as a consequence of profligate human combustion of fossil fuels, to drive up greenhouse gas levels in the atmosphere, and accelerate global heating.

Devastating

“As a rule of thumb, for every centimetre rise in global sea level another six million people are exposed to coastal flooding around the planet”, said Andrew Shepherd of the University of Leeds in the UK.

“On current trends, Greenland ice melting will cause 100 million people to be flooded each year by the end of the century, so 400 million in total due to all sea level rise. These are not unlikely events of small impacts; they are happening and will be devastating for coastal communities.”

Professor Shepherd is one of 96 polar scientists from 50 international organisations in a partnership known by the cumbrous name IMBIE, which stands for Ice Sheet Mass Balance Intercomparison Exercise. They made this assessment, based on data from 11 satellite missions and 26 separate surveys between 1992 and 2018, and published their conclusions in the journal Nature.

Greenland is not just the largest ice mass in the Arctic, it is probably the polar landscape studied for the longest time, and the most intensively.
Researchers have monitored the rate of summer melt, tried to match increases with other phenomena – for instance the darkening of snow by sub-Arctic wildfires – and tried to explore the mechanisms by which volumes of water that might in the past have frozen again each winter now accelerate glacier melt and escape into the ocean.

No surprise

The icecap is so big that – were it all to melt, which would take centuries – it would raise sea levels by as much as seven metres.

The news of a dramatic increase in rates of melting is not a surprise, and certainly not to the people who live in Greenland.

In 2013, the Intergovernmental Panel on Climate Change warned that global sea levels would rise by 60 cms by 2100. What matters about the latest survey is that it confirms the worst fears of many climate scientists and suggests that sea level rise is heading for the high end of the 2013 projections.

That is, by the end of this century, seas could have risen by nearer 70 cms. Around 100 million people already live at levels below the highest tides: the numbers increasingly at risk may be much higher.

The same study also explores the rates of change. Although the warmest years ever recorded have happened in the last century, as fossil fuel emissions and rainforest losses have continued to increase, the impact of global heating has been uneven.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale”

The greatest loss of Greenland ice in any one year was in 2011, when the island lost 335 billion tonnes. Nor does the survey include all the data from 2019, and researchers could yet find that this summer’s ice loss has set new records.

Greenland’s loss of ice has been mirrored by continued loss of sea ice during successive Arctic summers, and since the world’s seasonal weather patterns have – for most of human history – been driven by the temperature difference between tropics and poles, the continued loss of ice will almost certainly impose worldwide costs in harvest losses, freak storms, droughts, wildfires and of course coastal flooding.

And ultimately, the study is a test of computer simulations of change in the northern hemisphere. Climate models have consistently predicted polar ice loss and sea level rise. But the latest study is a confirmation that such loss is real, and beyond argument.

“While computer simulation allows us to make projections from climate change scenarios, the satellite measurements provide prima facie, rather irrefutable evidence,” said Erik Ivins of Nasa’s Jet Propulsion Laboratory in California, and a co-author.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale.” – Climate News Network

Greenland ice melt feeds glacier instability

In a runaway effect, the Greenland ice melt lets surface water gurgle down to the bedrock – and at unexpected speeds.

LONDON, 6 December, 2019 – British scientists have caught a huge ice sheet in the act of draining away, with significant effects on its surroundings: they have seen what happens to the water created by the Greenland ice melt.

For the first time – and with help from drones – researchers have witnessed water flowing at a million cubic metres an hour from the surface of ice sheets through caverns in the ice and down to the glacial bedrock.

The study does not change the big picture of increasingly rapid melt as greenhouse gases build up in the atmosphere, and ever more of the northern hemisphere’s biggest ice cap flows downhill to raise global sea levels.

But it does throw light on the mechanisms by which glaciers turn to sea water, and it does suggest that many estimates of melt rate so far might prove to be under-estimates.

Greenland is the planet’s second largest ice sheet and the biggest single contributor to global sea level rise. Researchers have been alarmed for years about the increasing rate of summer melt and the accelerating speed of what had once been imperceptible glacial flows.

“These glaciers are already moving quite fast, so the effect of the lakes may not appear as dramatic as on slower-moving glaciers elsewhere, but the overall effect is in fact very significant”

And researchers from the universities of Cambridge, Aberystwyth and Lancaster have now been able to put a measure on water surface loss.

They report in the Proceedings of the National Academy of Sciences that they used custom-built aerial drones and complex computer modelling to work out how fractures form below vast lakes of meltwater that collect on the surface of the Store Glacier on the island’s northwestern sheet.

They watched splits form in the glacial ice, to suddenly open up an escape route for the supraglacial pool. As they watched, such fractures became caverns called moulins, down which in one case five million cubic metres of water – think of 2,000 Olympic swimming pools – flowed in just five hours.

The ice of the glacier is typically a kilometre thick, so the scientists may have observed the planet’s longest waterfall. And as the ice drained away to the bottom of the ice sheet, it may have served as a lubricant to speed up glacier flow over the bedrock.

The ice sheet lifted by half a metre, presumably in response to the sub-surface flood, and four kilometres downstream glacial speed picked up from a speed of two metres to more than five metres a day.

Daily billion-tonne loss

“It’s possible we’ve under-estimated the effects of these glaciers on the overall instability of the Greenland ice sheet. It’s a rare thing to observe these fast-draining lakes – we were lucky to be in the right place at the right time,” said Tom Chudley, of the Scott Polar Research Institute in Cambridge, one of the authors.

Until now, scientists have been able to estimate glacial flow and surface melt only by satellite studies – which reveal little of the detail – or direct on-the-ground measurement under conditions that are difficult even in good weather.

But even with these constraints researchers have been able to calculate the shrinkage of the Greenland ice sheet at the rate of a billion tonnes a day, as temperatures rise in response to ever-increasing use of fossil fuels around the globe.

The next step is to deploy drilling equipment for a closer look at how the water gets below the glacier to reach the bedrock, and calculate how the ice sheet may change not just over hours but over the coming decades as well.

“These glaciers are already moving quite fast, so the effect of the lakes may not appear as dramatic as on slower-moving glaciers elsewhere,” said Poul Christofferson, who led the project, “but the overall effect is in fact very significant.” – Climate News Network

In a runaway effect, the Greenland ice melt lets surface water gurgle down to the bedrock – and at unexpected speeds.

LONDON, 6 December, 2019 – British scientists have caught a huge ice sheet in the act of draining away, with significant effects on its surroundings: they have seen what happens to the water created by the Greenland ice melt.

For the first time – and with help from drones – researchers have witnessed water flowing at a million cubic metres an hour from the surface of ice sheets through caverns in the ice and down to the glacial bedrock.

The study does not change the big picture of increasingly rapid melt as greenhouse gases build up in the atmosphere, and ever more of the northern hemisphere’s biggest ice cap flows downhill to raise global sea levels.

But it does throw light on the mechanisms by which glaciers turn to sea water, and it does suggest that many estimates of melt rate so far might prove to be under-estimates.

Greenland is the planet’s second largest ice sheet and the biggest single contributor to global sea level rise. Researchers have been alarmed for years about the increasing rate of summer melt and the accelerating speed of what had once been imperceptible glacial flows.

“These glaciers are already moving quite fast, so the effect of the lakes may not appear as dramatic as on slower-moving glaciers elsewhere, but the overall effect is in fact very significant”

And researchers from the universities of Cambridge, Aberystwyth and Lancaster have now been able to put a measure on water surface loss.

They report in the Proceedings of the National Academy of Sciences that they used custom-built aerial drones and complex computer modelling to work out how fractures form below vast lakes of meltwater that collect on the surface of the Store Glacier on the island’s northwestern sheet.

They watched splits form in the glacial ice, to suddenly open up an escape route for the supraglacial pool. As they watched, such fractures became caverns called moulins, down which in one case five million cubic metres of water – think of 2,000 Olympic swimming pools – flowed in just five hours.

The ice of the glacier is typically a kilometre thick, so the scientists may have observed the planet’s longest waterfall. And as the ice drained away to the bottom of the ice sheet, it may have served as a lubricant to speed up glacier flow over the bedrock.

The ice sheet lifted by half a metre, presumably in response to the sub-surface flood, and four kilometres downstream glacial speed picked up from a speed of two metres to more than five metres a day.

Daily billion-tonne loss

“It’s possible we’ve under-estimated the effects of these glaciers on the overall instability of the Greenland ice sheet. It’s a rare thing to observe these fast-draining lakes – we were lucky to be in the right place at the right time,” said Tom Chudley, of the Scott Polar Research Institute in Cambridge, one of the authors.

Until now, scientists have been able to estimate glacial flow and surface melt only by satellite studies – which reveal little of the detail – or direct on-the-ground measurement under conditions that are difficult even in good weather.

But even with these constraints researchers have been able to calculate the shrinkage of the Greenland ice sheet at the rate of a billion tonnes a day, as temperatures rise in response to ever-increasing use of fossil fuels around the globe.

The next step is to deploy drilling equipment for a closer look at how the water gets below the glacier to reach the bedrock, and calculate how the ice sheet may change not just over hours but over the coming decades as well.

“These glaciers are already moving quite fast, so the effect of the lakes may not appear as dramatic as on slower-moving glaciers elsewhere,” said Poul Christofferson, who led the project, “but the overall effect is in fact very significant.” – Climate News Network

Worst hurricanes both more frequent and harmful

The worst hurricanes are increasing. It’s not just that there are more potential victims than before. There are also more disastrous storms.

LONDON, 3 December, 2019 – Danish researchers have settled a problem of US disaster accounting, confirming that in the last century North America’s worst hurricanes have become three times more frequent – and significantly more destructive.

Such calculations sound as though they ought to be simple. They are not. In 1900, the entire population of the planet was about 1.6 billion people, most of whom lived in rural areas. By 2018, global population had reached 7.5 billion, and more than half of the world was concentrated in cities. In effect, any hurricane would threaten more victims, and there would be more, and more expensive, property to be destroyed.

So the damage from hurricanes would tend always to rise, and the count of destructive hurricanes would grow, because any violent windstorm would be more likely to slam into an urban area rather than sweep over a few farms.

Tropical cyclones, typhoons and hurricanes start at sea, as sea surface temperatures rise. With ever-increasing global temperatures, driven by profligate combustion of fossil fuels, more hurricanes would be expected, with higher windspeeds and ever-greater burdens of rain to bring disastrous floods as well as severe damage.

“The frequency of the most damaging hurricanes has increased at the rate of 350% per century”

But it is harder to show that the climate crisis is intrinsically more dangerous, even though windstorm damage is on the rise. Researchers tend to use economic accounting to try to work out what a hurricane in, for example 1950, would cost if it swept in from the ocean today.

Hurricanes are the costliest natural disasters in the US. Scientists at the Niels Bohr Institute in Copenhagen set about making their comparisons in a new way. Rather than match financial losses on a case by case basis, they tried to calculate how large an area would have to be completely destroyed to account for a particular financial loss.

They extended this “area of total destruction” accounting back to 1900, to see what the new comparison approach would reveal.

And, they report in the Proceedings of the National Academy of Sciences, they found what they call “an emergent positive trend in damage, which we attribute to a detectable change in extreme storms due to global warming.” And they add: “The frequency of the most damaging hurricanes has increased at the rate of 350% per century.” – Climate News Network.

The worst hurricanes are increasing. It’s not just that there are more potential victims than before. There are also more disastrous storms.

LONDON, 3 December, 2019 – Danish researchers have settled a problem of US disaster accounting, confirming that in the last century North America’s worst hurricanes have become three times more frequent – and significantly more destructive.

Such calculations sound as though they ought to be simple. They are not. In 1900, the entire population of the planet was about 1.6 billion people, most of whom lived in rural areas. By 2018, global population had reached 7.5 billion, and more than half of the world was concentrated in cities. In effect, any hurricane would threaten more victims, and there would be more, and more expensive, property to be destroyed.

So the damage from hurricanes would tend always to rise, and the count of destructive hurricanes would grow, because any violent windstorm would be more likely to slam into an urban area rather than sweep over a few farms.

Tropical cyclones, typhoons and hurricanes start at sea, as sea surface temperatures rise. With ever-increasing global temperatures, driven by profligate combustion of fossil fuels, more hurricanes would be expected, with higher windspeeds and ever-greater burdens of rain to bring disastrous floods as well as severe damage.

“The frequency of the most damaging hurricanes has increased at the rate of 350% per century”

But it is harder to show that the climate crisis is intrinsically more dangerous, even though windstorm damage is on the rise. Researchers tend to use economic accounting to try to work out what a hurricane in, for example 1950, would cost if it swept in from the ocean today.

Hurricanes are the costliest natural disasters in the US. Scientists at the Niels Bohr Institute in Copenhagen set about making their comparisons in a new way. Rather than match financial losses on a case by case basis, they tried to calculate how large an area would have to be completely destroyed to account for a particular financial loss.

They extended this “area of total destruction” accounting back to 1900, to see what the new comparison approach would reveal.

And, they report in the Proceedings of the National Academy of Sciences, they found what they call “an emergent positive trend in damage, which we attribute to a detectable change in extreme storms due to global warming.” And they add: “The frequency of the most damaging hurricanes has increased at the rate of 350% per century.” – Climate News Network.

Conservation pays its way handsomely

Money does grow on trees. The conservation of a native forest is natural capital, its cash value often reaching trillions of dollars.

LONDON, 2 December, 2019 – More than 400 scientists in Brazil have once again established that conservation pays: landscapes and people are richer for the native vegetation preserved on rural properties.

They calculate that 270 million hectares (667m acres) of natural forest, scrub, marsh and grassland contained in Brazil’s legal reserves are worth US$1.5 trillion (£1.7tn) a year to the nation.

Natural wilderness pays its way by providing a steady supply of natural crop pollinators and pest controls, by seamlessly managing rainfall and water run-off, and by maintaining soil quality, the researchers argue in a new study in the journal Perspectives in Ecology and Conservation.

“The paper is meant to show that preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil and diverges from what was done in Europe 500 years ago, when the level of environmental awareness was different”, said Jean Paul Metzger, an ecologist at the University of São Paulo, who leads the signatories.

“Brazil conserves a great deal, protecting over 60% of its vegetation cover, and has strict legislation. It’s ranked 30th by the World Bank, behind Sweden and Finland, which protect approximately 70%. However, we must call attention to the fact that conservation isn’t bad,” said Professor Metzger.

Protection maintained

Brazilian law requires rural landowners to leave forest cover untouched on a percentage of their property: in the Amazon region as much as 80%; in other regions as little as 20%. But these protected areas shelter a third of the nation’s natural vegetation.

A bill that proposed to weaken or eliminate the Legal Reserve requirement went before the Brazilian Senate in 2019. Had it passed, it could have led to the loss altogether of 270 million hectares of native vegetation.

The bill has since been withdrawn, but a small army of scientists – including 371 researchers in 79 Brazilian laboratories, universities and institutions – have responded with a study that attempts to set a cash value to simply maintaining the natural capital of the wilderness.

Brazil is home to one of the world’s great tropical rainforests, and to one of the world’s richest centres of biodiversity. The global climate crisis is already taking its toll of the forest canopy in the form of drought and fire. But under new national leadership there have been fears that even more forest could be at risk.

“Preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil”

The cash-value case for conservation has been made, and made repeatedly. Studies have confirmed that agribusiness monocultures – vast tracts devoted entirely to one crop and only one crop – are not sustainable: animal pollinators can make the best of the flowering season but then have no alternative sources of food for the rest of the year.

Other researchers have separately established that the loss of natural forest can be far more costly and economically damaging than anybody had expected; and that, conversely, conserved and undisturbed wilderness actually delivers wealth on a sustained basis for national and regional economies. But farmers concerned with immediate profits might not be so conscious of the long-term rewards of conservation.

“It’s an important paper because it presents sound information that can be used to refute the arguments of those who want to change the Brazilian Forest Code and do away with the legal reserve requirement”, said Carlos Joly of the Sao Paulo Research Foundation, and one of the signatories.

And his colleague Paulo Artaxo said: “Farmers sometimes take a short-term view that focuses on three or four years of personal profit, but the nation is left with enormous losses. This mindset should go. The paper makes that very clear.” – Climate News Network

Money does grow on trees. The conservation of a native forest is natural capital, its cash value often reaching trillions of dollars.

LONDON, 2 December, 2019 – More than 400 scientists in Brazil have once again established that conservation pays: landscapes and people are richer for the native vegetation preserved on rural properties.

They calculate that 270 million hectares (667m acres) of natural forest, scrub, marsh and grassland contained in Brazil’s legal reserves are worth US$1.5 trillion (£1.7tn) a year to the nation.

Natural wilderness pays its way by providing a steady supply of natural crop pollinators and pest controls, by seamlessly managing rainfall and water run-off, and by maintaining soil quality, the researchers argue in a new study in the journal Perspectives in Ecology and Conservation.

“The paper is meant to show that preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil and diverges from what was done in Europe 500 years ago, when the level of environmental awareness was different”, said Jean Paul Metzger, an ecologist at the University of São Paulo, who leads the signatories.

“Brazil conserves a great deal, protecting over 60% of its vegetation cover, and has strict legislation. It’s ranked 30th by the World Bank, behind Sweden and Finland, which protect approximately 70%. However, we must call attention to the fact that conservation isn’t bad,” said Professor Metzger.

Protection maintained

Brazilian law requires rural landowners to leave forest cover untouched on a percentage of their property: in the Amazon region as much as 80%; in other regions as little as 20%. But these protected areas shelter a third of the nation’s natural vegetation.

A bill that proposed to weaken or eliminate the Legal Reserve requirement went before the Brazilian Senate in 2019. Had it passed, it could have led to the loss altogether of 270 million hectares of native vegetation.

The bill has since been withdrawn, but a small army of scientists – including 371 researchers in 79 Brazilian laboratories, universities and institutions – have responded with a study that attempts to set a cash value to simply maintaining the natural capital of the wilderness.

Brazil is home to one of the world’s great tropical rainforests, and to one of the world’s richest centres of biodiversity. The global climate crisis is already taking its toll of the forest canopy in the form of drought and fire. But under new national leadership there have been fears that even more forest could be at risk.

“Preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil”

The cash-value case for conservation has been made, and made repeatedly. Studies have confirmed that agribusiness monocultures – vast tracts devoted entirely to one crop and only one crop – are not sustainable: animal pollinators can make the best of the flowering season but then have no alternative sources of food for the rest of the year.

Other researchers have separately established that the loss of natural forest can be far more costly and economically damaging than anybody had expected; and that, conversely, conserved and undisturbed wilderness actually delivers wealth on a sustained basis for national and regional economies. But farmers concerned with immediate profits might not be so conscious of the long-term rewards of conservation.

“It’s an important paper because it presents sound information that can be used to refute the arguments of those who want to change the Brazilian Forest Code and do away with the legal reserve requirement”, said Carlos Joly of the Sao Paulo Research Foundation, and one of the signatories.

And his colleague Paulo Artaxo said: “Farmers sometimes take a short-term view that focuses on three or four years of personal profit, but the nation is left with enormous losses. This mindset should go. The paper makes that very clear.” – Climate News Network

Earth nears irreversible tipping points

Changes afoot now in at least nine areas could drastically alter the Earth’s climate. There’s no time left to act on these tipping points.

LONDON, 28 November, 2019 – On the eve of a global climate summit in Madrid, seven distinguished climate scientists have issued an urgent warning of approaching planetary tipping points: within a few years, they say, humankind could enter a state of potentially catastrophic climate change on a new “hothouse” Earth.

They warn that dramatic changes to planetary stability may already be happening in nine vulnerable ecosystems. As these changes happen, they could reinforce each other and at the same time amplify planetary temperature rise, commit the oceans to inexorable sea level rise of around 10 metres, and threaten the existence of human civilisations.

Their warning is issued in a commentary in the journal Nature. Their conclusions are not – and perhaps cannot be – confirmed by direct evidence or the consensus of other scientists. They present an opinion, not a set of facts that can be scrutinised and challenged or endorsed by their peers.

And the seven researchers recognise that although such changes are happening at speed, some of the consequences of those changes will follow more slowly. Their point is that the risks of irreversible change are too great not to act – and to act now.

Happening now

But the fact that they have chosen to issue such an alarm at all is a measure of the concern raised by the rapid retreat of the Arctic ice, the steady loss of the Greenland ice cap, the damage to the boreal forests, the thaw of the polar permafrost, the slowing of a great ocean current, the loss of tropical corals and the collapse of ice sheets in East and West Antarctica.

Each of these happenings – and many more – was identified more than a decade ago as a potential “tipping point”: an irreversible change that would amplify global heating and trigger a cascade of other climate changes.

“Now we see evidence that over half of them have been activated,” said Tim Lenton of the University of Exeter, UK. “The growing threat of rapid, irreversible changes means it is no longer responsible to wait and see.”

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this”

The idea of a climate tipping point – a threshold beyond which dramatic climate change would be irreversible – is an old one. Two decades ago the Intergovernmental Panel on Climate Change examined the idea and proposed that, were the planet to warm by 5°C above the long-term average for most of human history, then it could tip into a new climate regime.

But in the last few decades, carbon dioxide concentrations in the atmosphere have gone from around 280 parts per million to more than 400 ppm, and global average temperatures have risen by more than 1°C. And the rate of change, driven by profligate use of fossil fuels that deposit greenhouse gases into the atmosphere, has been alarming.

“It is not only human pressures on Earth that continue rising to unprecedented levels. It is also that, as science advances, we must admit that we have underestimated the risks of unleashing irreversible changes, where the planet self-amplifies global warming. This is what we are seeing already at 1°C global warming,” said Johan Rockström, who directs the Potsdam Institute for Climate Impact Research in Germany, and who is another signatory.

“Scientifically, this provides strong evidence for declaring a state of planetary emergency, to unleash world action that accelerates the path towards a world that can continue evolving on a stable planet.”

Inadequate pledges

In 2015, at a climate summit in Paris, 195 nations promised to contain planetary heating to “well below” 2°C, and ideally to 1.5°C, by 2100. But the Nature signatories point at that even if the pledges those nations made are implemented – a “big if”, they warn – then they will ensure only that the world is committed to at least 3°C warming.

The scientists believe there is still time to act – but their dangerous tipping points are now dangerously close.

The arguments go like this. In West Antarctica, ice may already be retreating beyond the “grounding line” where ice, ocean and bedrock meet. If so, then the rest of the West Antarctic ice sheet could collapse, and sea levels could rise by three metres.

New evidence suggests the East Antarctic ice sheet could be similarly unstable, and precipitate further sea level rise of up to four metres. Hundreds of millions are already at risk from coastal flooding.

Timescale controlled

The Greenland ice sheet is melting at an accelerating rate, and once past a critical threshold could lose enough water to raise sea levels by seven metres. Even a 1.5°C warming might condemn Greenland to irreversible melting – and on present form the world could warm by 1.5°C by 2030.

“Thus we might have already committed future generations to living with sea level rises of around 10m over thousands of years. But the timescale is still under our control,” the authors warn.

They also warn that a “staggering 99% of tropical corals” could be lost if the planet heats by even 2°C – at a profound cost to both marine sea life and human economies.

They say 17% of the Amazon rainforest has been lost since 1970: a loss of somewhere between 20% and 40% could tip the entire rainforest into a destabilised state, increasingly at risk from drought and fire.

Risks multiply

In the boreal forests of northern Asia, Europe and Canada, insect outbreaks, fire and dieback could turn some regions into sources of more carbon, rather than sinks that soak up the extra carbon dioxide.

Permafrost thaw could release ever-greater volumes of stored methane, a greenhouse gas 30 times more potent, over a century, than carbon dioxide, and so on. The dangers multiply, and each one amplifies planetary heating.

“If damaging tipping cascades can occur and a global tipping point cannot be ruled out, then this is an existential threat to civilisation,” the authors warn.

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this.” – Climate News Network

Changes afoot now in at least nine areas could drastically alter the Earth’s climate. There’s no time left to act on these tipping points.

LONDON, 28 November, 2019 – On the eve of a global climate summit in Madrid, seven distinguished climate scientists have issued an urgent warning of approaching planetary tipping points: within a few years, they say, humankind could enter a state of potentially catastrophic climate change on a new “hothouse” Earth.

They warn that dramatic changes to planetary stability may already be happening in nine vulnerable ecosystems. As these changes happen, they could reinforce each other and at the same time amplify planetary temperature rise, commit the oceans to inexorable sea level rise of around 10 metres, and threaten the existence of human civilisations.

Their warning is issued in a commentary in the journal Nature. Their conclusions are not – and perhaps cannot be – confirmed by direct evidence or the consensus of other scientists. They present an opinion, not a set of facts that can be scrutinised and challenged or endorsed by their peers.

And the seven researchers recognise that although such changes are happening at speed, some of the consequences of those changes will follow more slowly. Their point is that the risks of irreversible change are too great not to act – and to act now.

Happening now

But the fact that they have chosen to issue such an alarm at all is a measure of the concern raised by the rapid retreat of the Arctic ice, the steady loss of the Greenland ice cap, the damage to the boreal forests, the thaw of the polar permafrost, the slowing of a great ocean current, the loss of tropical corals and the collapse of ice sheets in East and West Antarctica.

Each of these happenings – and many more – was identified more than a decade ago as a potential “tipping point”: an irreversible change that would amplify global heating and trigger a cascade of other climate changes.

“Now we see evidence that over half of them have been activated,” said Tim Lenton of the University of Exeter, UK. “The growing threat of rapid, irreversible changes means it is no longer responsible to wait and see.”

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this”

The idea of a climate tipping point – a threshold beyond which dramatic climate change would be irreversible – is an old one. Two decades ago the Intergovernmental Panel on Climate Change examined the idea and proposed that, were the planet to warm by 5°C above the long-term average for most of human history, then it could tip into a new climate regime.

But in the last few decades, carbon dioxide concentrations in the atmosphere have gone from around 280 parts per million to more than 400 ppm, and global average temperatures have risen by more than 1°C. And the rate of change, driven by profligate use of fossil fuels that deposit greenhouse gases into the atmosphere, has been alarming.

“It is not only human pressures on Earth that continue rising to unprecedented levels. It is also that, as science advances, we must admit that we have underestimated the risks of unleashing irreversible changes, where the planet self-amplifies global warming. This is what we are seeing already at 1°C global warming,” said Johan Rockström, who directs the Potsdam Institute for Climate Impact Research in Germany, and who is another signatory.

“Scientifically, this provides strong evidence for declaring a state of planetary emergency, to unleash world action that accelerates the path towards a world that can continue evolving on a stable planet.”

Inadequate pledges

In 2015, at a climate summit in Paris, 195 nations promised to contain planetary heating to “well below” 2°C, and ideally to 1.5°C, by 2100. But the Nature signatories point at that even if the pledges those nations made are implemented – a “big if”, they warn – then they will ensure only that the world is committed to at least 3°C warming.

The scientists believe there is still time to act – but their dangerous tipping points are now dangerously close.

The arguments go like this. In West Antarctica, ice may already be retreating beyond the “grounding line” where ice, ocean and bedrock meet. If so, then the rest of the West Antarctic ice sheet could collapse, and sea levels could rise by three metres.

New evidence suggests the East Antarctic ice sheet could be similarly unstable, and precipitate further sea level rise of up to four metres. Hundreds of millions are already at risk from coastal flooding.

Timescale controlled

The Greenland ice sheet is melting at an accelerating rate, and once past a critical threshold could lose enough water to raise sea levels by seven metres. Even a 1.5°C warming might condemn Greenland to irreversible melting – and on present form the world could warm by 1.5°C by 2030.

“Thus we might have already committed future generations to living with sea level rises of around 10m over thousands of years. But the timescale is still under our control,” the authors warn.

They also warn that a “staggering 99% of tropical corals” could be lost if the planet heats by even 2°C – at a profound cost to both marine sea life and human economies.

They say 17% of the Amazon rainforest has been lost since 1970: a loss of somewhere between 20% and 40% could tip the entire rainforest into a destabilised state, increasingly at risk from drought and fire.

Risks multiply

In the boreal forests of northern Asia, Europe and Canada, insect outbreaks, fire and dieback could turn some regions into sources of more carbon, rather than sinks that soak up the extra carbon dioxide.

Permafrost thaw could release ever-greater volumes of stored methane, a greenhouse gas 30 times more potent, over a century, than carbon dioxide, and so on. The dangers multiply, and each one amplifies planetary heating.

“If damaging tipping cascades can occur and a global tipping point cannot be ruled out, then this is an existential threat to civilisation,” the authors warn.

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this.” – Climate News Network

60-year drought ended ancient Assyrian empire

It took only a 60-year drought to lay low one of the first superpowers. It crumbled when harvests withered over two millennia ago.

LONDON, 25 November, 2019 − One of the great ancient empires, the neo-Assyrian world of what is now northern Iraq, flourished in years of plentiful rain, but buckled and collapsed when beset by a 60-year drought.

The biblical city of Nineveh fell in 612 BC, weakened by climate change, never to be occupied again. Chroniclers blamed political instability, the might of Babylon, and the invasions of Medes and Persians.

But climate scientists who have reconstructed the evidence of annual weather records have set the record straight: like the rings of a tree or the sediments in a lake, the isotope records in stalagmites in the floor of the Kuna Ba cave tell a story of a mega-drought that underlay the collapse of one of ancient history’s earliest superpowers.

Stalagmites or speleothems are built up by the steady drip of water through rock and onto the floor of a cave. The scientists report in the journal Science Advances that they used carbon and oxygen isotopes in the layers of stone to reconstruct the climate throughout a 3800-year sequence of rainfall patterns.

The measures of uranium and thorium trapped in the same speleothems provided precise dates for the entire sequence, and these could then be checked against surviving records from an empire that at its height, under King Sennacherib, extended into parts of what are now Turkey, Iran, Syria, Jordan, Lebanon, Israel and Egypt.

“These societies experienced climatic changes that were of such magnitude they could not simply adapt to them”

“We now know that the Assyrian droughts started decades earlier than we had previously thought, and also that the period prior to the onset of drought was one of the wettest in the entire roughly 3800-year sequence.

“It changes some of the other hypotheses we have made”, said Adam Schneider, of the University of Colorado at Boulder, who first proposed a climate link to imperial collapse in 2014.

“For example: King Sennacherib, who ruled from 705 to 681 BC, was well-known for building massive canals and other structures. In our earlier work on the question of drought in ancient Assyria, I and my colleague Dr. Selim Adali had initially viewed him as a short-sighted ruler who had pursued short-term political goals at the expense of long-term drought resilience, and set in motion a catastrophic chain of events as a result.

“But with this new data, we now think that Sennacherib probably was already experiencing drought when he was king, and in fact he may well have been trying to do something about the environmental calamity during that time.”

And a co-author, Harvey Weiss of Yale University, said : “Now we have a historical and environmental dynamic between north and south and between rain-fed agriculture and irrigation-fed agriculture through which we can understand the historical process of how the Babylonians were able to defeat the Assyrians.”

New theory

“This fits into a historical pattern that is not only structured through time and place, but a space and time that is filled with environmental change,” said Professor Weiss. “These societies experienced climatic changes that were of such magnitude they could not simply adapt to them.”

The climate change theory of history is relatively new, but has already been used to provide new explanations for the collapse of the Bronze Age empire in the Mediterranean 3,000 years ago, the downfall of the Ptolemaic dynasty in Egypt, the rise of Genghis Khan’s nomadic hordes  and the fall of the Mayan civilisation in the Americas.

There have been arguments that contemporary conflict can be matched to climate stress in many parts of the modern world.

“The French Revolution is one example. In the two years prior to the French Revolution poor weather led to a series of bad harvests, which alongside other factors helped cause the price of bread to skyrocket, especially in Paris,” said Professor Schneider.

“The question is not ‘Did climate have an impact?’ It’s ‘How, why and how important was climate alongside the other factors?’” − Climate News Network

It took only a 60-year drought to lay low one of the first superpowers. It crumbled when harvests withered over two millennia ago.

LONDON, 25 November, 2019 − One of the great ancient empires, the neo-Assyrian world of what is now northern Iraq, flourished in years of plentiful rain, but buckled and collapsed when beset by a 60-year drought.

The biblical city of Nineveh fell in 612 BC, weakened by climate change, never to be occupied again. Chroniclers blamed political instability, the might of Babylon, and the invasions of Medes and Persians.

But climate scientists who have reconstructed the evidence of annual weather records have set the record straight: like the rings of a tree or the sediments in a lake, the isotope records in stalagmites in the floor of the Kuna Ba cave tell a story of a mega-drought that underlay the collapse of one of ancient history’s earliest superpowers.

Stalagmites or speleothems are built up by the steady drip of water through rock and onto the floor of a cave. The scientists report in the journal Science Advances that they used carbon and oxygen isotopes in the layers of stone to reconstruct the climate throughout a 3800-year sequence of rainfall patterns.

The measures of uranium and thorium trapped in the same speleothems provided precise dates for the entire sequence, and these could then be checked against surviving records from an empire that at its height, under King Sennacherib, extended into parts of what are now Turkey, Iran, Syria, Jordan, Lebanon, Israel and Egypt.

“These societies experienced climatic changes that were of such magnitude they could not simply adapt to them”

“We now know that the Assyrian droughts started decades earlier than we had previously thought, and also that the period prior to the onset of drought was one of the wettest in the entire roughly 3800-year sequence.

“It changes some of the other hypotheses we have made”, said Adam Schneider, of the University of Colorado at Boulder, who first proposed a climate link to imperial collapse in 2014.

“For example: King Sennacherib, who ruled from 705 to 681 BC, was well-known for building massive canals and other structures. In our earlier work on the question of drought in ancient Assyria, I and my colleague Dr. Selim Adali had initially viewed him as a short-sighted ruler who had pursued short-term political goals at the expense of long-term drought resilience, and set in motion a catastrophic chain of events as a result.

“But with this new data, we now think that Sennacherib probably was already experiencing drought when he was king, and in fact he may well have been trying to do something about the environmental calamity during that time.”

And a co-author, Harvey Weiss of Yale University, said : “Now we have a historical and environmental dynamic between north and south and between rain-fed agriculture and irrigation-fed agriculture through which we can understand the historical process of how the Babylonians were able to defeat the Assyrians.”

New theory

“This fits into a historical pattern that is not only structured through time and place, but a space and time that is filled with environmental change,” said Professor Weiss. “These societies experienced climatic changes that were of such magnitude they could not simply adapt to them.”

The climate change theory of history is relatively new, but has already been used to provide new explanations for the collapse of the Bronze Age empire in the Mediterranean 3,000 years ago, the downfall of the Ptolemaic dynasty in Egypt, the rise of Genghis Khan’s nomadic hordes  and the fall of the Mayan civilisation in the Americas.

There have been arguments that contemporary conflict can be matched to climate stress in many parts of the modern world.

“The French Revolution is one example. In the two years prior to the French Revolution poor weather led to a series of bad harvests, which alongside other factors helped cause the price of bread to skyrocket, especially in Paris,” said Professor Schneider.

“The question is not ‘Did climate have an impact?’ It’s ‘How, why and how important was climate alongside the other factors?’” − Climate News Network

Arctic’s oldest ice shows signs of change

There’s change afoot even where scientists least expect it, among the Arctic’s oldest ice. If it goes, so does the wildlife.

LONDON, 21 November, 2019 – Stretches of the Arctic’s oldest ice, and its thickest – the last refuge ice that should survive even when the Arctic Ocean technically becomes ice-free in summers later this century – are now disappearing twice as fast as the rest of the Arctic icecap.

Although the north polar ice is vulnerable to global heating, and has been thinning and retreating at an accelerating rate for the last 40 summers, researchers have always expected some winter ice to survive: they define an “ice-free Arctic Ocean” as one with less than 1 million square kilometres of surviving ice pack.

But this supposedly ancient remnant of the polar winters, concentrated north of Greenland and the Canadian polar archipelago, is showing signs of change.

Researchers do not explicitly finger climate change driven by ever-greater human use of fossil fuels as the direct agent of this change: this is an area of polar ice difficult to observe and explore, is little known, and may always have been subject to change.

“This area will be a refuge where species can survive and hopefully expand their regions once the ice starts returning”

But scientists know why it is important. From submarine algae to polar bears, an entire Arctic ecosystem is dependent on the ice sheet. As the ice disappears, so will the seals, and their predators too.

Conservation-minded governments that want to establish protected areas need to know where protection will work best. “Eventually, the Last Ice Area will be the region that will repopulate the Arctic with wildlife,” said Kent Moore of the University of Toronto in Canada. “This area will be a refuge where species can survive and hopefully expand their regions once the ice starts returning.”

Dr Moore and his colleagues report in the journal Geophysical Research Letters that they used computer models and satellite observation data to build up a picture of what they call “spatiotemporal variability” in their Last Ice Area.

They found two distinct places where ice thickness fluctuated by up to 1.2 metres from year to year. In some patches, the ice was thinning by the decade: a loss of 1.5 metres since the late 1970s.

No monolith

Most north polar ice is youthful: seldom more than four years old. The Last Ice Area is certainly more than five years old, and has been measured at a thickness of four metres. It is not a static region: ice moves with the ocean beneath it.

And even the levels of melting are affected by natural cyclic ocean shifts as well as higher temperatures fuelled by greenhouse gas build-up in the atmosphere.

The race is on to understand the forces at work in what might be – one day – the only surviving ice in the polar summer.

“We can’t treat the Last Ice Area as a monolithic area of ice which is going to last a long time,” said Dr Moore. “There’s actually lots of regional variability.” – Climate News Network

There’s change afoot even where scientists least expect it, among the Arctic’s oldest ice. If it goes, so does the wildlife.

LONDON, 21 November, 2019 – Stretches of the Arctic’s oldest ice, and its thickest – the last refuge ice that should survive even when the Arctic Ocean technically becomes ice-free in summers later this century – are now disappearing twice as fast as the rest of the Arctic icecap.

Although the north polar ice is vulnerable to global heating, and has been thinning and retreating at an accelerating rate for the last 40 summers, researchers have always expected some winter ice to survive: they define an “ice-free Arctic Ocean” as one with less than 1 million square kilometres of surviving ice pack.

But this supposedly ancient remnant of the polar winters, concentrated north of Greenland and the Canadian polar archipelago, is showing signs of change.

Researchers do not explicitly finger climate change driven by ever-greater human use of fossil fuels as the direct agent of this change: this is an area of polar ice difficult to observe and explore, is little known, and may always have been subject to change.

“This area will be a refuge where species can survive and hopefully expand their regions once the ice starts returning”

But scientists know why it is important. From submarine algae to polar bears, an entire Arctic ecosystem is dependent on the ice sheet. As the ice disappears, so will the seals, and their predators too.

Conservation-minded governments that want to establish protected areas need to know where protection will work best. “Eventually, the Last Ice Area will be the region that will repopulate the Arctic with wildlife,” said Kent Moore of the University of Toronto in Canada. “This area will be a refuge where species can survive and hopefully expand their regions once the ice starts returning.”

Dr Moore and his colleagues report in the journal Geophysical Research Letters that they used computer models and satellite observation data to build up a picture of what they call “spatiotemporal variability” in their Last Ice Area.

They found two distinct places where ice thickness fluctuated by up to 1.2 metres from year to year. In some patches, the ice was thinning by the decade: a loss of 1.5 metres since the late 1970s.

No monolith

Most north polar ice is youthful: seldom more than four years old. The Last Ice Area is certainly more than five years old, and has been measured at a thickness of four metres. It is not a static region: ice moves with the ocean beneath it.

And even the levels of melting are affected by natural cyclic ocean shifts as well as higher temperatures fuelled by greenhouse gas build-up in the atmosphere.

The race is on to understand the forces at work in what might be – one day – the only surviving ice in the polar summer.

“We can’t treat the Last Ice Area as a monolithic area of ice which is going to last a long time,” said Dr Moore. “There’s actually lots of regional variability.” – Climate News Network

Forest damage costs far more than thought

Tropical forest damage is bad enough. New thinking suggests it could prove far more ruinous in terms of the climate crisis.

LONDON, 19 November, 2019 – We know already that human activities are causing devastating forest damage. Now a new study shows the loss we face could be much worse than we think.

Here, it says, is how to multiply your country’s contribution to solving the carbon problem sixfold. It’s simple. Do not do anything to your intact tropical forest. Don’t put roads around it, hunt in it, or select prize lumps of timber from it; don’t quarry, mine or plant oil palms in it. Just protect it.

Researchers have calculated that – compared with clearing it – the benefits of benign neglect are 626% higher than all previous accounting. And that’s just the calculation for the first 13 years of this century. Instead of an estimated 340 million tonnes of carbon spilled into the atmosphere, the figure from clearing forests now becomes 2.12 billion tonnes.

And a second team of scientists has identified a way to keep those conservation promises and carefully protect those forests and other habitats already declared protected areas. That too is simple: be a rich country in the northern hemisphere. That way, you might be able to count on the resources to back up the good intentions.

The role of the world’s forests in what climate scientists like to call the carbon budget – the annual traffic of carbon dioxide into the atmosphere from all sources and back again into green plants, rocks and oceans – is a complicated one, and the play between human intrusion and the natural habitats makes it even more of a headache.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying”

Broadly, of the world’s tropical rainforests, only around 20% can be considered now intact. This by 2013 was an area of around 5.49 million square kilometres – an area much bigger than the European Union, yet smaller than Australia – but this green space concentrates 40% of all the carbon found in the trunks, branches and leaves of the world’s surviving natural tropical foliage, and gulps down carbon from the atmosphere at the rate of a billion tonnes a year.

So tropical forests play a vital role in worldwide national pledges, made in Paris in 2015, to contain global heating to “well below” a global average increase of 2°C by the end of the century. The planet has already warmed by 1°C in the last century, thanks to profligate human use of fossil fuels and the destruction of the planet’s natural forests.

And between 2000 and 2013, human growth and demand has reduced the area of intact forests by more than 7%. What the latest research has done is try to make a realistic estimate of the enduring cost to the planet.

“Usually, only ‘pulse’ emissions are considered – these are emissions released the instant intact forest is destroyed,” said Sean Maxwell of the University of Queensland in Australia.

“Our analysis considers all impacts, such as the effects of selective logging, foregone carbon sequestration, expanding effects on the edges of forests, and species extinction.

Better funding needed

“We were shocked to see that when considering all of the available factors, the net carbon impact was more than six times worse for the climate.”

Forest destruction has accelerated this century. Dr Maxwell and his co-authors report in the journal Science Advances that they considered all the carbon that was not sequestered by forest degradation between 2000 and 2013, along with the impacts of road clearance, mining, selective logging and overhunting of the animals that naturally disperse forest seeds, to arrive at their new estimate of the price in carbon emissions to be paid for destruction.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying,” said James Watson, of the University of Queensland, and a co-author.

“Humanity needs to better fund the conservation of intact forests, especially now we’ve shown their larger than realised role in stabilising the climate.”

And in the same week, British scientists confirmed that – around the globe – protected areas are not reducing human pressure on the natural wilderness. They report in the Proceedings of the National Academy of Sciences that they looked at satellite evidence, together with census and crop data, to see what humans had so far done to 12,315 protected areas between 1995 and 2010.

Threat of protection

In every global region, there had been evidence of human encroachment. Overall, northern hemisphere nations and Australia had been more effective at keeping down human pressure in the areas set aside for conservation, compared to advances into unprotected areas.

But in those parts of the world where biodiversity is richest – South America, Southeast Asia and Africa south of the Sahara – human damage was significantly higher in protected grasslands, forests, mangrove swamps and other habitats than it was in unprotected areas. In parts of South America, clearance for agriculture in protected regions was 10% higher than in unprotected zones.

“Our study shows that agriculture is the driving force behind threats to protected areas, particularly in the tropics,” said Jonas Geldmann of the University of Cambridge, who led the study.

“Our data does not reveal the causes, but we suspect factors that play a major role include rapid population growth, lack of funding, and higher levels of corruption. Additionally, most unprotected land suitable for agriculture is already farmed,” he said.

“We think that what we are seeing are the effects of establishing protected areas on paper, but not following through with the right funding, management and community engagement that is needed.” – Climate News Network

Tropical forest damage is bad enough. New thinking suggests it could prove far more ruinous in terms of the climate crisis.

LONDON, 19 November, 2019 – We know already that human activities are causing devastating forest damage. Now a new study shows the loss we face could be much worse than we think.

Here, it says, is how to multiply your country’s contribution to solving the carbon problem sixfold. It’s simple. Do not do anything to your intact tropical forest. Don’t put roads around it, hunt in it, or select prize lumps of timber from it; don’t quarry, mine or plant oil palms in it. Just protect it.

Researchers have calculated that – compared with clearing it – the benefits of benign neglect are 626% higher than all previous accounting. And that’s just the calculation for the first 13 years of this century. Instead of an estimated 340 million tonnes of carbon spilled into the atmosphere, the figure from clearing forests now becomes 2.12 billion tonnes.

And a second team of scientists has identified a way to keep those conservation promises and carefully protect those forests and other habitats already declared protected areas. That too is simple: be a rich country in the northern hemisphere. That way, you might be able to count on the resources to back up the good intentions.

The role of the world’s forests in what climate scientists like to call the carbon budget – the annual traffic of carbon dioxide into the atmosphere from all sources and back again into green plants, rocks and oceans – is a complicated one, and the play between human intrusion and the natural habitats makes it even more of a headache.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying”

Broadly, of the world’s tropical rainforests, only around 20% can be considered now intact. This by 2013 was an area of around 5.49 million square kilometres – an area much bigger than the European Union, yet smaller than Australia – but this green space concentrates 40% of all the carbon found in the trunks, branches and leaves of the world’s surviving natural tropical foliage, and gulps down carbon from the atmosphere at the rate of a billion tonnes a year.

So tropical forests play a vital role in worldwide national pledges, made in Paris in 2015, to contain global heating to “well below” a global average increase of 2°C by the end of the century. The planet has already warmed by 1°C in the last century, thanks to profligate human use of fossil fuels and the destruction of the planet’s natural forests.

And between 2000 and 2013, human growth and demand has reduced the area of intact forests by more than 7%. What the latest research has done is try to make a realistic estimate of the enduring cost to the planet.

“Usually, only ‘pulse’ emissions are considered – these are emissions released the instant intact forest is destroyed,” said Sean Maxwell of the University of Queensland in Australia.

“Our analysis considers all impacts, such as the effects of selective logging, foregone carbon sequestration, expanding effects on the edges of forests, and species extinction.

Better funding needed

“We were shocked to see that when considering all of the available factors, the net carbon impact was more than six times worse for the climate.”

Forest destruction has accelerated this century. Dr Maxwell and his co-authors report in the journal Science Advances that they considered all the carbon that was not sequestered by forest degradation between 2000 and 2013, along with the impacts of road clearance, mining, selective logging and overhunting of the animals that naturally disperse forest seeds, to arrive at their new estimate of the price in carbon emissions to be paid for destruction.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying,” said James Watson, of the University of Queensland, and a co-author.

“Humanity needs to better fund the conservation of intact forests, especially now we’ve shown their larger than realised role in stabilising the climate.”

And in the same week, British scientists confirmed that – around the globe – protected areas are not reducing human pressure on the natural wilderness. They report in the Proceedings of the National Academy of Sciences that they looked at satellite evidence, together with census and crop data, to see what humans had so far done to 12,315 protected areas between 1995 and 2010.

Threat of protection

In every global region, there had been evidence of human encroachment. Overall, northern hemisphere nations and Australia had been more effective at keeping down human pressure in the areas set aside for conservation, compared to advances into unprotected areas.

But in those parts of the world where biodiversity is richest – South America, Southeast Asia and Africa south of the Sahara – human damage was significantly higher in protected grasslands, forests, mangrove swamps and other habitats than it was in unprotected areas. In parts of South America, clearance for agriculture in protected regions was 10% higher than in unprotected zones.

“Our study shows that agriculture is the driving force behind threats to protected areas, particularly in the tropics,” said Jonas Geldmann of the University of Cambridge, who led the study.

“Our data does not reveal the causes, but we suspect factors that play a major role include rapid population growth, lack of funding, and higher levels of corruption. Additionally, most unprotected land suitable for agriculture is already farmed,” he said.

“We think that what we are seeing are the effects of establishing protected areas on paper, but not following through with the right funding, management and community engagement that is needed.” – Climate News Network

New-borns face multiple climate health risks

Multiple climate health risks threaten today’s babies. They may grow up hungrier, more diseased and facing more pollution and danger. But there’s hope.

LONDON,15 November, 2018 – Today’s world is not a welcoming place for babies, who – across the globe – face multiple climate health risks.

On present trends, any new-born today is likely to live in a world 4°C hotter than it has been all through human history.

On present trends, climate change will affect infant health by reducing the yield and nutritional value of maize, wheat, soybean and rice, to stunt growth and weaken immune systems.

Older children will be at increasing risk from climate-related diseases such as cholera and dengue fever, and adolescents will be at increasing risk from toxic air, driven by fossil fuel combustion and ever-higher temperatures.

And then throughout their lives, today’s newly-borns will be at hazard from increasingly severe floods, prolonged droughts and wildfires.

“This year, the accelerating impacts of climate change have become clearer than ever,” said Hugh Montgomery, who directs the Institute for Human Health and Performance at University College London.

“The world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation”

“The highest recorded temperatures in Western Europe and wildfires in Siberia, Queensland and California triggered asthma, respiratory infections and heat stroke. Sea levels are now rising at an ever-concerning rate. Our children recognise this climate emergency and demand action to protect them. We must listen, and respond.”

Professor Montgomery is a co-chair of the Lancet Countdown, which has assessed research from 120 experts in 35 global institutions on health damage from climate change and the lifelong health consequences of rising temperatures.

The Lancet is one of the world’s oldest and most distinguished medical journals and has already published three important studies of the  challenge of climate change in terms of nutrition, diet and the effect of extreme temperatures on human health.

The latest study compares a world in which governments everywhere fulfil a promise made in Paris in 2015 and contain global heating by the century’s end to a rise of “well below” 2°C, or follow the notorious “business as usual” scenario in which developing economies burn ever more fossil fuels and ratchet up global temperatures to potentially catastrophic levels.

The new study looks at the available indicators and warns that climate change driven by global heating is already damaging the health of the world’s children and will shape the wellbeing of an entire generation unless the Paris targets are met.

Targets receding

Right now, average planetary temperatures have already risen by 1°C in the last century and the latest analysis of national plans to reduce fossil fuel use suggest that the Paris targets will not be met.

And climate change has begun to take its toll. In the last 30 years the average global yield potential of maize has shrunk by 4%, of winter wheat by 6%, of soybean by 3% and rice by 4%: this alone makes more infants vulnerable to malnutrition and rising food prices.

Eight of the ten hottest years ever recorded have happened in the last decade, and this heating has been driven by fossil fuel use: every second the world burns 171,000 kg of coal, 186,000 litres of oil and 11,600,000 litres of gas.

Nine of the 10 most suitable years for the transmission of dengue fever – carried by the mosquito – have happened since the turn of the century. Last year was the second most suitable year on record for the spread of the bacteria that cause diarrhoeal disease and wound infection.

In 2016, deaths from outdoor air pollution were set at around 2.9 million; of these, 440,000 were from coal alone. The share of global energy from coal actually rose by 1.7% between 2016 and 2018.

Better future possible

And the journal also records a rise in extreme weather events: out of 196 countries, 152 experienced an increase in citizens exposed to wildfires since the first four years of the century; and a record 220 million more citizens over the age of 65 were exposed to heatwaves in 2018, compared with 2000. This is an increase of 63m just on 2017.

In 2018, compared with 2000, heat extremes cost the world’s economies a potential 45 billion hours of additional work: in the hottest month, outdoor agricultural workers and construction teams lost as much as 20% of potential daylight working hours.

But, the Lancet Countdown experts say, if the world did fulfil its Paris Agreement promise, then any child born today would grow up on a planet that had reached net zero carbon emissions by their 31st birthday: there would be a healthier future for coming generations.

“The climate crisis is one of the greatest threats to the health of humanity today, but the world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation,” said Richard Horton, editor-in-chief of the Lancet.

“With the full force of the Paris Agreement due to be implemented, we can’t afford this level of disengagement. The clinical, global health and research community needs to come together now and challenge our leaders.” – Climate News Network

Multiple climate health risks threaten today’s babies. They may grow up hungrier, more diseased and facing more pollution and danger. But there’s hope.

LONDON,15 November, 2018 – Today’s world is not a welcoming place for babies, who – across the globe – face multiple climate health risks.

On present trends, any new-born today is likely to live in a world 4°C hotter than it has been all through human history.

On present trends, climate change will affect infant health by reducing the yield and nutritional value of maize, wheat, soybean and rice, to stunt growth and weaken immune systems.

Older children will be at increasing risk from climate-related diseases such as cholera and dengue fever, and adolescents will be at increasing risk from toxic air, driven by fossil fuel combustion and ever-higher temperatures.

And then throughout their lives, today’s newly-borns will be at hazard from increasingly severe floods, prolonged droughts and wildfires.

“This year, the accelerating impacts of climate change have become clearer than ever,” said Hugh Montgomery, who directs the Institute for Human Health and Performance at University College London.

“The world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation”

“The highest recorded temperatures in Western Europe and wildfires in Siberia, Queensland and California triggered asthma, respiratory infections and heat stroke. Sea levels are now rising at an ever-concerning rate. Our children recognise this climate emergency and demand action to protect them. We must listen, and respond.”

Professor Montgomery is a co-chair of the Lancet Countdown, which has assessed research from 120 experts in 35 global institutions on health damage from climate change and the lifelong health consequences of rising temperatures.

The Lancet is one of the world’s oldest and most distinguished medical journals and has already published three important studies of the  challenge of climate change in terms of nutrition, diet and the effect of extreme temperatures on human health.

The latest study compares a world in which governments everywhere fulfil a promise made in Paris in 2015 and contain global heating by the century’s end to a rise of “well below” 2°C, or follow the notorious “business as usual” scenario in which developing economies burn ever more fossil fuels and ratchet up global temperatures to potentially catastrophic levels.

The new study looks at the available indicators and warns that climate change driven by global heating is already damaging the health of the world’s children and will shape the wellbeing of an entire generation unless the Paris targets are met.

Targets receding

Right now, average planetary temperatures have already risen by 1°C in the last century and the latest analysis of national plans to reduce fossil fuel use suggest that the Paris targets will not be met.

And climate change has begun to take its toll. In the last 30 years the average global yield potential of maize has shrunk by 4%, of winter wheat by 6%, of soybean by 3% and rice by 4%: this alone makes more infants vulnerable to malnutrition and rising food prices.

Eight of the ten hottest years ever recorded have happened in the last decade, and this heating has been driven by fossil fuel use: every second the world burns 171,000 kg of coal, 186,000 litres of oil and 11,600,000 litres of gas.

Nine of the 10 most suitable years for the transmission of dengue fever – carried by the mosquito – have happened since the turn of the century. Last year was the second most suitable year on record for the spread of the bacteria that cause diarrhoeal disease and wound infection.

In 2016, deaths from outdoor air pollution were set at around 2.9 million; of these, 440,000 were from coal alone. The share of global energy from coal actually rose by 1.7% between 2016 and 2018.

Better future possible

And the journal also records a rise in extreme weather events: out of 196 countries, 152 experienced an increase in citizens exposed to wildfires since the first four years of the century; and a record 220 million more citizens over the age of 65 were exposed to heatwaves in 2018, compared with 2000. This is an increase of 63m just on 2017.

In 2018, compared with 2000, heat extremes cost the world’s economies a potential 45 billion hours of additional work: in the hottest month, outdoor agricultural workers and construction teams lost as much as 20% of potential daylight working hours.

But, the Lancet Countdown experts say, if the world did fulfil its Paris Agreement promise, then any child born today would grow up on a planet that had reached net zero carbon emissions by their 31st birthday: there would be a healthier future for coming generations.

“The climate crisis is one of the greatest threats to the health of humanity today, but the world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation,” said Richard Horton, editor-in-chief of the Lancet.

“With the full force of the Paris Agreement due to be implemented, we can’t afford this level of disengagement. The clinical, global health and research community needs to come together now and challenge our leaders.” – Climate News Network