Author: Tim Radford

About Tim Radford

Tim Radford, a founding editor of Climate News Network, worked for The Guardian for 32 years, for most of that time as science editor. He has been covering climate change since 1988.

Extreme heatwaves pose spreading threat

heatwaves

Rising temperatures mean that heatwaves will become hotter, more frequent, last longer and will cover much wider areas.

LONDON, October 14, 2019 – Scientists in the US have added a new dimension to the growing hazard of extreme heat. As global average temperatures rise, so do the frequency, duration and intensity of heatwaves.

And that’s not the only factor to worry about. By mid-century, the area straddled by those bands of extreme heat could increase by 50% – if nations attempt seriously to contain climate change.

But if humans carry on burning fossil fuels in ever-greater quantities and felling more and more reaches of tropical forests, the most dangerous and extreme heatwaves in future could cover areas 80% bigger than at present.

“As the physical size of these regions increases, more people will be exposed to heat stress,” warns Bradfield Lyon, associate research professor in the Climate Change Institute and School of Earth and Climate at the University of Maine, US.

“Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid”

Lyon, lead author of a new study in the Environmental Research Letters journal, says: “Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid as more people and businesses turn on air conditioning as a response.”

Climate scientists have warned repeatedly that higher average temperatures must mean ever hotter extremes.

By the century’s end, under some climate projections, three out of four people on the planet could be exposed to potentially dangerous heatwaves.

Double punch

In some regions, the double punch of high heat and very high humidity could make conditions intolerable, and scientists in the US recently counted 27 ways in which high temperatures could claim lives.

In principle, extremes of heat are already a threat not just to public health, but also to national economies. Researchers in Australia have already started to count the cost.

Until now, the interest has focused on the highest temperatures by day and by night, the number of days of sustained heat, and the frequency with which extremes might return.

But the new dimension – the increased area oppressed by extreme heat – presents unexpected challenges for city authorities and energy utilities.

“If you have a large contiguous heatwave over a highly populated area, it would be harder for that area to meet peak electric demand than it would be for several areas with smaller heatwaves that, when combined, are the same size,” says one of the report’s other authors, Anthony Barnston, chief forecaster at Columbia University’s International Research Institute for Climate and Society. – Climate News Network

Rising temperatures mean that heatwaves will become hotter, more frequent, last longer and will cover much wider areas.

LONDON, October 14, 2019 – Scientists in the US have added a new dimension to the growing hazard of extreme heat. As global average temperatures rise, so do the frequency, duration and intensity of heatwaves.

And that’s not the only factor to worry about. By mid-century, the area straddled by those bands of extreme heat could increase by 50% – if nations attempt seriously to contain climate change.

But if humans carry on burning fossil fuels in ever-greater quantities and felling more and more reaches of tropical forests, the most dangerous and extreme heatwaves in future could cover areas 80% bigger than at present.

“As the physical size of these regions increases, more people will be exposed to heat stress,” warns Bradfield Lyon, associate research professor in the Climate Change Institute and School of Earth and Climate at the University of Maine, US.

“Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid”

Lyon, lead author of a new study in the Environmental Research Letters journal, says: “Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid as more people and businesses turn on air conditioning as a response.”

Climate scientists have warned repeatedly that higher average temperatures must mean ever hotter extremes.

By the century’s end, under some climate projections, three out of four people on the planet could be exposed to potentially dangerous heatwaves.

Double punch

In some regions, the double punch of high heat and very high humidity could make conditions intolerable, and scientists in the US recently counted 27 ways in which high temperatures could claim lives.

In principle, extremes of heat are already a threat not just to public health, but also to national economies. Researchers in Australia have already started to count the cost.

Until now, the interest has focused on the highest temperatures by day and by night, the number of days of sustained heat, and the frequency with which extremes might return.

But the new dimension – the increased area oppressed by extreme heat – presents unexpected challenges for city authorities and energy utilities.

“If you have a large contiguous heatwave over a highly populated area, it would be harder for that area to meet peak electric demand than it would be for several areas with smaller heatwaves that, when combined, are the same size,” says one of the report’s other authors, Anthony Barnston, chief forecaster at Columbia University’s International Research Institute for Climate and Society. – Climate News Network

Hurricanes wreak greater havoc as temperatures soar

hurricanes

Devastation caused by the most powerful hurricanes has increased by up to twentyfold, according to a newly-identified pattern in natural disasters.

LONDON, 11 October, 2019 – The worst things that can happen could be about to get even worse. While the economic cost of the average flood, drought, windstorm, landslide or forest fire has crept up over the decades, the price exacted by the most extreme events – such as hurricanes Katrina in New Orleans in 2005 and Dorian over the Bahamas this year – has increased drastically.

Weather-related disasters have been steadily increasing for decades, driven by rising atmospheric temperatures as a consequence of profligate use of fossil fuels and other human actions.

Although better information, advance warning systems and community preparedness have in many ways reduced or contained the loss of life, the economic costs have risen, on average.

The average count is not the only one that matters, though. According to European and US researchers, the top 5% of all disasters are proving radically more expensive.

Extreme disasters

“When we get to the top 1%, damages increased approximately twentyfold between 1970 and 2010,” says Francesa Chiaromonte, a statistician at Pennsylvania State University in the US.

“This may be due to the fact that extreme disasters are now hitting temperate areas, as well as the fact that these areas are less prepared to deal with extreme disasters compared to tropical regions.”

The most powerful hurricanes, which would have caused $500 million in losses in 1970, are now costing $10 billion.

Chiaromonte and colleagues from the Sant’Anna School of Advanced Studies in Pisa, Italy, report in the Proceedings of the National Academy of Sciences that they deployed statistical wizardry to tease out the unexpected patterns from a mountain of data on decades of natural disaster.

The data was compiled by international agencies and governments, and also by insurance giants that last year paid out $80 billion in insured losses. Total disaster damage was perhaps twice that figure.

Human numbers have multiplied and economies have grown, so disaster damage will anyway have become more costly. But one of the earliest predictions from climate research was that, in a hotter world, the extremes of heat, drought, rainfall, tornado, wildfire, hurricane and tropical cyclone would become more intense, or more frequent, or both – with devastating consequences.

“We observed an increasing polarisation between poor and rich areas of the world for casualties caused by storms”

Concerted international and national action, orchestrated over the decades by what is now called the UN Office for Disaster Risk Reduction, has softened some of the impact, and has reduced loss of life in many cases.

Extreme droughts, the report’s authors say, have become less fatal. “So have extreme floods, but only in rich countries,” the report points out. “We observed an increasing polarisation between poor and rich areas of the world also for casualties caused by storms.

“Finally, and concerningly, extreme temperature events have become more deadly in poor and rich countries alike.”

In a deadpan conclusion, the authors point out that if the increase in the frequency and strength of natural disasters is in part due to climate change, then “mitigation is a logical instrument to reduce trends in damages”. – Climate News Network

Devastation caused by the most powerful hurricanes has increased by up to twentyfold, according to a newly-identified pattern in natural disasters.

LONDON, 11 October, 2019 – The worst things that can happen could be about to get even worse. While the economic cost of the average flood, drought, windstorm, landslide or forest fire has crept up over the decades, the price exacted by the most extreme events – such as hurricanes Katrina in New Orleans in 2005 and Dorian over the Bahamas this year – has increased drastically.

Weather-related disasters have been steadily increasing for decades, driven by rising atmospheric temperatures as a consequence of profligate use of fossil fuels and other human actions.

Although better information, advance warning systems and community preparedness have in many ways reduced or contained the loss of life, the economic costs have risen, on average.

The average count is not the only one that matters, though. According to European and US researchers, the top 5% of all disasters are proving radically more expensive.

Extreme disasters

“When we get to the top 1%, damages increased approximately twentyfold between 1970 and 2010,” says Francesa Chiaromonte, a statistician at Pennsylvania State University in the US.

“This may be due to the fact that extreme disasters are now hitting temperate areas, as well as the fact that these areas are less prepared to deal with extreme disasters compared to tropical regions.”

The most powerful hurricanes, which would have caused $500 million in losses in 1970, are now costing $10 billion.

Chiaromonte and colleagues from the Sant’Anna School of Advanced Studies in Pisa, Italy, report in the Proceedings of the National Academy of Sciences that they deployed statistical wizardry to tease out the unexpected patterns from a mountain of data on decades of natural disaster.

The data was compiled by international agencies and governments, and also by insurance giants that last year paid out $80 billion in insured losses. Total disaster damage was perhaps twice that figure.

Human numbers have multiplied and economies have grown, so disaster damage will anyway have become more costly. But one of the earliest predictions from climate research was that, in a hotter world, the extremes of heat, drought, rainfall, tornado, wildfire, hurricane and tropical cyclone would become more intense, or more frequent, or both – with devastating consequences.

“We observed an increasing polarisation between poor and rich areas of the world for casualties caused by storms”

Concerted international and national action, orchestrated over the decades by what is now called the UN Office for Disaster Risk Reduction, has softened some of the impact, and has reduced loss of life in many cases.

Extreme droughts, the report’s authors say, have become less fatal. “So have extreme floods, but only in rich countries,” the report points out. “We observed an increasing polarisation between poor and rich areas of the world also for casualties caused by storms.

“Finally, and concerningly, extreme temperature events have become more deadly in poor and rich countries alike.”

In a deadpan conclusion, the authors point out that if the increase in the frequency and strength of natural disasters is in part due to climate change, then “mitigation is a logical instrument to reduce trends in damages”. – Climate News Network

Water stress rises as more wells run dry

Soon, communities and even nations could be drawing water faster than the skies can replenish it. As the wells run dry, so will the rivers.

LONDON, 9 October, 2019 − Within three decades, almost 80% of the lands that depend on groundwater will start to reach their natural irrigation limits as the wells run dry.

In a world of increasing extremes of drought and rainfall, driven by rising global temperatures and potentially catastrophic climate change, the water will start to run out.

It is happening already: in 20% of those water catchments in which farmers and cities rely on pumped groundwater, the flow of streams and rivers has fallen and the surface flow has dwindled, changed direction or stopped altogether.

“The effects can be seen already in the Midwest of the United States and in the Indus Valley project between Afghanistan and Pakistan,” said Inge de Graaf, a hydrologist at the University of Freiburg.

Groundwater – the billions of tonnes locked in the soils and bedrock, held in vast chalk and limestone aquifers and silently flowing through cracks in other sediments – is the terrestrial planet’s biggest single store of the liquid that sustains all life.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached for regions in southern and central Europe as well as in North African countries”

Groundwater supplies the inland streams and rivers, and the flow from tributaries is an indicator of the levels of water already in the ground.

For thousands of years, communities have drawn water from wells in the dry season and relied on wet season rainfall to replenish it. But as human numbers have grown, as agriculture has commandeered more and more of the land, and as cities have burgeoned, demand has in some places begun to outstrip supply. The fear is that rising average temperatures will intensify the problem.

Dr de Graaf and colleagues from the Netherlands and Canada report in the journal Nature that they used computer simulations to establish the likely pattern of withdrawal and flow. The news is not good.

“We estimate that, by 2050, environmental flow limits will be reached for approximately 42% to 79% of the watershed in which there is groundwater pumping worldwide, and this will generally occur before substantial losses in groundwater storage are experienced,” they write.

That drylands – home to billions of people – will experience water stress with rising temperatures is not news. Climate scientists have been issuing warnings for years.

Ground level drops

And demand for groundwater has increased with the growth of the population and the worldwide growth of the cities: some US cities are at risk of coastal flooding just because so much groundwater has been extracted that the ground itself has been lowered.

The important thing about the latest research is that it sets – albeit broadly – a timetable and a map of where the water stress is likely to be experienced first.

In a hotter world, plants and animals will demand more water. But in a hotter world, the probability of extremes of drought increases.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached also for regions in southern and central Europe – such as Portugal, Spain and Italy – as well as in North African countries,” Dr de Graaf warned.

“Climate change may even accelerate this process, as we expect less precipitation, which will further increase the extraction of groundwater and cause dry areas to dry out completely.” − Climate News Network

Soon, communities and even nations could be drawing water faster than the skies can replenish it. As the wells run dry, so will the rivers.

LONDON, 9 October, 2019 − Within three decades, almost 80% of the lands that depend on groundwater will start to reach their natural irrigation limits as the wells run dry.

In a world of increasing extremes of drought and rainfall, driven by rising global temperatures and potentially catastrophic climate change, the water will start to run out.

It is happening already: in 20% of those water catchments in which farmers and cities rely on pumped groundwater, the flow of streams and rivers has fallen and the surface flow has dwindled, changed direction or stopped altogether.

“The effects can be seen already in the Midwest of the United States and in the Indus Valley project between Afghanistan and Pakistan,” said Inge de Graaf, a hydrologist at the University of Freiburg.

Groundwater – the billions of tonnes locked in the soils and bedrock, held in vast chalk and limestone aquifers and silently flowing through cracks in other sediments – is the terrestrial planet’s biggest single store of the liquid that sustains all life.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached for regions in southern and central Europe as well as in North African countries”

Groundwater supplies the inland streams and rivers, and the flow from tributaries is an indicator of the levels of water already in the ground.

For thousands of years, communities have drawn water from wells in the dry season and relied on wet season rainfall to replenish it. But as human numbers have grown, as agriculture has commandeered more and more of the land, and as cities have burgeoned, demand has in some places begun to outstrip supply. The fear is that rising average temperatures will intensify the problem.

Dr de Graaf and colleagues from the Netherlands and Canada report in the journal Nature that they used computer simulations to establish the likely pattern of withdrawal and flow. The news is not good.

“We estimate that, by 2050, environmental flow limits will be reached for approximately 42% to 79% of the watershed in which there is groundwater pumping worldwide, and this will generally occur before substantial losses in groundwater storage are experienced,” they write.

That drylands – home to billions of people – will experience water stress with rising temperatures is not news. Climate scientists have been issuing warnings for years.

Ground level drops

And demand for groundwater has increased with the growth of the population and the worldwide growth of the cities: some US cities are at risk of coastal flooding just because so much groundwater has been extracted that the ground itself has been lowered.

The important thing about the latest research is that it sets – albeit broadly – a timetable and a map of where the water stress is likely to be experienced first.

In a hotter world, plants and animals will demand more water. But in a hotter world, the probability of extremes of drought increases.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached also for regions in southern and central Europe – such as Portugal, Spain and Italy – as well as in North African countries,” Dr de Graaf warned.

“Climate change may even accelerate this process, as we expect less precipitation, which will further increase the extraction of groundwater and cause dry areas to dry out completely.” − Climate News Network

Science counts humankind’s carbon output

We leave the planet’s volcanos far behind on greenhouse gas emissions: humankind’s carbon output can exceed theirs by 40 times – to our cost.

LONDON, 7 October, 2019 – Scientists now know how much carbon dioxide is pumped into the atmosphere and oceans by volcanos and volcanic fissures annually – perhaps as much as 360 million tonnes – and another crucial statistic, too: humankind’s carbon output.

They know that, by burning fossil fuels and clearing forests and building cities, we now emit much more than that: between 40 and 100 times more.

They can also now tell you how much carbon is in circulation above the Earth’s surface, in the oceans, on land, and in the atmosphere: the answer is 43,500 billion tonnes. That is about two-tenths of 1% of all the carbon locked for the moment in the Earth’s crust, mantle and core.

The research delivers no answers and no new directions for climate science, and in particular for governments and international agencies concerned about global heating and the climate emergency.

This is the ultimate in basic, bedrock, accounting: to understand the carbon cycle – the continuous traffic of carbon between atmosphere, ocean, rocks and living things – researchers need to have a better idea of the scale of what they like to call the carbon budget.

“To secure a sustainable future, it is of utmost importance that we understand Earth’s entire carbon cycle”

And after a decade of research, a partnership of more than 500 scientists from 39 countries working on more than 100 separate projects has delivered a set of down-to-earth answers in a new issue of the journal Elements.

The total estimate – it can only be an estimate – for the entire stock of carbon at the surface, in the crust and in the Earth’s mantle is around 1.85 billion billion tonnes.

And the observations of volcanic discharges of carbon are vital to understanding the cycle: this more or less steady renewal from deep below the surface is what has made life’s evolution from microbe to monkey puzzle-tree, from bacterium to Bactrian camel, possible over the last billion years.

Carbon from the atmosphere is absorbed by forests and sea meadows and buried, sometimes as shell and bone and limestone, sometimes as coal and oil and methane gas, and the carbon lost to the atmosphere is steadily replenished by deep hot sources from the Earth’s crust.

The study also highlights the nature of the climate emergency: by mining, drilling or quarrying for fossil fuels with which to drive chain saws through forests and bake limestone to make cement, humans are now returning ancient deposits of fossil carbon to the atmosphere at an overwhelming rate.

Doubling carbon levels

For most of human history, human ancestors, like all other life forms, evolved in a low-carbon atmosphere. In the past 60 years, humans have begun to double the normal levels of atmospheric carbon dioxide, a potent and enduring greenhouse gas.

And one pay-off of this increasingly urgent interest in the carbon cycle is that the researchers in the Deep Carbon Observatory partnership have added to fundamental knowledge and established what might be the limits of the knowable. They also have a better idea of carbon’s natural cycle.

“Carbon, the basis of all life and the energy source vital to humanity, moves through this planet from its mantle to the atmosphere. To secure a sustainable future, it is of utmost importance that we understand Earth’s entire carbon cycle,” said Marie Edmonds of the University of Cambridge, UK, one of the partnership.

“Key to unravelling the planet’s natural carbon cycle is quantifying how much carbon there is and where, how much moves – the flux – and how quickly, from Deep Earth reservoirs to the surface and back again.”

The Observatory recently identified the huge volume of subterranean life far below the planet’s surface. But the details of the carbon traffic in atmosphere, soils and waters are still somewhat muddy.

Only a start

The issue is vital to planning for what should be the accelerating shift from fossil fuels to solar and wind power, and researchers have been looking for new ways to assess vegetation uptake, the role of microbes in the world’s soils and the play between carbon and the world’s rivers.

The same study throws light on the periodic role of volcanic and magma discharges and other difficult-to-predict events in disrupting life on Earth. At least four times in the past 500 million years enormous discharges of carbon have changed climates and triggered mass extinctions.

And a giant meteor impact 66 million years ago is thought to have released up to 1400 billion tons of carbon dioxide, rapidly warmed the planet and helped in the mass extinction of plants and animals, including the dinosaurs.

The research continues: scientists will meet soon in Washington to start discussing the next decade of work.

“While we celebrate progress, we underline that deep Earth remains a highly unpredictable scientific frontier,” said Tobias Fischer of the University of New Mexico, another of the authors. “We have only truly started to dent current boundaries of our knowledge.” – Climate News Network

We leave the planet’s volcanos far behind on greenhouse gas emissions: humankind’s carbon output can exceed theirs by 40 times – to our cost.

LONDON, 7 October, 2019 – Scientists now know how much carbon dioxide is pumped into the atmosphere and oceans by volcanos and volcanic fissures annually – perhaps as much as 360 million tonnes – and another crucial statistic, too: humankind’s carbon output.

They know that, by burning fossil fuels and clearing forests and building cities, we now emit much more than that: between 40 and 100 times more.

They can also now tell you how much carbon is in circulation above the Earth’s surface, in the oceans, on land, and in the atmosphere: the answer is 43,500 billion tonnes. That is about two-tenths of 1% of all the carbon locked for the moment in the Earth’s crust, mantle and core.

The research delivers no answers and no new directions for climate science, and in particular for governments and international agencies concerned about global heating and the climate emergency.

This is the ultimate in basic, bedrock, accounting: to understand the carbon cycle – the continuous traffic of carbon between atmosphere, ocean, rocks and living things – researchers need to have a better idea of the scale of what they like to call the carbon budget.

“To secure a sustainable future, it is of utmost importance that we understand Earth’s entire carbon cycle”

And after a decade of research, a partnership of more than 500 scientists from 39 countries working on more than 100 separate projects has delivered a set of down-to-earth answers in a new issue of the journal Elements.

The total estimate – it can only be an estimate – for the entire stock of carbon at the surface, in the crust and in the Earth’s mantle is around 1.85 billion billion tonnes.

And the observations of volcanic discharges of carbon are vital to understanding the cycle: this more or less steady renewal from deep below the surface is what has made life’s evolution from microbe to monkey puzzle-tree, from bacterium to Bactrian camel, possible over the last billion years.

Carbon from the atmosphere is absorbed by forests and sea meadows and buried, sometimes as shell and bone and limestone, sometimes as coal and oil and methane gas, and the carbon lost to the atmosphere is steadily replenished by deep hot sources from the Earth’s crust.

The study also highlights the nature of the climate emergency: by mining, drilling or quarrying for fossil fuels with which to drive chain saws through forests and bake limestone to make cement, humans are now returning ancient deposits of fossil carbon to the atmosphere at an overwhelming rate.

Doubling carbon levels

For most of human history, human ancestors, like all other life forms, evolved in a low-carbon atmosphere. In the past 60 years, humans have begun to double the normal levels of atmospheric carbon dioxide, a potent and enduring greenhouse gas.

And one pay-off of this increasingly urgent interest in the carbon cycle is that the researchers in the Deep Carbon Observatory partnership have added to fundamental knowledge and established what might be the limits of the knowable. They also have a better idea of carbon’s natural cycle.

“Carbon, the basis of all life and the energy source vital to humanity, moves through this planet from its mantle to the atmosphere. To secure a sustainable future, it is of utmost importance that we understand Earth’s entire carbon cycle,” said Marie Edmonds of the University of Cambridge, UK, one of the partnership.

“Key to unravelling the planet’s natural carbon cycle is quantifying how much carbon there is and where, how much moves – the flux – and how quickly, from Deep Earth reservoirs to the surface and back again.”

The Observatory recently identified the huge volume of subterranean life far below the planet’s surface. But the details of the carbon traffic in atmosphere, soils and waters are still somewhat muddy.

Only a start

The issue is vital to planning for what should be the accelerating shift from fossil fuels to solar and wind power, and researchers have been looking for new ways to assess vegetation uptake, the role of microbes in the world’s soils and the play between carbon and the world’s rivers.

The same study throws light on the periodic role of volcanic and magma discharges and other difficult-to-predict events in disrupting life on Earth. At least four times in the past 500 million years enormous discharges of carbon have changed climates and triggered mass extinctions.

And a giant meteor impact 66 million years ago is thought to have released up to 1400 billion tons of carbon dioxide, rapidly warmed the planet and helped in the mass extinction of plants and animals, including the dinosaurs.

The research continues: scientists will meet soon in Washington to start discussing the next decade of work.

“While we celebrate progress, we underline that deep Earth remains a highly unpredictable scientific frontier,” said Tobias Fischer of the University of New Mexico, another of the authors. “We have only truly started to dent current boundaries of our knowledge.” – Climate News Network

Human ancestors lived in a low-carbon world

Carbon dioxide levels are higher now than in all human history, and prehistory too: a low-carbon world nurtured our distant forebears.

LONDON, 4 October, 2019 – For the entire 2.5 million years of the Ice Age epoch called the Pleistocene, it was a low-carbon world. Atmospheric carbon dioxide hovered around 230 parts per million. Not only did Homo sapiens evolve on a low-carbon planet, so did Homo erectus and most other human species now known only from fossil evidence in Europe and Asia.

And this long history of a planet kept cool and stable by low levels of greenhouse gas in the atmosphere continued long after the discovery of fire, the Stone Age, the Bronze Age, the Iron Age, the fall and rise of empires and the Industrial Revolution.

Only in 1965 did carbon dioxide levels pass 320 ppm, after a century of exploitation of fossil fuels that released ancient carbon back into atmospheric circulation.

By 2019, the carbon dioxide concentration in the atmosphere had tipped 410 ppm and is still rising. In less than a century, human action had raised planetary average temperatures by around 1°C. At present rates, this average could reach 3°C by the end of this century.

Researchers have known for a century that humans emerged in a cooler world, but much of the story of the distant past was based on the evidence of fossils and sedimentary rocks. The latest research pushes the detailed atmospheric carbon dioxide accounting back to at least 2.5 million years.

“This current high carbon dioxide experiment is not only an experiment for the climate and the environment – it’s an experiment for us”

Researchers report in the journal Nature Communications that they studied the pattern of carbon isotope readings preserved in the deep yellow soils of China’s loess plateau. What they found confirmed 800,000 years of annual evidence from the ice cores of Antarctica and Greenland – and far beyond that limit.

The wind-blown loess of China dates back to at least 22 million years and each successive layer carries isotope evidence that can be read as testimony to the atmospheric conditions in which the soils were laid down.

The latest find confirms that the normal state of the planet during human evolution was cool, with low levels of atmospheric carbon. Homo erectus was the first known human predecessor to exploit fire, systematically fashion stone hand axes, and to leave Africa for Asia and Europe.

“According to this research, from the first Homo erectus, which is currently dated to 2.1 to 1.8 million years ago, we have lived in a low-carbon environment – concentrations were less than 320 parts per million,” said Yige Zhang, a geoscientist at Texas A&M University in the US, who worked with colleagues in Nanjing, China, and California Institute of Technology.

“So this current high carbon dioxide experiment is not only an experiment for the climate and the environment – it’s an experiment for us, for ourselves.” – Climate News Network

Carbon dioxide levels are higher now than in all human history, and prehistory too: a low-carbon world nurtured our distant forebears.

LONDON, 4 October, 2019 – For the entire 2.5 million years of the Ice Age epoch called the Pleistocene, it was a low-carbon world. Atmospheric carbon dioxide hovered around 230 parts per million. Not only did Homo sapiens evolve on a low-carbon planet, so did Homo erectus and most other human species now known only from fossil evidence in Europe and Asia.

And this long history of a planet kept cool and stable by low levels of greenhouse gas in the atmosphere continued long after the discovery of fire, the Stone Age, the Bronze Age, the Iron Age, the fall and rise of empires and the Industrial Revolution.

Only in 1965 did carbon dioxide levels pass 320 ppm, after a century of exploitation of fossil fuels that released ancient carbon back into atmospheric circulation.

By 2019, the carbon dioxide concentration in the atmosphere had tipped 410 ppm and is still rising. In less than a century, human action had raised planetary average temperatures by around 1°C. At present rates, this average could reach 3°C by the end of this century.

Researchers have known for a century that humans emerged in a cooler world, but much of the story of the distant past was based on the evidence of fossils and sedimentary rocks. The latest research pushes the detailed atmospheric carbon dioxide accounting back to at least 2.5 million years.

“This current high carbon dioxide experiment is not only an experiment for the climate and the environment – it’s an experiment for us”

Researchers report in the journal Nature Communications that they studied the pattern of carbon isotope readings preserved in the deep yellow soils of China’s loess plateau. What they found confirmed 800,000 years of annual evidence from the ice cores of Antarctica and Greenland – and far beyond that limit.

The wind-blown loess of China dates back to at least 22 million years and each successive layer carries isotope evidence that can be read as testimony to the atmospheric conditions in which the soils were laid down.

The latest find confirms that the normal state of the planet during human evolution was cool, with low levels of atmospheric carbon. Homo erectus was the first known human predecessor to exploit fire, systematically fashion stone hand axes, and to leave Africa for Asia and Europe.

“According to this research, from the first Homo erectus, which is currently dated to 2.1 to 1.8 million years ago, we have lived in a low-carbon environment – concentrations were less than 320 parts per million,” said Yige Zhang, a geoscientist at Texas A&M University in the US, who worked with colleagues in Nanjing, China, and California Institute of Technology.

“So this current high carbon dioxide experiment is not only an experiment for the climate and the environment – it’s an experiment for us, for ourselves.” – Climate News Network

Nuclear war could ruin Earth and leave only losers

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

Drought may hit half world’s wheat at once

Wheat yields could be hit by severe drought across half the world at once, driving up prices and making problems for global markets.

LONDON, 2 October, 2019 − The planet’s daily bread could be at risk as the global thermometer creeps up and climates begin to change. New research has warned that almost two thirds of the world’s wheat-growing areas could face “severe, prolonged, and near-simultaneous droughts” by the century’s end.

Right now, 15% of the world’s wheat producing regions are at risk of severe water scarcity at the same time. Even if the 195 nations that agreed in Paris to stop global average temperatures from rising beyond 1.5°C by 2100 keep that promise, the chance of simultaneous water stress across continents would still double between 2030 and 2070.

But if nations fail to mitigate the climate change and extremes of heat and rainfall that would inevitably follow runaway global heating, then the chances of devastating failure of wheat harvests in both Europe and North America, or both Europe and Australia, or Russia, Ukraine and Kazakhstan, begin to soar.

Wheat provides one-fifth of all the calories for humankind. It is the world’s largest rain-fed crop and the global wheat trade matches the traffic in rice and in maize combined. Ten regions account for 54% of the planet’s wheat fields, and 57% of the world’s wheat.

“The results indicate a severely heightened risk of high-impact extreme events under the future climate”

Scientists from Europe, the US and China report in the journal Science Advances that they worked with computer simulations to model the future global weather for water scarcity with changes in temperature for the next eight decades.

Wheat is a successful crop partly because its water needs are relatively low, but it can’t flourish without reliable rainfall before and during growth. And the new simulations confirm earlier fears: that extremes of heat and devastating drought could happen in more than one continent at the same time.

When this happened in the 19th century, global famine followed. Forecasts already warn that with each 1°C rise in temperature, global wheat yield will fall by between 4% and 6.5%. Researchers have repeatedly warned that extremes of heat can slash yields and limit the vital nutrients in cereal harvests. Other teams have found that climate change may already be making this happen.

Worse could follow as one heat wave is pursued promptly by another. And all this could happen in a world in which, as population grows, demand for wheat could increase by at least 43%.

Continued checking

Scientists tend not to take the research of others for granted: they keep on checking. The latest simulation analysed 27 different climate models, each with three different scenarios.

The scientists looked at evidence from the near-past to find that between 1985 and 2007, the impact of drought on world wheat production was twice that between 1964 and 1984.

They included developing countries and low-income nations in eastern and southern Asia in their survey, because these are where half of the already hungry and under-nourished live, and where bread is an important part of people’s diet.

“The results indicate a severely heightened risk of high-impact extreme events under the future climate, which would likely affect all market players, ranging from direct influences on subsistence farmers to price-mediated changes in international markets”, they write. − Climate News Network

Wheat yields could be hit by severe drought across half the world at once, driving up prices and making problems for global markets.

LONDON, 2 October, 2019 − The planet’s daily bread could be at risk as the global thermometer creeps up and climates begin to change. New research has warned that almost two thirds of the world’s wheat-growing areas could face “severe, prolonged, and near-simultaneous droughts” by the century’s end.

Right now, 15% of the world’s wheat producing regions are at risk of severe water scarcity at the same time. Even if the 195 nations that agreed in Paris to stop global average temperatures from rising beyond 1.5°C by 2100 keep that promise, the chance of simultaneous water stress across continents would still double between 2030 and 2070.

But if nations fail to mitigate the climate change and extremes of heat and rainfall that would inevitably follow runaway global heating, then the chances of devastating failure of wheat harvests in both Europe and North America, or both Europe and Australia, or Russia, Ukraine and Kazakhstan, begin to soar.

Wheat provides one-fifth of all the calories for humankind. It is the world’s largest rain-fed crop and the global wheat trade matches the traffic in rice and in maize combined. Ten regions account for 54% of the planet’s wheat fields, and 57% of the world’s wheat.

“The results indicate a severely heightened risk of high-impact extreme events under the future climate”

Scientists from Europe, the US and China report in the journal Science Advances that they worked with computer simulations to model the future global weather for water scarcity with changes in temperature for the next eight decades.

Wheat is a successful crop partly because its water needs are relatively low, but it can’t flourish without reliable rainfall before and during growth. And the new simulations confirm earlier fears: that extremes of heat and devastating drought could happen in more than one continent at the same time.

When this happened in the 19th century, global famine followed. Forecasts already warn that with each 1°C rise in temperature, global wheat yield will fall by between 4% and 6.5%. Researchers have repeatedly warned that extremes of heat can slash yields and limit the vital nutrients in cereal harvests. Other teams have found that climate change may already be making this happen.

Worse could follow as one heat wave is pursued promptly by another. And all this could happen in a world in which, as population grows, demand for wheat could increase by at least 43%.

Continued checking

Scientists tend not to take the research of others for granted: they keep on checking. The latest simulation analysed 27 different climate models, each with three different scenarios.

The scientists looked at evidence from the near-past to find that between 1985 and 2007, the impact of drought on world wheat production was twice that between 1964 and 1984.

They included developing countries and low-income nations in eastern and southern Asia in their survey, because these are where half of the already hungry and under-nourished live, and where bread is an important part of people’s diet.

“The results indicate a severely heightened risk of high-impact extreme events under the future climate, which would likely affect all market players, ranging from direct influences on subsistence farmers to price-mediated changes in international markets”, they write. − Climate News Network

Seabed carbon storage may help in climate crisis

The Blue Planet hasn’t been considered as a solution to the climate crisis. Three scientists advocate a sea change in global thinking: seabed carbon storage.

LONDON, 27 September, 2019 – Climate scientists say seabed carbon storage could be a new ally to help reduce greenhouse gas emissions by a volume greater than all the carbon dioxide pumped into the atmosphere from the planet’s coal-burning power stations.

It is the biggest ally possible: the 70% of the globe covered by ocean.

In a detailed argument in the journal Science, Ove Hoegh-Guldberg of the University of Queensland, Eliza Northrop of the World Resources Institute in Washington DC and Jane Lubchenco of Oregon State University outline five areas of action that could mitigate potentially calamitous climate change driven by profligate use of fossil fuels.

These include renewable energy, shipping and transport, protection of marine and coastal ecosystems, fisheries and aquaculture and – perhaps in future – carbon storage on the sea bed.

“Make no mistake: these actions are ambitious, but we argue they are necessary, could pay major dividends towards closing the emissions gap in coming decades, and achieve other co-benefits along the way”, they write.

“For far too long, the ocean has been mostly absent from policy discussions about reducing carbon emissions and meeting the challenges of climate change”

The argument was deliberately timed to coincide with a major new report by the Intergovernmental Panel on Climate Change on the oceans and the cryosphere.

If the world’s nations pursue ocean policy ambitions in the right way, they could reduce global greenhouse gas emissions by up to 4 billion tonnes of CO2 equivalent by 2030 and up to 11 billion by 2050.

And this could tot up to 21% of the reductions required in 2050 to limit warming to the declared 1.5°C target favoured at the Paris climate summit in 2015, and up to a fourth of all emissions for the formal 2°C target identified in the agreement.

“Reductions of this magnitude are larger than the annual emissions from all current coal-fired power plants worldwide,” they argue.

The first step is to set clear national targets for getting renewable energy from the restless seas, in terms of offshore wind, tidal and wave energy,  by 2030 and then by 2050.

Other benefits

Then the trio want nations to think about ways to reduce or eliminate carbon from the world’s shipping fleets. That means alternative fuels and a revolution in shore-based supply chains. Fuel efficiency in existing technologies could be improved, and hybrid power systems – including fuel cells and battery technologies – should be explored.

And, they point out, the sea itself is a carbon consumer. Mangrove swamps, seagrass meadows and salt marshes could be considered as “blue carbon ecosystems” in the way that terrestrial forests are considered “sinks” for atmospheric carbon.

These coastal and submarine “forests” make up only1.5% of the area of the land-based forests and woodlands, but their loss and degradation are equivalent to 8.4% of carbon emissions from terrestrial forests now being destroyed by human intrusion. So it would pay to restore and protect such marine habitats.

There would be other benefits: harvested seaweed could be turned into food, cattle feed, fertiliser, biofuels and bioplastics. Some seaweeds could help in even more dramatic ways.

Experiments with a red alga called Asparagopsis taxiformis, they say, “can reduce methane emissions from ruminants by up to 99% when constituting only 2% of the feed, and several other common species show potential methane reductions of 33 to 50%.”

‘Daunting’ change needed

The scientists urge a diet shift towards fish and seafood in pursuit of sustainable low-carbon protein; they also want to see the fishing industry worldwide pursue lower emissions while optimising the sustainable global catch.

“Such large-scale shifts in food policy and behaviour are daunting,” they concede. But there would be considerable climate benefits.

And, they admit, there are “considerable challenges” to the idea that carbon dioxide captured at source could be safely and cheaply stored on the seabed for many thousands of years. But they say “the theoretical potential” is very high.

“For far too long, the ocean has been mostly absent from policy discussions about reducing carbon emissions and meeting the challenges of climate change,” they conclude.

“Ocean-based actions provide increased hope that reaching the 1.5°C target might be possible, along with addressing other societal challenges, including economic development, food security and coastal community resilience.” – Climate News Network

The Blue Planet hasn’t been considered as a solution to the climate crisis. Three scientists advocate a sea change in global thinking: seabed carbon storage.

LONDON, 27 September, 2019 – Climate scientists say seabed carbon storage could be a new ally to help reduce greenhouse gas emissions by a volume greater than all the carbon dioxide pumped into the atmosphere from the planet’s coal-burning power stations.

It is the biggest ally possible: the 70% of the globe covered by ocean.

In a detailed argument in the journal Science, Ove Hoegh-Guldberg of the University of Queensland, Eliza Northrop of the World Resources Institute in Washington DC and Jane Lubchenco of Oregon State University outline five areas of action that could mitigate potentially calamitous climate change driven by profligate use of fossil fuels.

These include renewable energy, shipping and transport, protection of marine and coastal ecosystems, fisheries and aquaculture and – perhaps in future – carbon storage on the sea bed.

“Make no mistake: these actions are ambitious, but we argue they are necessary, could pay major dividends towards closing the emissions gap in coming decades, and achieve other co-benefits along the way”, they write.

“For far too long, the ocean has been mostly absent from policy discussions about reducing carbon emissions and meeting the challenges of climate change”

The argument was deliberately timed to coincide with a major new report by the Intergovernmental Panel on Climate Change on the oceans and the cryosphere.

If the world’s nations pursue ocean policy ambitions in the right way, they could reduce global greenhouse gas emissions by up to 4 billion tonnes of CO2 equivalent by 2030 and up to 11 billion by 2050.

And this could tot up to 21% of the reductions required in 2050 to limit warming to the declared 1.5°C target favoured at the Paris climate summit in 2015, and up to a fourth of all emissions for the formal 2°C target identified in the agreement.

“Reductions of this magnitude are larger than the annual emissions from all current coal-fired power plants worldwide,” they argue.

The first step is to set clear national targets for getting renewable energy from the restless seas, in terms of offshore wind, tidal and wave energy,  by 2030 and then by 2050.

Other benefits

Then the trio want nations to think about ways to reduce or eliminate carbon from the world’s shipping fleets. That means alternative fuels and a revolution in shore-based supply chains. Fuel efficiency in existing technologies could be improved, and hybrid power systems – including fuel cells and battery technologies – should be explored.

And, they point out, the sea itself is a carbon consumer. Mangrove swamps, seagrass meadows and salt marshes could be considered as “blue carbon ecosystems” in the way that terrestrial forests are considered “sinks” for atmospheric carbon.

These coastal and submarine “forests” make up only1.5% of the area of the land-based forests and woodlands, but their loss and degradation are equivalent to 8.4% of carbon emissions from terrestrial forests now being destroyed by human intrusion. So it would pay to restore and protect such marine habitats.

There would be other benefits: harvested seaweed could be turned into food, cattle feed, fertiliser, biofuels and bioplastics. Some seaweeds could help in even more dramatic ways.

Experiments with a red alga called Asparagopsis taxiformis, they say, “can reduce methane emissions from ruminants by up to 99% when constituting only 2% of the feed, and several other common species show potential methane reductions of 33 to 50%.”

‘Daunting’ change needed

The scientists urge a diet shift towards fish and seafood in pursuit of sustainable low-carbon protein; they also want to see the fishing industry worldwide pursue lower emissions while optimising the sustainable global catch.

“Such large-scale shifts in food policy and behaviour are daunting,” they concede. But there would be considerable climate benefits.

And, they admit, there are “considerable challenges” to the idea that carbon dioxide captured at source could be safely and cheaply stored on the seabed for many thousands of years. But they say “the theoretical potential” is very high.

“For far too long, the ocean has been mostly absent from policy discussions about reducing carbon emissions and meeting the challenges of climate change,” they conclude.

“Ocean-based actions provide increased hope that reaching the 1.5°C target might be possible, along with addressing other societal challenges, including economic development, food security and coastal community resilience.” – Climate News Network

Coal-burning generators could swallow vital water

You need energy to develop. You also need water. So coal-burning generators that need water for cooling invite trouble.

LONDON, 24 September, 2019 – Economic development in Asia – hugely dependent on electricity from coal-burning generators – could be cramped by climate change.

That is because global heating could begin to constrain the supplies of water needed to cool thermal power installations.

So the generators that fuel global heating and the climate emergency by releasing huge quantities of greenhouse gases into the planetary atmosphere could create conditions in which nations could begin to experience power shortages made more likely by the extra carbon dioxide pouring from their new power station chimneys.

Power plants in Asia already account for 37% of global electricity generation and 41% of carbon dioxide emissions because 64% of this energy is already generated from coal, according to a new study in the journal Energy and Environmental Science.

And about 490 gigawatts of new coal-fired plant could be in operation by 2030 in China, south-east Asia, Mongolia and parts of India.

“What this study shows is that coal power development can expect reduced reliability in many locations across Asia”

“One of the impacts of climate change is that the weather is changing, which leads to more extreme events – more torrential downpours and more droughts,” said Jeffrey Bielicki, a civil engineer at the University of Ohio in the US, one of the authors.

“The power plants – coal, nuclear and natural gas power plants – require water for cooling, so when you don’t have the rain, you don’t have the stream flow, you can’t cool the power plant.”

He and European colleagues base their conclusions on simulations of what could happen to regional climate under conditions of rises in planetary average temperature of 1.5°C, 2°C and 3°C above the long-term average for most of human history.

The first is the ambition agreed by 195 nations in Paris in 2015. The second is the upper limit that nations vowed to keep global temperatures to and the third is – so far – the temperature the planet is likely to reach by 2100 under present emissions scenarios.

That is simply because at a time when nations should already be closing fossil fuel power plants, more are being built. Global average temperatures in the last century have already risen by around 1°C.

Faltering reliability

The simulations found, inevitably, that more coal-fired generation would step up demand for water precisely as climate shifts due to ever-increasing levels of greenhouse gases in the atmosphere would tend to reduce the reliability of water supply. Difficult decisions lie ahead.

“We know that coal power contributes significantly to global warming – more than almost any other electricity source – and what this study shows is that coal power development can expect reduced reliability in many locations across Asia,” said Edward Byers, of the energy programme of the International Institute for Applied Systems Analysis in Austria.

And Dr Bielicki said: “There is often a perceived tension between developing your economy and protecting the environment.

“Some of the results of this study are saying ‘Hey, we expect you’re going to run into problems, so you should selectively change your plans, but also thin out your existing power plants because, as you’re adding new power plants, you’re creating more competition for water.’

“Your economy needs water but your ecosystems and people need water too.” – Climate News Network

You need energy to develop. You also need water. So coal-burning generators that need water for cooling invite trouble.

LONDON, 24 September, 2019 – Economic development in Asia – hugely dependent on electricity from coal-burning generators – could be cramped by climate change.

That is because global heating could begin to constrain the supplies of water needed to cool thermal power installations.

So the generators that fuel global heating and the climate emergency by releasing huge quantities of greenhouse gases into the planetary atmosphere could create conditions in which nations could begin to experience power shortages made more likely by the extra carbon dioxide pouring from their new power station chimneys.

Power plants in Asia already account for 37% of global electricity generation and 41% of carbon dioxide emissions because 64% of this energy is already generated from coal, according to a new study in the journal Energy and Environmental Science.

And about 490 gigawatts of new coal-fired plant could be in operation by 2030 in China, south-east Asia, Mongolia and parts of India.

“What this study shows is that coal power development can expect reduced reliability in many locations across Asia”

“One of the impacts of climate change is that the weather is changing, which leads to more extreme events – more torrential downpours and more droughts,” said Jeffrey Bielicki, a civil engineer at the University of Ohio in the US, one of the authors.

“The power plants – coal, nuclear and natural gas power plants – require water for cooling, so when you don’t have the rain, you don’t have the stream flow, you can’t cool the power plant.”

He and European colleagues base their conclusions on simulations of what could happen to regional climate under conditions of rises in planetary average temperature of 1.5°C, 2°C and 3°C above the long-term average for most of human history.

The first is the ambition agreed by 195 nations in Paris in 2015. The second is the upper limit that nations vowed to keep global temperatures to and the third is – so far – the temperature the planet is likely to reach by 2100 under present emissions scenarios.

That is simply because at a time when nations should already be closing fossil fuel power plants, more are being built. Global average temperatures in the last century have already risen by around 1°C.

Faltering reliability

The simulations found, inevitably, that more coal-fired generation would step up demand for water precisely as climate shifts due to ever-increasing levels of greenhouse gases in the atmosphere would tend to reduce the reliability of water supply. Difficult decisions lie ahead.

“We know that coal power contributes significantly to global warming – more than almost any other electricity source – and what this study shows is that coal power development can expect reduced reliability in many locations across Asia,” said Edward Byers, of the energy programme of the International Institute for Applied Systems Analysis in Austria.

And Dr Bielicki said: “There is often a perceived tension between developing your economy and protecting the environment.

“Some of the results of this study are saying ‘Hey, we expect you’re going to run into problems, so you should selectively change your plans, but also thin out your existing power plants because, as you’re adding new power plants, you’re creating more competition for water.’

“Your economy needs water but your ecosystems and people need water too.” – Climate News Network

Extremes of global heat bring tipping points closer

It makes good business sense to contain planetary warming to 1.5°C. Passing the Paris target spells disaster, with more extremes of global heat.

LONDON, 23 September, 2019 – Urgent action on climate change will be costly. But inaction could be four or five times more expensive, according to new climate accounting: extremes of global heat are on the increase.

Submarine heatwaves happen three times more often that they did in 1980. Ocean warming events can devastate coral reefs and trigger even more damage from more intense acidification and oxygen loss in the seas, with disastrous consequences for fishery and seafood.

The ecosystems on which all living things – including humans – depend are shifting away from the tropics at up to 40kms a year. Extremes of torrential rainfall, drought and tropical cyclones are becoming measurably more intense.

And all this has happened because global mean surface temperatures have risen in the last century by about 1°C, thanks to ever more carbon dioxide in the atmosphere, a consequence of profligate use of fossil fuels to drive human expansion.

“People from small island states and low-lying countries are in the immediate crosshairs of climate change. I am very concerned about the future for these people”

Forecasts suggest humans could tip the planet to a rise of 1.5°C as early as 2030. This is the limit proposed by 195 nations in Paris in 2015 when they promised to keep global heating to “well below” 2°C by the end of the century.

And now researchers once again warn in the journal Science that even the seemingly small gap between 1.5°C and 2°C could spell a colossal difference in long-term outcomes. Right now, the planet is on track to hit or surpass 3°C by 2100. The case for drastic reductions in greenhouse gas emissions is now more compelling and urgent than ever.

“First, we have under-estimated the sensitivity of natural and human systems to climate change and the speed at which these things are happening. Second, we have under-appreciated the synergistic nature of climate threats – with outcomes tending to be worse than the sum of the parts,” said Ove Hoegh-Guldberg of the University of Queensland in Australia, who led the study.

“This is resulting in rapid and comprehensive climate impacts, with growing damage to people, ecosystems and livelihoods.”

Harder to forecast

And Daniela Jacob, who directs Germany’s Climate Service Centre, added: “We are already in new territory. The ‘novelty’ of the weather is making our ability to forecast and respond to weather-related phenomena very difficult.”

The two scientists were part of a much larger world-wide team of researchers who looked at the risks that arrive with rapid change: damage to forests, farms and wildlife; to coastal communities as sea levels rise and storms multiply.

Their message is clear. There would be huge benefits to containing average global temperature rise to no more than 1.5C above the long-term average for most of human history.

“This is not an academic issue, it is a matter of life and death for people everywhere.” said Michael Taylor, dean of science at the University of the West Indies in Jamaica.

Weak commitments

“That said, people from small island states and low-lying countries are in the immediate crosshairs of climate change. I am very concerned about the future for these people.”

So far, the commitments made by most nations are simply too feeble. That risks condemning many nations to chaos and harm, and, as usual, those most vulnerable would be the poorest.

“To avoid this, we must accelerate action and tighten emission reduction targets so that they fall in line with the Paris Agreement. As we show, this is much less costly than suffering the impacts of 2°C or more of climate change,” said Professor Hoegh-Guldberg.

“Tackling climate change is a tall order. However, there is no alternative from the perspective of human well-being − and too much at stake not to act urgently on this issue.” − Climate News Network

It makes good business sense to contain planetary warming to 1.5°C. Passing the Paris target spells disaster, with more extremes of global heat.

LONDON, 23 September, 2019 – Urgent action on climate change will be costly. But inaction could be four or five times more expensive, according to new climate accounting: extremes of global heat are on the increase.

Submarine heatwaves happen three times more often that they did in 1980. Ocean warming events can devastate coral reefs and trigger even more damage from more intense acidification and oxygen loss in the seas, with disastrous consequences for fishery and seafood.

The ecosystems on which all living things – including humans – depend are shifting away from the tropics at up to 40kms a year. Extremes of torrential rainfall, drought and tropical cyclones are becoming measurably more intense.

And all this has happened because global mean surface temperatures have risen in the last century by about 1°C, thanks to ever more carbon dioxide in the atmosphere, a consequence of profligate use of fossil fuels to drive human expansion.

“People from small island states and low-lying countries are in the immediate crosshairs of climate change. I am very concerned about the future for these people”

Forecasts suggest humans could tip the planet to a rise of 1.5°C as early as 2030. This is the limit proposed by 195 nations in Paris in 2015 when they promised to keep global heating to “well below” 2°C by the end of the century.

And now researchers once again warn in the journal Science that even the seemingly small gap between 1.5°C and 2°C could spell a colossal difference in long-term outcomes. Right now, the planet is on track to hit or surpass 3°C by 2100. The case for drastic reductions in greenhouse gas emissions is now more compelling and urgent than ever.

“First, we have under-estimated the sensitivity of natural and human systems to climate change and the speed at which these things are happening. Second, we have under-appreciated the synergistic nature of climate threats – with outcomes tending to be worse than the sum of the parts,” said Ove Hoegh-Guldberg of the University of Queensland in Australia, who led the study.

“This is resulting in rapid and comprehensive climate impacts, with growing damage to people, ecosystems and livelihoods.”

Harder to forecast

And Daniela Jacob, who directs Germany’s Climate Service Centre, added: “We are already in new territory. The ‘novelty’ of the weather is making our ability to forecast and respond to weather-related phenomena very difficult.”

The two scientists were part of a much larger world-wide team of researchers who looked at the risks that arrive with rapid change: damage to forests, farms and wildlife; to coastal communities as sea levels rise and storms multiply.

Their message is clear. There would be huge benefits to containing average global temperature rise to no more than 1.5C above the long-term average for most of human history.

“This is not an academic issue, it is a matter of life and death for people everywhere.” said Michael Taylor, dean of science at the University of the West Indies in Jamaica.

Weak commitments

“That said, people from small island states and low-lying countries are in the immediate crosshairs of climate change. I am very concerned about the future for these people.”

So far, the commitments made by most nations are simply too feeble. That risks condemning many nations to chaos and harm, and, as usual, those most vulnerable would be the poorest.

“To avoid this, we must accelerate action and tighten emission reduction targets so that they fall in line with the Paris Agreement. As we show, this is much less costly than suffering the impacts of 2°C or more of climate change,” said Professor Hoegh-Guldberg.

“Tackling climate change is a tall order. However, there is no alternative from the perspective of human well-being − and too much at stake not to act urgently on this issue.” − Climate News Network