Category Archives: Emissions

India finally takes climate crisis seriously

India

With financial losses and a heavy death toll from climate-related disasters constantly rising, India is at last focusing on the dangers of global warming.

NEW DELHI, 18 March, 2020 – After decades of concentrating on economic development and insisting that global warming was mainly a problem for the more industrially-developed countries to solve, Indian industry is at last facing up to dangers posed to its own future by climate change.

More than 40 organisations – including major industrial corporations such as Tata, Godrej, Mahindra and Wipro through their various philanthropic organisations, plus academic thinktanks, business schools, aid agencies, and the government’s scientific advisers – have come together to co-operate on climate solutions.

The umbrella organisation, called the India Climate Collaborative (ICC), also includes international institutions such as Bloomberg Philanthropies and the MacArthur Foundation.

Climate disasters

Although there have been many individual initiatives in India on climate change, and there has been government support for renewables, particularly solar power, efforts so far have been fragmented.

State and national governments, individual departments, businesses, non-governmental organisations, and academics have all worked separately, and sometimes in opposition to each other.

The scale of the task facing India is underlined by the fact it has taken two years to get the ICC up and running. However, with India ranked fifth in the Global Climate Risk Index 2019 and facing one climate disaster after another – sometimes simultaneous extreme weather events – these organisations have agreed that the issue can no longer be ignored.

“It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own.”

Commenting on the launch, Anand Mahindra, chairman of the Mahindra Group, said: “It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own. Business, government and philanthropy must collaborate within and among themselves themselves to drive results quickly and at scale. The India Climate Collaborative can make this happen.”

The ICC has identified three critical risk factors for India:

The first is that an astonishing 700 million people are still dependent on agriculture and they are the most vulnerable to an erratic climate.

The second is that around the country’s approximately 7,500 km coastline are several major cities. Many of these important economic hubs, which include all the country’s main ports, are a metre or less above current sea level.

Third, even with the increasingly rigorous focus on renewable energy, there is continued heavy reliance on fossil fuels for producing electricity, which is still in short supply.

According to the India Philanthropy Report 2019, private funds in India, mostly raised through non-government philanthropy, provided about Rs 70,000 crore ($9.5 billion) in 2018 for the social sector, mostly focusing on key aspects such as health, education and agriculture.

However, only a small proportion was spent on climate change, and so the ICC aims to raise the current spending of about 7 % to at least 20 %.

Another hindrance to India’s many plans for adaptation or mitigation is the lack of capacity among government departments. Something as basic as preparing workable proposals for funding action is a tough task for many state governments.

The ICC plans to conduct technical training as “there are gaps to be filled to take care of the talent shortfall, and there is overall lack of capacity.”

One of the first training exercises is planned for state-level bureaucrats from Rajasthan, Madhya Pradesh, Chhattisgarh, Maharashtra, and in the western state of Rajasthan.

Cross-purposes

There is some concern that while the India government is represented on the ICC by Prof K. VijayRaghavan, its Principal Scientific Adviser, there is no representation from the Ministry of Environment, Forests & Climate Change (MoEFCC), which represents the country at the climate talks.

Critics claim that this is particularly worrying because the various government departments are already seen as not working together, or often working at cross-purposes.

There are also fears that there is lack of community involvement, particularly the farmers, who are the largest single group most affected by adverse weather conditions caused by climate change.

However, Shloka Nath, executive director of the ICC and head of Sustainability and Special Projects at the Tata Trust, says the ICC plans to work with the MoEFCC to reach representatives of civil society and bring them into the process.

“It is through them [the ministry] that we plan to reach out to the community,” she says. “The people will be very much involved.”

Despite these shortcomings, Chandra Bhushan, President and CEO of the International Forum for Environment, Sustainability and Technology (iFOREST), welcomes the idea. He says: “It is for the first time that Indian companies are understanding climate change and willing to invest in it.” – Climate News Network

With financial losses and a heavy death toll from climate-related disasters constantly rising, India is at last focusing on the dangers of global warming.

NEW DELHI, 18 March, 2020 – After decades of concentrating on economic development and insisting that global warming was mainly a problem for the more industrially-developed countries to solve, Indian industry is at last facing up to dangers posed to its own future by climate change.

More than 40 organisations – including major industrial corporations such as Tata, Godrej, Mahindra and Wipro through their various philanthropic organisations, plus academic thinktanks, business schools, aid agencies, and the government’s scientific advisers – have come together to co-operate on climate solutions.

The umbrella organisation, called the India Climate Collaborative (ICC), also includes international institutions such as Bloomberg Philanthropies and the MacArthur Foundation.

Climate disasters

Although there have been many individual initiatives in India on climate change, and there has been government support for renewables, particularly solar power, efforts so far have been fragmented.

State and national governments, individual departments, businesses, non-governmental organisations, and academics have all worked separately, and sometimes in opposition to each other.

The scale of the task facing India is underlined by the fact it has taken two years to get the ICC up and running. However, with India ranked fifth in the Global Climate Risk Index 2019 and facing one climate disaster after another – sometimes simultaneous extreme weather events – these organisations have agreed that the issue can no longer be ignored.

“It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own.”

Commenting on the launch, Anand Mahindra, chairman of the Mahindra Group, said: “It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own. Business, government and philanthropy must collaborate within and among themselves themselves to drive results quickly and at scale. The India Climate Collaborative can make this happen.”

The ICC has identified three critical risk factors for India:

The first is that an astonishing 700 million people are still dependent on agriculture and they are the most vulnerable to an erratic climate.

The second is that around the country’s approximately 7,500 km coastline are several major cities. Many of these important economic hubs, which include all the country’s main ports, are a metre or less above current sea level.

Third, even with the increasingly rigorous focus on renewable energy, there is continued heavy reliance on fossil fuels for producing electricity, which is still in short supply.

According to the India Philanthropy Report 2019, private funds in India, mostly raised through non-government philanthropy, provided about Rs 70,000 crore ($9.5 billion) in 2018 for the social sector, mostly focusing on key aspects such as health, education and agriculture.

However, only a small proportion was spent on climate change, and so the ICC aims to raise the current spending of about 7 % to at least 20 %.

Another hindrance to India’s many plans for adaptation or mitigation is the lack of capacity among government departments. Something as basic as preparing workable proposals for funding action is a tough task for many state governments.

The ICC plans to conduct technical training as “there are gaps to be filled to take care of the talent shortfall, and there is overall lack of capacity.”

One of the first training exercises is planned for state-level bureaucrats from Rajasthan, Madhya Pradesh, Chhattisgarh, Maharashtra, and in the western state of Rajasthan.

Cross-purposes

There is some concern that while the India government is represented on the ICC by Prof K. VijayRaghavan, its Principal Scientific Adviser, there is no representation from the Ministry of Environment, Forests & Climate Change (MoEFCC), which represents the country at the climate talks.

Critics claim that this is particularly worrying because the various government departments are already seen as not working together, or often working at cross-purposes.

There are also fears that there is lack of community involvement, particularly the farmers, who are the largest single group most affected by adverse weather conditions caused by climate change.

However, Shloka Nath, executive director of the ICC and head of Sustainability and Special Projects at the Tata Trust, says the ICC plans to work with the MoEFCC to reach representatives of civil society and bring them into the process.

“It is through them [the ministry] that we plan to reach out to the community,” she says. “The people will be very much involved.”

Despite these shortcomings, Chandra Bhushan, President and CEO of the International Forum for Environment, Sustainability and Technology (iFOREST), welcomes the idea. He says: “It is for the first time that Indian companies are understanding climate change and willing to invest in it.” – Climate News Network

Tropical forests may be heating Earth by 2035

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

North Sea dams could save Europe’s coasts

There is a way to stop Europe’s coastal cities from vanishing below the waves – enclose the North Sea. But there’s a simpler solution.

LONDON, 4 March, 2020 − Two European scientists have proposed the ultimate flood barrier: they want to dam the North Sea and the English Channel with more than 600 kilometres (373 miles) of sea wall.

This would protect 15 nations in western Europe against the ravages of what could one day be 10 metres (33 feet) of sea level rise. It would ultimately turn the North Sea into a freshwater lake and, at up to €500 billion (£435 bn) or more, represent the single most costly piece of engineering ever.

But, the pair reason, to do nothing could cost the people of Europe perhaps 10 times as much as coasts eroded, the sea overwhelmed the Low Countries, reshaped the contours of a continent and forced 25 million people to move inland.

In their paper in the Bulletin of the American Meteorological SocietySjoerd Groeskamp of the Royal Netherlands Institute for Sea Research and Joakim Kjellsson of Geomar, the Helmholtz oceanographic research centre in Kiel, Germany, concede that what they propose “may seem an overwhelming and unrealistic solution at first.”

But compared with the cost of inaction, or the cost of managed retreat from the coastline that would displace millions, it could be the cheapest option. “It might be impossible to truly fathom the magnitude of the threat that global-mean sea level rise poses,” they warn.

Least bad option

Global average temperatures have risen by 1°C and sea levels by 21 cms (8 inches) since 1880. Sea level rise lags behind atmospheric warming, but the guess is that every degree Celsius in the air will be followed eventually by 2.3 metres (7.5 feet) of higher seas.

By 2100, temperatures could have risen more than 3°C and sea levels by up to 1.5 metres (5 feet). If nations carry on burning fossil fuels the icecaps will melt inexorably, and by 2500 seas could have risen by 10 metres.

“The best solution will always be the treatment of the cause: human-caused climate change,” they write. However, if nations do not act to control the greenhouse gas emissions and forest destruction that cause global heating, and ever higher tides, then solutions such as the North European Enclosure Dam, known for short as NEED, are the only option.

The two researchers propose a barrier, a dike of sloping sides 50 metres wide across the North Sea from Bergen in Norway to the north-east tip of Scotland, via the Shetland and Orkney Islands.

This would be 475 kms (295 miles) long, with an average depth of 127 metres (417 feet), but would have to cross a trench more than 300 metres (985 feet) deep. To withstand continued sea level rise beyond 2500, it would need to be 20 metres or more above the Atlantic waves.

“This dam is mainly a call to do something about climate change now. If we do nothing, then this extreme dam might just be the only solution”

The 160 kms (100 miles) of sea defence from south-west England to the westernmost point of France would be a little less problematic: sea depths are hardly more than 100 metres (330 feet).

But the engineers would also have to factor in the 40,000 cubic metres of river water that would discharge into this enclosed basin every second. This would mean the same volume would need pumping continuously into the Atlantic on the far side of the dikes.

Since the barrier would enclose a number of the world’s great shipping ports, there would have to be sluice gates to let the big ships through, or alternatively new ports on the ocean side of the barriers.

The very nature of the enclosed North Sea would begin to change. Within a decade or two, it would start to turn into a freshwater lake: it would be the end of centuries of a fishing industry.

It could – the scientists admit their calculations are of the “back of an envelope” variety – be done. They scaled up the costs of the world’s largest dikes so far in the Netherlands and South Korea, to calculate the 51 billion tonnes of sand needed for the project. This is about what the world uses every year in construction.

Technology tested

They note that fixed seabed oil platforms have been constructed to a depth of 500 metres (1,640 feet), so engineers already know how to do such things. Pumps of the scale required to handle the incoming river discharges are already in use, but they would be needed in their hundreds.

And although the cost would reach somewhere between €250-550 bn (£220-480 bn), this − spread over the 20 years the project would take − would represent only at most 0.32% of the gross domestic product of the UK, Netherlands, Germany, Belgium and Denmark combined: the five nations with most to lose from the rising tides.

It would, the authors argue, cost just the Netherlands – which already has 3,600 km (2,240 miles) of flood protection − a third of that sum to defend against sea level rises of only 1.5 metres. The good news is that, if such a project worked for western Europe, then the same techniques could enclose the Irish Sea, the Mediterranean, the Red Sea and the Persian Gulf.

“This dam makes it almost tangible what the consequences of continued sea level rise will be; a rise of 10 metres by the year 2500 according to the bleakest scenarios,” said Dr Groeskamp.

“This dam is therefore mainly a call to do something about climate change now. If we do nothing, then this extreme dam might just be the only solution.” − Climate News Network

There is a way to stop Europe’s coastal cities from vanishing below the waves – enclose the North Sea. But there’s a simpler solution.

LONDON, 4 March, 2020 − Two European scientists have proposed the ultimate flood barrier: they want to dam the North Sea and the English Channel with more than 600 kilometres (373 miles) of sea wall.

This would protect 15 nations in western Europe against the ravages of what could one day be 10 metres (33 feet) of sea level rise. It would ultimately turn the North Sea into a freshwater lake and, at up to €500 billion (£435 bn) or more, represent the single most costly piece of engineering ever.

But, the pair reason, to do nothing could cost the people of Europe perhaps 10 times as much as coasts eroded, the sea overwhelmed the Low Countries, reshaped the contours of a continent and forced 25 million people to move inland.

In their paper in the Bulletin of the American Meteorological SocietySjoerd Groeskamp of the Royal Netherlands Institute for Sea Research and Joakim Kjellsson of Geomar, the Helmholtz oceanographic research centre in Kiel, Germany, concede that what they propose “may seem an overwhelming and unrealistic solution at first.”

But compared with the cost of inaction, or the cost of managed retreat from the coastline that would displace millions, it could be the cheapest option. “It might be impossible to truly fathom the magnitude of the threat that global-mean sea level rise poses,” they warn.

Least bad option

Global average temperatures have risen by 1°C and sea levels by 21 cms (8 inches) since 1880. Sea level rise lags behind atmospheric warming, but the guess is that every degree Celsius in the air will be followed eventually by 2.3 metres (7.5 feet) of higher seas.

By 2100, temperatures could have risen more than 3°C and sea levels by up to 1.5 metres (5 feet). If nations carry on burning fossil fuels the icecaps will melt inexorably, and by 2500 seas could have risen by 10 metres.

“The best solution will always be the treatment of the cause: human-caused climate change,” they write. However, if nations do not act to control the greenhouse gas emissions and forest destruction that cause global heating, and ever higher tides, then solutions such as the North European Enclosure Dam, known for short as NEED, are the only option.

The two researchers propose a barrier, a dike of sloping sides 50 metres wide across the North Sea from Bergen in Norway to the north-east tip of Scotland, via the Shetland and Orkney Islands.

This would be 475 kms (295 miles) long, with an average depth of 127 metres (417 feet), but would have to cross a trench more than 300 metres (985 feet) deep. To withstand continued sea level rise beyond 2500, it would need to be 20 metres or more above the Atlantic waves.

“This dam is mainly a call to do something about climate change now. If we do nothing, then this extreme dam might just be the only solution”

The 160 kms (100 miles) of sea defence from south-west England to the westernmost point of France would be a little less problematic: sea depths are hardly more than 100 metres (330 feet).

But the engineers would also have to factor in the 40,000 cubic metres of river water that would discharge into this enclosed basin every second. This would mean the same volume would need pumping continuously into the Atlantic on the far side of the dikes.

Since the barrier would enclose a number of the world’s great shipping ports, there would have to be sluice gates to let the big ships through, or alternatively new ports on the ocean side of the barriers.

The very nature of the enclosed North Sea would begin to change. Within a decade or two, it would start to turn into a freshwater lake: it would be the end of centuries of a fishing industry.

It could – the scientists admit their calculations are of the “back of an envelope” variety – be done. They scaled up the costs of the world’s largest dikes so far in the Netherlands and South Korea, to calculate the 51 billion tonnes of sand needed for the project. This is about what the world uses every year in construction.

Technology tested

They note that fixed seabed oil platforms have been constructed to a depth of 500 metres (1,640 feet), so engineers already know how to do such things. Pumps of the scale required to handle the incoming river discharges are already in use, but they would be needed in their hundreds.

And although the cost would reach somewhere between €250-550 bn (£220-480 bn), this − spread over the 20 years the project would take − would represent only at most 0.32% of the gross domestic product of the UK, Netherlands, Germany, Belgium and Denmark combined: the five nations with most to lose from the rising tides.

It would, the authors argue, cost just the Netherlands – which already has 3,600 km (2,240 miles) of flood protection − a third of that sum to defend against sea level rises of only 1.5 metres. The good news is that, if such a project worked for western Europe, then the same techniques could enclose the Irish Sea, the Mediterranean, the Red Sea and the Persian Gulf.

“This dam makes it almost tangible what the consequences of continued sea level rise will be; a rise of 10 metres by the year 2500 according to the bleakest scenarios,” said Dr Groeskamp.

“This dam is therefore mainly a call to do something about climate change now. If we do nothing, then this extreme dam might just be the only solution.” − Climate News Network

US state plans fossil fuel tax to fund schooling

The US state of Maryland is proposing a fossil fuel tax to pay for pre-school education and to promote electric cars.

LONDON, 27 February, 2020 − Maryland, an eastern US state badly hit by climate change, wants to introduce a fossil fuel tax on polluting industries and gas-guzzling cars in order to fund improvements to its education system worth $350 million (£271m) a year.

The Climate Crisis and Education Bill is currently being considered by the Maryland General Assembly’s 2020 session. With a strong Democrat majority in both upper and lower houses of the state’s legislature, it could soon become law – even though the ideas behind it are extremely radical by US standards.

The bill would establish a Climate Crisis Council to develop an energy policy that reduces statewide greenhouse gas emissions by 70% by 2030, and 100% by 2040 – and trusts in achieving net negative emissions after that, using 2006 as a baseline.

There has been widespread concern in Maryland about falling education standards compared with other states, and an inquiry, the Kirwan Commission, has called for $350m a year to be invested in improvements.

These include extra funding for teacher salaries, additional counselling and career preparation, stronger health programmes, and money for pre-school activities.

“We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does”

The bill would introduce a gradually escalating fossil fuel fee, starting at $15 a ton for non-transport sources and $10 a ton for vehicles.

There would also be a graduated registration fee on new cars and light trucks that are gas guzzlers, revenues from which would be used to provide rebates to electric vehicle (EV) purchasers and to pay for the installation of statewide EV charging points.

Maryland has suffered more than most of the US from climate change and is severely threatened by sea level rise on the shores of Chesapeake Bay. Some small towns are already losing the battle against the sea.

The frequency of street flooding in the state capital, Annapolis, and larger cities like Baltimore has increased about ten-fold since the early 1960s.

Salt feeds concerns

Salinisation of farmland on the Eastern Shore is also a concern, as the salt water has begun intruding into the water table. Across the state the frequency of extreme weather events continues to increase, including events like flash flooding, heavy thunderstorms, extreme heat and droughts.

Delegate David Fraser-Hidalgo, the leading General Assembly supporter of the bill, said the state’s taxpayers had already been paying for damage caused by the climate crisis: “In the 2019 session, we passed an emergency appropriation in the General Assembly for one million dollars to mitigate flooding in Annapolis.

“That’s just one city in the entire state − one million dollars. Why should the taxpayers pay for that when fossil fuel companies make $400 million a day in profits?”

Emphasising the urgency of the situation and the need for immediate action, the bill’s Senate sponsor, Senator Benjamin F. Kramer, said: “We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does.

“And the legislation is a win, win, win. It’s a win for our health, it’s a win for the environment, and it’s a win for education.”

Support detected

Both men are conscious that despite the concern of Democrats about the climate crisis, and the fact that the party has a large overall majority, their bill is radical and may meet some resistance. However, recent polling suggests that the public supports action on the crisis.

The bill is also up against legislators who favour other ways of paying for the education reforms, including taxes on gambling, alcohol and digital commerce.

In order to allay fears about new taxes on fossil fuels the provisions of the bill insist that the carbon taxes protect low- and moderate-income households, as well as “energy-intensive, trade-exposed businesses”, and help fossil fuel workers who may lose their jobs to find new ones in the clean economy.

There are also clauses that specifically prevent the fossil fuel companies from passing the cost of carbon taxes on to Maryland consumers. − Climate News Network

The US state of Maryland is proposing a fossil fuel tax to pay for pre-school education and to promote electric cars.

LONDON, 27 February, 2020 − Maryland, an eastern US state badly hit by climate change, wants to introduce a fossil fuel tax on polluting industries and gas-guzzling cars in order to fund improvements to its education system worth $350 million (£271m) a year.

The Climate Crisis and Education Bill is currently being considered by the Maryland General Assembly’s 2020 session. With a strong Democrat majority in both upper and lower houses of the state’s legislature, it could soon become law – even though the ideas behind it are extremely radical by US standards.

The bill would establish a Climate Crisis Council to develop an energy policy that reduces statewide greenhouse gas emissions by 70% by 2030, and 100% by 2040 – and trusts in achieving net negative emissions after that, using 2006 as a baseline.

There has been widespread concern in Maryland about falling education standards compared with other states, and an inquiry, the Kirwan Commission, has called for $350m a year to be invested in improvements.

These include extra funding for teacher salaries, additional counselling and career preparation, stronger health programmes, and money for pre-school activities.

“We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does”

The bill would introduce a gradually escalating fossil fuel fee, starting at $15 a ton for non-transport sources and $10 a ton for vehicles.

There would also be a graduated registration fee on new cars and light trucks that are gas guzzlers, revenues from which would be used to provide rebates to electric vehicle (EV) purchasers and to pay for the installation of statewide EV charging points.

Maryland has suffered more than most of the US from climate change and is severely threatened by sea level rise on the shores of Chesapeake Bay. Some small towns are already losing the battle against the sea.

The frequency of street flooding in the state capital, Annapolis, and larger cities like Baltimore has increased about ten-fold since the early 1960s.

Salt feeds concerns

Salinisation of farmland on the Eastern Shore is also a concern, as the salt water has begun intruding into the water table. Across the state the frequency of extreme weather events continues to increase, including events like flash flooding, heavy thunderstorms, extreme heat and droughts.

Delegate David Fraser-Hidalgo, the leading General Assembly supporter of the bill, said the state’s taxpayers had already been paying for damage caused by the climate crisis: “In the 2019 session, we passed an emergency appropriation in the General Assembly for one million dollars to mitigate flooding in Annapolis.

“That’s just one city in the entire state − one million dollars. Why should the taxpayers pay for that when fossil fuel companies make $400 million a day in profits?”

Emphasising the urgency of the situation and the need for immediate action, the bill’s Senate sponsor, Senator Benjamin F. Kramer, said: “We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does.

“And the legislation is a win, win, win. It’s a win for our health, it’s a win for the environment, and it’s a win for education.”

Support detected

Both men are conscious that despite the concern of Democrats about the climate crisis, and the fact that the party has a large overall majority, their bill is radical and may meet some resistance. However, recent polling suggests that the public supports action on the crisis.

The bill is also up against legislators who favour other ways of paying for the education reforms, including taxes on gambling, alcohol and digital commerce.

In order to allay fears about new taxes on fossil fuels the provisions of the bill insist that the carbon taxes protect low- and moderate-income households, as well as “energy-intensive, trade-exposed businesses”, and help fossil fuel workers who may lose their jobs to find new ones in the clean economy.

There are also clauses that specifically prevent the fossil fuel companies from passing the cost of carbon taxes on to Maryland consumers. − Climate News Network

Rising tides will leave no choice for US millions

Time and tide wait for no-one. As sea levels rise, the rising tides will become more impatient. Millions of Americans will have to migrate.

LONDON, 26 February, 2020 – The Texan city of Houston is about to grow in unexpected ways, thanks to the rising tides. So will Dallas. Real estate agents in Atlanta, Georgia; Denver, Colorado; and Las Vegas, Nevada could expect to do roaring business.

The inland counties around Los Angeles, and close to New Orleans in Louisiana, will suddenly get a little more crowded. And from Boston in the north-east to the tip of Florida, Americans will be on the move.

That is because an estimated 13 million US citizens could some time in this century become climate refugees, driven from their seaside homes by sea level rise of possibly 1.8 metres, according to new research.

And they will have to move home in a poorer economic climate: worldwide. If governments and city authorities do not take the right steps, sea level rise could erode 4% of the global annual economy, says a separate study. That is, coast-dwellers could witness not just their towns and even cities washed away: they could see their prosperity go under as well.

Californian scientists report in the Public Library of Science journal PLOS One that they used machine learning techniques – in effect, artificial intelligence systems – to calculate what is most likely to happen as US citizens desert Delaware Bay, slip away from the cities of North and South Carolina, and flee Florida in the face of rising sea levels, coastal flooding and increasingly catastrophic windstorms.

“Sea level rise will affect every county in the United States … everybody should care about sea level rise, whether they live on the coast or not”

In the year 2000, a third of all the planet’s urban land was in a zone vulnerable to flood. By 2040, this could rise to 40%. In 2010, in the US, more than 120m citizens – that is nearly 40% of the entire population – lived in coastal counties. By 2020, this proportion could already be higher.

And by 2100, at least 13.1m people could be living on land likely to be inundated if sea levels rise by 1.8 metres. Except that they won’t: they will have already seen the future and moved away from it, to some settlement well away from the rising tides.

Those who might otherwise have purchased their abandoned seaside houses will be looking for somewhere safer and adding to the pressure on the housing market.

“Sea level rise will affect every county in the United States,” said Bistra Dilkina of the University of Southern California at Irvine, a computer scientist who worked with engineers to model the human response to the future.

She and her colleagues started from patterns of movement that began with Hurricane Katrina, in 2004, and Hurricane Rita a year later, both in Louisiana. They then let the algorithms take over the challenge of guessing what American families and businesses are most likely to do as the tides begin to flood the high streets.

Action promised

“We hope this research will empower urban planners and local decision-makers to prepare to accept populations displaced by sea level rise. Our findings indicate that everybody should care about sea level rise, whether they live on the coast or not,” she said.

The California team’s worst-case forecasts are based on a premise that the world takes no real action to combat sea level rise, which is driven by global warming powered in turn by fossil fuel emissions into the atmosphere on an ever-increasing scale.

But in Paris in 2015, more than 190 nations did agree to act: to contain global warming to “well below” 2°C by the century’s end. So far, very few have committed to sufficient action, and the President of the US has pronounced climate change a “hoax” and announced a withdrawal from the Paris Agreement.

Researchers in Austria report in the journal Environmental Research Communications that they decided to consider the potential economic cost worldwide of sea level rise alone. Scientists have been trying for years to guess the cost of flood damage to come: the latest study is of the impact of sea level rise and coastal flooding upon national economies worldwide.

The scientists considered two scenarios, including one in which the world kept the promises made in Paris, and one in which it did not, and made no attempt to adapt to or mitigate climate change.

Significant impact

By 2050 losses in each scenario would be significant and much the same. But by 2100, the do-nothing option promised to hit the gross domestic product – an economist’s favourite measure of economic well-being – by 4%.

Europe and Japan would be significantly hit; China , India and Canada hardest of all. If the world’s richest nations actually worked to limit climate change and adapt to the challenges ahead, the impact on the economy could be limited to 1%.

“The findings of this paper demonstrate that we need to think long term while acting swiftly,” said Thomas Schinko of the International Institute for Applied Systems Analysis in Austria, who led the study.

“Macroeconomic impacts up to and beyond 2050 as a result of coastal flooding due to sea level rise – not taking into account any other climate-related impacts such as drought – are severe and increasing.

“We, as a global society, need to further co-ordinate mitigation, adaptation and climate-resilient development and consider where we build cities and situate important infrastructure.” – Climate News Network

Time and tide wait for no-one. As sea levels rise, the rising tides will become more impatient. Millions of Americans will have to migrate.

LONDON, 26 February, 2020 – The Texan city of Houston is about to grow in unexpected ways, thanks to the rising tides. So will Dallas. Real estate agents in Atlanta, Georgia; Denver, Colorado; and Las Vegas, Nevada could expect to do roaring business.

The inland counties around Los Angeles, and close to New Orleans in Louisiana, will suddenly get a little more crowded. And from Boston in the north-east to the tip of Florida, Americans will be on the move.

That is because an estimated 13 million US citizens could some time in this century become climate refugees, driven from their seaside homes by sea level rise of possibly 1.8 metres, according to new research.

And they will have to move home in a poorer economic climate: worldwide. If governments and city authorities do not take the right steps, sea level rise could erode 4% of the global annual economy, says a separate study. That is, coast-dwellers could witness not just their towns and even cities washed away: they could see their prosperity go under as well.

Californian scientists report in the Public Library of Science journal PLOS One that they used machine learning techniques – in effect, artificial intelligence systems – to calculate what is most likely to happen as US citizens desert Delaware Bay, slip away from the cities of North and South Carolina, and flee Florida in the face of rising sea levels, coastal flooding and increasingly catastrophic windstorms.

“Sea level rise will affect every county in the United States … everybody should care about sea level rise, whether they live on the coast or not”

In the year 2000, a third of all the planet’s urban land was in a zone vulnerable to flood. By 2040, this could rise to 40%. In 2010, in the US, more than 120m citizens – that is nearly 40% of the entire population – lived in coastal counties. By 2020, this proportion could already be higher.

And by 2100, at least 13.1m people could be living on land likely to be inundated if sea levels rise by 1.8 metres. Except that they won’t: they will have already seen the future and moved away from it, to some settlement well away from the rising tides.

Those who might otherwise have purchased their abandoned seaside houses will be looking for somewhere safer and adding to the pressure on the housing market.

“Sea level rise will affect every county in the United States,” said Bistra Dilkina of the University of Southern California at Irvine, a computer scientist who worked with engineers to model the human response to the future.

She and her colleagues started from patterns of movement that began with Hurricane Katrina, in 2004, and Hurricane Rita a year later, both in Louisiana. They then let the algorithms take over the challenge of guessing what American families and businesses are most likely to do as the tides begin to flood the high streets.

Action promised

“We hope this research will empower urban planners and local decision-makers to prepare to accept populations displaced by sea level rise. Our findings indicate that everybody should care about sea level rise, whether they live on the coast or not,” she said.

The California team’s worst-case forecasts are based on a premise that the world takes no real action to combat sea level rise, which is driven by global warming powered in turn by fossil fuel emissions into the atmosphere on an ever-increasing scale.

But in Paris in 2015, more than 190 nations did agree to act: to contain global warming to “well below” 2°C by the century’s end. So far, very few have committed to sufficient action, and the President of the US has pronounced climate change a “hoax” and announced a withdrawal from the Paris Agreement.

Researchers in Austria report in the journal Environmental Research Communications that they decided to consider the potential economic cost worldwide of sea level rise alone. Scientists have been trying for years to guess the cost of flood damage to come: the latest study is of the impact of sea level rise and coastal flooding upon national economies worldwide.

The scientists considered two scenarios, including one in which the world kept the promises made in Paris, and one in which it did not, and made no attempt to adapt to or mitigate climate change.

Significant impact

By 2050 losses in each scenario would be significant and much the same. But by 2100, the do-nothing option promised to hit the gross domestic product – an economist’s favourite measure of economic well-being – by 4%.

Europe and Japan would be significantly hit; China , India and Canada hardest of all. If the world’s richest nations actually worked to limit climate change and adapt to the challenges ahead, the impact on the economy could be limited to 1%.

“The findings of this paper demonstrate that we need to think long term while acting swiftly,” said Thomas Schinko of the International Institute for Applied Systems Analysis in Austria, who led the study.

“Macroeconomic impacts up to and beyond 2050 as a result of coastal flooding due to sea level rise – not taking into account any other climate-related impacts such as drought – are severe and increasing.

“We, as a global society, need to further co-ordinate mitigation, adaptation and climate-resilient development and consider where we build cities and situate important infrastructure.” – Climate News Network

Old batteries can be source of new energy

How to dispose of old batteries from redundant electric vehicles? The good news: we can harvest their valuable parts to make new ones.

LONDON, 24 February, 2020 − Driving an electric-powered vehicle (EV) rather than one reliant on fossil fuels is a key way to tackle climate change and improve air quality − but it does leave the old batteries behind as a nasty residue.

New technologies give rise to their own sets of problems. The all-important battery in an EV has a limited life span – due to high operating temperatures, changing discharge rates and other factors, batteries in EVs in use today are unlikely to last for more than 10 years.

The question is what to do with all those batteries once they have reached the end of their operating life. The dumping of electronic or e-waste – made up of old computers and other everyday equipment − is already a massive worldwide problem: EV industry analysts say similar difficulties could develop when EVs and their batteries reach the end of their lives.

But a recent study by scientists at the University of Birmingham, UK, and colleagues, published in the journal Nature, comes up with some solutions. It says valuable materials, including cobalt, could be extracted or “harvested” from the EV lithium-ion batteries when they no longer work: these materials could then be used to make new batteries.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed will surely be essential”

Such processes can be hazardous: the study’s authors say recycling systems with operating robots could be set up to carry out the work.

“In the future, electric vehicles may prove to be a valuable secondary resource for critical materials, and it has been argued that high cobalt-content batteries should be recycled immediately to bolster cobalt supplies”, the study says.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed by electric-vehicle battery manufacturing will surely be essential to ensure the sustainability of the automotive industry of the future.”

The study says an EV battery – much like a battery in a mobile phone – loses some of its effectiveness during its life cycle, but can still hold up to 80% of its power. While it’s not suitable for continued road use, it can be adapted for other purposes.

Powering local shops

Banks of old EV batteries could store power: they could be used to store energy to feed into the electricity grid or directly into buildings. In Japan the Toyota car company has pioneered a scheme which hooks up old EV batteries with solar panels to power convenience stores.

In 2017 more than a million EVs were sold worldwide. The study estimates that when those cars reach the end of the road they will produce 250,000 tonnes of discarded battery packs. It’s vital, say the study’s authors, that this problem be addressed now.

It’s estimated that EV global sales combined with sales of plug-in hybrid cars amounted to more than 2.2 million last year. At the same time, sales of fossil fuel cars have been falling.

All the big vehicle manufacturers are making heavy commitments to EV manufacturing. Deloitte, the market research group, forecasts global EV sales rising to 12 million in 2025 and to more than 20 million by 2030. It predicts that as economies of scale are achieved and costs of manufacturing batteries decline, the price of EVs will fall. − Climate News Network

How to dispose of old batteries from redundant electric vehicles? The good news: we can harvest their valuable parts to make new ones.

LONDON, 24 February, 2020 − Driving an electric-powered vehicle (EV) rather than one reliant on fossil fuels is a key way to tackle climate change and improve air quality − but it does leave the old batteries behind as a nasty residue.

New technologies give rise to their own sets of problems. The all-important battery in an EV has a limited life span – due to high operating temperatures, changing discharge rates and other factors, batteries in EVs in use today are unlikely to last for more than 10 years.

The question is what to do with all those batteries once they have reached the end of their operating life. The dumping of electronic or e-waste – made up of old computers and other everyday equipment − is already a massive worldwide problem: EV industry analysts say similar difficulties could develop when EVs and their batteries reach the end of their lives.

But a recent study by scientists at the University of Birmingham, UK, and colleagues, published in the journal Nature, comes up with some solutions. It says valuable materials, including cobalt, could be extracted or “harvested” from the EV lithium-ion batteries when they no longer work: these materials could then be used to make new batteries.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed will surely be essential”

Such processes can be hazardous: the study’s authors say recycling systems with operating robots could be set up to carry out the work.

“In the future, electric vehicles may prove to be a valuable secondary resource for critical materials, and it has been argued that high cobalt-content batteries should be recycled immediately to bolster cobalt supplies”, the study says.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed by electric-vehicle battery manufacturing will surely be essential to ensure the sustainability of the automotive industry of the future.”

The study says an EV battery – much like a battery in a mobile phone – loses some of its effectiveness during its life cycle, but can still hold up to 80% of its power. While it’s not suitable for continued road use, it can be adapted for other purposes.

Powering local shops

Banks of old EV batteries could store power: they could be used to store energy to feed into the electricity grid or directly into buildings. In Japan the Toyota car company has pioneered a scheme which hooks up old EV batteries with solar panels to power convenience stores.

In 2017 more than a million EVs were sold worldwide. The study estimates that when those cars reach the end of the road they will produce 250,000 tonnes of discarded battery packs. It’s vital, say the study’s authors, that this problem be addressed now.

It’s estimated that EV global sales combined with sales of plug-in hybrid cars amounted to more than 2.2 million last year. At the same time, sales of fossil fuel cars have been falling.

All the big vehicle manufacturers are making heavy commitments to EV manufacturing. Deloitte, the market research group, forecasts global EV sales rising to 12 million in 2025 and to more than 20 million by 2030. It predicts that as economies of scale are achieved and costs of manufacturing batteries decline, the price of EVs will fall. − Climate News Network

Greenhouse gases have a puzzling double effect

Lustier plant growth as greenhouse gases climb should counter global heating and atmospheric carbon build-up. But it’s not quite so simple.

LONDON, 21 February, 2020 – The Arctic is getting greener as greenhouse gases abound and the global thermometer rises. The vegetation of the high latitudes is moving further north, growing taller, becoming more substantial, more abundant and budding earlier, according to new studies by 40 scientists from 36 European and US institutions.

And the whole planet is getting greener too, according to a separate study in a second journal, as more carbon dioxide in the atmosphere – the chief cause of global heating – also acts as a fertiliser to stimulate plant growth.

It is as if researchers have finally identified a genuine negative feedback effect: as the world warms because of higher levels of greenhouse gases, the plant world responds by absorbing more of the carbon in the atmosphere and modifying the overall impact.

But both studies identify problems with what might be a comforting conclusion: it isn’t clear why in some Arctic regions the green things are getting greener, while in others the vegetation cover is becoming poorer.

And worldwide, it might be that much of the global greening can be attributed to human action – the advance of industrial-scale agriculture and commercial forest plantation – in which case most of the absorbed carbon dioxide will be returned to the atmosphere sooner or later.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming”

Both studies confirm the value of a closer look at the evidence so far – and the need for further study.

In the journal Nature Climate Change, scientists report that they checked the big picture of polar greening based on four decades of data from large-scale satellite observation against more detailed evidence over smaller sample regions collected by sensors mounted on drones and on aircraft, as well as direct examination on the once-frozen ground.

The Arctic is the fastest-warming region of the planet: it is warming twice as fast as the globe as a whole. Snow melts earlier, plants leaf sooner. Shrubs that once stayed close to the slushy snow surface are now taller, and new species are colonising once hostile terrain.

This is expected to destabilise the Arctic tundra, the region of year-round permafrost that masks a vast reservoir of carbon buried in the frozen soils.

Natural response

So botanists and climate scientists in the high latitudes now have to begin some tricky calculations in their pursuit of reliable estimates of the global carbon budget. How much carbon will the new green growth absorb and store? And how much carbon buried for the last 100,000 years or so will escape into the atmosphere with the advance of the northern greenery and the thawing of the soils?

But at least, according to a paper in the journal Nature Reviews Earth and Environment, the observed greening of the Arctic is a natural response to rising average temperatures and greater carbon dioxide fertilisation as a consequence of ever-higher levels of greenhouse gas emissions and consequent climate change.

Svalbard in the high Arctic is almost 2°C warmer in summer than it was in 1986, and at least 30% greener. But the Arctic is a region with limited human settlement and low industrial investment.

A team of researchers from China, the US, France and Norway combed through 250 earlier studies, and revisited satellite data, climate models and field observations, to make sense of the evidence of a planet that has grown a lot greener: half of all the world’s vegetated lands are leafier than they once were.

And they concluded that it was possible that the growth of global greening in the last 40 years may have slowed the rate of global heating by as much as 0.25°C.

Human footprint

But the same greening can be seen as evidence of rapid human impact on the planet as a whole: much of it can be explained by more intensive use of farmland and forest plantation, especially in the world’s most populous countries, India and China.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming,” said one author, Jarle Bjerke of the Norwegian Institute for Nature Research.

And his co-author Phillipe Ciais, of France’s Laboratory of Climate and Environmental Sciences, said: “Plants are actively defending against the dangers of carbon pollution by not only sequestering carbon on land but also by wetting the atmosphere through transpiration of ground water and evaporation of precipitation intercepted by their bodies.

“Stopping deforestation and promoting sustainable, ecologically sensible afforestation could be one of the simplest and most cost-effective, though not sufficient, defences against climate change.” – Climate News Network

Lustier plant growth as greenhouse gases climb should counter global heating and atmospheric carbon build-up. But it’s not quite so simple.

LONDON, 21 February, 2020 – The Arctic is getting greener as greenhouse gases abound and the global thermometer rises. The vegetation of the high latitudes is moving further north, growing taller, becoming more substantial, more abundant and budding earlier, according to new studies by 40 scientists from 36 European and US institutions.

And the whole planet is getting greener too, according to a separate study in a second journal, as more carbon dioxide in the atmosphere – the chief cause of global heating – also acts as a fertiliser to stimulate plant growth.

It is as if researchers have finally identified a genuine negative feedback effect: as the world warms because of higher levels of greenhouse gases, the plant world responds by absorbing more of the carbon in the atmosphere and modifying the overall impact.

But both studies identify problems with what might be a comforting conclusion: it isn’t clear why in some Arctic regions the green things are getting greener, while in others the vegetation cover is becoming poorer.

And worldwide, it might be that much of the global greening can be attributed to human action – the advance of industrial-scale agriculture and commercial forest plantation – in which case most of the absorbed carbon dioxide will be returned to the atmosphere sooner or later.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming”

Both studies confirm the value of a closer look at the evidence so far – and the need for further study.

In the journal Nature Climate Change, scientists report that they checked the big picture of polar greening based on four decades of data from large-scale satellite observation against more detailed evidence over smaller sample regions collected by sensors mounted on drones and on aircraft, as well as direct examination on the once-frozen ground.

The Arctic is the fastest-warming region of the planet: it is warming twice as fast as the globe as a whole. Snow melts earlier, plants leaf sooner. Shrubs that once stayed close to the slushy snow surface are now taller, and new species are colonising once hostile terrain.

This is expected to destabilise the Arctic tundra, the region of year-round permafrost that masks a vast reservoir of carbon buried in the frozen soils.

Natural response

So botanists and climate scientists in the high latitudes now have to begin some tricky calculations in their pursuit of reliable estimates of the global carbon budget. How much carbon will the new green growth absorb and store? And how much carbon buried for the last 100,000 years or so will escape into the atmosphere with the advance of the northern greenery and the thawing of the soils?

But at least, according to a paper in the journal Nature Reviews Earth and Environment, the observed greening of the Arctic is a natural response to rising average temperatures and greater carbon dioxide fertilisation as a consequence of ever-higher levels of greenhouse gas emissions and consequent climate change.

Svalbard in the high Arctic is almost 2°C warmer in summer than it was in 1986, and at least 30% greener. But the Arctic is a region with limited human settlement and low industrial investment.

A team of researchers from China, the US, France and Norway combed through 250 earlier studies, and revisited satellite data, climate models and field observations, to make sense of the evidence of a planet that has grown a lot greener: half of all the world’s vegetated lands are leafier than they once were.

And they concluded that it was possible that the growth of global greening in the last 40 years may have slowed the rate of global heating by as much as 0.25°C.

Human footprint

But the same greening can be seen as evidence of rapid human impact on the planet as a whole: much of it can be explained by more intensive use of farmland and forest plantation, especially in the world’s most populous countries, India and China.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming,” said one author, Jarle Bjerke of the Norwegian Institute for Nature Research.

And his co-author Phillipe Ciais, of France’s Laboratory of Climate and Environmental Sciences, said: “Plants are actively defending against the dangers of carbon pollution by not only sequestering carbon on land but also by wetting the atmosphere through transpiration of ground water and evaporation of precipitation intercepted by their bodies.

“Stopping deforestation and promoting sustainable, ecologically sensible afforestation could be one of the simplest and most cost-effective, though not sufficient, defences against climate change.” – Climate News Network

UK airports must shut to reach 2050 climate target

All UK airports must close by 2050 for the country to reach its target of net zero climate emissions by then, scientists say.

LONDON, 18 February, 2020 − If it is to achieve its target of net zero climate emissions by 2050, all UK airports must close by mid-century and the country will have to make other drastic and fundamental lifestyle changes, says a report from a research group backed by the government in London.

With the UK due to host this year’s round of crucial UN climate talks in Glasgow in November, a group of academics has embarrassed the British government by showing it has currently no chance of meeting its own legally binding target to reduce greenhouse gas emissions to nothing within 30 years.

Their report, Absolute Zero, published by the University of Cambridge, says no amount of government or public wishful thinking will hide the fact that the country will not reach zero emissions by 2050 without barely conceivable changes to policies, industrial processes and lifestyles. Its authors include colleagues from five other British universities.

All are members of a group from UK Fires, a research programme sponsored by the UK government, aiming to support a 20% cut in the country’s true emissions by 2050 by placing resource efficiency at the heart of its future industrial strategy. The report was paid for under the UK Fires programme.

As well as a temporary halt to flying, the report also says British people cannot go on driving heavier cars and turning up the heating in their homes.

“The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping”

The government, industry and the public, it says, cannot continue to indulge themselves in these ways in the belief that new technologies will somehow save them – everyone will have to work together change their way of life.

Because electric or zero-emission aircraft cannot be developed in time, most British airports will need to close by the end of this decade, and all flying will have to stop by 2050 until non-polluting versions are available.

Electrification of surface transport, rail and road, needs to be rapid, with the phasing out of all development of petrol and diesel cars immediately. Even if all private cars are electric, the amount of traffic will have to fall to 60% of 2020 levels by 2050, and all cars will have to be smaller.

The report also suggests that ships, currently heavy users of fossil fuels, need to convert to electric propulsion in order to allow for necessary imports and exports.

Not enough time

The reasoning behind the report is that technologies to cut greenhouse gas emissions, like carbon capture and storage, will not be developed in time and on a large enough scale to make a difference to emission reductions by 2050.

Nor is it any use exporting energy-intensive industries like steel-making, because the emissions will still take place abroad.

Instead, homegrown industries need to be developed that use no fossil fuels but are powered by electricity. The report says blast furnaces need to be phased out and replaced by existing technologies that recycle steel using renewable electricity.

It calls for public debate and discussion about the lifestyle changes that will be essential. Although such luxuries as flying away on holiday and driving large cars will have to be foregone, and eating beef and lamb curtailed, the scientists say that life could be just as rich as today.

They say: “… sports, social life, eating, hobbies, games, computing, reading, TV, music, radio, volunteering (and sleeping!) We can all do more of these without any impact on emissions”.

Offsets won’t work

They want the public to help by lobbying for airport closures, more trains, no new roads and more renewable electricity.

The report insists that the government should not try to hide any of its emissions by importing goods: “The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping.”

Nor can there be any meaningful “carbon offsets.” The only short-term option we have of reducing emissions – at least by 2050 – is to plant trees. “Even a massive increase in forestry would only have a small effect compared to today’s emissions.”

The authors comment: “There are no invisible solutions to climate change. We urgently need to engage everyone in the process of delivering the changes that will lead to zero emissions.” − Climate News Network

All UK airports must close by 2050 for the country to reach its target of net zero climate emissions by then, scientists say.

LONDON, 18 February, 2020 − If it is to achieve its target of net zero climate emissions by 2050, all UK airports must close by mid-century and the country will have to make other drastic and fundamental lifestyle changes, says a report from a research group backed by the government in London.

With the UK due to host this year’s round of crucial UN climate talks in Glasgow in November, a group of academics has embarrassed the British government by showing it has currently no chance of meeting its own legally binding target to reduce greenhouse gas emissions to nothing within 30 years.

Their report, Absolute Zero, published by the University of Cambridge, says no amount of government or public wishful thinking will hide the fact that the country will not reach zero emissions by 2050 without barely conceivable changes to policies, industrial processes and lifestyles. Its authors include colleagues from five other British universities.

All are members of a group from UK Fires, a research programme sponsored by the UK government, aiming to support a 20% cut in the country’s true emissions by 2050 by placing resource efficiency at the heart of its future industrial strategy. The report was paid for under the UK Fires programme.

As well as a temporary halt to flying, the report also says British people cannot go on driving heavier cars and turning up the heating in their homes.

“The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping”

The government, industry and the public, it says, cannot continue to indulge themselves in these ways in the belief that new technologies will somehow save them – everyone will have to work together change their way of life.

Because electric or zero-emission aircraft cannot be developed in time, most British airports will need to close by the end of this decade, and all flying will have to stop by 2050 until non-polluting versions are available.

Electrification of surface transport, rail and road, needs to be rapid, with the phasing out of all development of petrol and diesel cars immediately. Even if all private cars are electric, the amount of traffic will have to fall to 60% of 2020 levels by 2050, and all cars will have to be smaller.

The report also suggests that ships, currently heavy users of fossil fuels, need to convert to electric propulsion in order to allow for necessary imports and exports.

Not enough time

The reasoning behind the report is that technologies to cut greenhouse gas emissions, like carbon capture and storage, will not be developed in time and on a large enough scale to make a difference to emission reductions by 2050.

Nor is it any use exporting energy-intensive industries like steel-making, because the emissions will still take place abroad.

Instead, homegrown industries need to be developed that use no fossil fuels but are powered by electricity. The report says blast furnaces need to be phased out and replaced by existing technologies that recycle steel using renewable electricity.

It calls for public debate and discussion about the lifestyle changes that will be essential. Although such luxuries as flying away on holiday and driving large cars will have to be foregone, and eating beef and lamb curtailed, the scientists say that life could be just as rich as today.

They say: “… sports, social life, eating, hobbies, games, computing, reading, TV, music, radio, volunteering (and sleeping!) We can all do more of these without any impact on emissions”.

Offsets won’t work

They want the public to help by lobbying for airport closures, more trains, no new roads and more renewable electricity.

The report insists that the government should not try to hide any of its emissions by importing goods: “The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping.”

Nor can there be any meaningful “carbon offsets.” The only short-term option we have of reducing emissions – at least by 2050 – is to plant trees. “Even a massive increase in forestry would only have a small effect compared to today’s emissions.”

The authors comment: “There are no invisible solutions to climate change. We urgently need to engage everyone in the process of delivering the changes that will lead to zero emissions.” − Climate News Network

Cities turn to freewheeling public transport

Cities worldwide are making their public transport free to use. As passenger numbers rise, car use falls. What’s not to like?

LONDON, 12 February, 2020 − In the United States, once the home of car culture, cities are increasingly experimenting with free public transport. But the idea is not an American preserve: it’s catching on fast across the globe.

In the French capital, Paris, the mayor is removing 72% of city car parking spaces. Birmingham in the UK is encouraging drivers to leave their cars at home and use public transport instead, or to walk or cycle. More public transport use means less toxic urban air, fewer greenhouse gas emissions − and happier citizens better equipped to escape one key aspect of poverty.

Transport is one of the big polluters. Cities in particular want more efficient, cleaner ways of moving people. The good news is that recent innovations suggest an effective answer: if public transport is free, more people are likely to use it, instantly cutting car use and pollution.

That kind of behaviour change can happen surprisingly fast. Around 100 cities worldwide currently run fare-free transit, most of them in Europe. Even in the US, home of the motor car, cities are showing increasing interest.

Sharing costs

Kansas City in Missouri and Olympia in Washington state have both said their buses will become fare-free this year. Worcester, Massachusetts’ second-largest city, has expressed strong support for waiving bus fares – a move that would cost $2-3 million a year in fares foregone.

The Rapid Transition Alliance (RTA) is a UK-based organisation which argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C”.

It says: “A rapid change is under way, bringing into question the role of the car and promoting public transport that is available for all.”

Fare-free transit can also help to cut poverty. The benefits of maintaining a transit system that drives the economy and helps residents at all income levels to get to their jobs, while keeping commuters off the roads, are so great that some urban leaders say the costs should be shared fairly by taxpayers.

Pollution cut

Birmingham and Paris both aim to increase the space for cyclists and walkers by taking it away from car owners, traditionally privileged by planners. Does cutting road space, far from increasing congestion, actually cut pollution instead? The RTA thinks it can.

The Paris mayor, Anne Hidalgo, is basing her re-election campaign on ensuring that “you can find everything you need within 15 minutes from home.” She wants to see the return of the more self-sufficient neighbourhood, and aims to make all roads safe for cyclists by 2024.

Birmingham will introduce incentives for businesses to remove parking spaces through the introduction of an annual workplace parking levy, and the city will build 12,800 new homes on former car parks. Freight deliveries will be restricted to out-of-hours times, and there will be a blanket 20 mile an hour (32 kph) speed limit on the city’s local roads.

Free mass transit offers a practical, fast option for change − and a relatively cheap one. It can boost the local economy. The deputy mayor of Ghent, in Belgium, Filip Watteeuw, has said that since the provision of free city transit there “has been a 17% increase in restaurant and bar startups, and the number of empty shops has been arrested”.

“A rapid change is under way, bringing into question the role of the car and promoting public transport that is available for all”

Ghent’s plan cost just €4m (£3.4m) to implement. By contrast it costs an estimated £20m-£30m to build just one mile of motorway. The city also has significantly cleaner air – nitrogen oxide levels have dropped by 20% since 2017.

Unlike many major infrastructure projects, making public transport free is easy to implement in stages if, for example, planners are unsure how it will affect particular communities. In Salt Lake City public transport was declared free for one day a week as an experiment – Fare Free Friday.

Health and city design are not the only reasons behind moves toward free mass transit. Poverty in inner city areas, with long commutes on older buses, is the norm for many at the bottom of society.

Free transport can make an immediate and disproportionate difference to the money in people’s pockets at a time when many developed societies are seeing the income equality gap grow.

Not car owners

Experiments in the US cities of Denver and Austin were initially viewed as unsuccessful, because there was little evidence that they removed cars from the road; that was because new passengers tended to be poor people who did not own cars, according to a 2012 review by the National Academies Press.

But they were successful in a different sense; they increased passenger use right away, with rises of between 20 and 60% in the first few months.

Car sales are tumbling as people look for alternatives, and as rural populations – who are most dependent on cars – continue to fall. Figures for January to September 2019 showed car sales lower in all major car markets in the world except for Brazil and Japan.

Integrated transport brings impressive reductions in pollution, congestion and accidents and sometimes more. in Colombia’s second city, Medellin, a combination of rethinking public space and public transport has contributed to a reduction in crime.

Finding public transport

The US Center for Climate and Energy Solutions suggests that Americans can save more than $9,738 annually by using public transport instead of driving. However, access, a problem for many, is the key to reducing emissions – 45% of Americans have no access to public transport.

Many UK cities, towns and villages are also very poorly served by public services. Edinburgh, Scotland’s capital, recently built a new and very expensive tram system, with fares higher than on the city’s bus network. Passengers numbers faltered, dashing hopes that the trams could pay their way.

But Edinburgh is renowned for its summer arts festival, which brings visitors flocking in. There is now talk of fare-free trams, at least from the airport to the city centre, which could help to increase overall festival visitor numbers and boost the city’s economy.

Carrots can often work better than sticks. Perhaps fare-free public transport schemes should offer something along the lines of frequent-flyer rewards? − Climate News Network

* * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

Cities worldwide are making their public transport free to use. As passenger numbers rise, car use falls. What’s not to like?

LONDON, 12 February, 2020 − In the United States, once the home of car culture, cities are increasingly experimenting with free public transport. But the idea is not an American preserve: it’s catching on fast across the globe.

In the French capital, Paris, the mayor is removing 72% of city car parking spaces. Birmingham in the UK is encouraging drivers to leave their cars at home and use public transport instead, or to walk or cycle. More public transport use means less toxic urban air, fewer greenhouse gas emissions − and happier citizens better equipped to escape one key aspect of poverty.

Transport is one of the big polluters. Cities in particular want more efficient, cleaner ways of moving people. The good news is that recent innovations suggest an effective answer: if public transport is free, more people are likely to use it, instantly cutting car use and pollution.

That kind of behaviour change can happen surprisingly fast. Around 100 cities worldwide currently run fare-free transit, most of them in Europe. Even in the US, home of the motor car, cities are showing increasing interest.

Sharing costs

Kansas City in Missouri and Olympia in Washington state have both said their buses will become fare-free this year. Worcester, Massachusetts’ second-largest city, has expressed strong support for waiving bus fares – a move that would cost $2-3 million a year in fares foregone.

The Rapid Transition Alliance (RTA) is a UK-based organisation which argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C”.

It says: “A rapid change is under way, bringing into question the role of the car and promoting public transport that is available for all.”

Fare-free transit can also help to cut poverty. The benefits of maintaining a transit system that drives the economy and helps residents at all income levels to get to their jobs, while keeping commuters off the roads, are so great that some urban leaders say the costs should be shared fairly by taxpayers.

Pollution cut

Birmingham and Paris both aim to increase the space for cyclists and walkers by taking it away from car owners, traditionally privileged by planners. Does cutting road space, far from increasing congestion, actually cut pollution instead? The RTA thinks it can.

The Paris mayor, Anne Hidalgo, is basing her re-election campaign on ensuring that “you can find everything you need within 15 minutes from home.” She wants to see the return of the more self-sufficient neighbourhood, and aims to make all roads safe for cyclists by 2024.

Birmingham will introduce incentives for businesses to remove parking spaces through the introduction of an annual workplace parking levy, and the city will build 12,800 new homes on former car parks. Freight deliveries will be restricted to out-of-hours times, and there will be a blanket 20 mile an hour (32 kph) speed limit on the city’s local roads.

Free mass transit offers a practical, fast option for change − and a relatively cheap one. It can boost the local economy. The deputy mayor of Ghent, in Belgium, Filip Watteeuw, has said that since the provision of free city transit there “has been a 17% increase in restaurant and bar startups, and the number of empty shops has been arrested”.

“A rapid change is under way, bringing into question the role of the car and promoting public transport that is available for all”

Ghent’s plan cost just €4m (£3.4m) to implement. By contrast it costs an estimated £20m-£30m to build just one mile of motorway. The city also has significantly cleaner air – nitrogen oxide levels have dropped by 20% since 2017.

Unlike many major infrastructure projects, making public transport free is easy to implement in stages if, for example, planners are unsure how it will affect particular communities. In Salt Lake City public transport was declared free for one day a week as an experiment – Fare Free Friday.

Health and city design are not the only reasons behind moves toward free mass transit. Poverty in inner city areas, with long commutes on older buses, is the norm for many at the bottom of society.

Free transport can make an immediate and disproportionate difference to the money in people’s pockets at a time when many developed societies are seeing the income equality gap grow.

Not car owners

Experiments in the US cities of Denver and Austin were initially viewed as unsuccessful, because there was little evidence that they removed cars from the road; that was because new passengers tended to be poor people who did not own cars, according to a 2012 review by the National Academies Press.

But they were successful in a different sense; they increased passenger use right away, with rises of between 20 and 60% in the first few months.

Car sales are tumbling as people look for alternatives, and as rural populations – who are most dependent on cars – continue to fall. Figures for January to September 2019 showed car sales lower in all major car markets in the world except for Brazil and Japan.

Integrated transport brings impressive reductions in pollution, congestion and accidents and sometimes more. in Colombia’s second city, Medellin, a combination of rethinking public space and public transport has contributed to a reduction in crime.

Finding public transport

The US Center for Climate and Energy Solutions suggests that Americans can save more than $9,738 annually by using public transport instead of driving. However, access, a problem for many, is the key to reducing emissions – 45% of Americans have no access to public transport.

Many UK cities, towns and villages are also very poorly served by public services. Edinburgh, Scotland’s capital, recently built a new and very expensive tram system, with fares higher than on the city’s bus network. Passengers numbers faltered, dashing hopes that the trams could pay their way.

But Edinburgh is renowned for its summer arts festival, which brings visitors flocking in. There is now talk of fare-free trams, at least from the airport to the city centre, which could help to increase overall festival visitor numbers and boost the city’s economy.

Carrots can often work better than sticks. Perhaps fare-free public transport schemes should offer something along the lines of frequent-flyer rewards? − Climate News Network

* * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

A stark climate warning from the green swan

The green swan brings a clear message from people who should know: bankers say the climate crisis means major change lies ahead.

LONDON, 10 February, 2020 − There’s more than a touch of déjà-vu about The green swan, another alarm call from the serious world of senior bankers about what the future is likely to hold.

Way back in 2006 the British economist Lord Nicholas Stern wrote his review warning of the serious impacts of climate change, in particular its effect on the global economy and the world’s financial systems.

For a brief period it seemed people were listening. Then, in 2008, the global financial crisis came along – a crisis caused, not by climate change but primarily by reckless bank lending, weak regulation and a sustained bout of greed.

World leaders panicked as the financial sector went into meltdown. Multi-billion dollar rescue packages were thrown about like confetti. Amid the panic, Stern’s warnings were largely forgotten.

It’s only recently that bankers and financiers have been revisiting his work and waving their own red flags about the dire consequences of a warming world.

The publisher of this book – the Bank of International Settlements (BIS) – is the central bank to the world’s central banks, its goal to preserve overall global monetary and financial stability. It is a conservative, some might say staid, institution, its utterances normally carefully calibrated and moderate in tone.

“Green swan events may force central banks to intervene as ‘climate rescuers of last resort’ and buy large sets of devalued assets”

The green swan is different: it graphically describes the sense of urgency now evident in banking boardrooms about global warming, the dire state of the planet and the consequent effects on the finance sector.

“Exceeding climate tipping points could lead to catastrophic and irreversible impacts that would make quantifying financial damages impossible”, say the authors.

“Avoiding this requires immediate and ambitious action towards a structural transformation of our economies, involving technological innovations that can be scaled, but also major changes in regulations and social norms.”

In other words, in non-banking terminology, expect the unexpected. Unless major international action is taken, climate change is going to cause lasting damage to the global economic and financial systems.

The “green swan” in the book’s title is a mutation of the concept of the “black swan” made famous by Nicholas Taleb in a 2007 book of the same name.

Key differences

Taleb used the term black swan to characterise random, unexpected events such as terrorist attacks or natural catastrophes and their impact on economies and financial systems. Uncertainty becomes a major factor: calculating risk in such circumstances is a very difficult, if not impossible, business.

This book’s authors characterise climate change in a similar way, talking of green swan events. But they draw some important distinctions.

Though the effects of global warming are highly uncertain, there is a high degree of certainty that major change is on the way. There is also certainty about the need for urgent action.

“Climate catastrophes are even more serious than most systemic financial crises”, say the authors.

“The complex chain reactions and cascade effects associated with both physical and transition risks could generate fundamentally unpredictable environmental, geopolitical, social and economic dynamics.”

The authors warn about central banks being caught in what they refer to as the uncharted waters of climate change. If government and other agencies don’t take action, the world’s central banks might not be able to ensure financial and price stability.

Ending fossil fuel

Fossil fuel companies could go to the wall. While this might be good for the climate, it would create financial turmoil.

“Green swan events may force central banks to intervene as ‘climate rescuers of last resort’ and buy large sets of devalued assets, to save the financial system once more.”

The warnings from the BIS are only the latest broadside from central bank authorities on the dangers of a warming world. Late last year the Bank of England, the UK’s central bank, announced it would be subjecting the country’s banks and insurance companies to a climate change-related stress test.

In recent days Singapore’s central monetary authority has introduced similar measures to test finance institutions’ preparedness in the face of global warming.

The overall message is clear: if you see a green swan, beware. A big climate change event is happening, and turmoil is on the way. − Climate News Network

* * * * *

The green swan: Central banking and financial stability in the age of climate change

An ebook by Patrick Bolton et al. published by the Bank of International Settlements/Banque de France

The green swan brings a clear message from people who should know: bankers say the climate crisis means major change lies ahead.

LONDON, 10 February, 2020 − There’s more than a touch of déjà-vu about The green swan, another alarm call from the serious world of senior bankers about what the future is likely to hold.

Way back in 2006 the British economist Lord Nicholas Stern wrote his review warning of the serious impacts of climate change, in particular its effect on the global economy and the world’s financial systems.

For a brief period it seemed people were listening. Then, in 2008, the global financial crisis came along – a crisis caused, not by climate change but primarily by reckless bank lending, weak regulation and a sustained bout of greed.

World leaders panicked as the financial sector went into meltdown. Multi-billion dollar rescue packages were thrown about like confetti. Amid the panic, Stern’s warnings were largely forgotten.

It’s only recently that bankers and financiers have been revisiting his work and waving their own red flags about the dire consequences of a warming world.

The publisher of this book – the Bank of International Settlements (BIS) – is the central bank to the world’s central banks, its goal to preserve overall global monetary and financial stability. It is a conservative, some might say staid, institution, its utterances normally carefully calibrated and moderate in tone.

“Green swan events may force central banks to intervene as ‘climate rescuers of last resort’ and buy large sets of devalued assets”

The green swan is different: it graphically describes the sense of urgency now evident in banking boardrooms about global warming, the dire state of the planet and the consequent effects on the finance sector.

“Exceeding climate tipping points could lead to catastrophic and irreversible impacts that would make quantifying financial damages impossible”, say the authors.

“Avoiding this requires immediate and ambitious action towards a structural transformation of our economies, involving technological innovations that can be scaled, but also major changes in regulations and social norms.”

In other words, in non-banking terminology, expect the unexpected. Unless major international action is taken, climate change is going to cause lasting damage to the global economic and financial systems.

The “green swan” in the book’s title is a mutation of the concept of the “black swan” made famous by Nicholas Taleb in a 2007 book of the same name.

Key differences

Taleb used the term black swan to characterise random, unexpected events such as terrorist attacks or natural catastrophes and their impact on economies and financial systems. Uncertainty becomes a major factor: calculating risk in such circumstances is a very difficult, if not impossible, business.

This book’s authors characterise climate change in a similar way, talking of green swan events. But they draw some important distinctions.

Though the effects of global warming are highly uncertain, there is a high degree of certainty that major change is on the way. There is also certainty about the need for urgent action.

“Climate catastrophes are even more serious than most systemic financial crises”, say the authors.

“The complex chain reactions and cascade effects associated with both physical and transition risks could generate fundamentally unpredictable environmental, geopolitical, social and economic dynamics.”

The authors warn about central banks being caught in what they refer to as the uncharted waters of climate change. If government and other agencies don’t take action, the world’s central banks might not be able to ensure financial and price stability.

Ending fossil fuel

Fossil fuel companies could go to the wall. While this might be good for the climate, it would create financial turmoil.

“Green swan events may force central banks to intervene as ‘climate rescuers of last resort’ and buy large sets of devalued assets, to save the financial system once more.”

The warnings from the BIS are only the latest broadside from central bank authorities on the dangers of a warming world. Late last year the Bank of England, the UK’s central bank, announced it would be subjecting the country’s banks and insurance companies to a climate change-related stress test.

In recent days Singapore’s central monetary authority has introduced similar measures to test finance institutions’ preparedness in the face of global warming.

The overall message is clear: if you see a green swan, beware. A big climate change event is happening, and turmoil is on the way. − Climate News Network

* * * * *

The green swan: Central banking and financial stability in the age of climate change

An ebook by Patrick Bolton et al. published by the Bank of International Settlements/Banque de France