Category Archives: Emissions

Faster global warming may bring much more heat

Climate scientists are haunted by a global temperature rise 56 million years ago, which could mean much more heat very soon.

LONDON,19 September, 2019 − We could in the near future be experiencing much more heat than we now expect. As carbon dioxide levels rise, global warming could accelerate, rather than merely keep pace with the levels of greenhouse gases in the atmosphere.

This is a lesson to be drawn from new computer simulations of the conditions that must have precipitated a dramatic shift in global climate 56 million years ago, when atmospheric carbon dioxide levels rose at least 1000 parts per million (ppm) and perhaps substantially higher.

For most of human history, carbon dioxide levels stood at around 285ppm. They have now passed 400ppm. By the century’s end, if humans go on burning ever greater quantities of fossil fuels to drive global heating, then these could reach 1000 ppm.

The last time that happened, during a period known as the Early Eocene 56 million years ago, the surface temperatures became up to 9°C hotter than today. The period has been repeatedly explored as a lesson for the pattern of events that might follow from global heating by profligate combustion of fossil fuels.

“The temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us”

The polar ice melted. Antarctic ocean temperatures reached 20°C. Sea levels rose dramatically, oceans became increasingly acidic, mammals evolved to smaller dimensions and crocodiles haunted the Arctic.

It is a principle of geology that the present is a key to the past – and it follows that the past must contain lessons for the future. So climate scientists have always taken a close interest in the Early Eocene.

US scientists report in the journal Science Advances that, for the first time, they were able to simulate the extreme surface warmth of the Early Eocene in a computer model. After decades of geological investigation, there is not much argument about the real conditions 56 million years ago, and the immensely high levels of carbon dioxide. What is not clear is quite how the link between atmosphere and temperature in that vanished era must have played out.

Research of this kind is based on mathematical simulation, which is only a tentative guide to what might actually happen on a rapidly changing planet, but the scientists count their results a success. Previous attempts have simply been built around the rise in atmospheric carbon dioxide.

Temperatures too low

This study managed to incorporate models of water vapour, cloud formation, atmospheric aerosols and other factors that would have set up a system of feedbacks that might lead to the sweltering tropics and the very warm polar regions of the era.

“For decades, the models have underestimated these temperatures, and the community has long assumed that the problem was with the geological data, or that there was a warming mechanism that had not been recognized,” said Christopher Poulsen, of the University of Michigan.

His co-author Jessica Tierney of the University of Arizona said: “For the first time a climate model matches the geological evidence out of the box − that is, without deliberate tweaks made to the model. It’s a breakthrough in our understanding of past climates.”

Other scientists have already predicted that what happened in the Early Eocene could turn out to be a lesson for what is happening now. The finding may play into the larger puzzle of something called “climate sensitivity”: that is, how so much extra carbon dioxide might lead to so much average global temperature rise?

Risk of underestimation

Researchers have assumed that the one would be in step with the other. But the latest finding also raises the possibility that warming might indeed accelerate as carbon dioxide concentrations rise. So far, the world has warmed by around 1°C in the last century, with the planet perhaps on track to pass 3°C by 2100.

But more recent studies have warned that this could be a serious underestimate. The lesson of the Early Eocene, a period of change that played out over hundreds of thousands of years, is that the questions of climate sensitivity have yet to be settled.

“We were surprised that the climate sensitivity increased as much as it did with increasing carbon dioxide levels,” said Jiang Zhu, of the University of Michigan, who led the study.

“It is a scary finding because it indicates that the temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us.” − Climate News Network

Climate scientists are haunted by a global temperature rise 56 million years ago, which could mean much more heat very soon.

LONDON,19 September, 2019 − We could in the near future be experiencing much more heat than we now expect. As carbon dioxide levels rise, global warming could accelerate, rather than merely keep pace with the levels of greenhouse gases in the atmosphere.

This is a lesson to be drawn from new computer simulations of the conditions that must have precipitated a dramatic shift in global climate 56 million years ago, when atmospheric carbon dioxide levels rose at least 1000 parts per million (ppm) and perhaps substantially higher.

For most of human history, carbon dioxide levels stood at around 285ppm. They have now passed 400ppm. By the century’s end, if humans go on burning ever greater quantities of fossil fuels to drive global heating, then these could reach 1000 ppm.

The last time that happened, during a period known as the Early Eocene 56 million years ago, the surface temperatures became up to 9°C hotter than today. The period has been repeatedly explored as a lesson for the pattern of events that might follow from global heating by profligate combustion of fossil fuels.

“The temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us”

The polar ice melted. Antarctic ocean temperatures reached 20°C. Sea levels rose dramatically, oceans became increasingly acidic, mammals evolved to smaller dimensions and crocodiles haunted the Arctic.

It is a principle of geology that the present is a key to the past – and it follows that the past must contain lessons for the future. So climate scientists have always taken a close interest in the Early Eocene.

US scientists report in the journal Science Advances that, for the first time, they were able to simulate the extreme surface warmth of the Early Eocene in a computer model. After decades of geological investigation, there is not much argument about the real conditions 56 million years ago, and the immensely high levels of carbon dioxide. What is not clear is quite how the link between atmosphere and temperature in that vanished era must have played out.

Research of this kind is based on mathematical simulation, which is only a tentative guide to what might actually happen on a rapidly changing planet, but the scientists count their results a success. Previous attempts have simply been built around the rise in atmospheric carbon dioxide.

Temperatures too low

This study managed to incorporate models of water vapour, cloud formation, atmospheric aerosols and other factors that would have set up a system of feedbacks that might lead to the sweltering tropics and the very warm polar regions of the era.

“For decades, the models have underestimated these temperatures, and the community has long assumed that the problem was with the geological data, or that there was a warming mechanism that had not been recognized,” said Christopher Poulsen, of the University of Michigan.

His co-author Jessica Tierney of the University of Arizona said: “For the first time a climate model matches the geological evidence out of the box − that is, without deliberate tweaks made to the model. It’s a breakthrough in our understanding of past climates.”

Other scientists have already predicted that what happened in the Early Eocene could turn out to be a lesson for what is happening now. The finding may play into the larger puzzle of something called “climate sensitivity”: that is, how so much extra carbon dioxide might lead to so much average global temperature rise?

Risk of underestimation

Researchers have assumed that the one would be in step with the other. But the latest finding also raises the possibility that warming might indeed accelerate as carbon dioxide concentrations rise. So far, the world has warmed by around 1°C in the last century, with the planet perhaps on track to pass 3°C by 2100.

But more recent studies have warned that this could be a serious underestimate. The lesson of the Early Eocene, a period of change that played out over hundreds of thousands of years, is that the questions of climate sensitivity have yet to be settled.

“We were surprised that the climate sensitivity increased as much as it did with increasing carbon dioxide levels,” said Jiang Zhu, of the University of Michigan, who led the study.

“It is a scary finding because it indicates that the temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us.” − Climate News Network

Climate models predict bigger heat rise ahead

Scientists using new climate models say a bigger heat rise than expected is possible by the end of the century.

LONDON, 18 September, 2019 − Greenhouse gases are raising the Earth’s temperature faster than previously thought, according to new climate models due to replace those used in current UN projections − meaning a bigger heat rise by 2100 than thought likely.

Separate models at two French research centres suggest that by then average global temperatures could have risen by 6.5 to 7.0°C above pre-industrial levels if carbon emissions continue at their present rate, the website phys.org reports.

Scientists − and most of the world’s governments − finalised the Paris Agreement on climate change in 2015, undertaking to keep the warming increase to a maximum of 2°C, and if possible to only 1.5°C.

Almost two years ago, a UN report deemed it “very likely” that global temperatures would reach 3°C by 2100, even if the Paris goals were fully implemented. But the French warning suggests a planet with double that predicted increase. And as the increase would be only an average, some parts of the world would be even more seriously affected.

“What we need to do to keep warming to safe levels is extremely simple. Global greenhouse gas emissions need to decline today rather than tomorrow, and global CO2 emissions should be brought to net zero”

“With our two models, we see that the scenario known as SSP1 2.6 − which normally allows us to stay under 2°C − doesn’t quite get us there,” Olivier Boucher, head of the Institute Pierre Simon Laplace climate modelling centre in Paris, told the French news agency AFP.

With barely one degree Celsius of warming so far, the world is already having to cope with more heat waves, droughts, floods and extreme weather, much of it made more destructive by rising seas.

Beyond Paris, a new generation of about 30 models known collectively as CMIP6 − including the two revealed by France − will underpin the sixth assessment report by the Intergovernmental Panel on Climate Change (IPCC): the full report is due in 2022.

“CMIP6 clearly includes the latest modelling improvements”, even as important uncertainties remain, Joeri Rogelj, an associate professor at Imperial College London and an IPCC lead author, told AFP.

More accurate

These include increased supercomputing power and sharper representations of weather systems, natural and man-made particles, and how clouds evolve in a warming world.

“We have better models now,” said Dr Boucher. “They have better resolution, and they represent current climate trends more accurately.”

A core finding of the new models is that increased levels of CO2 in the atmosphere will warm the Earth’s surface more easily than earlier calculations had suggested. If confirmed, this higher “equilibrium climate sensitivity”, or ECS, means humanity’s carbon budget − our total emissions allowance − is likely to shrink.

The French models are among the first to be released, but others developed independently have come to the same unsettling conclusion, Dr Boucher said. “The most respected ones − from the United States, and Britain’s Met Office − also show a higher ECS” than the previous generation of models, he said.

Less adaptation time

“A higher ECS means a greater likelihood of reaching higher levels of global warming, even with deeper emissions cuts”, Boucher and two British scientists − Professor Stephen Belcher and Professor Rowan Sutton from the UK National Centre for Atmospheric Science − wrote in a blog earlier this year.

“Higher warming would allow less time to adapt and mean a greater likelihood of passing climate ‘tipping points’ such as thawing of permafrost, which would further accelerate warming.”

“Unfortunately, our global failure to implement meaningful action on climate change over recent decades has put us in a situation where what we need to do to keep warming to safe levels is extremely simple”, said Dr Rogelj.

“Global greenhouse gas emissions need to decline today rather than tomorrow, and global CO2 emissions should be brought to net zero.” − Climate News Network

Scientists using new climate models say a bigger heat rise than expected is possible by the end of the century.

LONDON, 18 September, 2019 − Greenhouse gases are raising the Earth’s temperature faster than previously thought, according to new climate models due to replace those used in current UN projections − meaning a bigger heat rise by 2100 than thought likely.

Separate models at two French research centres suggest that by then average global temperatures could have risen by 6.5 to 7.0°C above pre-industrial levels if carbon emissions continue at their present rate, the website phys.org reports.

Scientists − and most of the world’s governments − finalised the Paris Agreement on climate change in 2015, undertaking to keep the warming increase to a maximum of 2°C, and if possible to only 1.5°C.

Almost two years ago, a UN report deemed it “very likely” that global temperatures would reach 3°C by 2100, even if the Paris goals were fully implemented. But the French warning suggests a planet with double that predicted increase. And as the increase would be only an average, some parts of the world would be even more seriously affected.

“What we need to do to keep warming to safe levels is extremely simple. Global greenhouse gas emissions need to decline today rather than tomorrow, and global CO2 emissions should be brought to net zero”

“With our two models, we see that the scenario known as SSP1 2.6 − which normally allows us to stay under 2°C − doesn’t quite get us there,” Olivier Boucher, head of the Institute Pierre Simon Laplace climate modelling centre in Paris, told the French news agency AFP.

With barely one degree Celsius of warming so far, the world is already having to cope with more heat waves, droughts, floods and extreme weather, much of it made more destructive by rising seas.

Beyond Paris, a new generation of about 30 models known collectively as CMIP6 − including the two revealed by France − will underpin the sixth assessment report by the Intergovernmental Panel on Climate Change (IPCC): the full report is due in 2022.

“CMIP6 clearly includes the latest modelling improvements”, even as important uncertainties remain, Joeri Rogelj, an associate professor at Imperial College London and an IPCC lead author, told AFP.

More accurate

These include increased supercomputing power and sharper representations of weather systems, natural and man-made particles, and how clouds evolve in a warming world.

“We have better models now,” said Dr Boucher. “They have better resolution, and they represent current climate trends more accurately.”

A core finding of the new models is that increased levels of CO2 in the atmosphere will warm the Earth’s surface more easily than earlier calculations had suggested. If confirmed, this higher “equilibrium climate sensitivity”, or ECS, means humanity’s carbon budget − our total emissions allowance − is likely to shrink.

The French models are among the first to be released, but others developed independently have come to the same unsettling conclusion, Dr Boucher said. “The most respected ones − from the United States, and Britain’s Met Office − also show a higher ECS” than the previous generation of models, he said.

Less adaptation time

“A higher ECS means a greater likelihood of reaching higher levels of global warming, even with deeper emissions cuts”, Boucher and two British scientists − Professor Stephen Belcher and Professor Rowan Sutton from the UK National Centre for Atmospheric Science − wrote in a blog earlier this year.

“Higher warming would allow less time to adapt and mean a greater likelihood of passing climate ‘tipping points’ such as thawing of permafrost, which would further accelerate warming.”

“Unfortunately, our global failure to implement meaningful action on climate change over recent decades has put us in a situation where what we need to do to keep warming to safe levels is extremely simple”, said Dr Rogelj.

“Global greenhouse gas emissions need to decline today rather than tomorrow, and global CO2 emissions should be brought to net zero.” − Climate News Network

Global warming hot spots pass safe limit

A study says Earth’s hot spots have already warmed by more than the safe limit for avoiding dangerous climate change.

LONDON, 15 September, 2019 − By land and sea, some of the planet’s hot spots are already above the temperature agreed by scientists and politicians as the maximum allowable to prevent a disastrous climate crisis.

The limit was accepted by 195 governments in the Paris Agreement, reached in 2015: it committed them to preventing the global average temperature rising by more than 2°C (3.6°F) above its pre-industrial level, and doing all they could to keep it below 1.5°C. It is making slow progress.

But a novel study, an analysis of scientific data by a leading US newspaper, says that about 10% of the Earth has already passed the 2°C level, with roughly twice as many hot spots above the 1.5°C mark.

The analysis, by journalists on the Washington Post, examined four global temperature data sets, from the 1800s to the present. It found that dangerous hot spots are spreading, both on land and in the seas.

Using data from US federal scientists as well as several academic groups, the journalists find that over the past five years − the hottest on record − about 10% of the planet has exceeded warming of over 2°C, or 3.6°F. Areas that have warmed by 1.5°C are about twice as common, already beyond 20% of the Earth’s area over the last five years.

“Much more than just the Arctic has crossed this threshold. Depending on the analysis used, we see 2°C of warming in much of Europe, northern Asia, the Middle East, and in key ocean hot zones”

The writers say defining how much heating has occurred requires choosing two separate time periods to compare. They considered two pre-industrial periods − from 1850 to 1899, and from 1880 to 1899 − and what they call two “end periods”, 2014 to 2018 and 2009 to 2018.

They acknowledge that some choices clearly push more of the globe beyond 2°C, especially choosing the very warm years between 2014 and 2018. They comment: “But the lowest total we got for how much of the globe is above 2°C was about 5%. That’s still an enormous area.”

The fastest-warming part of the world is the Arctic, but they say what they found applies far more widely than the far north: “Our analysis … shows that huge swaths of the region are above 2°C − if not 3°C”, they write.

“But we also find that much more than just the Arctic has crossed this threshold. Depending on the analysis used, we see 2°C of warming in much of Europe, northern Asia, the Middle East, and in key ocean hot zones.”

The analysis shows, they say, that changes in ocean currents are creating “dramatic” hot zones. Huge ocean currents, which transport heat, salt, and nutrients around the globe, are on the move, driven by changes in winds and atmospheric circulation.

Rapid heating

And because these ocean currents are warm, when they reach new areas those areas heat up fast. This is a particular problem in the southern hemisphere, where changes have occurred in every major ocean basin, leaving distinct hotspots in the regions of the Brazil Current in the South Atlantic, the Agulhas Current in the southern Indian Ocean, and the South Pacific’s East Australian Current.

The newspaper’s analysis focuses on the Brazil Current, which shows a particularly rapid warming. But the writers say it’s not alone.

The Agulhas Current, which travels southward along the coast of south-east Africa before swinging east towards Australia, shows a warming of well above 1.5°C in many regions — and occasionally even above 2°C in some datasets and scenarios.

Scientists have been studying this change for nearly four decades, and the newspaper says it is significant. The Agulhas is now spinning off more rings of warm water that swirl into the South Atlantic, transporting heat and salt from the Indian Ocean and potentially affecting a global circulation of currents.

The analysis reports on the plight of Uruguay, where a fast-warming ocean hot spot, linked with the Brazil Current, has been associated with major disruption of marine ecosystems.

Changing catches

Clams are dying on beaches, ocean heat waves are killing fish, and algal blooms are worsening. Uruguay’s fishing fleet is now bringing up up more tropical, warm-water-loving species in its nets.

The journalists point out that while fish can swim elsewhere, that’s not always an option for other species, including humans. Some species may adjust easily − for instance, many fish swim towards cooler waters nearer the poles. But shellfish and corals have to stay put. Fishing communities depend on specific fisheries, and may not be able to move or adjust.

The Paris Agreement deals in global averages, and by definition there are exceptions to averages, in both directions. So this analysis can expect to be received with some scepticism.

But the writers are convinced that the climate crisis is happening too fast for safety, and that more of the globe will be at 2°C very soon. The Post’s method considers five- and 10-year averages to identify which regions have already eclipsed 2°C. The past five years have been especially hot so, naturally, they show more of these hot spots.

But over the long term, they say, both averages are marching steadily upward. It just takes a little while for the 10-year average to catch up. − Climate News Network

A study says Earth’s hot spots have already warmed by more than the safe limit for avoiding dangerous climate change.

LONDON, 15 September, 2019 − By land and sea, some of the planet’s hot spots are already above the temperature agreed by scientists and politicians as the maximum allowable to prevent a disastrous climate crisis.

The limit was accepted by 195 governments in the Paris Agreement, reached in 2015: it committed them to preventing the global average temperature rising by more than 2°C (3.6°F) above its pre-industrial level, and doing all they could to keep it below 1.5°C. It is making slow progress.

But a novel study, an analysis of scientific data by a leading US newspaper, says that about 10% of the Earth has already passed the 2°C level, with roughly twice as many hot spots above the 1.5°C mark.

The analysis, by journalists on the Washington Post, examined four global temperature data sets, from the 1800s to the present. It found that dangerous hot spots are spreading, both on land and in the seas.

Using data from US federal scientists as well as several academic groups, the journalists find that over the past five years − the hottest on record − about 10% of the planet has exceeded warming of over 2°C, or 3.6°F. Areas that have warmed by 1.5°C are about twice as common, already beyond 20% of the Earth’s area over the last five years.

“Much more than just the Arctic has crossed this threshold. Depending on the analysis used, we see 2°C of warming in much of Europe, northern Asia, the Middle East, and in key ocean hot zones”

The writers say defining how much heating has occurred requires choosing two separate time periods to compare. They considered two pre-industrial periods − from 1850 to 1899, and from 1880 to 1899 − and what they call two “end periods”, 2014 to 2018 and 2009 to 2018.

They acknowledge that some choices clearly push more of the globe beyond 2°C, especially choosing the very warm years between 2014 and 2018. They comment: “But the lowest total we got for how much of the globe is above 2°C was about 5%. That’s still an enormous area.”

The fastest-warming part of the world is the Arctic, but they say what they found applies far more widely than the far north: “Our analysis … shows that huge swaths of the region are above 2°C − if not 3°C”, they write.

“But we also find that much more than just the Arctic has crossed this threshold. Depending on the analysis used, we see 2°C of warming in much of Europe, northern Asia, the Middle East, and in key ocean hot zones.”

The analysis shows, they say, that changes in ocean currents are creating “dramatic” hot zones. Huge ocean currents, which transport heat, salt, and nutrients around the globe, are on the move, driven by changes in winds and atmospheric circulation.

Rapid heating

And because these ocean currents are warm, when they reach new areas those areas heat up fast. This is a particular problem in the southern hemisphere, where changes have occurred in every major ocean basin, leaving distinct hotspots in the regions of the Brazil Current in the South Atlantic, the Agulhas Current in the southern Indian Ocean, and the South Pacific’s East Australian Current.

The newspaper’s analysis focuses on the Brazil Current, which shows a particularly rapid warming. But the writers say it’s not alone.

The Agulhas Current, which travels southward along the coast of south-east Africa before swinging east towards Australia, shows a warming of well above 1.5°C in many regions — and occasionally even above 2°C in some datasets and scenarios.

Scientists have been studying this change for nearly four decades, and the newspaper says it is significant. The Agulhas is now spinning off more rings of warm water that swirl into the South Atlantic, transporting heat and salt from the Indian Ocean and potentially affecting a global circulation of currents.

The analysis reports on the plight of Uruguay, where a fast-warming ocean hot spot, linked with the Brazil Current, has been associated with major disruption of marine ecosystems.

Changing catches

Clams are dying on beaches, ocean heat waves are killing fish, and algal blooms are worsening. Uruguay’s fishing fleet is now bringing up up more tropical, warm-water-loving species in its nets.

The journalists point out that while fish can swim elsewhere, that’s not always an option for other species, including humans. Some species may adjust easily − for instance, many fish swim towards cooler waters nearer the poles. But shellfish and corals have to stay put. Fishing communities depend on specific fisheries, and may not be able to move or adjust.

The Paris Agreement deals in global averages, and by definition there are exceptions to averages, in both directions. So this analysis can expect to be received with some scepticism.

But the writers are convinced that the climate crisis is happening too fast for safety, and that more of the globe will be at 2°C very soon. The Post’s method considers five- and 10-year averages to identify which regions have already eclipsed 2°C. The past five years have been especially hot so, naturally, they show more of these hot spots.

But over the long term, they say, both averages are marching steadily upward. It just takes a little while for the 10-year average to catch up. − Climate News Network

Moderate forest damage raises local temperature

Trees cool the world. They also cool themselves. Even moderate forest damage makes local temperatures soar.

LONDON, 13 September, 2019 − Destruction of the Amazon rainforest is bad news for the planet. It isn’t good news for the people, plants and animals of the region either. And even moderate forest damage raises local temperatures faster than it can affect the average global temperature.

British researchers used comprehensive and systematic sets of satellite data to test the local temperatures of both surviving tropical rainforest in the Amazon basin, and of the surfaces cleared of canopy by fire, axe, drought and grazing.

They report that even if two-thirds of the tree cover survived, the local ground temperature increased. The more canopy that was lost, the more pronounced the effect.

Local thermometer readings went up by almost half a degree in the first 13 years of this century, compared with the original undisturbed forest. And in the dry season, over the areas most affected by severe deforestation, the average temperatures soared by 1.5°C compared with intact forest.

This figure of 1.5°C has almost iconic status. It represents what 195 nations in Paris in 2015 agreed should be the limit of global average warming by the end of the century.

“The Amazon wildfires have reminded us all of the important role that forests play in our global systems. But intact Amazon forests are also crucially important for Brazil’s local climate”

Forests – and in particular the tropical rainforests – are part of the global strategy to constrain global heating driven by ever-increasing levels of greenhouse gases in the atmosphere, themselves the product of fossil fuel use and the destruction of grasslands and forests.

In a process called evapotranspiration, great tracts of canopy draw cascades of water from the soil and release it into the atmosphere, to lower local temperatures and at the same time absorb atmospheric carbon dioxide.

But rainforests such as the Amazon are also at risk, directly from human assault and less directly from global heating as higher temperatures increase the hazard of longer droughts, which in turn intensifies the loss of canopy.

And political change in Brazil now means that the planet’s “green lungs” are more at risk than ever, as fires blaze over the region.

Jessica Baker from the University of Leeds and her co-author report in the journal Frontiers in Forests and Global Change that almost one million square kilometres – an area the size of Egypt – of the Amazon has already been cleared: this is nearly a fifth of the original forest.

Damage increases heat

The researchers combed through local studies, satellite observations made by day and night, and other research to grade the forest as intact or no longer intact, and then as moderately or severely affected, and then started comparing averaged data from the three years 2001-2003 with that of 2011-2013.

They found that even if 70% of the canopy survived, the damaged forest was significantly warmer than the nearest intact forest. Towards the end of the dry season of August and September, heavily disturbed forest regions warmed by as much as 1.5°C compared to intact canopy.

“The Amazon wildfires have reminded us all of the important role that forests play in our global systems,” Dr Baker said. “But it cannot be overlooked that intact Amazon forests are also crucially important for Brazil’s local climate.”

And her co-author Dominick Spracklen said: “Evapotranspiration can be thought of as the forest ‘sweating’; when the moisture emitted by the forests evaporates it cools the local climate. Deforestation reduces evapotranspiration, taking away this cooling function and causing local temperatures to rise.

“As temperatures rise this increases drought stress and makes forests more susceptible to burning.” − Climate News Network

Trees cool the world. They also cool themselves. Even moderate forest damage makes local temperatures soar.

LONDON, 13 September, 2019 − Destruction of the Amazon rainforest is bad news for the planet. It isn’t good news for the people, plants and animals of the region either. And even moderate forest damage raises local temperatures faster than it can affect the average global temperature.

British researchers used comprehensive and systematic sets of satellite data to test the local temperatures of both surviving tropical rainforest in the Amazon basin, and of the surfaces cleared of canopy by fire, axe, drought and grazing.

They report that even if two-thirds of the tree cover survived, the local ground temperature increased. The more canopy that was lost, the more pronounced the effect.

Local thermometer readings went up by almost half a degree in the first 13 years of this century, compared with the original undisturbed forest. And in the dry season, over the areas most affected by severe deforestation, the average temperatures soared by 1.5°C compared with intact forest.

This figure of 1.5°C has almost iconic status. It represents what 195 nations in Paris in 2015 agreed should be the limit of global average warming by the end of the century.

“The Amazon wildfires have reminded us all of the important role that forests play in our global systems. But intact Amazon forests are also crucially important for Brazil’s local climate”

Forests – and in particular the tropical rainforests – are part of the global strategy to constrain global heating driven by ever-increasing levels of greenhouse gases in the atmosphere, themselves the product of fossil fuel use and the destruction of grasslands and forests.

In a process called evapotranspiration, great tracts of canopy draw cascades of water from the soil and release it into the atmosphere, to lower local temperatures and at the same time absorb atmospheric carbon dioxide.

But rainforests such as the Amazon are also at risk, directly from human assault and less directly from global heating as higher temperatures increase the hazard of longer droughts, which in turn intensifies the loss of canopy.

And political change in Brazil now means that the planet’s “green lungs” are more at risk than ever, as fires blaze over the region.

Jessica Baker from the University of Leeds and her co-author report in the journal Frontiers in Forests and Global Change that almost one million square kilometres – an area the size of Egypt – of the Amazon has already been cleared: this is nearly a fifth of the original forest.

Damage increases heat

The researchers combed through local studies, satellite observations made by day and night, and other research to grade the forest as intact or no longer intact, and then as moderately or severely affected, and then started comparing averaged data from the three years 2001-2003 with that of 2011-2013.

They found that even if 70% of the canopy survived, the damaged forest was significantly warmer than the nearest intact forest. Towards the end of the dry season of August and September, heavily disturbed forest regions warmed by as much as 1.5°C compared to intact canopy.

“The Amazon wildfires have reminded us all of the important role that forests play in our global systems,” Dr Baker said. “But it cannot be overlooked that intact Amazon forests are also crucially important for Brazil’s local climate.”

And her co-author Dominick Spracklen said: “Evapotranspiration can be thought of as the forest ‘sweating’; when the moisture emitted by the forests evaporates it cools the local climate. Deforestation reduces evapotranspiration, taking away this cooling function and causing local temperatures to rise.

“As temperatures rise this increases drought stress and makes forests more susceptible to burning.” − Climate News Network

Healthcare can worsen global climate crisis

Healthcare workers urging zero carbon emissions say chemicals used increasingly to anaesthetise patients are potent greenhouse gases.

LONDON, 11 September, 2019 − If the global healthcare sector were a country, it would be the fifth-largest greenhouse gas (GHG) emitter on the planet, according to a new report. Its authors, who argue for zero carbon emissions, say it is the first-ever estimate of healthcare’s global climate footprint.

While fossil fuel burning is responsible for more than half of the footprint, the report says there are several other causes, including the gases used to ensure that patients undergoing surgery feel no pain.

It is produced by Health Care Without Harm (HCWH), an international NGO seeking to change healthcare worldwide so that it reduces its environmental footprint and works for environmental health and justice globally. It was produced in collaboration with Arup.

The report says the European Union healthcare sector is the third largest emitter, accounting for 12% of the global healthcare climate footprint. More than half of healthcare’s worldwide emissions come from the top three emitters – the EU, the US and China. The report includes a breakdown for each EU member state.

An earlier report, published in May this year in the journal Environmental Research Letters, said the health care sectors of the 36 countries sampled were together responsible in 2014 for 1.6 GtCO2e (gigatonnes of carbon dioxide equivalent), or 4.4% of the total emissions from these nations, and 4.4% is the total used in the HCWH report.

(Carbon dioxide equivalency is a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect, usually over a century.)

“Places of healing should be leading the way, not contributing to the burden of disease”

HCWH says well over half of healthcare’s global climate footprint comes from fossil fuel combustion. But it identifies several other causes for concern as well. One is the range of gases used in anaesthesia to ensure  patients remain unconscious during surgery.

These are powerful greenhouse gases. Commonly used anaesthetics include nitrous oxide, sometimes known as laughing gas, and three fluorinated gases: sevoflurane, isoflurane, and desflurane. At present, the greater part of these gases enter the atmosphere after use.

Research by the UK National Health Service (NHS) Sustainable Development Unit shows the country’s anaesthetic gas footprint is 1.7%, most of it attributable to nitrous oxide use.

The UN climate change convention (UNFCCC) found that in 2014 a group of developed nations with 15% of the global population, 57% of the global GDP and 73% of global health expenditure was also responsible for 7 MtCO2e of medical nitrous oxide use. (“MtCO2e” means “million metric tons of carbon dioxide equivalent”.)

The UNFCCC concluded that the full impact of the gas’s global use in anaesthesia “can be expected to be substantially greater”.

Use is growing

For fluorinated gases used in anaesthesia, global emissions to the  atmosphere in 2014 were estimated to add 0.2% to the global health care footprint. Because of the growing use of these gases, increasingly chosen  in preference to nitrous oxide, the footprint from anaesthetic gases is also likely to increase.

In measured tones, HCWH says: “Wider adoption of waste anaesthetic capture systems has the potential to be a high impact health care-specific climate mitigation measure” – or in other words, trap them and dispose of them carefully before they can just escape through an open window to join the other GHGs already in the atmosphere.

But HCWH adds a warning: “For many individual health facilities and systems of hospitals the proportion of the contribution of both nitrous oxide and fluorinated anaesthetic gases to their climate footprint can be significantly higher.

“For instance, Albert Einstein Hospital in São Paulo, Brazil found that GHG emissions from nitrous oxide contributed to nearly 35% of their total reported GHG emissions in 2013.”

Its report said choosing to use desflurane instead of nitrous oxide meant a ten-fold increase in anaesthetic gas emissions.

Other remedies available

The HCWH report also sounds the alert about metered-dose inhalers (MDIs), devices which are typically used for the treatment of asthma and other respiratory conditions, and which use hydrofluorocarbons as propellants. These are also highly potent greenhouse gases, with warming potentials between 1,480 and 2,900 times that of carbon dioxide.

Again, though, the report says the full global emissions from MDIs will probably be much greater than today’s figure. Alternative ways of using MDIs, such as dry powder -based inhalers, it says, are available and provide the same medicines without the high global warming potential propellants.

The report argues for the transformation of the healthcare sector so that it meets the Paris Agreement goal of limiting temperature rise attributable to climate change to 1.5°C.

HCWH says hospitals and health systems should follow the example of the thousands of hospitals already moving toward climate-smart healthcare via the Health Care Climate Challenge and other initiatives.

Welcoming the report, the director-general of the World Health Organization, Dr Tedros Adhanom Ghebreyesus, said hospitals and other health sector facilities were a source of carbon emissions, contributing to climate change: “Places of healing should be leading the way, not contributing to the burden of disease.”− Climate News Network

Healthcare workers urging zero carbon emissions say chemicals used increasingly to anaesthetise patients are potent greenhouse gases.

LONDON, 11 September, 2019 − If the global healthcare sector were a country, it would be the fifth-largest greenhouse gas (GHG) emitter on the planet, according to a new report. Its authors, who argue for zero carbon emissions, say it is the first-ever estimate of healthcare’s global climate footprint.

While fossil fuel burning is responsible for more than half of the footprint, the report says there are several other causes, including the gases used to ensure that patients undergoing surgery feel no pain.

It is produced by Health Care Without Harm (HCWH), an international NGO seeking to change healthcare worldwide so that it reduces its environmental footprint and works for environmental health and justice globally. It was produced in collaboration with Arup.

The report says the European Union healthcare sector is the third largest emitter, accounting for 12% of the global healthcare climate footprint. More than half of healthcare’s worldwide emissions come from the top three emitters – the EU, the US and China. The report includes a breakdown for each EU member state.

An earlier report, published in May this year in the journal Environmental Research Letters, said the health care sectors of the 36 countries sampled were together responsible in 2014 for 1.6 GtCO2e (gigatonnes of carbon dioxide equivalent), or 4.4% of the total emissions from these nations, and 4.4% is the total used in the HCWH report.

(Carbon dioxide equivalency is a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect, usually over a century.)

“Places of healing should be leading the way, not contributing to the burden of disease”

HCWH says well over half of healthcare’s global climate footprint comes from fossil fuel combustion. But it identifies several other causes for concern as well. One is the range of gases used in anaesthesia to ensure  patients remain unconscious during surgery.

These are powerful greenhouse gases. Commonly used anaesthetics include nitrous oxide, sometimes known as laughing gas, and three fluorinated gases: sevoflurane, isoflurane, and desflurane. At present, the greater part of these gases enter the atmosphere after use.

Research by the UK National Health Service (NHS) Sustainable Development Unit shows the country’s anaesthetic gas footprint is 1.7%, most of it attributable to nitrous oxide use.

The UN climate change convention (UNFCCC) found that in 2014 a group of developed nations with 15% of the global population, 57% of the global GDP and 73% of global health expenditure was also responsible for 7 MtCO2e of medical nitrous oxide use. (“MtCO2e” means “million metric tons of carbon dioxide equivalent”.)

The UNFCCC concluded that the full impact of the gas’s global use in anaesthesia “can be expected to be substantially greater”.

Use is growing

For fluorinated gases used in anaesthesia, global emissions to the  atmosphere in 2014 were estimated to add 0.2% to the global health care footprint. Because of the growing use of these gases, increasingly chosen  in preference to nitrous oxide, the footprint from anaesthetic gases is also likely to increase.

In measured tones, HCWH says: “Wider adoption of waste anaesthetic capture systems has the potential to be a high impact health care-specific climate mitigation measure” – or in other words, trap them and dispose of them carefully before they can just escape through an open window to join the other GHGs already in the atmosphere.

But HCWH adds a warning: “For many individual health facilities and systems of hospitals the proportion of the contribution of both nitrous oxide and fluorinated anaesthetic gases to their climate footprint can be significantly higher.

“For instance, Albert Einstein Hospital in São Paulo, Brazil found that GHG emissions from nitrous oxide contributed to nearly 35% of their total reported GHG emissions in 2013.”

Its report said choosing to use desflurane instead of nitrous oxide meant a ten-fold increase in anaesthetic gas emissions.

Other remedies available

The HCWH report also sounds the alert about metered-dose inhalers (MDIs), devices which are typically used for the treatment of asthma and other respiratory conditions, and which use hydrofluorocarbons as propellants. These are also highly potent greenhouse gases, with warming potentials between 1,480 and 2,900 times that of carbon dioxide.

Again, though, the report says the full global emissions from MDIs will probably be much greater than today’s figure. Alternative ways of using MDIs, such as dry powder -based inhalers, it says, are available and provide the same medicines without the high global warming potential propellants.

The report argues for the transformation of the healthcare sector so that it meets the Paris Agreement goal of limiting temperature rise attributable to climate change to 1.5°C.

HCWH says hospitals and health systems should follow the example of the thousands of hospitals already moving toward climate-smart healthcare via the Health Care Climate Challenge and other initiatives.

Welcoming the report, the director-general of the World Health Organization, Dr Tedros Adhanom Ghebreyesus, said hospitals and other health sector facilities were a source of carbon emissions, contributing to climate change: “Places of healing should be leading the way, not contributing to the burden of disease.”− Climate News Network

University ends red meat meals and cuts carbon

A sustainable food policy which ends red meat meals has improved student diets and boosted a university catering service’s profits.

LONDON, 10 September, 2019 − Cambridge University in England, one of the richest and most famous universities in the world, has ended red meat meals in its outlets.

Beef and lamb are off the menu in its cafes and canteens, to educate staff and students about how to change their diets so as to help avoid dangerous climate change.

At the same time, the university says the decision will go a long way to reducing the carbon footprint of the University Catering Service (UCS) and cutting the amount of land needed to feed the students and administrators.

In a report on its decision to cut out red meat, known also as ruminant meat, the university says it has also greatly improved the variety of meals in its restaurants, particularly of vegetarian and vegan alternatives.

This has lowered the amount of land the UCS needs to grow food by over a quarter and its carbon footprint by over a third, while at the same time increasing profits.

“For us it was about making the right choice easy for our customers”

The change of policy by catering managers has also meant that, over the last 12 months, the catering staff have lowered food waste from the university’s canteens and eliminated unsustainably harvested fish from their menus.

Andrew Balmford, Cambridge’s professor of conservation science, said: “It is hard to imagine any other interventions that could yield such dramatic benefits in so short a span of time.”

UCS, which provides food for 1,500 events a year and runs 14 cafes and canteens, has also introduced other environmental improvements; cutting plastic waste by using Vegware compostable packaging and disposables; providing discounts for customers to keep their cups for re-use; and recycling cooking oil.

The changes, introduced in October 2016, required considerable re-education of the university’s chefs and help from its experts in the Department of Environment and Energy to create a sustainable food policy.

Promoting well-being

Nick White, head of operations at UCS, said: “I knew that we should be doing more to actively promote the consumption of more sustainable food to reduce our damage to the environment and to help encourage positive lifestyle changes, which would lead to a positive impact on the health and well-being of our students and staff.

“For us it was about making the right choice easy for our customers. I felt a big responsibility to do something about it.”

Catering staff, many of whom had been trained principally to cook meat as the centrepiece of a meal, had to be inspired to change menus and think of new dishes. They were told for example that switching diets to non-ruminant meats results in emitting 85% less greenhouse gas (carbon dioxide and methane) and using 60% less water and 85% less farmland.

Chefs were provided with vegan cooking classes and went to Borough Market in London, a centre of international cuisine where in some specialist outlets vegetarian and vegan dishes from all over the world are cooked for tourists and the cosmopolitan community.

The result of the changes is that the catering service has the same number of customers as before but has increased profitability by 2%, despite increased food costs.

Long road to change

As well as changing diets, the UCS has stopped selling single use plastic bottles and has replaced them with glass bottles, cans or biodegradable plastic bottles, saving 30,000 plastic bottles from going to landfill annually.

“This report demonstrates how achievable, environmentally effective, and professionally rewarding these bold actions can be”, Professor Balmford said.

But the battle to change the feeding habits of the 21,000 students and almost equal number of academic staff and administrators in Cambridge has a long way to go.

Most of the Cambridge colleges which make up the university and are spread across the city have their own dining halls and restaurants and provide meals for students and staff independently of the catering service. They are the next to be targeted for change. − Climate News Network

A sustainable food policy which ends red meat meals has improved student diets and boosted a university catering service’s profits.

LONDON, 10 September, 2019 − Cambridge University in England, one of the richest and most famous universities in the world, has ended red meat meals in its outlets.

Beef and lamb are off the menu in its cafes and canteens, to educate staff and students about how to change their diets so as to help avoid dangerous climate change.

At the same time, the university says the decision will go a long way to reducing the carbon footprint of the University Catering Service (UCS) and cutting the amount of land needed to feed the students and administrators.

In a report on its decision to cut out red meat, known also as ruminant meat, the university says it has also greatly improved the variety of meals in its restaurants, particularly of vegetarian and vegan alternatives.

This has lowered the amount of land the UCS needs to grow food by over a quarter and its carbon footprint by over a third, while at the same time increasing profits.

“For us it was about making the right choice easy for our customers”

The change of policy by catering managers has also meant that, over the last 12 months, the catering staff have lowered food waste from the university’s canteens and eliminated unsustainably harvested fish from their menus.

Andrew Balmford, Cambridge’s professor of conservation science, said: “It is hard to imagine any other interventions that could yield such dramatic benefits in so short a span of time.”

UCS, which provides food for 1,500 events a year and runs 14 cafes and canteens, has also introduced other environmental improvements; cutting plastic waste by using Vegware compostable packaging and disposables; providing discounts for customers to keep their cups for re-use; and recycling cooking oil.

The changes, introduced in October 2016, required considerable re-education of the university’s chefs and help from its experts in the Department of Environment and Energy to create a sustainable food policy.

Promoting well-being

Nick White, head of operations at UCS, said: “I knew that we should be doing more to actively promote the consumption of more sustainable food to reduce our damage to the environment and to help encourage positive lifestyle changes, which would lead to a positive impact on the health and well-being of our students and staff.

“For us it was about making the right choice easy for our customers. I felt a big responsibility to do something about it.”

Catering staff, many of whom had been trained principally to cook meat as the centrepiece of a meal, had to be inspired to change menus and think of new dishes. They were told for example that switching diets to non-ruminant meats results in emitting 85% less greenhouse gas (carbon dioxide and methane) and using 60% less water and 85% less farmland.

Chefs were provided with vegan cooking classes and went to Borough Market in London, a centre of international cuisine where in some specialist outlets vegetarian and vegan dishes from all over the world are cooked for tourists and the cosmopolitan community.

The result of the changes is that the catering service has the same number of customers as before but has increased profitability by 2%, despite increased food costs.

Long road to change

As well as changing diets, the UCS has stopped selling single use plastic bottles and has replaced them with glass bottles, cans or biodegradable plastic bottles, saving 30,000 plastic bottles from going to landfill annually.

“This report demonstrates how achievable, environmentally effective, and professionally rewarding these bold actions can be”, Professor Balmford said.

But the battle to change the feeding habits of the 21,000 students and almost equal number of academic staff and administrators in Cambridge has a long way to go.

Most of the Cambridge colleges which make up the university and are spread across the city have their own dining halls and restaurants and provide meals for students and staff independently of the catering service. They are the next to be targeted for change. − Climate News Network

Jakarta’s sea level prompts a move – at a price

For its people, Jakarta’s sea level is a nagging anxiety. But moving the Indonesian capital 1,000 kms to safety will be horribly costly.

LONDON, 9 September, 2019 – Spare a thought for the poorer residents of Jakarta, Indonesia’s sprawling capital city.

If your house on the Indonesian coast is threatened by the ocean because of climate change, then maybe – if you’re lucky and wealthy enough – a move to higher ground further inland may be possible.

But what happens when a whole city, with millions of people, is threatened by rising seas?

Jakarta has a population of more than 10 million. Established as the capital of what was the Dutch East Indies in the 17th century, the city is built on swamp land on the north-west coast of the island of Java.

But not only is Jakarta threatened by rising sea levels: rapid, largely unplanned expansion and building work has resulted in the city becoming, according to experts, one of the fastest-sinking urban areas in the world.

It’s estimated that up to 40% of the area of Jakarta is now below sea level. In northern districts of the city bordering the sea, rising sea levels are threatening many neighbourhoods, and flooding is common.

“This huge project will need to be done quickly to prevent Jakarta from sinking into the sea”

Attempts at tackling the issue have so far made little impact. A scheme designed to keep seawater out involving the construction of a 32 kilometre-long outer sea wall called the Great Garuda and 17 artificial islands straddling Jakarta Bay has been subject to long delays and finance problems.

“This huge project will need to be done quickly to prevent Jakarta from sinking into the sea”, says Joko Widodo, Indonesia’s president.

Ongoing extraction of groundwater from beneath the city is another serious problem, leading to frequent land subsidence.

Parts of Jakarta are sinking by as much as 25 cms each year. Experts say that in some areas the land has sunk by 2.5 metres over the last 10 years.

Now the Indonesian government is taking radical action. It’s announced plans to move the country’s capital elsewhere – to more than 1,000 kms away in East Kalimantan, on the Indonesian portion of the island of Borneo.

Five years to completion

Officials talk of creating a “smart and forest” city; the project, which has an initial price tag of US$33 billion (466,650 bn Rupiah), will involve the foundation of a new administrative capital, with up to 1.5 million civil servants being relocated.

Jakarta will retain its role as Indonesia’s commercial and financial hub. The government says work on the new city is due to begin in two years’ time and to be completed by 2024.

The construction of the new capital might go some way to settle one set of problems, but is likely to give birth to others.

The island of Borneo – shared between Indonesia, Malaysia and the small state of Brunei – contains one of the world’s largest remaining rain forests, a carbon sink which soaks up vast amounts of climate-changing greenhouse gases.

In the early 1970s three quarters of Borneo was covered in rainforest. By 2010, the forests had shrunk by more than 30%, with huge areas logged or given over to palm oil plantations.

Orangutans killed

Large areas of peat – another vital repository for hundreds of thousands of tonnes of climate-changing carbon – have also been destroyed. Indonesia has undertaken several coal-mining projects in its part of the island.

As the forests have been chopped down, wildlife has suffered. Numbers of orangutan have dropped by an estimated 100,000 over the past 20 years.

Despite pledges by the Indonesian government to build a sustainable “green” city and carry out various environmental surveys, many are sceptical about the building of the new capital.

Experts point out that many environmentally important areas of Borneo have already been destroyed by haphazard, badly planned development projects. They say the new plans, including the construction of a whole city, are only going to make the situation worse.

The daunting prospect facing Jakarta is likely to confront many other countries within the next few decades. Last month US researchers said the rising threat of flooding caused by climate change meant Americans should prepare for managed retreat from their own coasts. – Climate News Network

For its people, Jakarta’s sea level is a nagging anxiety. But moving the Indonesian capital 1,000 kms to safety will be horribly costly.

LONDON, 9 September, 2019 – Spare a thought for the poorer residents of Jakarta, Indonesia’s sprawling capital city.

If your house on the Indonesian coast is threatened by the ocean because of climate change, then maybe – if you’re lucky and wealthy enough – a move to higher ground further inland may be possible.

But what happens when a whole city, with millions of people, is threatened by rising seas?

Jakarta has a population of more than 10 million. Established as the capital of what was the Dutch East Indies in the 17th century, the city is built on swamp land on the north-west coast of the island of Java.

But not only is Jakarta threatened by rising sea levels: rapid, largely unplanned expansion and building work has resulted in the city becoming, according to experts, one of the fastest-sinking urban areas in the world.

It’s estimated that up to 40% of the area of Jakarta is now below sea level. In northern districts of the city bordering the sea, rising sea levels are threatening many neighbourhoods, and flooding is common.

“This huge project will need to be done quickly to prevent Jakarta from sinking into the sea”

Attempts at tackling the issue have so far made little impact. A scheme designed to keep seawater out involving the construction of a 32 kilometre-long outer sea wall called the Great Garuda and 17 artificial islands straddling Jakarta Bay has been subject to long delays and finance problems.

“This huge project will need to be done quickly to prevent Jakarta from sinking into the sea”, says Joko Widodo, Indonesia’s president.

Ongoing extraction of groundwater from beneath the city is another serious problem, leading to frequent land subsidence.

Parts of Jakarta are sinking by as much as 25 cms each year. Experts say that in some areas the land has sunk by 2.5 metres over the last 10 years.

Now the Indonesian government is taking radical action. It’s announced plans to move the country’s capital elsewhere – to more than 1,000 kms away in East Kalimantan, on the Indonesian portion of the island of Borneo.

Five years to completion

Officials talk of creating a “smart and forest” city; the project, which has an initial price tag of US$33 billion (466,650 bn Rupiah), will involve the foundation of a new administrative capital, with up to 1.5 million civil servants being relocated.

Jakarta will retain its role as Indonesia’s commercial and financial hub. The government says work on the new city is due to begin in two years’ time and to be completed by 2024.

The construction of the new capital might go some way to settle one set of problems, but is likely to give birth to others.

The island of Borneo – shared between Indonesia, Malaysia and the small state of Brunei – contains one of the world’s largest remaining rain forests, a carbon sink which soaks up vast amounts of climate-changing greenhouse gases.

In the early 1970s three quarters of Borneo was covered in rainforest. By 2010, the forests had shrunk by more than 30%, with huge areas logged or given over to palm oil plantations.

Orangutans killed

Large areas of peat – another vital repository for hundreds of thousands of tonnes of climate-changing carbon – have also been destroyed. Indonesia has undertaken several coal-mining projects in its part of the island.

As the forests have been chopped down, wildlife has suffered. Numbers of orangutan have dropped by an estimated 100,000 over the past 20 years.

Despite pledges by the Indonesian government to build a sustainable “green” city and carry out various environmental surveys, many are sceptical about the building of the new capital.

Experts point out that many environmentally important areas of Borneo have already been destroyed by haphazard, badly planned development projects. They say the new plans, including the construction of a whole city, are only going to make the situation worse.

The daunting prospect facing Jakarta is likely to confront many other countries within the next few decades. Last month US researchers said the rising threat of flooding caused by climate change meant Americans should prepare for managed retreat from their own coasts. – Climate News Network

French wines show hot dry years are now normal

Records have begun to topple for the world’s finest tipple. French wines can now count 664 years of vintage information in the east of the country.

LONDON, 6 September, 2019 − French wines tell a remarkable story: climate scientists and historians, with a new wine list to savour, have carefully reconstructed the harvest dates for Burgundy – one of the most important wine regions of France – to highlight the dramatic change in global climate.

Grapes in Burgundy are now picked 13 days earlier than the average for the last 664 years. And the advance in harvest dates has been dramatic: almost all since 1988.

The finding is based on painstaking study of data going back to 1354. From medieval times Burgundian growers and civic authorities had an unusual communal arrangement: they each year collectively considered the growing conditions and imposed a date before which no grapes might be picked.

And scientists from France, Germany and Switzerland report in the journal Climate of the Past that they worked through all surviving records to provide an accurate record of the harvest date around the city of Beaune.

“The transition to a rapid global warming after 1988 stands out very clearly. We hope people start to realistically consider the climate situation in which the planet is at present”

Since grapes are highly sensitive to temperature and rainfall, and the quality and reputation of Burgundy has been well-established for centuries, the researchers are confident that the data confirm a dramatic warming trend.

Even in a much cooler past, exceptionally early harvests were not unknown. The researchers counted 33 altogether, and 21 of these happened between 1393 and 1719, and five between 1720 and 2002. In the 16 years since 2003, there have been eight outstandingly warm spring-summer seasons, and five of those have happened in the last eight years.

“In sum, the 664-year-long Beaune grape harvest date series demonstrates that outstanding hot and dry years in the past were outliers, while they have become the norm since transition to rapid warming in 1988,” they write.

Historical reconstructions are not easy: data had been assembled before, but these records turned out to be riddled with copying, typing and printing errors. There were administrative changes (after 1906, city authorities in the Burgundian capital of Dijon ceased to set or record a harvest date).

Narrative verified

There were accounts kept by the dukes of Burgundy, and records of payments for grapevine labourers maintained by church authorities in Beaune, evidence of purchases of food for the harvesters, and records of sales to the King of France.

But those six centuries were also marked by the Little Ice Age, the Thirty Years War between Catholic and Protestant states from 1618 to 1648, several epidemics of plague, and the arrival of the vineyard-destroying infection phylloxera.

So the researchers had to verify their proxy history of regional climate from tree-ring data, and from vineyard records kept in Switzerland, as well as temperature records from Paris.

The wine industry is vulnerable to climate change: researchers noted three years ago that harvests in Burgundy and in Vaud in Switzerland were up to two weeks earlier and that climate change had begun to warm southern England’s chalky soils to the a degree that made them yield sparkling wines to match qualities pursued in the Champagne region of France.

Inescapable conclusion

But the same soaring temperatures that for the moment have helped the grower have begun to impose costs on the grape pickers, who become less productive as the mercury rises.

So the confirmation that harvests are earlier is not in itself news. The data from Beaune and Dijon are best seen as another example of painstaking phenological research. Phenology is the science of when insects hatch, trees bud and birds nest, and in the Burgundian series climate scientists now have a continuous record stretching back 664 years. The story told by the series is unequivocal.

“The transition to a rapid global warming after 1988 stands out very clearly,” said Christian Pfister of the University of Bern in Switzerland, one of the authors.

“The exceptional character of the last 30 years becomes apparent to everybody. We hope people start to realistically consider the climate situation in which the planet is at present.” − Climate News Network

Records have begun to topple for the world’s finest tipple. French wines can now count 664 years of vintage information in the east of the country.

LONDON, 6 September, 2019 − French wines tell a remarkable story: climate scientists and historians, with a new wine list to savour, have carefully reconstructed the harvest dates for Burgundy – one of the most important wine regions of France – to highlight the dramatic change in global climate.

Grapes in Burgundy are now picked 13 days earlier than the average for the last 664 years. And the advance in harvest dates has been dramatic: almost all since 1988.

The finding is based on painstaking study of data going back to 1354. From medieval times Burgundian growers and civic authorities had an unusual communal arrangement: they each year collectively considered the growing conditions and imposed a date before which no grapes might be picked.

And scientists from France, Germany and Switzerland report in the journal Climate of the Past that they worked through all surviving records to provide an accurate record of the harvest date around the city of Beaune.

“The transition to a rapid global warming after 1988 stands out very clearly. We hope people start to realistically consider the climate situation in which the planet is at present”

Since grapes are highly sensitive to temperature and rainfall, and the quality and reputation of Burgundy has been well-established for centuries, the researchers are confident that the data confirm a dramatic warming trend.

Even in a much cooler past, exceptionally early harvests were not unknown. The researchers counted 33 altogether, and 21 of these happened between 1393 and 1719, and five between 1720 and 2002. In the 16 years since 2003, there have been eight outstandingly warm spring-summer seasons, and five of those have happened in the last eight years.

“In sum, the 664-year-long Beaune grape harvest date series demonstrates that outstanding hot and dry years in the past were outliers, while they have become the norm since transition to rapid warming in 1988,” they write.

Historical reconstructions are not easy: data had been assembled before, but these records turned out to be riddled with copying, typing and printing errors. There were administrative changes (after 1906, city authorities in the Burgundian capital of Dijon ceased to set or record a harvest date).

Narrative verified

There were accounts kept by the dukes of Burgundy, and records of payments for grapevine labourers maintained by church authorities in Beaune, evidence of purchases of food for the harvesters, and records of sales to the King of France.

But those six centuries were also marked by the Little Ice Age, the Thirty Years War between Catholic and Protestant states from 1618 to 1648, several epidemics of plague, and the arrival of the vineyard-destroying infection phylloxera.

So the researchers had to verify their proxy history of regional climate from tree-ring data, and from vineyard records kept in Switzerland, as well as temperature records from Paris.

The wine industry is vulnerable to climate change: researchers noted three years ago that harvests in Burgundy and in Vaud in Switzerland were up to two weeks earlier and that climate change had begun to warm southern England’s chalky soils to the a degree that made them yield sparkling wines to match qualities pursued in the Champagne region of France.

Inescapable conclusion

But the same soaring temperatures that for the moment have helped the grower have begun to impose costs on the grape pickers, who become less productive as the mercury rises.

So the confirmation that harvests are earlier is not in itself news. The data from Beaune and Dijon are best seen as another example of painstaking phenological research. Phenology is the science of when insects hatch, trees bud and birds nest, and in the Burgundian series climate scientists now have a continuous record stretching back 664 years. The story told by the series is unequivocal.

“The transition to a rapid global warming after 1988 stands out very clearly,” said Christian Pfister of the University of Bern in Switzerland, one of the authors.

“The exceptional character of the last 30 years becomes apparent to everybody. We hope people start to realistically consider the climate situation in which the planet is at present.” − Climate News Network

Climate change underlies Europe’s rapid warming

From the edge of the Arctic to almost the Tropic of Cancer, Europe’s rapid warming is evidenced by hotter summers − and winters.

LONDON, 5 September, 2019 − Europe’s rapid warming means the world’s hottest property could now be on the continent. It has seen the strongest intensification of heat waves anywhere in the world in the last 70 years. The hottest of hot summers are now 2.3°C hotter than they used to be.

And winter extremes of cold are dwindling. The number of extremely cold days has fallen twofold or even threefold, and the coldest days are now 3°C milder than they used to be, according to readings from 94% of the continent’s weather stations.

This, say Swiss scientists, adds up to “a climate change signal that cannot be explained by internal variability.”

That is, thanks to a steady increase in atmospheric greenhouse gases driven by ever-increasing use of fossil fuels, Europe is warming even faster than global climate models predict.

“In at least one region of the globe, global heating is already happening, and at a rate faster than predicted”

“Even at this regional scale over Europe we can see that these trends are much larger than what we would expect from natural variability,” said Ruth Lorenz, a researcher from the Swiss Federal Institute of Technology, also known as ETH Zurich. “That’s really a signal from climate change.”

She and colleagues report in the journal Geophysical Research Letters that they looked at observations and measurements from around 1,000 weather stations between 1950 and 2018 and then analysed the top 1% of the highest extremes of heat and humidity, and the top 1% of coldest days during the same timespan.

Since 1950, the number of days of extreme heat in Europe has tripled. The number of extreme cold days has been reduced, twofold in some places, and by a factor of three in others.

Accelerating change

For years, researchers have been predicting ever-greater extremes for Europe. They have warned that rising temperatures will hit the continent both economically and in health terms, and that as the thermometer rises so will the hazards of fire and drought.

Researchers have even checked the changes in land use in the last three decades to find that political changes – the collapse of the Soviet Union and the formation of the 28-state European Union – helped damp down what still proved one of the worst heat waves ever recorded, in 2003.

But research has largely focused on what could happen if global heating continues, and fossil fuel use continues to grow. What the latest study demonstrates is that in at least one region of the globe, global heating is already happening, and at a rate faster than predicted.

And the rate of change is accelerating. The number of extreme hot days overall has trebled since 1950, but the frequency of these has doubled just between 1996 and 2018. − Climate News Network

From the edge of the Arctic to almost the Tropic of Cancer, Europe’s rapid warming is evidenced by hotter summers − and winters.

LONDON, 5 September, 2019 − Europe’s rapid warming means the world’s hottest property could now be on the continent. It has seen the strongest intensification of heat waves anywhere in the world in the last 70 years. The hottest of hot summers are now 2.3°C hotter than they used to be.

And winter extremes of cold are dwindling. The number of extremely cold days has fallen twofold or even threefold, and the coldest days are now 3°C milder than they used to be, according to readings from 94% of the continent’s weather stations.

This, say Swiss scientists, adds up to “a climate change signal that cannot be explained by internal variability.”

That is, thanks to a steady increase in atmospheric greenhouse gases driven by ever-increasing use of fossil fuels, Europe is warming even faster than global climate models predict.

“In at least one region of the globe, global heating is already happening, and at a rate faster than predicted”

“Even at this regional scale over Europe we can see that these trends are much larger than what we would expect from natural variability,” said Ruth Lorenz, a researcher from the Swiss Federal Institute of Technology, also known as ETH Zurich. “That’s really a signal from climate change.”

She and colleagues report in the journal Geophysical Research Letters that they looked at observations and measurements from around 1,000 weather stations between 1950 and 2018 and then analysed the top 1% of the highest extremes of heat and humidity, and the top 1% of coldest days during the same timespan.

Since 1950, the number of days of extreme heat in Europe has tripled. The number of extreme cold days has been reduced, twofold in some places, and by a factor of three in others.

Accelerating change

For years, researchers have been predicting ever-greater extremes for Europe. They have warned that rising temperatures will hit the continent both economically and in health terms, and that as the thermometer rises so will the hazards of fire and drought.

Researchers have even checked the changes in land use in the last three decades to find that political changes – the collapse of the Soviet Union and the formation of the 28-state European Union – helped damp down what still proved one of the worst heat waves ever recorded, in 2003.

But research has largely focused on what could happen if global heating continues, and fossil fuel use continues to grow. What the latest study demonstrates is that in at least one region of the globe, global heating is already happening, and at a rate faster than predicted.

And the rate of change is accelerating. The number of extreme hot days overall has trebled since 1950, but the frequency of these has doubled just between 1996 and 2018. − Climate News Network

Egyptian theatre aids climate change fight

To help to alert people to the hotter future ahead, an Egyptian theatre troupe is taking the climate message to villages to enlist farmers.

LONDON, 4 September, 2019 − Ever been to an Egyptian theatre? Go to one if you get the chance. You might have an enlightening time.

How to get the message about a warming world and the challenges ahead across to people in a straightforward, simple way is a problem as old as climate change itself:

In a project funded by the World Food Programme, a group of local actors is touring villages in Egypt, putting on performances on the theme of climate change. The aim is to persuade farmers to pool their efforts in order to adapt to the changing weather patterns already evident in many areas.

Egypt is considered a country acutely vulnerable to changes in climate. The Nile Delta, densely populated and the centre of Egypt’s vast agricultural sector, is already threatened by sea level rise, its lands eaten away by salt intrusion from the Mediterranean.

Several settlements along Egypt’s north coast, including Alexandria, the country’s second most populated city, are regularly inundated by seawater.

“The plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation”

Rising temperatures mean more water is being evaporated from the Nile, Egypt’s water lifeline. Extensive dam building upstream further threatens Nile water flows.

The theatre project, though, is playing to packed houses. The crowds are flocking in to see what is a mix of entertainment and information on ways that farming methods can be adapted to changes in climate. Light-hearted banter is part of the show.

Bloomberg news agency reports that the plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation, so as to conserve precious water resources.

One recent play, according to Bloomberg, featured a farmer unwilling to co-operate with his neighbours to fight climate change and refusing to help pay for a new irrigation canal. In the end, though, the farmer realises the folly of his actions.

Almost 30% of jobs in Egypt are in agriculture, and farmers regularly have to battle the impact of increases in temperature and more sporadic rainfall patterns.

Sun power replaces diesel

A heatwave in 2010 resulted in serious losses for Egypt’s wheat crop, a staple in the diet of the country’s population of nearly 100 million people. Earlier this year temperatures reached near-record levels, particularly in the south of the country. Last year sudden rain deluges caused flooding in several cities.

Bloomberg reports that the theatre shows have had an impact; in many areas solar-powered irrigation pumps have replaced diesel pumps.

Forecasts of sudden changes in weather are broadcast from mosques and via mobile phones. As a result of more co-operation between farmers and increased efficiency in the use of water resources, wheat output has improved, especially in the south of the country.

Recent reports have indicated that the Middle East and North Africa region (MENA) will have to endure ever-higher temperatures in the years ahead. Researchers say parts of the region can expect increased social unrest. Others have warned that extreme heat and humidity may make some areas uninhabitable, with outside activities having to be severely restricted.

Last month came a warning that the rising heat could threaten the lives of many thousands of Muslims performing the annual Hajj pilgrimage to Egypt’s neighbour Saudi Arabia. − Climate News Network

To help to alert people to the hotter future ahead, an Egyptian theatre troupe is taking the climate message to villages to enlist farmers.

LONDON, 4 September, 2019 − Ever been to an Egyptian theatre? Go to one if you get the chance. You might have an enlightening time.

How to get the message about a warming world and the challenges ahead across to people in a straightforward, simple way is a problem as old as climate change itself:

In a project funded by the World Food Programme, a group of local actors is touring villages in Egypt, putting on performances on the theme of climate change. The aim is to persuade farmers to pool their efforts in order to adapt to the changing weather patterns already evident in many areas.

Egypt is considered a country acutely vulnerable to changes in climate. The Nile Delta, densely populated and the centre of Egypt’s vast agricultural sector, is already threatened by sea level rise, its lands eaten away by salt intrusion from the Mediterranean.

Several settlements along Egypt’s north coast, including Alexandria, the country’s second most populated city, are regularly inundated by seawater.

“The plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation”

Rising temperatures mean more water is being evaporated from the Nile, Egypt’s water lifeline. Extensive dam building upstream further threatens Nile water flows.

The theatre project, though, is playing to packed houses. The crowds are flocking in to see what is a mix of entertainment and information on ways that farming methods can be adapted to changes in climate. Light-hearted banter is part of the show.

Bloomberg news agency reports that the plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation, so as to conserve precious water resources.

One recent play, according to Bloomberg, featured a farmer unwilling to co-operate with his neighbours to fight climate change and refusing to help pay for a new irrigation canal. In the end, though, the farmer realises the folly of his actions.

Almost 30% of jobs in Egypt are in agriculture, and farmers regularly have to battle the impact of increases in temperature and more sporadic rainfall patterns.

Sun power replaces diesel

A heatwave in 2010 resulted in serious losses for Egypt’s wheat crop, a staple in the diet of the country’s population of nearly 100 million people. Earlier this year temperatures reached near-record levels, particularly in the south of the country. Last year sudden rain deluges caused flooding in several cities.

Bloomberg reports that the theatre shows have had an impact; in many areas solar-powered irrigation pumps have replaced diesel pumps.

Forecasts of sudden changes in weather are broadcast from mosques and via mobile phones. As a result of more co-operation between farmers and increased efficiency in the use of water resources, wheat output has improved, especially in the south of the country.

Recent reports have indicated that the Middle East and North Africa region (MENA) will have to endure ever-higher temperatures in the years ahead. Researchers say parts of the region can expect increased social unrest. Others have warned that extreme heat and humidity may make some areas uninhabitable, with outside activities having to be severely restricted.

Last month came a warning that the rising heat could threaten the lives of many thousands of Muslims performing the annual Hajj pilgrimage to Egypt’s neighbour Saudi Arabia. − Climate News Network