Category Archives: Energy

Coal is now too hot for insurers to handle

Empires were once built on it, but coal is now too hot for many former backers as more insurers withdraw.

LONDON, 5 December, 2019 − It’s rapidly running out of friends in the financial world: coal is now too hot for many big insurers to want anything more to do with it. The burning of coal is one of the key factors behind rising emissions of climate-changing greenhouse gases.

Now insurance companies, which play a vital role in the financing of coal plants, are announcing plans to withdraw from the sector, saying that backing organisations seeking to expand coal operations is incompatible with the 2015 Paris Agreement on climate change.

AXA, the French insurance and financial services conglomerate, is the latest to announce its withdrawal from coal projects, though this divesting programme will in some cases be phased in over a number of years.

“The fight against climate change requires engagement in a global collective action”, says Thomas Buberl, AXA’s chief executive officer.

“A plus 4°C world is not insurable. As a global insurer and investor, we know that we have a key role to play. In the spirit of the Paris Agreement, we want to accelerate our commitment and confirm our leadership in the fight against global warming”.

European phase-out

AXA says it will stop insuring any new coal construction projects. It will also totally phase out its existing insurance and investments in coal in the European Union countries by 2030, and by 2040 everywhere else.

It’s estimated that approximately 400 companies with coal plant and mine expansion plans will be affected by AXA’s action.

In 2015 AXA announced it would begin withdrawing its investments and insurance from coal projects. Two years later it said it was divesting and ending insurance in oil tar sands projects in Canada, and withdrawing insurance from a number of pipelines in the US transporting tar sands-derived oil.

A number of other large insurance and investment companies have made similar moves on coal. Allianz, the Germany-based company which is Europe’s largest insurer, announced last year that it would end insurance for all coal-fuelled power plants and for coal mines: it would also completely withdraw from the sector by 2040.

“A plus 4°C world is not insurable. As a global insurer and investor, we know that we have a key role to play. We want to accelerate our commitment in the fight against global warming”

“Banks, investors and insurers are now under great pressure to up their game on climate with new coal policy announcements”, says Kaarina Kolle of Europe Beyond Coal, a group linking various non-governmental organisations across the EU.

“This is the minimum standard for any financial institution committed to the Paris Climate Agreement’s 1.5°C warming limit.”

While climate scientists have welcomed moves to limit coal use, many nations are still heavily dependent on what is the most polluting of fossil fuels. The International Energy Agency (IEA) estimates that coal accounts for nearly 40% of electricity at present generated worldwide.

The IEA says demand rose by 1% in 2017, with a similar rise last year.  Latest statistics indicate coal use worldwide has dropped slightly this year, though total greenhouse gas emissions are still rising.

Economic slowdown

Coal consumption is forecast to drop by 11% in the US in 2019 while China, which accounts for half of total world coal consumption, is expected to use about 1% less of the fuel this year, mainly due to a slowdown in its economy.

Coal use within the EU dropped by nearly 20% in the first six months of this year.

Germany is responsible for about a third of total coal-generated power in the EU. Lignite, the most polluting coal, forms a substantial part of Germany’s energy mix.

Many countries in eastern Europe, including Poland, Romania and Bulgaria, are still heavily dependent on coal for power generation.

Eight EU countries have pledged to phase out coal use by 2030: industry analysts say other heavy coal users in the EU have to follow suit. If not, EU emissions reductions targets set under the Paris Agreement will not be met. − Climate News Network

Empires were once built on it, but coal is now too hot for many former backers as more insurers withdraw.

LONDON, 5 December, 2019 − It’s rapidly running out of friends in the financial world: coal is now too hot for many big insurers to want anything more to do with it. The burning of coal is one of the key factors behind rising emissions of climate-changing greenhouse gases.

Now insurance companies, which play a vital role in the financing of coal plants, are announcing plans to withdraw from the sector, saying that backing organisations seeking to expand coal operations is incompatible with the 2015 Paris Agreement on climate change.

AXA, the French insurance and financial services conglomerate, is the latest to announce its withdrawal from coal projects, though this divesting programme will in some cases be phased in over a number of years.

“The fight against climate change requires engagement in a global collective action”, says Thomas Buberl, AXA’s chief executive officer.

“A plus 4°C world is not insurable. As a global insurer and investor, we know that we have a key role to play. In the spirit of the Paris Agreement, we want to accelerate our commitment and confirm our leadership in the fight against global warming”.

European phase-out

AXA says it will stop insuring any new coal construction projects. It will also totally phase out its existing insurance and investments in coal in the European Union countries by 2030, and by 2040 everywhere else.

It’s estimated that approximately 400 companies with coal plant and mine expansion plans will be affected by AXA’s action.

In 2015 AXA announced it would begin withdrawing its investments and insurance from coal projects. Two years later it said it was divesting and ending insurance in oil tar sands projects in Canada, and withdrawing insurance from a number of pipelines in the US transporting tar sands-derived oil.

A number of other large insurance and investment companies have made similar moves on coal. Allianz, the Germany-based company which is Europe’s largest insurer, announced last year that it would end insurance for all coal-fuelled power plants and for coal mines: it would also completely withdraw from the sector by 2040.

“A plus 4°C world is not insurable. As a global insurer and investor, we know that we have a key role to play. We want to accelerate our commitment in the fight against global warming”

“Banks, investors and insurers are now under great pressure to up their game on climate with new coal policy announcements”, says Kaarina Kolle of Europe Beyond Coal, a group linking various non-governmental organisations across the EU.

“This is the minimum standard for any financial institution committed to the Paris Climate Agreement’s 1.5°C warming limit.”

While climate scientists have welcomed moves to limit coal use, many nations are still heavily dependent on what is the most polluting of fossil fuels. The International Energy Agency (IEA) estimates that coal accounts for nearly 40% of electricity at present generated worldwide.

The IEA says demand rose by 1% in 2017, with a similar rise last year.  Latest statistics indicate coal use worldwide has dropped slightly this year, though total greenhouse gas emissions are still rising.

Economic slowdown

Coal consumption is forecast to drop by 11% in the US in 2019 while China, which accounts for half of total world coal consumption, is expected to use about 1% less of the fuel this year, mainly due to a slowdown in its economy.

Coal use within the EU dropped by nearly 20% in the first six months of this year.

Germany is responsible for about a third of total coal-generated power in the EU. Lignite, the most polluting coal, forms a substantial part of Germany’s energy mix.

Many countries in eastern Europe, including Poland, Romania and Bulgaria, are still heavily dependent on coal for power generation.

Eight EU countries have pledged to phase out coal use by 2030: industry analysts say other heavy coal users in the EU have to follow suit. If not, EU emissions reductions targets set under the Paris Agreement will not be met. − Climate News Network

Our children await a radioactive legacy

We are leaving our children a radioactive legacy, the lethal waste that current governments still cannot make safe.

LONDON, 26 November, 2019 − After 70 years of building and operating nuclear power plants across the world, governments are bequeathing to future generations a radioactive legacy.

They remain unable to deal with the huge quantities of highly radioactive spent fuel they produce, says a group of independent experts − and as more reactors are reaching the end of their lives, the situation is worsening fast.

That is the conclusion of the first World Nuclear Waste Report (WNWR), produced by a group which says there are ever-growing challenges in waste management and no sustainable long-term solutions. They include two British academics: the economist Professor Gordon MacKerron, of the University of Sussex, and the independent radiation biologist Dr Ian Fairlie.

“Despite many plans and declared political intentions, huge uncertainties remain, and much of the costs and the challenges will fall onto future generations,” the report says.

Persistent risk

The waste, which can remain dangerous for more than 100,000 years, constitutes a continuous health hazard because of the routine release of radioactive gas and liquid waste into the environment. Yet it is likely to be another century before the problem is solved, the WNWR report says.

It notes: “The continued practice of storing spent nuclear fuel for long periods in pools at nuclear power plants (wet storage) constitutes a major risk to the public and to the environment.” There are now an estimated 250,000 tons of spent fuel in storage in 14 countries.

Despite its stark findings, the report makes no comment on the ethics of continuing to build nuclear stations when there is no way to get rid of the wastes they create.

The authors do not even quote the sixth report of the UK Royal Commission on Environmental Pollution from 1976, only 20 years after the dawn of the nuclear age, chaired by the physicist Sir Brian Flowers.

Beyond reasonable doubt

That said: “There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future.”

Successive British governments, along with the rest of the world, ignored Flowers. 40 years on, there are massive stockpiles of radioactive waste in every nuclear nation across the planet.

However, because the problem is now so vast, this latest report concentrates on describing the issues faced in the democracies of Europe where there is a lot of official information available. Even here, governments have failed to properly estimate the true cost of dealing with the waste, and most are many decades away from finding any solutions.

Finland is the only country in the world currently building a permanent repository for its high-level waste. Many other countries have tried and failed, either because the geology proved unsuitable or because of objections from those affected.

“There should be no commitment to a large programme of nuclear fission power until a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future”

As a result, spent fuel from reactors and other highly dangerous waste is in interim storage that carries severe safety risks, not least from loss of cooling water or terrorist attack. There are 60,000 tons of spent fuel in store in Europe alone.

The bill for dealing with the waste is huge, but no government has yet calculated accurately what it is, nor has any put aside enough funds to deal with it. By mid-2019 there were 181 closed nuclear reactors globally, but only 19 had been fully decommissioned, with just 10 restored as greenfield sites.

The report does not comment on governments’ competence or honesty, but it does make it clear they are not facing up to reality. For example, the UK has more than 100 tons of stored plutonium, for which it has no use − but it refuses to class plutonium as a waste. The report says it will cost at least £3 billion ($3.8bn) “to manage” whatever decision is reached to deal with it.

Each of the countries in Europe that has nuclear power stations is studied in the report. Spent fuel is the single most dangerous source of highly radioactive waste, and all 16 countries in Europe with highly irradiated fuel have yet to deal with it. France has the highest number of spent fuel rods with 13,990 tons in cooling ponds, Germany 8,485, the UK 7,700.

Information withheld

France has the largest unresolved stockpile of all categories of nuclear waste, plus the legacy of a uranium mining industry. The cost of decommissioning and waste management was put at €43.7 billion ($60.3bn) in 2014, but this is almost certainly an underestimate, the report says.

Looking outside Europe, the US probably has the largest and most complex volumes of nuclear waste in the world, the experts say. Yet it has no plans for dealing with it, and vast quantities of all types of waste are in temporary storage.

The authors admit that, despite their year-long study, the report cannot be comprehensive. This is because information from some countries, for example Russia and China, is not available. But they add that across the world all governments are failing to face up to the size of the task and its costs.

Although some countries had set notional dates for dealing with their wastes as far into the future as 2060, others had no idea at all. The authors promise to produce updated reports in future years. − Climate News Network

We are leaving our children a radioactive legacy, the lethal waste that current governments still cannot make safe.

LONDON, 26 November, 2019 − After 70 years of building and operating nuclear power plants across the world, governments are bequeathing to future generations a radioactive legacy.

They remain unable to deal with the huge quantities of highly radioactive spent fuel they produce, says a group of independent experts − and as more reactors are reaching the end of their lives, the situation is worsening fast.

That is the conclusion of the first World Nuclear Waste Report (WNWR), produced by a group which says there are ever-growing challenges in waste management and no sustainable long-term solutions. They include two British academics: the economist Professor Gordon MacKerron, of the University of Sussex, and the independent radiation biologist Dr Ian Fairlie.

“Despite many plans and declared political intentions, huge uncertainties remain, and much of the costs and the challenges will fall onto future generations,” the report says.

Persistent risk

The waste, which can remain dangerous for more than 100,000 years, constitutes a continuous health hazard because of the routine release of radioactive gas and liquid waste into the environment. Yet it is likely to be another century before the problem is solved, the WNWR report says.

It notes: “The continued practice of storing spent nuclear fuel for long periods in pools at nuclear power plants (wet storage) constitutes a major risk to the public and to the environment.” There are now an estimated 250,000 tons of spent fuel in storage in 14 countries.

Despite its stark findings, the report makes no comment on the ethics of continuing to build nuclear stations when there is no way to get rid of the wastes they create.

The authors do not even quote the sixth report of the UK Royal Commission on Environmental Pollution from 1976, only 20 years after the dawn of the nuclear age, chaired by the physicist Sir Brian Flowers.

Beyond reasonable doubt

That said: “There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future.”

Successive British governments, along with the rest of the world, ignored Flowers. 40 years on, there are massive stockpiles of radioactive waste in every nuclear nation across the planet.

However, because the problem is now so vast, this latest report concentrates on describing the issues faced in the democracies of Europe where there is a lot of official information available. Even here, governments have failed to properly estimate the true cost of dealing with the waste, and most are many decades away from finding any solutions.

Finland is the only country in the world currently building a permanent repository for its high-level waste. Many other countries have tried and failed, either because the geology proved unsuitable or because of objections from those affected.

“There should be no commitment to a large programme of nuclear fission power until a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future”

As a result, spent fuel from reactors and other highly dangerous waste is in interim storage that carries severe safety risks, not least from loss of cooling water or terrorist attack. There are 60,000 tons of spent fuel in store in Europe alone.

The bill for dealing with the waste is huge, but no government has yet calculated accurately what it is, nor has any put aside enough funds to deal with it. By mid-2019 there were 181 closed nuclear reactors globally, but only 19 had been fully decommissioned, with just 10 restored as greenfield sites.

The report does not comment on governments’ competence or honesty, but it does make it clear they are not facing up to reality. For example, the UK has more than 100 tons of stored plutonium, for which it has no use − but it refuses to class plutonium as a waste. The report says it will cost at least £3 billion ($3.8bn) “to manage” whatever decision is reached to deal with it.

Each of the countries in Europe that has nuclear power stations is studied in the report. Spent fuel is the single most dangerous source of highly radioactive waste, and all 16 countries in Europe with highly irradiated fuel have yet to deal with it. France has the highest number of spent fuel rods with 13,990 tons in cooling ponds, Germany 8,485, the UK 7,700.

Information withheld

France has the largest unresolved stockpile of all categories of nuclear waste, plus the legacy of a uranium mining industry. The cost of decommissioning and waste management was put at €43.7 billion ($60.3bn) in 2014, but this is almost certainly an underestimate, the report says.

Looking outside Europe, the US probably has the largest and most complex volumes of nuclear waste in the world, the experts say. Yet it has no plans for dealing with it, and vast quantities of all types of waste are in temporary storage.

The authors admit that, despite their year-long study, the report cannot be comprehensive. This is because information from some countries, for example Russia and China, is not available. But they add that across the world all governments are failing to face up to the size of the task and its costs.

Although some countries had set notional dates for dealing with their wastes as far into the future as 2060, others had no idea at all. The authors promise to produce updated reports in future years. − Climate News Network

Weights show the way to cheap stored power

New ways to generate renewable electricity will offer cheap stored power and a solution to balancing supply and demand.

LONDON, 22 November, 2019 − Finding effective ways to store energy until it’s needed is a major obstacle for the renewable electricity revolution, but two new mechanical systems mean cheap stored power could soon be widely available.

Cheaper than batteries, both have the virtue of being able to produce full power within a second of being switched on. And the energy they generate can also be stored for months without any loss of power.

Although developed by different teams completely independently and with different markets in mind, the two systems have great similarities. They use surplus electricity from renewables (wind or solar power) to winch a weight up a mineshaft or a mountain. When there’s a need to generate more electricity, the weight is released to fall to the bottom again, turning turbines attached to it by cables and so providing instant power to the grid.

One system envisages helping populations on isolated islands or in dry places where conventional hydro-electricity is not available, but where surplus sun and wind power can haul loads of sand or water up thousands of feet of mountainside.

The system, combining a technique known as Mountain Gravity Energy Storage (MGES) with hydropower, has been proposed by IIASA, the Austria-based International Institute for Applied System Analysis, and is described in the journal Energy. It allows the energy to be stored for months.

“Regions with high mountains could become important long-term energy storage hubs”

If a water source is available halfway or further up a mountain the empty containers can be filled nearer the top, making the system even more financially attractive.

Julian Hunt, a researcher at IIASA, said that cranes built on a mountaintop would haul sand or gravel to the summit rather like a ski lift. He said: “One of the benefits of this system is that sand is cheap and, unlike water, it does not evaporate – so you never lose potential energy and it can be re-used innumerable times. This makes it particularly interesting for dry regions.”

Unlike hydro-power systems that were limited to a height differential of 1,200 metres, MGES plants could cope with differences of more than 5,000m.

“Regions with high mountains, for example the Himalayas, Alps, and Rocky Mountains, could therefore become important long-term energy storage hubs. Other interesting locations for MGES are islands such as Hawaii, Cape Verde, Madeira, and the Pacific Islands with steep mountainous terrain,” Dr Hunt said.

50-year life

The mine shaft system, being developed by Gravitricity and based in the Scottish capital, Edinburgh, is designed to use weights from 500 to 5,000 tons. The company reckons its system will last at least 50 years without wearing out and will work with 80 to 90% efficiency, offering “some of the best characteristics of lithium batteries” at costs well below them.

It uses the same principle as MGES, but relies on old mines from the coal industry, where it uses surplus power to raise weights from the bottom of the shaft to the top. Many shafts, sometimes thousands of feet deep, remain in heavily industrialised areas of Europe.

Depending on the need, Gravitricity’s installation can be geared to produce between one and 20 megawatts of peak power within seconds, and depending on the output required can run for between 15 minutes and eight hours.

Gravitricity says it has already had a rush of interest from industrial partners and is working on a demonstration project.

There is already a different type of generation and storage system at work in the UK, known as pumped storage, which relies on transferring water from one underground reservoir to another. It is in use at Dinorwig in North Wales, where it is known as Electric Mountain. − Climate News Network

New ways to generate renewable electricity will offer cheap stored power and a solution to balancing supply and demand.

LONDON, 22 November, 2019 − Finding effective ways to store energy until it’s needed is a major obstacle for the renewable electricity revolution, but two new mechanical systems mean cheap stored power could soon be widely available.

Cheaper than batteries, both have the virtue of being able to produce full power within a second of being switched on. And the energy they generate can also be stored for months without any loss of power.

Although developed by different teams completely independently and with different markets in mind, the two systems have great similarities. They use surplus electricity from renewables (wind or solar power) to winch a weight up a mineshaft or a mountain. When there’s a need to generate more electricity, the weight is released to fall to the bottom again, turning turbines attached to it by cables and so providing instant power to the grid.

One system envisages helping populations on isolated islands or in dry places where conventional hydro-electricity is not available, but where surplus sun and wind power can haul loads of sand or water up thousands of feet of mountainside.

The system, combining a technique known as Mountain Gravity Energy Storage (MGES) with hydropower, has been proposed by IIASA, the Austria-based International Institute for Applied System Analysis, and is described in the journal Energy. It allows the energy to be stored for months.

“Regions with high mountains could become important long-term energy storage hubs”

If a water source is available halfway or further up a mountain the empty containers can be filled nearer the top, making the system even more financially attractive.

Julian Hunt, a researcher at IIASA, said that cranes built on a mountaintop would haul sand or gravel to the summit rather like a ski lift. He said: “One of the benefits of this system is that sand is cheap and, unlike water, it does not evaporate – so you never lose potential energy and it can be re-used innumerable times. This makes it particularly interesting for dry regions.”

Unlike hydro-power systems that were limited to a height differential of 1,200 metres, MGES plants could cope with differences of more than 5,000m.

“Regions with high mountains, for example the Himalayas, Alps, and Rocky Mountains, could therefore become important long-term energy storage hubs. Other interesting locations for MGES are islands such as Hawaii, Cape Verde, Madeira, and the Pacific Islands with steep mountainous terrain,” Dr Hunt said.

50-year life

The mine shaft system, being developed by Gravitricity and based in the Scottish capital, Edinburgh, is designed to use weights from 500 to 5,000 tons. The company reckons its system will last at least 50 years without wearing out and will work with 80 to 90% efficiency, offering “some of the best characteristics of lithium batteries” at costs well below them.

It uses the same principle as MGES, but relies on old mines from the coal industry, where it uses surplus power to raise weights from the bottom of the shaft to the top. Many shafts, sometimes thousands of feet deep, remain in heavily industrialised areas of Europe.

Depending on the need, Gravitricity’s installation can be geared to produce between one and 20 megawatts of peak power within seconds, and depending on the output required can run for between 15 minutes and eight hours.

Gravitricity says it has already had a rush of interest from industrial partners and is working on a demonstration project.

There is already a different type of generation and storage system at work in the UK, known as pumped storage, which relies on transferring water from one underground reservoir to another. It is in use at Dinorwig in North Wales, where it is known as Electric Mountain. − Climate News Network

Extreme heatwaves pose spreading threat

heatwaves

Rising temperatures mean that heatwaves will become hotter, more frequent, last longer and will cover much wider areas.

LONDON, October 14, 2019 – Scientists in the US have added a new dimension to the growing hazard of extreme heat. As global average temperatures rise, so do the frequency, duration and intensity of heatwaves.

And that’s not the only factor to worry about. By mid-century, the area straddled by those bands of extreme heat could increase by 50% – if nations attempt seriously to contain climate change.

But if humans carry on burning fossil fuels in ever-greater quantities and felling more and more reaches of tropical forests, the most dangerous and extreme heatwaves in future could cover areas 80% bigger than at present.

“As the physical size of these regions increases, more people will be exposed to heat stress,” warns Bradfield Lyon, associate research professor in the Climate Change Institute and School of Earth and Climate at the University of Maine, US.

“Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid”

Lyon, lead author of a new study in the Environmental Research Letters journal, says: “Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid as more people and businesses turn on air conditioning as a response.”

Climate scientists have warned repeatedly that higher average temperatures must mean ever hotter extremes.

By the century’s end, under some climate projections, three out of four people on the planet could be exposed to potentially dangerous heatwaves.

Double punch

In some regions, the double punch of high heat and very high humidity could make conditions intolerable, and scientists in the US recently counted 27 ways in which high temperatures could claim lives.

In principle, extremes of heat are already a threat not just to public health, but also to national economies. Researchers in Australia have already started to count the cost.

Until now, the interest has focused on the highest temperatures by day and by night, the number of days of sustained heat, and the frequency with which extremes might return.

But the new dimension – the increased area oppressed by extreme heat – presents unexpected challenges for city authorities and energy utilities.

“If you have a large contiguous heatwave over a highly populated area, it would be harder for that area to meet peak electric demand than it would be for several areas with smaller heatwaves that, when combined, are the same size,” says one of the report’s other authors, Anthony Barnston, chief forecaster at Columbia University’s International Research Institute for Climate and Society. – Climate News Network

Rising temperatures mean that heatwaves will become hotter, more frequent, last longer and will cover much wider areas.

LONDON, October 14, 2019 – Scientists in the US have added a new dimension to the growing hazard of extreme heat. As global average temperatures rise, so do the frequency, duration and intensity of heatwaves.

And that’s not the only factor to worry about. By mid-century, the area straddled by those bands of extreme heat could increase by 50% – if nations attempt seriously to contain climate change.

But if humans carry on burning fossil fuels in ever-greater quantities and felling more and more reaches of tropical forests, the most dangerous and extreme heatwaves in future could cover areas 80% bigger than at present.

“As the physical size of these regions increases, more people will be exposed to heat stress,” warns Bradfield Lyon, associate research professor in the Climate Change Institute and School of Earth and Climate at the University of Maine, US.

“Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid”

Lyon, lead author of a new study in the Environmental Research Letters journal, says: “Larger heatwaves would also increase electrical loads and peak energy demand on the electricity grid as more people and businesses turn on air conditioning as a response.”

Climate scientists have warned repeatedly that higher average temperatures must mean ever hotter extremes.

By the century’s end, under some climate projections, three out of four people on the planet could be exposed to potentially dangerous heatwaves.

Double punch

In some regions, the double punch of high heat and very high humidity could make conditions intolerable, and scientists in the US recently counted 27 ways in which high temperatures could claim lives.

In principle, extremes of heat are already a threat not just to public health, but also to national economies. Researchers in Australia have already started to count the cost.

Until now, the interest has focused on the highest temperatures by day and by night, the number of days of sustained heat, and the frequency with which extremes might return.

But the new dimension – the increased area oppressed by extreme heat – presents unexpected challenges for city authorities and energy utilities.

“If you have a large contiguous heatwave over a highly populated area, it would be harder for that area to meet peak electric demand than it would be for several areas with smaller heatwaves that, when combined, are the same size,” says one of the report’s other authors, Anthony Barnston, chief forecaster at Columbia University’s International Research Institute for Climate and Society. – Climate News Network

Nuclear cannot help against climate crisis

With new plants costing from five to ten times more than renewable options, and taking far longer to build, nuclear cannot help against global warming.

LONDON, 30 September, 2019 − Finding a way to head off the galloping climate crisis, although it’s taxing the world’s best brains, leaves one clear and inescapable conclusion, reiterated not only by researchers but acknowledged implicitly by the industry: nuclear cannot help.

Last week the French builders of the nuclear reactors being built in the United Kingdom announced a startling rise in construction costs. The news came on the day a report was published which said nuclear generation worldwide is now hopelessly uncompetitive in cost compared with renewable power.

The World Nuclear Industry Status Report 2019 also stresses that as far as climate change is concerned nuclear power has another huge disadvantage. Wind and solar power stations take only months to build before they produce power, so they quickly start to displace fossil fuels and save emissions of carbon dioxide.

Nuclear reactors, on the other hand, take at least five years to build and very often more than a decade and so the fossil fuel plants they are designed to replace continue to pump out greenhouse gases. With the need to cut carbon emissions increasingly urgent, this makes nuclear power the wrong solution to climate change, the report says.

The announcement by the French nuclear giant Électricité de France (EDF) of the rise in costs of the twin reactors being built at Hinkley Point C in the West of England put the cost of construction at up to £22.5 billion (US$27.9bn) an increase of up to £2.9bn ($3.6bn) from its last estimate in 2017.

“Nuclear new-build costs many times more per kilowatt hour, so it buys many times less climate solution per dollar”

With the construction of the station still in its initial stages, costs are expected to rise further before the first power is generated in late 2025 – even if there are no further delays.

Two similar pressurised water reactors close to completion in France and Finland have taken more than twice as long to construct as originally estimated and are still not producing power. Both projects have recently announced yet more delays.

The 2019 status report, produced by a group of independent energy consultants and academics, makes grim reading for the nuclear industry because it compares the cost of producing electricity from renewables – particularly wind and solar – with nuclear. It says nuclear now costs between five and ten times as much as solar and wind power.

The report says: “Nuclear new-build thus costs many times more per kilowatt hour, so it buys many times less climate solution per dollar, than these major low-carbon competitors. That reality could usefully guide policy and investment decisions if the objective is to save money or the climate or both.”

Existing plants affected

This gap is widening as nuclear costs keep rising and renewable costs falling. The report quotes the International Energy Agency which says: “Solar PV costs fell by 65 percent between 2012 and 2017, and are projected to fall by a further 50% by 2040; onshore wind costs fell by 15% over the same period and are projected to fall by another 10–20% to 2040.”

But the report also makes clear that it is not just in new build that renewables are a much better option than nuclear in combating climate change.

In many nuclear countries, especially the US, the largest nuclear energy producer, new renewables now compete with existing nuclear plants. If the money spent on operating expensive nuclear plants were invested instead in cheaper renewables, or in energy efficiency projects, then that would displace more fossil fuel generation than keeping nuclear plants running.

The report catalogues the dismal record of delays in nuclear new build across the world. At the beginning of 2018, 15 reactors were scheduled for startup during the year; seven of these made it, plus two that were expected in 2019; of these nine startups, seven were in China and two in Russia. Of the 13 reactors scheduled to start up in 2019, four have already been postponed to 2020.

The problem for the industry is that the capital cost of new stations is so great that outside totalitarian regimes the finance cannot be found without massive subsidies from the taxpayer or levies on electricity consumers.

Plans abandoned

Even in the UK, where the government has enthusiastically endorsed new nuclear power station projects, most planned projects for new stations have been abandoned.

Even before the latest cost escalation for Hinkley Point was announced, the Nuclear Status report was casting doubt that EDF’s follow-on project for another giant nuclear station on the UK’s east coast, Sizewell C, was likely to come to fruition.

The report says: “Given the problems EDF is having financing Hinkley, this makes the Sizewell project appear implausible.

“Over the past decade the extraordinary cost of the UK’s proposed nuclear power program has become apparent to a wider academic community and public bodies. Even when the Government was willing to invest directly into the project, nuclear costs were prohibitive.” − Climate News Network

With new plants costing from five to ten times more than renewable options, and taking far longer to build, nuclear cannot help against global warming.

LONDON, 30 September, 2019 − Finding a way to head off the galloping climate crisis, although it’s taxing the world’s best brains, leaves one clear and inescapable conclusion, reiterated not only by researchers but acknowledged implicitly by the industry: nuclear cannot help.

Last week the French builders of the nuclear reactors being built in the United Kingdom announced a startling rise in construction costs. The news came on the day a report was published which said nuclear generation worldwide is now hopelessly uncompetitive in cost compared with renewable power.

The World Nuclear Industry Status Report 2019 also stresses that as far as climate change is concerned nuclear power has another huge disadvantage. Wind and solar power stations take only months to build before they produce power, so they quickly start to displace fossil fuels and save emissions of carbon dioxide.

Nuclear reactors, on the other hand, take at least five years to build and very often more than a decade and so the fossil fuel plants they are designed to replace continue to pump out greenhouse gases. With the need to cut carbon emissions increasingly urgent, this makes nuclear power the wrong solution to climate change, the report says.

The announcement by the French nuclear giant Électricité de France (EDF) of the rise in costs of the twin reactors being built at Hinkley Point C in the West of England put the cost of construction at up to £22.5 billion (US$27.9bn) an increase of up to £2.9bn ($3.6bn) from its last estimate in 2017.

“Nuclear new-build costs many times more per kilowatt hour, so it buys many times less climate solution per dollar”

With the construction of the station still in its initial stages, costs are expected to rise further before the first power is generated in late 2025 – even if there are no further delays.

Two similar pressurised water reactors close to completion in France and Finland have taken more than twice as long to construct as originally estimated and are still not producing power. Both projects have recently announced yet more delays.

The 2019 status report, produced by a group of independent energy consultants and academics, makes grim reading for the nuclear industry because it compares the cost of producing electricity from renewables – particularly wind and solar – with nuclear. It says nuclear now costs between five and ten times as much as solar and wind power.

The report says: “Nuclear new-build thus costs many times more per kilowatt hour, so it buys many times less climate solution per dollar, than these major low-carbon competitors. That reality could usefully guide policy and investment decisions if the objective is to save money or the climate or both.”

Existing plants affected

This gap is widening as nuclear costs keep rising and renewable costs falling. The report quotes the International Energy Agency which says: “Solar PV costs fell by 65 percent between 2012 and 2017, and are projected to fall by a further 50% by 2040; onshore wind costs fell by 15% over the same period and are projected to fall by another 10–20% to 2040.”

But the report also makes clear that it is not just in new build that renewables are a much better option than nuclear in combating climate change.

In many nuclear countries, especially the US, the largest nuclear energy producer, new renewables now compete with existing nuclear plants. If the money spent on operating expensive nuclear plants were invested instead in cheaper renewables, or in energy efficiency projects, then that would displace more fossil fuel generation than keeping nuclear plants running.

The report catalogues the dismal record of delays in nuclear new build across the world. At the beginning of 2018, 15 reactors were scheduled for startup during the year; seven of these made it, plus two that were expected in 2019; of these nine startups, seven were in China and two in Russia. Of the 13 reactors scheduled to start up in 2019, four have already been postponed to 2020.

The problem for the industry is that the capital cost of new stations is so great that outside totalitarian regimes the finance cannot be found without massive subsidies from the taxpayer or levies on electricity consumers.

Plans abandoned

Even in the UK, where the government has enthusiastically endorsed new nuclear power station projects, most planned projects for new stations have been abandoned.

Even before the latest cost escalation for Hinkley Point was announced, the Nuclear Status report was casting doubt that EDF’s follow-on project for another giant nuclear station on the UK’s east coast, Sizewell C, was likely to come to fruition.

The report says: “Given the problems EDF is having financing Hinkley, this makes the Sizewell project appear implausible.

“Over the past decade the extraordinary cost of the UK’s proposed nuclear power program has become apparent to a wider academic community and public bodies. Even when the Government was willing to invest directly into the project, nuclear costs were prohibitive.” − Climate News Network

Coal-burning generators could swallow vital water

You need energy to develop. You also need water. So coal-burning generators that need water for cooling invite trouble.

LONDON, 24 September, 2019 – Economic development in Asia – hugely dependent on electricity from coal-burning generators – could be cramped by climate change.

That is because global heating could begin to constrain the supplies of water needed to cool thermal power installations.

So the generators that fuel global heating and the climate emergency by releasing huge quantities of greenhouse gases into the planetary atmosphere could create conditions in which nations could begin to experience power shortages made more likely by the extra carbon dioxide pouring from their new power station chimneys.

Power plants in Asia already account for 37% of global electricity generation and 41% of carbon dioxide emissions because 64% of this energy is already generated from coal, according to a new study in the journal Energy and Environmental Science.

And about 490 gigawatts of new coal-fired plant could be in operation by 2030 in China, south-east Asia, Mongolia and parts of India.

“What this study shows is that coal power development can expect reduced reliability in many locations across Asia”

“One of the impacts of climate change is that the weather is changing, which leads to more extreme events – more torrential downpours and more droughts,” said Jeffrey Bielicki, a civil engineer at the University of Ohio in the US, one of the authors.

“The power plants – coal, nuclear and natural gas power plants – require water for cooling, so when you don’t have the rain, you don’t have the stream flow, you can’t cool the power plant.”

He and European colleagues base their conclusions on simulations of what could happen to regional climate under conditions of rises in planetary average temperature of 1.5°C, 2°C and 3°C above the long-term average for most of human history.

The first is the ambition agreed by 195 nations in Paris in 2015. The second is the upper limit that nations vowed to keep global temperatures to and the third is – so far – the temperature the planet is likely to reach by 2100 under present emissions scenarios.

That is simply because at a time when nations should already be closing fossil fuel power plants, more are being built. Global average temperatures in the last century have already risen by around 1°C.

Faltering reliability

The simulations found, inevitably, that more coal-fired generation would step up demand for water precisely as climate shifts due to ever-increasing levels of greenhouse gases in the atmosphere would tend to reduce the reliability of water supply. Difficult decisions lie ahead.

“We know that coal power contributes significantly to global warming – more than almost any other electricity source – and what this study shows is that coal power development can expect reduced reliability in many locations across Asia,” said Edward Byers, of the energy programme of the International Institute for Applied Systems Analysis in Austria.

And Dr Bielicki said: “There is often a perceived tension between developing your economy and protecting the environment.

“Some of the results of this study are saying ‘Hey, we expect you’re going to run into problems, so you should selectively change your plans, but also thin out your existing power plants because, as you’re adding new power plants, you’re creating more competition for water.’

“Your economy needs water but your ecosystems and people need water too.” – Climate News Network

You need energy to develop. You also need water. So coal-burning generators that need water for cooling invite trouble.

LONDON, 24 September, 2019 – Economic development in Asia – hugely dependent on electricity from coal-burning generators – could be cramped by climate change.

That is because global heating could begin to constrain the supplies of water needed to cool thermal power installations.

So the generators that fuel global heating and the climate emergency by releasing huge quantities of greenhouse gases into the planetary atmosphere could create conditions in which nations could begin to experience power shortages made more likely by the extra carbon dioxide pouring from their new power station chimneys.

Power plants in Asia already account for 37% of global electricity generation and 41% of carbon dioxide emissions because 64% of this energy is already generated from coal, according to a new study in the journal Energy and Environmental Science.

And about 490 gigawatts of new coal-fired plant could be in operation by 2030 in China, south-east Asia, Mongolia and parts of India.

“What this study shows is that coal power development can expect reduced reliability in many locations across Asia”

“One of the impacts of climate change is that the weather is changing, which leads to more extreme events – more torrential downpours and more droughts,” said Jeffrey Bielicki, a civil engineer at the University of Ohio in the US, one of the authors.

“The power plants – coal, nuclear and natural gas power plants – require water for cooling, so when you don’t have the rain, you don’t have the stream flow, you can’t cool the power plant.”

He and European colleagues base their conclusions on simulations of what could happen to regional climate under conditions of rises in planetary average temperature of 1.5°C, 2°C and 3°C above the long-term average for most of human history.

The first is the ambition agreed by 195 nations in Paris in 2015. The second is the upper limit that nations vowed to keep global temperatures to and the third is – so far – the temperature the planet is likely to reach by 2100 under present emissions scenarios.

That is simply because at a time when nations should already be closing fossil fuel power plants, more are being built. Global average temperatures in the last century have already risen by around 1°C.

Faltering reliability

The simulations found, inevitably, that more coal-fired generation would step up demand for water precisely as climate shifts due to ever-increasing levels of greenhouse gases in the atmosphere would tend to reduce the reliability of water supply. Difficult decisions lie ahead.

“We know that coal power contributes significantly to global warming – more than almost any other electricity source – and what this study shows is that coal power development can expect reduced reliability in many locations across Asia,” said Edward Byers, of the energy programme of the International Institute for Applied Systems Analysis in Austria.

And Dr Bielicki said: “There is often a perceived tension between developing your economy and protecting the environment.

“Some of the results of this study are saying ‘Hey, we expect you’re going to run into problems, so you should selectively change your plans, but also thin out your existing power plants because, as you’re adding new power plants, you’re creating more competition for water.’

“Your economy needs water but your ecosystems and people need water too.” – Climate News Network

Plentiful renewable energy awaits the world

Cheap and plentiful renewable energy is possible: pure hydrogen power in the ground, enough wind in European skies to power the world.

LONDON, 29 August, 2019 − US and European researchers have shown the way to an era of cheap and plentiful renewable energy on a massive scale.

Canadian scientists have worked out how to extract pure, non-polluting fuel from spent or unexploited oil wells at a fraction of the cost of gasoline.

And British and Danish scholars have worked out that, in principle, Europe could generate enough onshore wind energy to supply the whole world until 2050.

Neither technology is likely to be exploited on a massive scale in the very near future. Wind energy development depends on national and local decisions, and the new study is a simple atlas of possible sites across the entire continent.

And although hydrogen is already driving trains, cars and buses in many nations, the technology is still essentially experimental and the infrastructure for a hydrogen economy has still to be built.

“The study does show the huge wind power potential right across Europe which needs to be harnessed if we’re to avert a climate catastrophe”

But both are instances of the sustained ingenuity and imagination at work in research laboratories and institutions as scientists confront the challenge of a world no longer dependent on the fossil fuels that drive global heating and the climate emergency.

The technology that can take hydrogen straight from existing oil reserves was presented at an international geochemistry conference in Barcelona and depends on university-patented technology now being developed by a scientific start-up.

In essence, the bedrock becomes the reactor vessel for a high-temperature reaction involving hydrocarbon molecules and water: oxygen-enhanced air is pumped downwards at the wellhead and injected deep into a reservoir of tar, bitumen or oil to begin a process that raises subterranean temperatures.

At 500°C the hydrocarbons fracture, and a patented system intelligently locates the hydrogen and filters it: the carbon stays in the ground.

“What comes out of the ground is hydrogen gas, so we don’t have the huge, above-ground purification costs associated with oil refining: we use the ground as our reaction vessel.

Steep cost cut

“Just taking Alberta as an example, we have the potential to supply Canada’s entire electricity requirement for 330 years,” said Grant Strem, of Proton Technologies, which is to commercialise the process at – the technology’s begetters say – a cost per kilo of hydrogen of between 10 and 50 cents. This is a fraction of the cost of gasoline extraction.

Hydrogen is in theory the ideal fuel: the visible universe is made of it. The only product of its combustion with oxygen is water. It is already being exploited as a battery fuel: surplus solar and wind power could be used to split water and store hydrogen as a reserve for electricity generation.

Researchers have proposed a hydrogen-powered bicycle, engineers have calculated that hydrogen could replace the world’s natural gas supplies in the next 30 years, and designers have even proposed a safe global bulk carrier hydrogen delivery system by automaton airships more than 2kms long.

Wind power, by contrast, is now a highly developed technology that is already advanced in Europe and the US, and, like solar power, it could supply national grids almost anywhere in the world.

One of the bigger remaining questions is: what is the right place to put a battery of wind turbines? European scientists report in the journal Energy Policy that the ideal of a European grid powered entirely by renewables is now within the collective technological grasp.

Hundredfold increase

A new map based on wind atlases and geographic information identifies 46% of the land mass of the continent that would be suitable for wind turbine generation. If all such space were exploited, the turbines could amplify the existing onshore wind supply a hundredfold and could generate energy equivalent to roughly a megawatt for every 16 European citizens.

That adds up to more than 11 million additional turbines over 5 million square kilometres in large parts of western Europe, Turkey and Russia.

“Our study suggests the horizon is bright for the onshore wind sector,” said Benjamin Sovacool, of the University of Sussex in the UK, one of the authors.

“Obviously, we are not saying that we should install wind turbines in all the identified sites, but the study does show the huge wind power potential right across Europe which needs to be harnessed if we’re to avert a climate catastrophe.” − Climate News Network

Cheap and plentiful renewable energy is possible: pure hydrogen power in the ground, enough wind in European skies to power the world.

LONDON, 29 August, 2019 − US and European researchers have shown the way to an era of cheap and plentiful renewable energy on a massive scale.

Canadian scientists have worked out how to extract pure, non-polluting fuel from spent or unexploited oil wells at a fraction of the cost of gasoline.

And British and Danish scholars have worked out that, in principle, Europe could generate enough onshore wind energy to supply the whole world until 2050.

Neither technology is likely to be exploited on a massive scale in the very near future. Wind energy development depends on national and local decisions, and the new study is a simple atlas of possible sites across the entire continent.

And although hydrogen is already driving trains, cars and buses in many nations, the technology is still essentially experimental and the infrastructure for a hydrogen economy has still to be built.

“The study does show the huge wind power potential right across Europe which needs to be harnessed if we’re to avert a climate catastrophe”

But both are instances of the sustained ingenuity and imagination at work in research laboratories and institutions as scientists confront the challenge of a world no longer dependent on the fossil fuels that drive global heating and the climate emergency.

The technology that can take hydrogen straight from existing oil reserves was presented at an international geochemistry conference in Barcelona and depends on university-patented technology now being developed by a scientific start-up.

In essence, the bedrock becomes the reactor vessel for a high-temperature reaction involving hydrocarbon molecules and water: oxygen-enhanced air is pumped downwards at the wellhead and injected deep into a reservoir of tar, bitumen or oil to begin a process that raises subterranean temperatures.

At 500°C the hydrocarbons fracture, and a patented system intelligently locates the hydrogen and filters it: the carbon stays in the ground.

“What comes out of the ground is hydrogen gas, so we don’t have the huge, above-ground purification costs associated with oil refining: we use the ground as our reaction vessel.

Steep cost cut

“Just taking Alberta as an example, we have the potential to supply Canada’s entire electricity requirement for 330 years,” said Grant Strem, of Proton Technologies, which is to commercialise the process at – the technology’s begetters say – a cost per kilo of hydrogen of between 10 and 50 cents. This is a fraction of the cost of gasoline extraction.

Hydrogen is in theory the ideal fuel: the visible universe is made of it. The only product of its combustion with oxygen is water. It is already being exploited as a battery fuel: surplus solar and wind power could be used to split water and store hydrogen as a reserve for electricity generation.

Researchers have proposed a hydrogen-powered bicycle, engineers have calculated that hydrogen could replace the world’s natural gas supplies in the next 30 years, and designers have even proposed a safe global bulk carrier hydrogen delivery system by automaton airships more than 2kms long.

Wind power, by contrast, is now a highly developed technology that is already advanced in Europe and the US, and, like solar power, it could supply national grids almost anywhere in the world.

One of the bigger remaining questions is: what is the right place to put a battery of wind turbines? European scientists report in the journal Energy Policy that the ideal of a European grid powered entirely by renewables is now within the collective technological grasp.

Hundredfold increase

A new map based on wind atlases and geographic information identifies 46% of the land mass of the continent that would be suitable for wind turbine generation. If all such space were exploited, the turbines could amplify the existing onshore wind supply a hundredfold and could generate energy equivalent to roughly a megawatt for every 16 European citizens.

That adds up to more than 11 million additional turbines over 5 million square kilometres in large parts of western Europe, Turkey and Russia.

“Our study suggests the horizon is bright for the onshore wind sector,” said Benjamin Sovacool, of the University of Sussex in the UK, one of the authors.

“Obviously, we are not saying that we should install wind turbines in all the identified sites, but the study does show the huge wind power potential right across Europe which needs to be harnessed if we’re to avert a climate catastrophe.” − Climate News Network

Cheap renewables will price out oil on roads

Petrol- and diesel-driven cars will soon vanish, as oil-based fuel already costs three times more than cheap renewables.

LONDON, 16 August, 2019 − The days of oil as a fuel for cars, whether petrol or diesel, are numbered − because the economies offered by wind and solar energy and other cheap renewables, combined with electric vehicles, are irresistible, a French bank says.

BNP Paribas Asset Management calculates that oil majors like Exxon, BP and Shell will have to produce petrol from oil at $10 a barrel (the current price is $58) to compete with electricity on price, while for diesel, it says, oil can cost no more than $19 a barrel.

“The oil industry has never before in its history faced the kind of threat that renewable electricity in tandem with electric vehicles poses to its business model,” the bank says. Electric vehicles (EVs) could easily replace 40% of the current market for crude oil.

The far lower cost of driving electric vehicles, plus the environmental benefits of cleaner air and the reduction in carbon emissions, will make it overwhelmingly attractive to governments to switch from fossil fuels to renewables for powering the world’s light vehicles.

“The economics of oil for gasoline and diesel vehicles versus wind- and solar-powered EVs are now in relentless and irreversible decline”

Warnings that Big Oil’s position is precarious have been sounding for several years. Some see the global industry reaching its peak within the next decade. In several countries car plants are being converted to all-electric production, a move perhaps prompted by a wish to regain market share after a less than happy episode in consumer relations.

But the bank’s report for professional investors, Wells, Wires, and Wheels, will certainly make bleak reading for the oil industry. Its conclusions are based on the bank’s calculations of how much it costs to get energy to the car wheels.

Its analysis concludes that “after adjusting for all of the costs and all of the energy losses of delivering oil from the well to the wheels on the one hand, and renewable electricity to the wheels of EVs on the other, new wind and solar projects combined with EVs would deliver 6.2 to 7 times more useful energy than petrol”.

This is with oil at its current market price of $60 a barrel. Renewables would also provide 3.2 to 3.6 times more power than diesel for the same cost.

Rising efficiency

The report says: “Moreover, this is on the basis of the costs and efficiency rates of the renewable electricity technologies as they exist today. Yet, over time, the costs of renewables will only continue to fall, while their efficiency rates will continue to rise.”

The report concedes that at the moment the oil industry has huge advantages of scale, because it is already servicing the world’s vehicle fleet. To take its business away, renewables have to scale up and provide the quantity of electricity and the number of charging points required for a mass electric vehicle market.

It argues, however, that oil has a major disadvantage. For every dollar spent at the pump on petrol, nearly half that cost has already gone on refining the oil, transporting it to the pump, marketing and tax. Electricity on the other hand is delivered to cars along wires at only a tiny fraction of the cost of oil-based fuels.

The bank concludes that the oil industry also has another huge disadvantage. It has to decide on future investments in new oil fields without knowing in advance the occasional wild fluctuations in oil price.

Declining oil yield

Each year the oil majors have to make such decisions about fields which need to be added to production to replace the 10% annual decline in the yield from old fields, leaving them working 10 years in advance.

By the bank’s calculations, unless the new oil can be brought on stream at $10 a barrel or less, the oil companies will have to sell petrol and diesel at a loss to compete on price with electric cars running on renewables.

Investment decisions made now on the basis of an oil price of $60 a barrel risk creating assets that cannot be sold profitably and would have to be left in the ground.

The report says: “We conclude that the economics of oil for gasoline and diesel vehicles versus wind- and solar-powered EVs are now in relentless and irreversible decline, with far-reaching implications for both policymakers and the oil majors.” − Climate News Network

Petrol- and diesel-driven cars will soon vanish, as oil-based fuel already costs three times more than cheap renewables.

LONDON, 16 August, 2019 − The days of oil as a fuel for cars, whether petrol or diesel, are numbered − because the economies offered by wind and solar energy and other cheap renewables, combined with electric vehicles, are irresistible, a French bank says.

BNP Paribas Asset Management calculates that oil majors like Exxon, BP and Shell will have to produce petrol from oil at $10 a barrel (the current price is $58) to compete with electricity on price, while for diesel, it says, oil can cost no more than $19 a barrel.

“The oil industry has never before in its history faced the kind of threat that renewable electricity in tandem with electric vehicles poses to its business model,” the bank says. Electric vehicles (EVs) could easily replace 40% of the current market for crude oil.

The far lower cost of driving electric vehicles, plus the environmental benefits of cleaner air and the reduction in carbon emissions, will make it overwhelmingly attractive to governments to switch from fossil fuels to renewables for powering the world’s light vehicles.

“The economics of oil for gasoline and diesel vehicles versus wind- and solar-powered EVs are now in relentless and irreversible decline”

Warnings that Big Oil’s position is precarious have been sounding for several years. Some see the global industry reaching its peak within the next decade. In several countries car plants are being converted to all-electric production, a move perhaps prompted by a wish to regain market share after a less than happy episode in consumer relations.

But the bank’s report for professional investors, Wells, Wires, and Wheels, will certainly make bleak reading for the oil industry. Its conclusions are based on the bank’s calculations of how much it costs to get energy to the car wheels.

Its analysis concludes that “after adjusting for all of the costs and all of the energy losses of delivering oil from the well to the wheels on the one hand, and renewable electricity to the wheels of EVs on the other, new wind and solar projects combined with EVs would deliver 6.2 to 7 times more useful energy than petrol”.

This is with oil at its current market price of $60 a barrel. Renewables would also provide 3.2 to 3.6 times more power than diesel for the same cost.

Rising efficiency

The report says: “Moreover, this is on the basis of the costs and efficiency rates of the renewable electricity technologies as they exist today. Yet, over time, the costs of renewables will only continue to fall, while their efficiency rates will continue to rise.”

The report concedes that at the moment the oil industry has huge advantages of scale, because it is already servicing the world’s vehicle fleet. To take its business away, renewables have to scale up and provide the quantity of electricity and the number of charging points required for a mass electric vehicle market.

It argues, however, that oil has a major disadvantage. For every dollar spent at the pump on petrol, nearly half that cost has already gone on refining the oil, transporting it to the pump, marketing and tax. Electricity on the other hand is delivered to cars along wires at only a tiny fraction of the cost of oil-based fuels.

The bank concludes that the oil industry also has another huge disadvantage. It has to decide on future investments in new oil fields without knowing in advance the occasional wild fluctuations in oil price.

Declining oil yield

Each year the oil majors have to make such decisions about fields which need to be added to production to replace the 10% annual decline in the yield from old fields, leaving them working 10 years in advance.

By the bank’s calculations, unless the new oil can be brought on stream at $10 a barrel or less, the oil companies will have to sell petrol and diesel at a loss to compete on price with electric cars running on renewables.

Investment decisions made now on the basis of an oil price of $60 a barrel risk creating assets that cannot be sold profitably and would have to be left in the ground.

The report says: “We conclude that the economics of oil for gasoline and diesel vehicles versus wind- and solar-powered EVs are now in relentless and irreversible decline, with far-reaching implications for both policymakers and the oil majors.” − Climate News Network

Hot future prompts new ideas for cool cities

Higher temperatures must mean more energy just to cool cities – which means even more heat. But ingenuity is already proposing answers.

LONDON, 15 August, 2019 − The world could need a quarter more energy by 2050, to cool cities and survive the global heating expected by then. And that assumes that nations will have taken steps to control greenhouse gas emissions and that the rise in temperature will be moderate.

If, on the other hand, the world goes on burning fossil fuels under the notorious “business as usual” scenario, then according to new research the people of the planet could demand up to 58% more energy, just to drive the extra air conditioning and refrigeration in ever more frequent and ever more intense extremes of heat.

The latest study, by researchers based in Boston, Massachusetts and Venice in Italy, helps to settle one of the more intricate questions that accompany climate projections and energy demand: yes, there will be more people and bigger cities which demand more power anyway, and yes, warm zones will get hotter and demand more expense on keeping cool. But chilly and temperate nations will enjoy milder winters and spend less on staying warm. Which wins?

The new paper, in the journal Nature Communications, either settles the matter or provides fellow scientists with a methodology and a set of results to examine more closely.

Risky faster heating

A warmer world will also be vastly more energy-expensive. And if nations invest in coal, oil or natural gas to provide the extra electricity to provide the air-conditioning, drive the electric fans and refrigerate food and medical supplies, then global heating would accelerate to ever more dangerous levels.

“At this point, we don’t know. To cool my house, I could buy a bigger air-conditioner. Or if higher demand makes electricity more expensive, I could choose to open my window or run a fan,” said Ian Sue Wing, an earth and environment scientist at Boston University, who led the study.

“We could use coal or we could use renewable sources, and those two choices mean very different things for our future. With coal, it will mean more greenhouse gas emissions. That’s what keeps me up at night.”

By 2050, there could be between 8.4bn and 10bn people on the planet. Gross domestic product per person (an economist’s measure of income and spending) could have all but doubled or even in some places more than trebled. Tropical and mid-latitude zones could, if warming is only moderate, experience as many as an extra 50 uncomfortably hot days each year. If the warming is vigorous, the number could soar to 75.

“We could use coal or we could use renewable sources. With coal, it will mean more greenhouse gas emissions. That’s what keeps me up at night”

Researchers have warned, consistently and repeatedly, that even a modest rise in average planetary temperatures will take the form of longer and more intense heat waves. By 2100 three out of four people on the planet could be exposed to heat extremes, and those most at hazard will be living in the tropical and subtropical megacities.

Extremes of heat can kill – one group has already identified 27 ways in which to die of rising temperatures – and scientists began warning years ago that ever more needed investment in air-conditioning equipment would only make energy demand, and perhaps greenhouse gas emissions, worse, while also contributing to ever greater outdoor temperatures.

So researchers have been looking at other approaches. The puzzle has already tested the levels of ingenuity and fresh thinking in the world’s energy laboratories. Researchers have cheerfully proposed reflector roofs that could send 97% of the sunlight back into space.

They have explored nature’s answer to the unforgiving sun: more trees in cities could take temperatures down by as much as 5°C and even make cities wealthier and healthier. And already this month, scientists and engineers have suggested two new ways to address the challenge of the overheating cities.

One US team at the University of Buffalo, working with the King Abdullah University in Saudi Arabia, has devised an inexpensive polymer-aluminium film that keeps itself cool, packed in a specially designed solar shelter. The film absorbs heat from the air and converts it to thermal radiation that can be beamed back into space.

Deep cuts possible

The researchers report, in the journal Nature Sustainability, that in the laboratory temperatures could be lowered by up to 11°C. On a clear, sunny day in New York state, they achieved outdoor all-day temperature reductions of 2°C to 9°C.

This exercise in entirely passive cooling – no electricity, just rooftop boxes – is in its infancy. But there are other approaches to the “heat island effect” that already makes modern cities uncomfortable.

Researchers at the University of Rutgers in the US simply looked at the ground beneath their feet. Pavement and road surfaces made of concrete or asphalt cover 30% of most cities and in high summer these surfaces can reach 60°C.

So, the Rutgers engineers report in the Journal of Cleaner Production,  roads could be made of permeable concrete, through which water could drain. It might give off more heat on sunny days, but after rainfall the water could run through, and evaporate through the pores, to reduce pavement heat by up to 30%.

And in addition, their concrete treated with fly ash and steel slag would make a huge difference to stormwater management and reduce the risk of urban flash floods. − Climate News Network

Higher temperatures must mean more energy just to cool cities – which means even more heat. But ingenuity is already proposing answers.

LONDON, 15 August, 2019 − The world could need a quarter more energy by 2050, to cool cities and survive the global heating expected by then. And that assumes that nations will have taken steps to control greenhouse gas emissions and that the rise in temperature will be moderate.

If, on the other hand, the world goes on burning fossil fuels under the notorious “business as usual” scenario, then according to new research the people of the planet could demand up to 58% more energy, just to drive the extra air conditioning and refrigeration in ever more frequent and ever more intense extremes of heat.

The latest study, by researchers based in Boston, Massachusetts and Venice in Italy, helps to settle one of the more intricate questions that accompany climate projections and energy demand: yes, there will be more people and bigger cities which demand more power anyway, and yes, warm zones will get hotter and demand more expense on keeping cool. But chilly and temperate nations will enjoy milder winters and spend less on staying warm. Which wins?

The new paper, in the journal Nature Communications, either settles the matter or provides fellow scientists with a methodology and a set of results to examine more closely.

Risky faster heating

A warmer world will also be vastly more energy-expensive. And if nations invest in coal, oil or natural gas to provide the extra electricity to provide the air-conditioning, drive the electric fans and refrigerate food and medical supplies, then global heating would accelerate to ever more dangerous levels.

“At this point, we don’t know. To cool my house, I could buy a bigger air-conditioner. Or if higher demand makes electricity more expensive, I could choose to open my window or run a fan,” said Ian Sue Wing, an earth and environment scientist at Boston University, who led the study.

“We could use coal or we could use renewable sources, and those two choices mean very different things for our future. With coal, it will mean more greenhouse gas emissions. That’s what keeps me up at night.”

By 2050, there could be between 8.4bn and 10bn people on the planet. Gross domestic product per person (an economist’s measure of income and spending) could have all but doubled or even in some places more than trebled. Tropical and mid-latitude zones could, if warming is only moderate, experience as many as an extra 50 uncomfortably hot days each year. If the warming is vigorous, the number could soar to 75.

“We could use coal or we could use renewable sources. With coal, it will mean more greenhouse gas emissions. That’s what keeps me up at night”

Researchers have warned, consistently and repeatedly, that even a modest rise in average planetary temperatures will take the form of longer and more intense heat waves. By 2100 three out of four people on the planet could be exposed to heat extremes, and those most at hazard will be living in the tropical and subtropical megacities.

Extremes of heat can kill – one group has already identified 27 ways in which to die of rising temperatures – and scientists began warning years ago that ever more needed investment in air-conditioning equipment would only make energy demand, and perhaps greenhouse gas emissions, worse, while also contributing to ever greater outdoor temperatures.

So researchers have been looking at other approaches. The puzzle has already tested the levels of ingenuity and fresh thinking in the world’s energy laboratories. Researchers have cheerfully proposed reflector roofs that could send 97% of the sunlight back into space.

They have explored nature’s answer to the unforgiving sun: more trees in cities could take temperatures down by as much as 5°C and even make cities wealthier and healthier. And already this month, scientists and engineers have suggested two new ways to address the challenge of the overheating cities.

One US team at the University of Buffalo, working with the King Abdullah University in Saudi Arabia, has devised an inexpensive polymer-aluminium film that keeps itself cool, packed in a specially designed solar shelter. The film absorbs heat from the air and converts it to thermal radiation that can be beamed back into space.

Deep cuts possible

The researchers report, in the journal Nature Sustainability, that in the laboratory temperatures could be lowered by up to 11°C. On a clear, sunny day in New York state, they achieved outdoor all-day temperature reductions of 2°C to 9°C.

This exercise in entirely passive cooling – no electricity, just rooftop boxes – is in its infancy. But there are other approaches to the “heat island effect” that already makes modern cities uncomfortable.

Researchers at the University of Rutgers in the US simply looked at the ground beneath their feet. Pavement and road surfaces made of concrete or asphalt cover 30% of most cities and in high summer these surfaces can reach 60°C.

So, the Rutgers engineers report in the Journal of Cleaner Production,  roads could be made of permeable concrete, through which water could drain. It might give off more heat on sunny days, but after rainfall the water could run through, and evaporate through the pores, to reduce pavement heat by up to 30%.

And in addition, their concrete treated with fly ash and steel slag would make a huge difference to stormwater management and reduce the risk of urban flash floods. − Climate News Network

Balkan water reserves may soon run short

South-east Europe faces problems in the next decade as Balkan water reserves are expected to falter, imperilling hydropower.

TIRANA, Albania, 8 August, 2019 − The Balkans is one of the world’s most troubled regions, often the setting for outbreaks of territorial, ethnic and religious conflict.

Now the area is also having to face up to the problems caused by a changing climate – in particular the prospect of severe water shortages in the years ahead.

Albania, a mountainous country with a population of just under 3 million, has abundant water resources at present. But government studies predict that due to increasing temperatures and declining rainfall, there could be severe water shortages within ten years.

The government says that within a decade water levels in three of the country’s biggest rivers – the Drin, Mat and Vjosa – will be up to 20% lower than at present.

Albania, largely isolated from the outside world for much of the second half of the 20th century under the Stalinist regime of Enver Hoxha, is struggling to build its economy, with hopes of joining the European Union in the not too distant future.

“Kosovo, Montenegro and North Macedonia all depend on coal for a substantial segment of their power generation”

Falling water levels in its rivers could seriously impede economic progress. More than 80% of Albania’s power is derived from hydro. Even a slight drop in water levels in the nation’s rivers results in power black-outs.

In the summer of 2017 Albania suffered a widespread drought; it was forced to use precious foreign currency reserves for power imports.

Added to these problems is a chronic lack of investment in water infrastructure and mismanagement in the sector. The country has more than 600 dams, but 70% of these are believed to be in need of repair; estimates are that up to half the total water supply is lost in leaks.

In recent years rainfall patterns have become less predictable – with sudden storms causing extensive flooding. Deforestation and haphazard building development along Albania’s water courses result in rivers frequently bursting their banks.

Rivers and water resources, like climate change, do not obey borders. Albania is dependent for a third of its water on neighbouring countries.

Slow progress

The waters of the Drin, Albania’s major river, are shared with the newly independent states of Kosovo and Montenegro in the north and with North Macedonia in the east. Territory in northern Greece also forms part of the Drin river basin. The area is one of the most ecologically rich in Europe.

After many years of territorial, ethnic and religious conflict, efforts are now being made to manage the waters of the Drin on a cross-boundary basis, though progress is often painfully slow.

Ironically, some countries in the region are contributing to their own climate change problems. Kosovo, Montenegro and North Macedonia all depend on coal for a substantial segment of their power generation.

Coal-fired power plants are among the leading sources of climate-changing greenhouse gases. Lignite coal – the most polluting variety of the fuel – is mainly used in the western Balkans region. The small state of Kosovo has some of the largest lignite reserves in the world.

Due primarily to the burning of lignite at ageing power plants, air pollution is a big problem in the country. Pristina, the capital, is often blanketed in a thick black haze in the winter months and regularly tops the world league of cities with the worst air quality. − Climate News Network

South-east Europe faces problems in the next decade as Balkan water reserves are expected to falter, imperilling hydropower.

TIRANA, Albania, 8 August, 2019 − The Balkans is one of the world’s most troubled regions, often the setting for outbreaks of territorial, ethnic and religious conflict.

Now the area is also having to face up to the problems caused by a changing climate – in particular the prospect of severe water shortages in the years ahead.

Albania, a mountainous country with a population of just under 3 million, has abundant water resources at present. But government studies predict that due to increasing temperatures and declining rainfall, there could be severe water shortages within ten years.

The government says that within a decade water levels in three of the country’s biggest rivers – the Drin, Mat and Vjosa – will be up to 20% lower than at present.

Albania, largely isolated from the outside world for much of the second half of the 20th century under the Stalinist regime of Enver Hoxha, is struggling to build its economy, with hopes of joining the European Union in the not too distant future.

“Kosovo, Montenegro and North Macedonia all depend on coal for a substantial segment of their power generation”

Falling water levels in its rivers could seriously impede economic progress. More than 80% of Albania’s power is derived from hydro. Even a slight drop in water levels in the nation’s rivers results in power black-outs.

In the summer of 2017 Albania suffered a widespread drought; it was forced to use precious foreign currency reserves for power imports.

Added to these problems is a chronic lack of investment in water infrastructure and mismanagement in the sector. The country has more than 600 dams, but 70% of these are believed to be in need of repair; estimates are that up to half the total water supply is lost in leaks.

In recent years rainfall patterns have become less predictable – with sudden storms causing extensive flooding. Deforestation and haphazard building development along Albania’s water courses result in rivers frequently bursting their banks.

Rivers and water resources, like climate change, do not obey borders. Albania is dependent for a third of its water on neighbouring countries.

Slow progress

The waters of the Drin, Albania’s major river, are shared with the newly independent states of Kosovo and Montenegro in the north and with North Macedonia in the east. Territory in northern Greece also forms part of the Drin river basin. The area is one of the most ecologically rich in Europe.

After many years of territorial, ethnic and religious conflict, efforts are now being made to manage the waters of the Drin on a cross-boundary basis, though progress is often painfully slow.

Ironically, some countries in the region are contributing to their own climate change problems. Kosovo, Montenegro and North Macedonia all depend on coal for a substantial segment of their power generation.

Coal-fired power plants are among the leading sources of climate-changing greenhouse gases. Lignite coal – the most polluting variety of the fuel – is mainly used in the western Balkans region. The small state of Kosovo has some of the largest lignite reserves in the world.

Due primarily to the burning of lignite at ageing power plants, air pollution is a big problem in the country. Pristina, the capital, is often blanketed in a thick black haze in the winter months and regularly tops the world league of cities with the worst air quality. − Climate News Network