Category Archives: Energy

Carbon emissions slow, but not nearly fast enough

Global shutdown during Covid-19 has forced down carbon emissions. But no inadvertent pause can replace global resolve.

LONDON, 8 March, 2021 − Five years after a planet-wide vow to reduce carbon emissions, it happened. In 2020, the world’s nations pumped only 34 billion tonnes of carbon dioxide into the atmosphere, a drop of 2.6bn tonnes on the previous year.

For that, thank the coronavirus that triggered a global pandemic and international lockdown, rather than the determination of the planet’s leaders, businesses, energy producers, consumers and citizens.

In fact, only 64 countries have cut their carbon emissions in the years since 195 nations delivered the Paris Climate Agreement of 2015: these achieved annual cuts of 0.16bn tonnes in the years since. But emissions actually rose in 150 nations, which means that overall from 2016 to 2019 emissions grew by 0.21bn tonnes, compared with the preceding five years, 2011-2015.

And, say British, European, Australian and US scientists in the journal Nature Climate Change, the global pause during the pandemic in 2020 is not likely to continue. To make the kind of carbon emissions cuts that will fulfill the promise made in Paris to contain global heating to “well below” 2°C by 2100, the world must reduce carbon dioxide emissions each year by one to two billion tonnes.

That is an annual increase of ten times the cuts achieved so far by only 64 out of 214 countries.

“It is in everyone’s best interests to build back better to speed the urgent transition to clean energy”

Researchers have, since 2015, repeatedly made the case − in economic terms, in terms of human safety and justice, in terms of human health and nutrition − for drastic reductions in the use of the fossil fuels that, ultimately, power all economic growth.

They have also repeatedly warned that almost no nation, anywhere, is doing nearly enough to help meet the proposed goal of no more than 1.5°C warming by the end of the century. The world has already warmed by more than 1°C in the last century, thanks to human choices. Soon planetary temperatures could cross a dangerous threshold.

And although the dramatic pause in economic activity triggered by yet another zoonotic virus, the emergence of which may be yet another consequence of human disturbance of the planet’s natural ecosystems, is an indicator of new possibilities, the planet is still addicted to fossil fuels.

“The drop in CO2 emissions in response to Covid-19 highlights the scale of actions and international adherence needed to tackle climate change,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Now we need large-scale actions that are good for human health and good for the planet. It is in everyone’s best interests to build back better to speed the urgent transition to clean energy.”

Inching towards cuts

The latest accounting suggests that there has been some movement, though simply not enough. Between 2016 and 2019, carbon emissions decreased in 25 out of 36 high income countries. The USA’s fell by 0.7%, the European Union’s by 0.9% and the UK’s by 3.6%, and those emissions fell even after accounting for the carbon costs of goods imported from other nations.

Of the middle income nations, Mexico’s carbon emissions dropped by 1.3% and China’s by 0.4%, a dramatic contrast with 2011-2015, when China’s emissions had grown by 6.2% a year. But altogether, 99 upper-middle income economies accounted for 51% of global emissions in 2019, and China accounted for 28% of the global total.

Even in the US and China, money is still going into fossil fuels. The European Union, Denmark, France, the UK, Germany and Switzerland are among the few countries that have tried to limit fossil fuel power and implement some kind of economic “green” stimulus.

The message is that, after a series of years in which temperature records have been repeatedly broken, years marked by devastating fire, drought, flood and windstorm, nations need to act, and at speed, to honour the Paris promise to cut their carbon emissions.

“This pressing timeline is constantly underscored by the rapid unfolding of extreme climate impacts worldwide,” said Professor Le Quéré. − Climate News Network

Global shutdown during Covid-19 has forced down carbon emissions. But no inadvertent pause can replace global resolve.

LONDON, 8 March, 2021 − Five years after a planet-wide vow to reduce carbon emissions, it happened. In 2020, the world’s nations pumped only 34 billion tonnes of carbon dioxide into the atmosphere, a drop of 2.6bn tonnes on the previous year.

For that, thank the coronavirus that triggered a global pandemic and international lockdown, rather than the determination of the planet’s leaders, businesses, energy producers, consumers and citizens.

In fact, only 64 countries have cut their carbon emissions in the years since 195 nations delivered the Paris Climate Agreement of 2015: these achieved annual cuts of 0.16bn tonnes in the years since. But emissions actually rose in 150 nations, which means that overall from 2016 to 2019 emissions grew by 0.21bn tonnes, compared with the preceding five years, 2011-2015.

And, say British, European, Australian and US scientists in the journal Nature Climate Change, the global pause during the pandemic in 2020 is not likely to continue. To make the kind of carbon emissions cuts that will fulfill the promise made in Paris to contain global heating to “well below” 2°C by 2100, the world must reduce carbon dioxide emissions each year by one to two billion tonnes.

That is an annual increase of ten times the cuts achieved so far by only 64 out of 214 countries.

“It is in everyone’s best interests to build back better to speed the urgent transition to clean energy”

Researchers have, since 2015, repeatedly made the case − in economic terms, in terms of human safety and justice, in terms of human health and nutrition − for drastic reductions in the use of the fossil fuels that, ultimately, power all economic growth.

They have also repeatedly warned that almost no nation, anywhere, is doing nearly enough to help meet the proposed goal of no more than 1.5°C warming by the end of the century. The world has already warmed by more than 1°C in the last century, thanks to human choices. Soon planetary temperatures could cross a dangerous threshold.

And although the dramatic pause in economic activity triggered by yet another zoonotic virus, the emergence of which may be yet another consequence of human disturbance of the planet’s natural ecosystems, is an indicator of new possibilities, the planet is still addicted to fossil fuels.

“The drop in CO2 emissions in response to Covid-19 highlights the scale of actions and international adherence needed to tackle climate change,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Now we need large-scale actions that are good for human health and good for the planet. It is in everyone’s best interests to build back better to speed the urgent transition to clean energy.”

Inching towards cuts

The latest accounting suggests that there has been some movement, though simply not enough. Between 2016 and 2019, carbon emissions decreased in 25 out of 36 high income countries. The USA’s fell by 0.7%, the European Union’s by 0.9% and the UK’s by 3.6%, and those emissions fell even after accounting for the carbon costs of goods imported from other nations.

Of the middle income nations, Mexico’s carbon emissions dropped by 1.3% and China’s by 0.4%, a dramatic contrast with 2011-2015, when China’s emissions had grown by 6.2% a year. But altogether, 99 upper-middle income economies accounted for 51% of global emissions in 2019, and China accounted for 28% of the global total.

Even in the US and China, money is still going into fossil fuels. The European Union, Denmark, France, the UK, Germany and Switzerland are among the few countries that have tried to limit fossil fuel power and implement some kind of economic “green” stimulus.

The message is that, after a series of years in which temperature records have been repeatedly broken, years marked by devastating fire, drought, flood and windstorm, nations need to act, and at speed, to honour the Paris promise to cut their carbon emissions.

“This pressing timeline is constantly underscored by the rapid unfolding of extreme climate impacts worldwide,” said Professor Le Quéré. − Climate News Network

Corporate climate polluters must pay for damage

Who should pay the huge costs of climate change’s damage? There’s a case for corporate climate polluters to contribute.

LONDON, 25 February, 2021 − The world’s big oil and mining companies emit vast amounts of climate-changing greenhouse gases into the atmosphere.

By extension, the actions of these corporate giants stand accused of contributing to floods and droughts and other climate-related disasters around the globe, extremely costly in both human and financial terms.

Our suggestion, which we describe as “a hypothetical climate liability regime”, is for the companies to become at least partially liable to pay for their destructive, climate-changing activities.

Investors should also be made aware of the risks involved in putting money into such enterprises. Only then will a realistic market valuation of these companies be calculated.

We examined nine top-emitting publicly-owned companies – all fossil fuel giants: Chevron, ExxonMobil, BP, Royal Dutch Shell, ConocoPhillips and Total are all primarily involved in oil.

Whilst Peabody Energy is one of the world’s biggest coal conglomerates, BHP Billiton is a mining behemoth and CNX Resources is a large gas company.

Cumulative emissions

In mid-2018 these nine companies had a combined market capitalisation  of US$1,358bn on the world’s stock markets. In total we estimate that the cumulative emissions of the companies concerned over an extended period of time have added up to 14.5% of total global emissions.

Analysing the occurrence of floods and droughts around the globe over a recent five-year period, it was calculated the costs totaled US$265bn.

If a liability regime was introduced, the nine companies above would stand to pay up to a 14.5% share of those costs – amounting to US$38.4bn, a figure representing 2.8% of their combined market worth.

Floods and droughts occurred before global warming, so only the additional intensity or frequency of flood and drought damages from company emissions matter – an active area of research.

How much should fossil fuel users pay as a share of responsibility? We explore this too. Not all is down to the users, but neither is all of it the responsibility of the producers. Even after allowing for both, we still suggest that 2.0% of their combined market worth might be a “fair” share.

Further impacts

If other impacts of global warming, such as hurricanes and sea-level rise, were taken into account, these companies would have to contribute much larger sums to pay for the damage caused.

Our calculations are based only on historical emissions: we do not take into account the damage, both in human and financial terms, likely to be caused by the activities of the companies concerned as global warming intensifies.

More than 50 years ago it became clear that emissions of CO2 and other greenhouse gases were damaging the climate.

The leading carbon producers could see their activities were harmful and that they had a responsibility to reduce the damage caused by capturing emissions or developing safe substitutes, such as carbon-free energy.

Instead, fossil fuel firms ignored their responsibilities, and promoted climate denial.

Public pressure grows

If these and other companies became liable for the damage caused by their emissions, investors could well think again before putting their money into such enterprises.

The City of New York is taking steps to remove fossil fuel companies from its US$189bn pension fund portfolio. Other investment funds – both big and small – are following the New York pension fund lead in the face of mounting public pressure aimed at supporting more sustainable enterprises.

Investors are also becoming increasingly aware of the growing financial risks of investing in companies founded on the exploitation of fossil fuels.

The value of these conglomerates could rapidly decline if they became liable for their past emissions: new regulations aimed at tackling the climate crisis could result in corporate fossil fuel reserves being left in the ground as so-called stranded assets. − Climate News Network

* * * * * * *

Dr Quintin Rayer, the lead author of this article, founded P1 Investment Management’s ethical and sustainable investment proposition in January 2017. He is a Fellow of the Institute of Physics, and a Chartered Fellow of the CISI, the Chartered Institute for Securities & Investment.

Dr Karsten Haustein, PhD (Barcelona), one of his co-authors, is a Research Associate, Climate Systems and Policy, at the School of Geography and the Environment, University of Oxford.

Dr Pete Walton, also a co-author, is a Knowledge Exchange Research Fellow at UKCIP, University of Oxford, where he works with a range of stakeholders in the UK and abroad in understanding how to build resilience to climate change.

The project of which this article is a summary is due to be published as a chapter in Water Risk and Its Impact on the Financial Markets and Our Society: New Developments in Risk Assessment and Management, forthcoming from Palgrave Macmillan. Current title: Global Warming: Flood and Drought Investment Risks

Dr Rayer and Dr Haustein contributed to Global Warming and Extreme Weather Investment Risks (Palgrave Macmillan, 2020).

Who should pay the huge costs of climate change’s damage? There’s a case for corporate climate polluters to contribute.

LONDON, 25 February, 2021 − The world’s big oil and mining companies emit vast amounts of climate-changing greenhouse gases into the atmosphere.

By extension, the actions of these corporate giants stand accused of contributing to floods and droughts and other climate-related disasters around the globe, extremely costly in both human and financial terms.

Our suggestion, which we describe as “a hypothetical climate liability regime”, is for the companies to become at least partially liable to pay for their destructive, climate-changing activities.

Investors should also be made aware of the risks involved in putting money into such enterprises. Only then will a realistic market valuation of these companies be calculated.

We examined nine top-emitting publicly-owned companies – all fossil fuel giants: Chevron, ExxonMobil, BP, Royal Dutch Shell, ConocoPhillips and Total are all primarily involved in oil.

Whilst Peabody Energy is one of the world’s biggest coal conglomerates, BHP Billiton is a mining behemoth and CNX Resources is a large gas company.

Cumulative emissions

In mid-2018 these nine companies had a combined market capitalisation  of US$1,358bn on the world’s stock markets. In total we estimate that the cumulative emissions of the companies concerned over an extended period of time have added up to 14.5% of total global emissions.

Analysing the occurrence of floods and droughts around the globe over a recent five-year period, it was calculated the costs totaled US$265bn.

If a liability regime was introduced, the nine companies above would stand to pay up to a 14.5% share of those costs – amounting to US$38.4bn, a figure representing 2.8% of their combined market worth.

Floods and droughts occurred before global warming, so only the additional intensity or frequency of flood and drought damages from company emissions matter – an active area of research.

How much should fossil fuel users pay as a share of responsibility? We explore this too. Not all is down to the users, but neither is all of it the responsibility of the producers. Even after allowing for both, we still suggest that 2.0% of their combined market worth might be a “fair” share.

Further impacts

If other impacts of global warming, such as hurricanes and sea-level rise, were taken into account, these companies would have to contribute much larger sums to pay for the damage caused.

Our calculations are based only on historical emissions: we do not take into account the damage, both in human and financial terms, likely to be caused by the activities of the companies concerned as global warming intensifies.

More than 50 years ago it became clear that emissions of CO2 and other greenhouse gases were damaging the climate.

The leading carbon producers could see their activities were harmful and that they had a responsibility to reduce the damage caused by capturing emissions or developing safe substitutes, such as carbon-free energy.

Instead, fossil fuel firms ignored their responsibilities, and promoted climate denial.

Public pressure grows

If these and other companies became liable for the damage caused by their emissions, investors could well think again before putting their money into such enterprises.

The City of New York is taking steps to remove fossil fuel companies from its US$189bn pension fund portfolio. Other investment funds – both big and small – are following the New York pension fund lead in the face of mounting public pressure aimed at supporting more sustainable enterprises.

Investors are also becoming increasingly aware of the growing financial risks of investing in companies founded on the exploitation of fossil fuels.

The value of these conglomerates could rapidly decline if they became liable for their past emissions: new regulations aimed at tackling the climate crisis could result in corporate fossil fuel reserves being left in the ground as so-called stranded assets. − Climate News Network

* * * * * * *

Dr Quintin Rayer, the lead author of this article, founded P1 Investment Management’s ethical and sustainable investment proposition in January 2017. He is a Fellow of the Institute of Physics, and a Chartered Fellow of the CISI, the Chartered Institute for Securities & Investment.

Dr Karsten Haustein, PhD (Barcelona), one of his co-authors, is a Research Associate, Climate Systems and Policy, at the School of Geography and the Environment, University of Oxford.

Dr Pete Walton, also a co-author, is a Knowledge Exchange Research Fellow at UKCIP, University of Oxford, where he works with a range of stakeholders in the UK and abroad in understanding how to build resilience to climate change.

The project of which this article is a summary is due to be published as a chapter in Water Risk and Its Impact on the Financial Markets and Our Society: New Developments in Risk Assessment and Management, forthcoming from Palgrave Macmillan. Current title: Global Warming: Flood and Drought Investment Risks

Dr Rayer and Dr Haustein contributed to Global Warming and Extreme Weather Investment Risks (Palgrave Macmillan, 2020).

India’s energy policy is key to the planet’s future

India must adopt a clean energy policy, a real industrial revolution, if the world is to slow the rising climate crisis.

LONDON, 18 February, 2021 − Here’s the bad news. Unless India opts for a totally new energy policy, a revolutionary switch to a clean future, the world has no chance of avoiding dangerous climate change.

But there’s some much better news too: with the right policies, it can both improve the lives of its own citizens and offer the entire planet hope of a livable climate.

That is the view of the International Energy Agency (IEA), which says that as it is the world’s third largest consumer of energy after China and the United States, the direction India takes is crucial to everyone’s future.

In a report, India Energy Outlook 2021, the Agency says the country’s energy use has doubled in the last 20 years, with 80% of the energy consumed still coming from coal, oil and wood.

“The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India”

Despite this growth, India’s emissions per capita are still only half the world average. But this is set to change. Economic growth is expected to accelerate dramatically, and the rate of energy demand growth is already three times the global average.

Millions of Indian households are expected to buy new domestic appliances, air conditioning units and vehicles. Increasing urbanisation means four million people need new urban homes annually, requiring a city the size of Los Angeles to be built every year.

To meet this growth in electricity demand over the next twenty years, India will also need to add a power system the size of the whole European Union to what it already has, the IEA says.

The report describes the huge developments taking place in what is soon to overtake China as the world’s most populous country and explains how this growth can be achieved without destroying the planet in the process. The IEA has just entered what it calls “a strategic partnership” with India to help it towards a clean energy transition.

Huge opportunity

Dr Fatih Birol, the IEA’s executive director, admitted it was a daunting task: “The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India.

“What our new report makes clear is the tremendous opportunity for India to successfully meet the aspirations of its citizens without following the high-carbon pathway that other economies have pursued in the past.”

The report agrees. Transformations in the energy sector – on a scale no country has achieved in history – require huge advances in innovation, strong partnerships and vast amounts of capital.

The extra funding for the clean energy technologies required to put India on a sustainable path over the next 20 years is US$1.4 trillion (£1tn), or 70% higher than in a scenario based on its current policy settings. But the benefits are huge, including savings of the same magnitude on oil import bills, the IEA calculates.

Solar’s bright future

At present the Indian government’s projected 50% rise in greenhouse gas emissions by 2040 is enough to offset entirely the projected fall in emissions in Europe over the same period.

The Agency says these high emissions can be avoided. Although solar energy accounts for less than 4% of India’s electricity generation at the moment, and coal 70%, this will change: “Solar power is set for explosive growth, matching coal’s share in the Indian power generation mix within two decades.”

Even so, the government is not going far or fast enough. The scope for rooftop solar panels, solar thermal heating and pumps for irrigation and drinking water is very great.

Transport is another problem area. “An extra 25 million trucks will be travelling on India’s roads by 2040 as road freight activity triples, and a total of 300 million vehicles of all types are added to India’s fleet between now and then,” the report says.

Health will improve

India has many good policies to reduce the effect of this by electrifying rail routes and vehicles. But even so, without more policy improvements, its demand for oil is set to increase more than any other country’s.

Perhaps the most difficult area to control emissions is in the construction sector, with cement and steel production heavily dependent on fossil fuels. Ways to use electricity made with renewables for manufacturing rather than fossil fuels must be found.

There is also a need to replace and improve cooking stoves using gas and electricity instead of firewood and other traditional fuels, like animal dung.

The report makes the point that all the moves to reduce greenhouse gas emissions also help the country’s balance of payments and security by substituting home-produced renewables for fossil fuel imports. This cuts air pollution as well and improves people’s health, further improving economic output. − Climate News Network

India must adopt a clean energy policy, a real industrial revolution, if the world is to slow the rising climate crisis.

LONDON, 18 February, 2021 − Here’s the bad news. Unless India opts for a totally new energy policy, a revolutionary switch to a clean future, the world has no chance of avoiding dangerous climate change.

But there’s some much better news too: with the right policies, it can both improve the lives of its own citizens and offer the entire planet hope of a livable climate.

That is the view of the International Energy Agency (IEA), which says that as it is the world’s third largest consumer of energy after China and the United States, the direction India takes is crucial to everyone’s future.

In a report, India Energy Outlook 2021, the Agency says the country’s energy use has doubled in the last 20 years, with 80% of the energy consumed still coming from coal, oil and wood.

“The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India”

Despite this growth, India’s emissions per capita are still only half the world average. But this is set to change. Economic growth is expected to accelerate dramatically, and the rate of energy demand growth is already three times the global average.

Millions of Indian households are expected to buy new domestic appliances, air conditioning units and vehicles. Increasing urbanisation means four million people need new urban homes annually, requiring a city the size of Los Angeles to be built every year.

To meet this growth in electricity demand over the next twenty years, India will also need to add a power system the size of the whole European Union to what it already has, the IEA says.

The report describes the huge developments taking place in what is soon to overtake China as the world’s most populous country and explains how this growth can be achieved without destroying the planet in the process. The IEA has just entered what it calls “a strategic partnership” with India to help it towards a clean energy transition.

Huge opportunity

Dr Fatih Birol, the IEA’s executive director, admitted it was a daunting task: “The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India.

“What our new report makes clear is the tremendous opportunity for India to successfully meet the aspirations of its citizens without following the high-carbon pathway that other economies have pursued in the past.”

The report agrees. Transformations in the energy sector – on a scale no country has achieved in history – require huge advances in innovation, strong partnerships and vast amounts of capital.

The extra funding for the clean energy technologies required to put India on a sustainable path over the next 20 years is US$1.4 trillion (£1tn), or 70% higher than in a scenario based on its current policy settings. But the benefits are huge, including savings of the same magnitude on oil import bills, the IEA calculates.

Solar’s bright future

At present the Indian government’s projected 50% rise in greenhouse gas emissions by 2040 is enough to offset entirely the projected fall in emissions in Europe over the same period.

The Agency says these high emissions can be avoided. Although solar energy accounts for less than 4% of India’s electricity generation at the moment, and coal 70%, this will change: “Solar power is set for explosive growth, matching coal’s share in the Indian power generation mix within two decades.”

Even so, the government is not going far or fast enough. The scope for rooftop solar panels, solar thermal heating and pumps for irrigation and drinking water is very great.

Transport is another problem area. “An extra 25 million trucks will be travelling on India’s roads by 2040 as road freight activity triples, and a total of 300 million vehicles of all types are added to India’s fleet between now and then,” the report says.

Health will improve

India has many good policies to reduce the effect of this by electrifying rail routes and vehicles. But even so, without more policy improvements, its demand for oil is set to increase more than any other country’s.

Perhaps the most difficult area to control emissions is in the construction sector, with cement and steel production heavily dependent on fossil fuels. Ways to use electricity made with renewables for manufacturing rather than fossil fuels must be found.

There is also a need to replace and improve cooking stoves using gas and electricity instead of firewood and other traditional fuels, like animal dung.

The report makes the point that all the moves to reduce greenhouse gas emissions also help the country’s balance of payments and security by substituting home-produced renewables for fossil fuel imports. This cuts air pollution as well and improves people’s health, further improving economic output. − Climate News Network

Solar power’s future could soon be overshadowed

Despite its recent runaway success, solar power’s future as a key way to counter climate chaos could soon be at risk.

LONDON, 12 February, 2021– As more households and industries have opted to harness the sun’s energy, a small but definite shadow is nagging at the many manufacturers who have put their faith in solar power’s future.

Prices have fallen dramatically: according to the International Energy Agency, the cost of producing electricity from solar energy dropped 80% over the past decade. But a mix of international economic rivalries and human rights issues could hamper the onward expansion of solar around the world.

Up till 15 years ago companies in Europe and Japan dominated the solar manufacturing industry. That has all changed: as with so many manufactured products, China now accounts for the bulk of solar equipment produced globally, with about a 70% share.

China itself is also by far the world’s biggest market for solar: about half of all solar power installed round the globe is in China.

China-based companies have invested heavily in sophisticated manufacturing facilities and in research and development. The country’s dominance of the solar manufacturing sector has caused concern in some countries.

“We’ve been telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d ask all solar companies to immediately leave the region”

Manufacturers of photovoltaic panels and other solar products in East Asia, the US and Europe have alleged that cheaper, state-subsidised goods from China have hampered development of home-grown solar industries.

The former Trump administration in the US voiced increasingly strident opposition to what it saw as unfair trading practices by China: in early 2018 Washington slapped a 30% tariff on solar imports from China.

The resulting setback for the US solar market – and China’s exporters – was only temporary. The appetite in the US and elsewhere for solar power continues to grow.

In many countries solar energy is out-competing fossil fuels on price. Meanwhile new technologies and more efficient batteries mean large amounts of solar power can be stored for use in periods when the sun doesn’t shine.

Waiting for Biden

In 2019 there was a 24% increase in the number of solar installations in the US, with utility companies, particularly in sunnier and more environmentally progressive states such as California, leading the solar surge.

Whether or not the new Biden administration in the US will soften the hard line taken on China by former President Trump is uncertain.

Some feel that, while Biden might seek to ease trade tensions, there could be more emphasis on human rights issues, particularly in relation to the widely reported actions taken by Beijing against the Uighurs and other Muslim minorities in the north-western province of Xinjiang.

This could have serious implications for the solar industry, not only in China but worldwide. A number of China’s big solar manufacturers, some in partnership with foreign companies, have concentrated their operations in Xinjiang. The province accounts for the bulk of China’s production of polysilicon, one of the most important base materials for solar panels.

There have been reports not only about Uighurs and other groups in Xinjiang being forcibly herded into so-called re-education camps, but also of local people being used as forced labour in solar and other industries.

Human rights concern

Reacting to reports of widespread repression in the region, the US recently banned the import of tomatoes and cotton from Xinjiang.

The US Solar Energy Industries Association (SEIA) – a trade body representing the US solar industry and a sector employing an estimated 250,000 people – said it was taking the reports very seriously.

“Forced labour has no place in the solar industry”, said the SEIA. “Since the fall we’ve been proactively telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d like to reiterate this call to action and ask all solar companies to immediately leave the region.”

Beijing has described the reports of forced labour in the province as “the biggest lie of the century”. – Climate News Network

Despite its recent runaway success, solar power’s future as a key way to counter climate chaos could soon be at risk.

LONDON, 12 February, 2021– As more households and industries have opted to harness the sun’s energy, a small but definite shadow is nagging at the many manufacturers who have put their faith in solar power’s future.

Prices have fallen dramatically: according to the International Energy Agency, the cost of producing electricity from solar energy dropped 80% over the past decade. But a mix of international economic rivalries and human rights issues could hamper the onward expansion of solar around the world.

Up till 15 years ago companies in Europe and Japan dominated the solar manufacturing industry. That has all changed: as with so many manufactured products, China now accounts for the bulk of solar equipment produced globally, with about a 70% share.

China itself is also by far the world’s biggest market for solar: about half of all solar power installed round the globe is in China.

China-based companies have invested heavily in sophisticated manufacturing facilities and in research and development. The country’s dominance of the solar manufacturing sector has caused concern in some countries.

“We’ve been telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d ask all solar companies to immediately leave the region”

Manufacturers of photovoltaic panels and other solar products in East Asia, the US and Europe have alleged that cheaper, state-subsidised goods from China have hampered development of home-grown solar industries.

The former Trump administration in the US voiced increasingly strident opposition to what it saw as unfair trading practices by China: in early 2018 Washington slapped a 30% tariff on solar imports from China.

The resulting setback for the US solar market – and China’s exporters – was only temporary. The appetite in the US and elsewhere for solar power continues to grow.

In many countries solar energy is out-competing fossil fuels on price. Meanwhile new technologies and more efficient batteries mean large amounts of solar power can be stored for use in periods when the sun doesn’t shine.

Waiting for Biden

In 2019 there was a 24% increase in the number of solar installations in the US, with utility companies, particularly in sunnier and more environmentally progressive states such as California, leading the solar surge.

Whether or not the new Biden administration in the US will soften the hard line taken on China by former President Trump is uncertain.

Some feel that, while Biden might seek to ease trade tensions, there could be more emphasis on human rights issues, particularly in relation to the widely reported actions taken by Beijing against the Uighurs and other Muslim minorities in the north-western province of Xinjiang.

This could have serious implications for the solar industry, not only in China but worldwide. A number of China’s big solar manufacturers, some in partnership with foreign companies, have concentrated their operations in Xinjiang. The province accounts for the bulk of China’s production of polysilicon, one of the most important base materials for solar panels.

There have been reports not only about Uighurs and other groups in Xinjiang being forcibly herded into so-called re-education camps, but also of local people being used as forced labour in solar and other industries.

Human rights concern

Reacting to reports of widespread repression in the region, the US recently banned the import of tomatoes and cotton from Xinjiang.

The US Solar Energy Industries Association (SEIA) – a trade body representing the US solar industry and a sector employing an estimated 250,000 people – said it was taking the reports very seriously.

“Forced labour has no place in the solar industry”, said the SEIA. “Since the fall we’ve been proactively telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d like to reiterate this call to action and ask all solar companies to immediately leave the region.”

Beijing has described the reports of forced labour in the province as “the biggest lie of the century”. – Climate News Network

Carbon-free future is in reach for the US by 2050

America could have a carbon-free future by 2050 with a big switch to wind and solar power, say US government scientists.

LONDON, 11 February, 2021 − The US − per head of population perhaps the world’s most prodigal emitter of greenhouse gases − can reverse that and have a carbon-free future within three decades, at a cost of no more than $1 per person per day.

That would mean renewable energy to power all 50 states: giant wind power farms, solar power stations, electric cars, heat pumps and a range of other technological solutions.

The argument has been made before: made repeatedly; and contested too. But this time the reasoning comes not from individual scientists in a handful of US universities, but from an American government research base: the Department of Energy’s Lawrence Berkeley National Laboratory, with help from the University of San Francisco.

To make the switch more politically feasible, the authors argue, existing power plant could be allowed to live out its economic life; nobody need be asked to scrap a brand new gasoline-driven car for an electric vehicle.

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries”

Their study − in the journal AGU Advances − looked at a range of ways to get to net zero carbon emissions, at costs as low as 0.2% of gross domestic product (GDP, the economist’s favourite measure of national wealth), or as high as 1.2%, with about 90% of power generated by wind or solar energy.

“The decarbonisation of the US energy system is fundamentally an infrastructure transformation,” said Margaret Torn, of the Berkeley Lab, one of the authors.

“It means that by 2050 we need to build many gigawatts of wind and solar plants, new transmission lines, a fleet of electric cars and light trucks, millions of heat pumps to replace conventional furnaces and water heaters, and more energy-efficient buildings, while continuing to research and innovate new technologies.”

The economic costs would be almost exclusively capital costs necessitated by the new infrastructure. That is both bad and good.

Jobs aplenty

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries.

“There’s no question that there will need to be a well thought-out economic transition strategy for fossil fuel-based industries and communities, but there’s also no question that there are a lot of jobs in building a low carbon economy.”

The study also suggests the US could even become a source of what the scientists call “net negative” emissions by mid-century, taking more carbon dioxide out of the atmosphere than is added.

This would mean systematic carbon capture, investment in biofuels, and a lot more electric power; which in turn would cost inland and interstate transmission lines. But, the authors argue, this would be affordable to society just on energy grounds alone. − Climate News Network

America could have a carbon-free future by 2050 with a big switch to wind and solar power, say US government scientists.

LONDON, 11 February, 2021 − The US − per head of population perhaps the world’s most prodigal emitter of greenhouse gases − can reverse that and have a carbon-free future within three decades, at a cost of no more than $1 per person per day.

That would mean renewable energy to power all 50 states: giant wind power farms, solar power stations, electric cars, heat pumps and a range of other technological solutions.

The argument has been made before: made repeatedly; and contested too. But this time the reasoning comes not from individual scientists in a handful of US universities, but from an American government research base: the Department of Energy’s Lawrence Berkeley National Laboratory, with help from the University of San Francisco.

To make the switch more politically feasible, the authors argue, existing power plant could be allowed to live out its economic life; nobody need be asked to scrap a brand new gasoline-driven car for an electric vehicle.

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries”

Their study − in the journal AGU Advances − looked at a range of ways to get to net zero carbon emissions, at costs as low as 0.2% of gross domestic product (GDP, the economist’s favourite measure of national wealth), or as high as 1.2%, with about 90% of power generated by wind or solar energy.

“The decarbonisation of the US energy system is fundamentally an infrastructure transformation,” said Margaret Torn, of the Berkeley Lab, one of the authors.

“It means that by 2050 we need to build many gigawatts of wind and solar plants, new transmission lines, a fleet of electric cars and light trucks, millions of heat pumps to replace conventional furnaces and water heaters, and more energy-efficient buildings, while continuing to research and innovate new technologies.”

The economic costs would be almost exclusively capital costs necessitated by the new infrastructure. That is both bad and good.

Jobs aplenty

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries.

“There’s no question that there will need to be a well thought-out economic transition strategy for fossil fuel-based industries and communities, but there’s also no question that there are a lot of jobs in building a low carbon economy.”

The study also suggests the US could even become a source of what the scientists call “net negative” emissions by mid-century, taking more carbon dioxide out of the atmosphere than is added.

This would mean systematic carbon capture, investment in biofuels, and a lot more electric power; which in turn would cost inland and interstate transmission lines. But, the authors argue, this would be affordable to society just on energy grounds alone. − Climate News Network

Small may prove beautiful for the nuclear industry

The nuclear industry in much of the world is struggling to survive. Reverting to small reactors may be its best hope.

LONDON, 10 February, 2021 − Despite a campaign lasting two decades, the nuclear industry’s dream of building hundreds of large reactors to lead the fight to save the planet from overheating has evaporated.

While renewable energy industries, solar and wind in particular, get ever cheaper and expand faster, nuclear projects are steadily bogged down further in delays, cost over-runs and debt.

Some large nuclear power stations are still under construction in Russia and China, but in Europe and North America they are badly delayed and few in number. Many projects that have been long planned but not yet started are being abandoned.

This is despite the fact that nuclear-friendly governments, particularly those with nuclear-powered ships, submarines and weapons of mass destruction, have not given up on the industry.

But now, instead of building ever-larger reactors, these governments are switching their attention and financial backing to small modular reactors (SMRs).

“There is no justification for building new reactors at Sizewell C or Bradwell B”

These off-the-shelf prototypes can be scaled up or down in size, to double as power plants for ice breakers and submarines, or for use as electricity and heat generators for remote settlements, military bases and, theoretically, urban areas – if the local populations do not protest too loudly.

Currently the UK, the US, Russia and China are pouring large government subsidies into developing SMRs, which are said to be for electricity production, but equally are useful for training key personnel to use reactors for military purposes. In this regard the support of a non-nuclear weapon state (Canada) for SMRs seems odd, but it has many remote off-grid communities that might benefit if the technology works as claimed.

According to the International Atomic Energy Agency small modular reactors have a great future. Its latest report says there are 72 SMRs under development or construction in 18 countries, although large-scale deployment for the technology is still some years off.

For nuclear critics this lengthy timescale is always the problem. Solar and wind power can be deployed in a matter of months, whereas the nuclear timetables always stretch years ahead. Even then, critics wonder, will the promises made for SMRs live up to the hype? They say past experience has shown that timetables slip and costs escalate.

Time is problematic

For the moment this track record does not seem to have dampened politicians’ enthusiasm for the technology. The current promise is that once the prototypes are up and working, parts for future reactors will be made in factories and put together on-site, so reducing energy costs by mass production methods – a bit like assembly lines for cars.

Meanwhile the larger reactor-building projects are definitely in trouble. EDF, the French state-owned and debt-laden nuclear giant, the last of the big European nuclear construction companies, is currently attempting to restructure itself. The plan is to hive off its successful renewable and hydropower enterprises to separate them from its deeply troubled nuclear arm.

But, as Reuters news agency reports, these plans have run into difficulties with the European Union because of fears they may involve unfair state aid to the industry.

Even without this attempt to improve its finances by restructuring, though, EDF’s current nuclear building projects at Flamanville in France and Hinkley Point C in the west of England are behind schedule, and costs are escalating.

Mounting opposition

Flamanville is close to a decade late, and Hinkley Point’s timetable is slipping and its costs rising. Last month the Japanese giant Hitachi finally pulled the plug on its scheme to build twin reactors at Wylfa in North Wales.

Other plans by EDF and its Chinese partners to build two more French-designed giant twin reactors at Sizewell and then two Chinese reactors at Bradwell (both sites are in eastern England) are still officially going ahead. However, despite months of negotiation, neither the UK government nor the two companies have come up with a way of financing them, and opposition to both schemes is growing.

The Nuclear Free Local Authorities (NFLA) group, in a statement on the rising costs of Hinkley Point, said: “Given that renewable technologies are considerably cheaper than new nuclear, and the financial challenges of the pandemic are obvious to all, NFLA believe there needs to be an urgent rethink over the proposed ‘benefits’ of building large and highly expensive new nuclear power stations.

“In this, there is no justification for building new reactors at Sizewell C or Bradwell B.” For the nuclear industry at large, small is sounding increasingly the favoured option. − Climate News Network

The nuclear industry in much of the world is struggling to survive. Reverting to small reactors may be its best hope.

LONDON, 10 February, 2021 − Despite a campaign lasting two decades, the nuclear industry’s dream of building hundreds of large reactors to lead the fight to save the planet from overheating has evaporated.

While renewable energy industries, solar and wind in particular, get ever cheaper and expand faster, nuclear projects are steadily bogged down further in delays, cost over-runs and debt.

Some large nuclear power stations are still under construction in Russia and China, but in Europe and North America they are badly delayed and few in number. Many projects that have been long planned but not yet started are being abandoned.

This is despite the fact that nuclear-friendly governments, particularly those with nuclear-powered ships, submarines and weapons of mass destruction, have not given up on the industry.

But now, instead of building ever-larger reactors, these governments are switching their attention and financial backing to small modular reactors (SMRs).

“There is no justification for building new reactors at Sizewell C or Bradwell B”

These off-the-shelf prototypes can be scaled up or down in size, to double as power plants for ice breakers and submarines, or for use as electricity and heat generators for remote settlements, military bases and, theoretically, urban areas – if the local populations do not protest too loudly.

Currently the UK, the US, Russia and China are pouring large government subsidies into developing SMRs, which are said to be for electricity production, but equally are useful for training key personnel to use reactors for military purposes. In this regard the support of a non-nuclear weapon state (Canada) for SMRs seems odd, but it has many remote off-grid communities that might benefit if the technology works as claimed.

According to the International Atomic Energy Agency small modular reactors have a great future. Its latest report says there are 72 SMRs under development or construction in 18 countries, although large-scale deployment for the technology is still some years off.

For nuclear critics this lengthy timescale is always the problem. Solar and wind power can be deployed in a matter of months, whereas the nuclear timetables always stretch years ahead. Even then, critics wonder, will the promises made for SMRs live up to the hype? They say past experience has shown that timetables slip and costs escalate.

Time is problematic

For the moment this track record does not seem to have dampened politicians’ enthusiasm for the technology. The current promise is that once the prototypes are up and working, parts for future reactors will be made in factories and put together on-site, so reducing energy costs by mass production methods – a bit like assembly lines for cars.

Meanwhile the larger reactor-building projects are definitely in trouble. EDF, the French state-owned and debt-laden nuclear giant, the last of the big European nuclear construction companies, is currently attempting to restructure itself. The plan is to hive off its successful renewable and hydropower enterprises to separate them from its deeply troubled nuclear arm.

But, as Reuters news agency reports, these plans have run into difficulties with the European Union because of fears they may involve unfair state aid to the industry.

Even without this attempt to improve its finances by restructuring, though, EDF’s current nuclear building projects at Flamanville in France and Hinkley Point C in the west of England are behind schedule, and costs are escalating.

Mounting opposition

Flamanville is close to a decade late, and Hinkley Point’s timetable is slipping and its costs rising. Last month the Japanese giant Hitachi finally pulled the plug on its scheme to build twin reactors at Wylfa in North Wales.

Other plans by EDF and its Chinese partners to build two more French-designed giant twin reactors at Sizewell and then two Chinese reactors at Bradwell (both sites are in eastern England) are still officially going ahead. However, despite months of negotiation, neither the UK government nor the two companies have come up with a way of financing them, and opposition to both schemes is growing.

The Nuclear Free Local Authorities (NFLA) group, in a statement on the rising costs of Hinkley Point, said: “Given that renewable technologies are considerably cheaper than new nuclear, and the financial challenges of the pandemic are obvious to all, NFLA believe there needs to be an urgent rethink over the proposed ‘benefits’ of building large and highly expensive new nuclear power stations.

“In this, there is no justification for building new reactors at Sizewell C or Bradwell B.” For the nuclear industry at large, small is sounding increasingly the favoured option. − Climate News Network

UNESCO link ‘helps to greenwash gas exporters’

EXCLUSIVE: A leading UN agency, UNESCO, is harming action on the climate crisis by partnering with natural gas exporters, critics say.

OTTAWA, 8 February, 2021− UNESCO, a prominent United Nations agency, is undercutting global action on the climate emergency, analysts and campaigners warn, by forming a partnership with a global forum dedicated to promoting and greenwashing natural gas exports.

UN Secretary General António Guterres has repeatedly warned that humanity’s “utterly inadequate” response to the climate emergency is already producing extreme weather and dramatic consequences around the world.

“We simply have to stop digging and drilling and take advantage of the vast possibilities offered by renewable energy and nature-based solutions,” he said during COP-25, the (ultimately “disgraceful”) 2019 UN climate conference in Madrid.

In 2018 Guterres called the 1.5°C pathways report by the Intergovernmental Panel on Climate Change an “ear-splitting wake-up call” for action.

But none of that has stopped another key member of the UN family, the Paris-based UNESCO (the UN Educational, Scientific and Cultural Organisation), from agreeing a partnership with the Doha, Qatar-based Gas Exporting Countries Forum (GECF), a 20-member organisation formed in 2008 to promote “coordination and collaboration” among the world’s leading gas-producing countries.

The GECF’s latest mid-century Global Gas Outlook sees gas increasing from 23% to between 27 and 29% of global energy demand by 2050.

That’s the same year countries are intent on hitting net-zero emissions in a bid to hold average global warming to below 1.5°C. Fossil gas is composed 70% to 90% of climate-busting methane, a greenhouse gas 84 times more potent than carbon dioxide over the 20-year span in which humanity will be scrambling to get climate change under control.

The GECF outlook report foresaw natural gas as “the highest in the primary energy mix” at 27%, with fossil fuels as a whole accounting for 71% of global energy consumption in 2050. (They’re in good company.)

“When the leaders of UNESCO and gas exporters are comfortably retired, Africans will still be living with the climate legacy of the fossil fuel industry”

It projected gas production by member countries growing nearly 50% by mid-century, and production from “unconventional resources” a term for fracked gas increasing from 25 to 38% of the total, with a rising share of the demand supplied by liquefied natural gas (LNG) and the gas sector soaking up US$9.7 trillion (£7tn) in investment.

“Along the way, natural gas is expected to play a vital role in decarbonisation options including natural gas-based hydrogen, also known as blue hydrogen, with carbon capture, utilisation and storage (CCUS) technologies,” the GECF-UNESCO release stated. Late last month, Italian utility giant Enel said it would shut all its gas plants by 2050 and became the latest potential buyer to declare carbon capture technology a non-starter.

In separate releases in December 2020, the GECF touted the “environmental advantage of natural gas” and what it sees as the potential of blue hydrogen − with its reliance on CCUS − to usher in a “new era of decarbonisation”. On 9 December, its secretary general, Yury Sentyurin,  told a virtual event that blue hydrogen coupled with CCUS “will play a significant role in the world’s transition to a sustainable energy future”.

The forum’s latest expert commentary, released last week, touts “carbon-neutral or green LNG” as a pathway to energy transition.

In an email to The Energy Mix, Sentyurin said the partnership with UNESCO “is expected to harness the shared values of both entities in the realm of sustainable development, natural resources management, international cooperation in education, sciences and culture, and contributing to progress across the globe.”

He and Anna Paolini, director of UNESCO’s Doha office, both cast the partnership as an opportunity to address climate change, protect biodiversity, safeguard natural heritage, “maintain a conducive environment of scientific inquiry in the field of natural science”, and promote interdisciplinary climate knowledge.

The two organisations also agreed to work together on a “Rigs-to-Reefs approach” aimed at protecting and restoring ocean ecosystems. The term refers to an emerging response to obsolete, abandoned ocean oil platforms that involves stripping them of equipment and hydrocarbon residues, then sinking them as artificial reefs, rather than incurring the cost of full removal.

Some of the world’s leading climate analysts and campaigners are decidedly unimpressed with UNESCO’s choice of strategic partners. “It’s shocking to see the UN body responsible for the preservation of science and culture getting into bed with global fossil fuel interests like this,” Power Shift Africa director Mohamed Adow told The Energy Mix in an email. “UN bodies, especially ones with ‘science’ in their title, should be holding fossil fuel producers to account, not being a useful prop in the global greenwashing of the gas industry.”

Leapfrog fossil fuels

The United Nations “is where climate change is being tackled at the international level, through the UN Framework Convention on Climate Change (UNFCCC) and the Paris Agreement,” he added. “This move from a sister UN body shows ignorance and a lack of strategic thinking from people who should know better.”

Adow, named last week as a recipient of the prestigious Climate Breakthrough Award, said it was “particularly offensive” of UNESCO and the GECF to “cite Africa as the location where they are most interested in working together,” at a time when a massive LNG project led by colossal fossil Total is “destroying the natural heritage of Mozambique”, with hundreds of families evicted and thousands of people losing their fishing grounds.

“Oil and gas pipelines are being fought across the continent by local people defending their cultural heritage,” he said. “They need the support of organisations like UNESCO, not to watch them side with their persecutors.”

Sentyurin, named last year as one of the top 25 influencers in Africa’s energy sector, said the forum’s members include six African countries that hold more than 90% of the continent’s proven gas reserves. He called Africa “a very important continent to the GECF”, the “next booming region in the world”, and a “game-changer for economic development”, and highlighted the “crucial role natural gas will play in reducing energy poverty in Africa”.

Not so much, Adow said, in an email written about two weeks before Sentyurin’s.

“Gas is not the answer to the climate crisis gripping Africa,” he told The Mix. “Africa has an abundance of clean energy, including wind and solar energy. Leapfrogging fossil fuels like gas to renewables is Africa’s route to sustainable, long-term prosperity, not getting shackled to gas infrastructure which will soon be obsolete.

“When the leaders of UNESCO and gas exporters are comfortably retired, Africans will still be living with the climate legacy of the fossil fuel industry and the environmental and cultural destruction it has caused.”

UK-based climate policy consultant Alison Doig cast the partnership as a bid by the GECF to boost its own legitimacy “while promoting a strategy that is incompatible with keeping global temperature rise within safe limits.”

Survival target

By accepting the GECF’s premise that gas consumption will continue to rise, she said UNESCO “completely undermines its responsibility as guardian of our global heritage,” compromising its own central role in science education by being “tied to messages which are not aligned with a climate-safe energy transition.”

Doig said UNESCO “should rightly be creating alliances to enhance action on climate change,” at a time when “many World Heritage sites are already exposed to the impacts of climate change, with floods, storms, and drought threatening the very fabric of the buildings, monuments, and locations” at the core of the agency’s mandate.

With the UNFCCC presenting pathways to keep average global warming below 1.5°, she added, “other UN agencies including UNESCO should be part of this scientific discussion, and focus climate science education on that goal.”

Climate Action Network-International senior advisor Stephan Singer said it was “very upsetting” to see UNESCO enter a partnership deal with the majority of the world’s fossil gas producers and exporters that contains no reference to the 1.5°C target under the 2015 Paris Agreement.

That goal is a “survival target for many vulnerable developing countries,” he added, and “the full phase-out of fossil fuels and phase-in of renewables is imperative to meet the climate challenge.”

UNESCO’s Paolini said the agency “works to build the widest coalition possible to tackle climate change and achieve the global goals”. The agency “engaged with the GECF in order to bring its member states’ attention to our reports and articles on today’s environmental challenges, the issue of climate change, and its impact on all aspects of our lives, including our fixed, natural, and living heritage,” she explained.

“By sharing information, leveraging opportunities from within, we believe we can promote our agenda to an audience that we would not readily reach and initiate a debate and dialogue with industry professionals, researchers, governmental officials, and diplomats. It would be a strategic mistake not to seize this opportunity.”

Asked how UNESCO sees the future development of gas exports, given the industry’s prime role as a producer of methane, she replied: “We can shout from the sidelines or we can engage, point to the science, and attempt to change attitudes and the industry.” − Climate News Network

* * * * * * *

Republished by permission from The Energy Mix, a thrice-weekly e-digest on climate, energy and post-carbon solutions.

EXCLUSIVE: A leading UN agency, UNESCO, is harming action on the climate crisis by partnering with natural gas exporters, critics say.

OTTAWA, 8 February, 2021− UNESCO, a prominent United Nations agency, is undercutting global action on the climate emergency, analysts and campaigners warn, by forming a partnership with a global forum dedicated to promoting and greenwashing natural gas exports.

UN Secretary General António Guterres has repeatedly warned that humanity’s “utterly inadequate” response to the climate emergency is already producing extreme weather and dramatic consequences around the world.

“We simply have to stop digging and drilling and take advantage of the vast possibilities offered by renewable energy and nature-based solutions,” he said during COP-25, the (ultimately “disgraceful”) 2019 UN climate conference in Madrid.

In 2018 Guterres called the 1.5°C pathways report by the Intergovernmental Panel on Climate Change an “ear-splitting wake-up call” for action.

But none of that has stopped another key member of the UN family, the Paris-based UNESCO (the UN Educational, Scientific and Cultural Organisation), from agreeing a partnership with the Doha, Qatar-based Gas Exporting Countries Forum (GECF), a 20-member organisation formed in 2008 to promote “coordination and collaboration” among the world’s leading gas-producing countries.

The GECF’s latest mid-century Global Gas Outlook sees gas increasing from 23% to between 27 and 29% of global energy demand by 2050.

That’s the same year countries are intent on hitting net-zero emissions in a bid to hold average global warming to below 1.5°C. Fossil gas is composed 70% to 90% of climate-busting methane, a greenhouse gas 84 times more potent than carbon dioxide over the 20-year span in which humanity will be scrambling to get climate change under control.

The GECF outlook report foresaw natural gas as “the highest in the primary energy mix” at 27%, with fossil fuels as a whole accounting for 71% of global energy consumption in 2050. (They’re in good company.)

“When the leaders of UNESCO and gas exporters are comfortably retired, Africans will still be living with the climate legacy of the fossil fuel industry”

It projected gas production by member countries growing nearly 50% by mid-century, and production from “unconventional resources” a term for fracked gas increasing from 25 to 38% of the total, with a rising share of the demand supplied by liquefied natural gas (LNG) and the gas sector soaking up US$9.7 trillion (£7tn) in investment.

“Along the way, natural gas is expected to play a vital role in decarbonisation options including natural gas-based hydrogen, also known as blue hydrogen, with carbon capture, utilisation and storage (CCUS) technologies,” the GECF-UNESCO release stated. Late last month, Italian utility giant Enel said it would shut all its gas plants by 2050 and became the latest potential buyer to declare carbon capture technology a non-starter.

In separate releases in December 2020, the GECF touted the “environmental advantage of natural gas” and what it sees as the potential of blue hydrogen − with its reliance on CCUS − to usher in a “new era of decarbonisation”. On 9 December, its secretary general, Yury Sentyurin,  told a virtual event that blue hydrogen coupled with CCUS “will play a significant role in the world’s transition to a sustainable energy future”.

The forum’s latest expert commentary, released last week, touts “carbon-neutral or green LNG” as a pathway to energy transition.

In an email to The Energy Mix, Sentyurin said the partnership with UNESCO “is expected to harness the shared values of both entities in the realm of sustainable development, natural resources management, international cooperation in education, sciences and culture, and contributing to progress across the globe.”

He and Anna Paolini, director of UNESCO’s Doha office, both cast the partnership as an opportunity to address climate change, protect biodiversity, safeguard natural heritage, “maintain a conducive environment of scientific inquiry in the field of natural science”, and promote interdisciplinary climate knowledge.

The two organisations also agreed to work together on a “Rigs-to-Reefs approach” aimed at protecting and restoring ocean ecosystems. The term refers to an emerging response to obsolete, abandoned ocean oil platforms that involves stripping them of equipment and hydrocarbon residues, then sinking them as artificial reefs, rather than incurring the cost of full removal.

Some of the world’s leading climate analysts and campaigners are decidedly unimpressed with UNESCO’s choice of strategic partners. “It’s shocking to see the UN body responsible for the preservation of science and culture getting into bed with global fossil fuel interests like this,” Power Shift Africa director Mohamed Adow told The Energy Mix in an email. “UN bodies, especially ones with ‘science’ in their title, should be holding fossil fuel producers to account, not being a useful prop in the global greenwashing of the gas industry.”

Leapfrog fossil fuels

The United Nations “is where climate change is being tackled at the international level, through the UN Framework Convention on Climate Change (UNFCCC) and the Paris Agreement,” he added. “This move from a sister UN body shows ignorance and a lack of strategic thinking from people who should know better.”

Adow, named last week as a recipient of the prestigious Climate Breakthrough Award, said it was “particularly offensive” of UNESCO and the GECF to “cite Africa as the location where they are most interested in working together,” at a time when a massive LNG project led by colossal fossil Total is “destroying the natural heritage of Mozambique”, with hundreds of families evicted and thousands of people losing their fishing grounds.

“Oil and gas pipelines are being fought across the continent by local people defending their cultural heritage,” he said. “They need the support of organisations like UNESCO, not to watch them side with their persecutors.”

Sentyurin, named last year as one of the top 25 influencers in Africa’s energy sector, said the forum’s members include six African countries that hold more than 90% of the continent’s proven gas reserves. He called Africa “a very important continent to the GECF”, the “next booming region in the world”, and a “game-changer for economic development”, and highlighted the “crucial role natural gas will play in reducing energy poverty in Africa”.

Not so much, Adow said, in an email written about two weeks before Sentyurin’s.

“Gas is not the answer to the climate crisis gripping Africa,” he told The Mix. “Africa has an abundance of clean energy, including wind and solar energy. Leapfrogging fossil fuels like gas to renewables is Africa’s route to sustainable, long-term prosperity, not getting shackled to gas infrastructure which will soon be obsolete.

“When the leaders of UNESCO and gas exporters are comfortably retired, Africans will still be living with the climate legacy of the fossil fuel industry and the environmental and cultural destruction it has caused.”

UK-based climate policy consultant Alison Doig cast the partnership as a bid by the GECF to boost its own legitimacy “while promoting a strategy that is incompatible with keeping global temperature rise within safe limits.”

Survival target

By accepting the GECF’s premise that gas consumption will continue to rise, she said UNESCO “completely undermines its responsibility as guardian of our global heritage,” compromising its own central role in science education by being “tied to messages which are not aligned with a climate-safe energy transition.”

Doig said UNESCO “should rightly be creating alliances to enhance action on climate change,” at a time when “many World Heritage sites are already exposed to the impacts of climate change, with floods, storms, and drought threatening the very fabric of the buildings, monuments, and locations” at the core of the agency’s mandate.

With the UNFCCC presenting pathways to keep average global warming below 1.5°, she added, “other UN agencies including UNESCO should be part of this scientific discussion, and focus climate science education on that goal.”

Climate Action Network-International senior advisor Stephan Singer said it was “very upsetting” to see UNESCO enter a partnership deal with the majority of the world’s fossil gas producers and exporters that contains no reference to the 1.5°C target under the 2015 Paris Agreement.

That goal is a “survival target for many vulnerable developing countries,” he added, and “the full phase-out of fossil fuels and phase-in of renewables is imperative to meet the climate challenge.”

UNESCO’s Paolini said the agency “works to build the widest coalition possible to tackle climate change and achieve the global goals”. The agency “engaged with the GECF in order to bring its member states’ attention to our reports and articles on today’s environmental challenges, the issue of climate change, and its impact on all aspects of our lives, including our fixed, natural, and living heritage,” she explained.

“By sharing information, leveraging opportunities from within, we believe we can promote our agenda to an audience that we would not readily reach and initiate a debate and dialogue with industry professionals, researchers, governmental officials, and diplomats. It would be a strategic mistake not to seize this opportunity.”

Asked how UNESCO sees the future development of gas exports, given the industry’s prime role as a producer of methane, she replied: “We can shout from the sidelines or we can engage, point to the science, and attempt to change attitudes and the industry.” − Climate News Network

* * * * * * *

Republished by permission from The Energy Mix, a thrice-weekly e-digest on climate, energy and post-carbon solutions.

Recovering atmospheric carbon can make new fuel

Taking atmospheric carbon dioxide from the air to make fuel could tackle two threats: greenhouse gases and oil shortage.

LONDON, 4 February, 2021 − British scientists have worked out a way of recovering atmospheric carbon, meaning they can conjure aviation jet fuel from thin air, using an inexpensive catalyst to turn carbon dioxide into a range of hydrocarbons so far produced from crude oil.

More than 6,000 miles to the east, chemists have produced an aerogel, one kilogramme of which is capable of producing − again just from the ambient air − 17 litres of fresh water in a day.

Both these solutions to a growing demand for fuel and water are only at the demonstration stage. Commercial production is a long way off.

Both are yet more evidence of the enormous ingenuity and invention at work in the world’s laboratories and universities as they address the energy dilemma: how to power human society without generating the greenhouse gases that could also − through climate change driven by global heating − ultimately destroy it.

“[This is] a vision for the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector”

For years researchers have addressed one power paradox: that the world is driven by fossil fuels which in combustion emit the greenhouse gas carbon dioxide. But fossil fuels are already fashioned − over millions of years − from organic material composed ultimately of carbon dioxide.

That is: all hydrocarbons must have once just been the greenhouse gas. So there might just be a clever way to shorten the process, and turn atmospheric carbon directly into butane or ethylene or kerosene.

Researchers from Oxford University report in the journal Nature Communications that with help from an organic compound − they used citric acid − they have fashioned a catalyst from iron, manganese and potassium that could directly convert atmospheric carbon dioxide into hydrocarbons very like jet fuel, with a bonus of ethylene and other products important to the petrochemical industry as well.

The researchers call their work “a significant advance” and a vision for “the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector.”

Renewable water supply

The air we breathe is not just oxygen, nitrogen, argon and carbon dioxide: it also contains colossal amounts of water vapour, enough to fill 500 thousand billion Olympic-sized swimming pools.

Researchers at the National University of Singapore report in the journal Science Advances that they have fashioned an aerogel − think of a jelly made from air rather than water − that of itself collects water molecules from the air, condenses them into a liquid and releases the water: 95% of the vapour that goes in is released as water.

It needs no power source, the water meets World Health Organisation standards for drinking water, and in laboratory tests one aerogel sample went on for months.

Since vapour is constantly renewed by sun-driven evaporation, once again, the water supply becomes renewable. The next step is to find an industrial partner and a market where clean water is scarce. − Climate News Network

Taking atmospheric carbon dioxide from the air to make fuel could tackle two threats: greenhouse gases and oil shortage.

LONDON, 4 February, 2021 − British scientists have worked out a way of recovering atmospheric carbon, meaning they can conjure aviation jet fuel from thin air, using an inexpensive catalyst to turn carbon dioxide into a range of hydrocarbons so far produced from crude oil.

More than 6,000 miles to the east, chemists have produced an aerogel, one kilogramme of which is capable of producing − again just from the ambient air − 17 litres of fresh water in a day.

Both these solutions to a growing demand for fuel and water are only at the demonstration stage. Commercial production is a long way off.

Both are yet more evidence of the enormous ingenuity and invention at work in the world’s laboratories and universities as they address the energy dilemma: how to power human society without generating the greenhouse gases that could also − through climate change driven by global heating − ultimately destroy it.

“[This is] a vision for the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector”

For years researchers have addressed one power paradox: that the world is driven by fossil fuels which in combustion emit the greenhouse gas carbon dioxide. But fossil fuels are already fashioned − over millions of years − from organic material composed ultimately of carbon dioxide.

That is: all hydrocarbons must have once just been the greenhouse gas. So there might just be a clever way to shorten the process, and turn atmospheric carbon directly into butane or ethylene or kerosene.

Researchers from Oxford University report in the journal Nature Communications that with help from an organic compound − they used citric acid − they have fashioned a catalyst from iron, manganese and potassium that could directly convert atmospheric carbon dioxide into hydrocarbons very like jet fuel, with a bonus of ethylene and other products important to the petrochemical industry as well.

The researchers call their work “a significant advance” and a vision for “the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector.”

Renewable water supply

The air we breathe is not just oxygen, nitrogen, argon and carbon dioxide: it also contains colossal amounts of water vapour, enough to fill 500 thousand billion Olympic-sized swimming pools.

Researchers at the National University of Singapore report in the journal Science Advances that they have fashioned an aerogel − think of a jelly made from air rather than water − that of itself collects water molecules from the air, condenses them into a liquid and releases the water: 95% of the vapour that goes in is released as water.

It needs no power source, the water meets World Health Organisation standards for drinking water, and in laboratory tests one aerogel sample went on for months.

Since vapour is constantly renewed by sun-driven evaporation, once again, the water supply becomes renewable. The next step is to find an industrial partner and a market where clean water is scarce. − Climate News Network

Energy efficiency boosts jobs and cuts climate heat

Creating millions of jobs in energy efficiency schemes is the fastest way to restore prosperity and cut climate heating.

LONDON, 26 January, 2021 − Improving energy efficiency creates far more jobs than generating it, and at the same time provides a way out of the Covid crisis by bringing prosperity.

That’s the verdict of a report by the International Energy Agency (IEA), which says efficiency-related stimulus packages that have been announced already will create 1.8 million jobs in the next two years, with many more to come if governments spend their money wisely.

Two-thirds of the jobs would be in the building sector, most of them in retrofitting homes, factories and offices with insulation and other efficiency measures. One of the main benefits of the scheme, the IEA says, would be for young people with few academic qualifications, currently the worst hit by unemployment, who would be needed for most of the building jobs. The remaining jobs would be in transport (20%) and industry (16%).

Based on information received by the IEA by December, when the report was published, 80% of these new jobs would be created in Europe. At the time the US was the largest employer of workers in energy efficiency, despite the anti-climate policies of the Trump administration. With Joe Biden now occupying the presidency and rejoining the Paris Agreement, jobs in energy efficiency in the US are expected to snowball.

“Energy efficiency investments are one of the most attractive investments in the energy sector for governments seeking to protect existing or generate new jobs”

Altogether the scope for jobs in the sector across the world is enormous, with the developing world yet to take energy efficiency seriously. Before the pandemic hit, the IEA estimated that there were 2.4 million energy efficiency jobs in the US, up to 3 million in Europe, but fewer than 750,000 in China and a maximum of 62,000 in Brazil.

With China now taking climate change far more seriously and pledging to be carbon neutral by 2060, energy efficiency is likely to create a boom for building workers there.

Although many building jobs have been lost because of Covid-19, the IEA estimates that the labour-intensive nature of many energy efficiency upgrades means spending US$1million on improving efficiency will generate between six and 15 jobs on average, depending on the sector. Investments announced to date have created 3.4 million new job years (one job for one year) in the sector.

The report says: “As energy efficiency investments can also be mobilised quickly, they are one of the most attractive investments in the energy sector for governments seeking to protect existing jobs or generate new jobs during the recession.”

Best for new jobs

As part of their public relations drives when suggesting potentially unpopular new developments, most energy industries stress how many jobs will result. For example, building a nuclear power station in the UK, Sizewell C, is said by the would-be builders to promise the creation of  more than 5,000 jobs.

However, figures compiled by the UK Office for National Statistics show that energy efficiency trumps all other energy industries for job creation.

In the UK’s low-carbon and renewables energy sector, which includes all nuclear and renewable energy options, energy efficiency formed easily the largest component of jobs, with 114,000 full-time employees (51%) in 2018. There were 49,800 people employed in renewable activity, wind and solar for example, and only 12,400 in the whole nuclear energy sector, most of them in reprocessing spent fuel.

As the IEA notes, scaled-up world wide there are potentially millions of jobs in energy efficiency, and it is clearly the single quickest and cheapest way of reducing carbon emissions, since it both reduces existing demand for energy and makes new fossil fuel power stations unnecessary. − Climate News Network

Creating millions of jobs in energy efficiency schemes is the fastest way to restore prosperity and cut climate heating.

LONDON, 26 January, 2021 − Improving energy efficiency creates far more jobs than generating it, and at the same time provides a way out of the Covid crisis by bringing prosperity.

That’s the verdict of a report by the International Energy Agency (IEA), which says efficiency-related stimulus packages that have been announced already will create 1.8 million jobs in the next two years, with many more to come if governments spend their money wisely.

Two-thirds of the jobs would be in the building sector, most of them in retrofitting homes, factories and offices with insulation and other efficiency measures. One of the main benefits of the scheme, the IEA says, would be for young people with few academic qualifications, currently the worst hit by unemployment, who would be needed for most of the building jobs. The remaining jobs would be in transport (20%) and industry (16%).

Based on information received by the IEA by December, when the report was published, 80% of these new jobs would be created in Europe. At the time the US was the largest employer of workers in energy efficiency, despite the anti-climate policies of the Trump administration. With Joe Biden now occupying the presidency and rejoining the Paris Agreement, jobs in energy efficiency in the US are expected to snowball.

“Energy efficiency investments are one of the most attractive investments in the energy sector for governments seeking to protect existing or generate new jobs”

Altogether the scope for jobs in the sector across the world is enormous, with the developing world yet to take energy efficiency seriously. Before the pandemic hit, the IEA estimated that there were 2.4 million energy efficiency jobs in the US, up to 3 million in Europe, but fewer than 750,000 in China and a maximum of 62,000 in Brazil.

With China now taking climate change far more seriously and pledging to be carbon neutral by 2060, energy efficiency is likely to create a boom for building workers there.

Although many building jobs have been lost because of Covid-19, the IEA estimates that the labour-intensive nature of many energy efficiency upgrades means spending US$1million on improving efficiency will generate between six and 15 jobs on average, depending on the sector. Investments announced to date have created 3.4 million new job years (one job for one year) in the sector.

The report says: “As energy efficiency investments can also be mobilised quickly, they are one of the most attractive investments in the energy sector for governments seeking to protect existing jobs or generate new jobs during the recession.”

Best for new jobs

As part of their public relations drives when suggesting potentially unpopular new developments, most energy industries stress how many jobs will result. For example, building a nuclear power station in the UK, Sizewell C, is said by the would-be builders to promise the creation of  more than 5,000 jobs.

However, figures compiled by the UK Office for National Statistics show that energy efficiency trumps all other energy industries for job creation.

In the UK’s low-carbon and renewables energy sector, which includes all nuclear and renewable energy options, energy efficiency formed easily the largest component of jobs, with 114,000 full-time employees (51%) in 2018. There were 49,800 people employed in renewable activity, wind and solar for example, and only 12,400 in the whole nuclear energy sector, most of them in reprocessing spent fuel.

As the IEA notes, scaled-up world wide there are potentially millions of jobs in energy efficiency, and it is clearly the single quickest and cheapest way of reducing carbon emissions, since it both reduces existing demand for energy and makes new fossil fuel power stations unnecessary. − Climate News Network

A new city rises in the desert, under a fake moon

The world’s biggest oil exporter, Saudi Arabia, is planing a new city entirely dependent on clean energy.

LONDON, 18 January, 2021 − Crown Prince Mohammed bin Salman of Saudi Arabia, who has not till now shown any great enthusiasm for tackling climate chaos, is working on designs for an environmentally-friendly new city in the kingdom.

At successive international climate meetings Saudi Arabia, the world’s biggest oil exporter, has been among those states which have obstructed rather than encouraged attempts to tackle the increasingly urgent problems associated with a fast-warming world.

But recently Prince Mohammed, seen very much as the power behind the Saudi throne, has been talking of building a zero emissions city and establishing what he describes as “a blueprint for how people and planet can co-exist in harmony.”

In a glitzy presentation high on vision but low on detail, the prince outlined plans for a new, futuristic urban area to be carved out of the desert in the province of Tabuk, in north-west Saudi Arabia.

The city, to be called The Line, will stretch inwards for 106 miles from the Saudi Red Sea coast. It will be powered by 100% clean energy, says the prince, with no roads or cars. Instead “a belt of hyper-connected future communities” will be established.

Future techno-hub

There will be flying taxis, and scores of robot servants. The whole scheme will be built around nature, Prince Mohammed says. “Why should we sacrifice nature for the sake of development?”, he asks. “Why should seven million people die every year because of pollution?”

The cost of the project will be between US$100-200 billion: initial construction work will begin early next year, and an airport has already been built.

The Line is just one element in an overall Saudi plan called Vision 2030,  which seeks to wean the country off its dependence on oil revenues – which account for a major part of gross domestic product.

The aim is to turn Saudi Arabia into one of the world’s technological hubs. A multi-billion dollar tourist industry will also be established. Eventually, says Prince Mohammed, desert lands bordering Egypt and Jordan covering more than 10,000 square miles – an area roughly the size of Belgium – will be developed.

The Line, built to house a million people, will form part of a much larger US$500bn project called Neom – a combination of the Greek word Neos, meaning new, and the Arabic word mustaqbal, or future.

“Why should we sacrifice nature for the sake of development? Why should seven million people die every year because of pollution?”

Details about Neom are scarce: the project website says it will be home to both a Saudi and an international community, composed of “dreamers and doers.”

Attractions will include beaches with glow-in-the-dark-sand. There will even be a large fake moon to light the sky on cloudy nights.

If all this sounds a trifle fantastical, look no further than the Gulf cities of Dubai and Abu Dhabi where, over a relatively short time, small fishing and trading settlements have been turned into international centres of commerce and tourism. Prince Mohammed’s ambitions, though – and his talk of a sustainable, emissions-free future – are open to doubt.

Saudi Arabia is one of the world’s most profligate users of energy – almost all of it derived from the country’s plentiful reserves of fossil fuels. Renewable energy projects, announced in the past with much fanfare, have often come to nothing.

The Arabian peninsula is among the fastest-warming areas on the planet. For several years scientists have been warning that parts of the region will become uninhabitable if temperatures continue to rise.

Champion desalinator

Saudi Arabia has severely depleted water resources: the Neom project says it will help tackle this problem through extensive cloud seeding. Whether this will work is also open to question: cloud seeding can lead to its own set of environmental problems.

The project and its offshoot The Line will need to process water by using desalination technology. Saudi Arabia is already home to more desalination plants than any other country: the brine discharged in large quantities by such plants is harmful, particularly in such fragile ecological areas as the Red Sea.

Prince Mohammed and the Saudi planners have made little mention of those living in the north-west of the country who will be severely disrupted by Neom. The Huwaitat tribe, native to the area, say they are being forcibly relocated. A spokesman for the tribe was killed recently: reports say he was shot by government security forces.

Whether The Line and Prince Mohammed’s emissions-free Neom zone are built might ultimately depend on finance. Even for the deep-pocketed Saudis, the cost of the scheme represents a considerable challenge.

The project’s backers are wooing international investors: though many foreign companies will be licking their lips at the prospect of being involved in Neom, international banks and other financial institutions might be reluctant to invest funds, particularly in the wake of the brutal killing of Jamal Khashoggi, the Saudi dissident, and the ongoing imprisonment of others who voice any opposition to the prince and the kingdom’s hierarchy. − Climate News Network

The world’s biggest oil exporter, Saudi Arabia, is planing a new city entirely dependent on clean energy.

LONDON, 18 January, 2021 − Crown Prince Mohammed bin Salman of Saudi Arabia, who has not till now shown any great enthusiasm for tackling climate chaos, is working on designs for an environmentally-friendly new city in the kingdom.

At successive international climate meetings Saudi Arabia, the world’s biggest oil exporter, has been among those states which have obstructed rather than encouraged attempts to tackle the increasingly urgent problems associated with a fast-warming world.

But recently Prince Mohammed, seen very much as the power behind the Saudi throne, has been talking of building a zero emissions city and establishing what he describes as “a blueprint for how people and planet can co-exist in harmony.”

In a glitzy presentation high on vision but low on detail, the prince outlined plans for a new, futuristic urban area to be carved out of the desert in the province of Tabuk, in north-west Saudi Arabia.

The city, to be called The Line, will stretch inwards for 106 miles from the Saudi Red Sea coast. It will be powered by 100% clean energy, says the prince, with no roads or cars. Instead “a belt of hyper-connected future communities” will be established.

Future techno-hub

There will be flying taxis, and scores of robot servants. The whole scheme will be built around nature, Prince Mohammed says. “Why should we sacrifice nature for the sake of development?”, he asks. “Why should seven million people die every year because of pollution?”

The cost of the project will be between US$100-200 billion: initial construction work will begin early next year, and an airport has already been built.

The Line is just one element in an overall Saudi plan called Vision 2030,  which seeks to wean the country off its dependence on oil revenues – which account for a major part of gross domestic product.

The aim is to turn Saudi Arabia into one of the world’s technological hubs. A multi-billion dollar tourist industry will also be established. Eventually, says Prince Mohammed, desert lands bordering Egypt and Jordan covering more than 10,000 square miles – an area roughly the size of Belgium – will be developed.

The Line, built to house a million people, will form part of a much larger US$500bn project called Neom – a combination of the Greek word Neos, meaning new, and the Arabic word mustaqbal, or future.

“Why should we sacrifice nature for the sake of development? Why should seven million people die every year because of pollution?”

Details about Neom are scarce: the project website says it will be home to both a Saudi and an international community, composed of “dreamers and doers.”

Attractions will include beaches with glow-in-the-dark-sand. There will even be a large fake moon to light the sky on cloudy nights.

If all this sounds a trifle fantastical, look no further than the Gulf cities of Dubai and Abu Dhabi where, over a relatively short time, small fishing and trading settlements have been turned into international centres of commerce and tourism. Prince Mohammed’s ambitions, though – and his talk of a sustainable, emissions-free future – are open to doubt.

Saudi Arabia is one of the world’s most profligate users of energy – almost all of it derived from the country’s plentiful reserves of fossil fuels. Renewable energy projects, announced in the past with much fanfare, have often come to nothing.

The Arabian peninsula is among the fastest-warming areas on the planet. For several years scientists have been warning that parts of the region will become uninhabitable if temperatures continue to rise.

Champion desalinator

Saudi Arabia has severely depleted water resources: the Neom project says it will help tackle this problem through extensive cloud seeding. Whether this will work is also open to question: cloud seeding can lead to its own set of environmental problems.

The project and its offshoot The Line will need to process water by using desalination technology. Saudi Arabia is already home to more desalination plants than any other country: the brine discharged in large quantities by such plants is harmful, particularly in such fragile ecological areas as the Red Sea.

Prince Mohammed and the Saudi planners have made little mention of those living in the north-west of the country who will be severely disrupted by Neom. The Huwaitat tribe, native to the area, say they are being forcibly relocated. A spokesman for the tribe was killed recently: reports say he was shot by government security forces.

Whether The Line and Prince Mohammed’s emissions-free Neom zone are built might ultimately depend on finance. Even for the deep-pocketed Saudis, the cost of the scheme represents a considerable challenge.

The project’s backers are wooing international investors: though many foreign companies will be licking their lips at the prospect of being involved in Neom, international banks and other financial institutions might be reluctant to invest funds, particularly in the wake of the brutal killing of Jamal Khashoggi, the Saudi dissident, and the ongoing imprisonment of others who voice any opposition to the prince and the kingdom’s hierarchy. − Climate News Network