Category Archives: Land Use

Rich world’s demands fell poorer world’s forests

The tropical forests maintain global climate and nurture the riches of nature. The rich world’s demands are destroying them.

LONDON, 9 April, 2021 − The world’s great ecosystems − moderators of climate, nurseries for evolution − are still being destroyed in the service of global trade, to meet the rich world’s demands. Once again, researchers have confirmed that the wealthy nations are in effect ploughing savanna and felling tropical forests at a distance.

In the first 15 years of this century, the growing demand from the well-heeled for chocolate, rubber, cotton, soy, beef and exotic timber has meant that poorer nations have actually increased their levels of deforestation.

In effect, every human in the G7 nations − Canada, France, Germany, Italy, Japan, the UK and the US − is responsible for the loss of at least four trees a year, mostly in the developing world.

And in a separate study in another journal, another team of scientists has examined satellite data to confirm that between 1985 and 2018, humans cleared or altered 268 million hectares of natural ecosystem on the continent of South America. This is 2.68 million sq kilometres: an area almost the size of Argentina.

Two scientists in Japan report in Nature Ecology and Evolution that they matched levels of deforestation against trade with the world’s biggest economies, to find a clear correlation. They could even distinguish demand in one rich country and its impact on the forests of a poorer nation.

“Richer countries are encouraging deforestation through demand for commodities”

“While cocoa consumption in Germany poses the highest risk to the forests in Côte d’Ivoire and Ghana, deforestation in coastal Tanzania is dominated by Japanese consumers for some agricultural commodities, such as cotton and sesame seed,” they write.

“China shares the most significant responsibility for deforestation in Indochina − particularly in northern Laos for timber and rubber.”

Ironically, many of the richer nations have expanded the areas of forest on their own soil. More than 90% of the deforestation caused by five of the G7 nations was beyond their own borders. In effect, the rich were exporting the destruction of the natural world, and the cost to the planet was disproportionate. The loss of three trees in the Amazon might be more damaging than the loss of 14 trees in Norway, the scientists argue.

“Most forests are in poorer countries who are overwhelmed with economic incentives to cut them down. Our findings show that richer countries are encouraging deforestation through demand for commodities,” said Keiichiro Kanemoto of the Research Institute for Humanity and Nature in Kyoto.

“Policies that aim to preserve forests need to also alleviate poverty. With the coronavirus pandemic, unemployment poses more challenges to forest conservation in developing countries. We want our data to assist in the policy making.”

South American losses

And in the journal Science Advances, a team from the University of Maryland reports on a closer look at the impact of demand for pulpwood, sugar cane, beef, corn and other commodities on one continent: South America, home to some of the world’s most important ecosystems.

They found that human impact on the continent’s land surface just between the years 1985 and 2018 had expanded by 60%. In those years the natural tree cover had dwindled by 16%, and the scale of pasture increased by 23%, cropland by 160% and plantation by 288%.

The sum of all the altered land reached 268 million hectares, or 2.68m sq kms. Argentina, which coincidentally covers 2.73m sq kms, saw an increase of only 23% in human conversion of land use. Brazil tipped the scales with an expansion of 65% in those years.

And, say the researchers, of all this altered land cover on the continent, around 55 million hectares had been degraded − that is, it was no longer functioning as an ecosystem − while being employed for no commercial return. This is the equivalent of more than half a million square kilometres: an area slightly bigger than France.

“No region on Earth is likely to have experienced the scale of land conversion for the sake of agricultural commodity production that South America has,” the authors write. − Climate News Network

The tropical forests maintain global climate and nurture the riches of nature. The rich world’s demands are destroying them.

LONDON, 9 April, 2021 − The world’s great ecosystems − moderators of climate, nurseries for evolution − are still being destroyed in the service of global trade, to meet the rich world’s demands. Once again, researchers have confirmed that the wealthy nations are in effect ploughing savanna and felling tropical forests at a distance.

In the first 15 years of this century, the growing demand from the well-heeled for chocolate, rubber, cotton, soy, beef and exotic timber has meant that poorer nations have actually increased their levels of deforestation.

In effect, every human in the G7 nations − Canada, France, Germany, Italy, Japan, the UK and the US − is responsible for the loss of at least four trees a year, mostly in the developing world.

And in a separate study in another journal, another team of scientists has examined satellite data to confirm that between 1985 and 2018, humans cleared or altered 268 million hectares of natural ecosystem on the continent of South America. This is 2.68 million sq kilometres: an area almost the size of Argentina.

Two scientists in Japan report in Nature Ecology and Evolution that they matched levels of deforestation against trade with the world’s biggest economies, to find a clear correlation. They could even distinguish demand in one rich country and its impact on the forests of a poorer nation.

“Richer countries are encouraging deforestation through demand for commodities”

“While cocoa consumption in Germany poses the highest risk to the forests in Côte d’Ivoire and Ghana, deforestation in coastal Tanzania is dominated by Japanese consumers for some agricultural commodities, such as cotton and sesame seed,” they write.

“China shares the most significant responsibility for deforestation in Indochina − particularly in northern Laos for timber and rubber.”

Ironically, many of the richer nations have expanded the areas of forest on their own soil. More than 90% of the deforestation caused by five of the G7 nations was beyond their own borders. In effect, the rich were exporting the destruction of the natural world, and the cost to the planet was disproportionate. The loss of three trees in the Amazon might be more damaging than the loss of 14 trees in Norway, the scientists argue.

“Most forests are in poorer countries who are overwhelmed with economic incentives to cut them down. Our findings show that richer countries are encouraging deforestation through demand for commodities,” said Keiichiro Kanemoto of the Research Institute for Humanity and Nature in Kyoto.

“Policies that aim to preserve forests need to also alleviate poverty. With the coronavirus pandemic, unemployment poses more challenges to forest conservation in developing countries. We want our data to assist in the policy making.”

South American losses

And in the journal Science Advances, a team from the University of Maryland reports on a closer look at the impact of demand for pulpwood, sugar cane, beef, corn and other commodities on one continent: South America, home to some of the world’s most important ecosystems.

They found that human impact on the continent’s land surface just between the years 1985 and 2018 had expanded by 60%. In those years the natural tree cover had dwindled by 16%, and the scale of pasture increased by 23%, cropland by 160% and plantation by 288%.

The sum of all the altered land reached 268 million hectares, or 2.68m sq kms. Argentina, which coincidentally covers 2.73m sq kms, saw an increase of only 23% in human conversion of land use. Brazil tipped the scales with an expansion of 65% in those years.

And, say the researchers, of all this altered land cover on the continent, around 55 million hectares had been degraded − that is, it was no longer functioning as an ecosystem − while being employed for no commercial return. This is the equivalent of more than half a million square kilometres: an area slightly bigger than France.

“No region on Earth is likely to have experienced the scale of land conversion for the sake of agricultural commodity production that South America has,” the authors write. − Climate News Network

Declining English wetland ‘is poor advert for UK’

A declining English wetland will embarrass the UK government at November’s UN climate conference, campaigners say.

LONDON, 23 March, 2021− The area around Chichester Harbour on Britain’s south coast overlooks the English Channel. Famed as a beauty spot, it is a draw for holiday-makers from the crowded towns and cities of southern Britain. It is also one of the UK’s key habitats for many bird species and for endangered mammals such as water voles. But the condition of this declining English wetland is stirring concern.

Coastal wetlands are not only important for wildlife and tourism, conservationists argue. They are one of nature’s most efficient ecosystems for absorbing carbon dioxide, and among the best forms of coastal protection, increasingly recognised for making low-lying areas more resilient and adaptable to sea level rise.

A report by researchers at the University of Cambridge, UK, published in the journal Nature Sustainability, spells out how the value of natural wetlands far exceeds that of managed or farmed land.

The low-lying coastal plain surrounding the ancient Roman city of Chichester is one of the UK areas most vulnerable to sea level rise, increased storminess and intense rainfall.

“The sad plight of Chichester’s wetlands is an embarrassment for the government as it prepares to host COP-26, the UN’s annual climate conference”

It has done pioneering work in climate change mitigation and adaptation, including protecting the Medmerry Reserve wetlands, Europe’s largest coastal realignment scheme  when it opened in 2013. The Harbour contains the largest salt marsh on the south coast, but nearly half of it has been lost since 1970.

But now local people charge the government with neglecting their efforts to increase the area’s resilience. Libby Alexander founded the Save our South Coast Alliance (SOSCA). She says: “The sad plight of Chichester’s wetlands is an embarrassment for the government as it prepares to host COP-26, the UN’s annual climate conference, due to be held this year in Glasgow in November.” Nor is the physical condition of the Harbour her only concern.

“The government continues to preach to us and the rest of the world about climate change and the environment”, she says, “but practices an entirely different agenda. It is driving forward a building programme which is endangering the future of some of the country’s most important wetlands.”

Unfavourable condition

A report in the Guardian newspaper described the fear of many local people at “the threat of ‘rural sprawl’ creating new landscapes … the ‘suburbanisation’ of the countryside”, resulting from the government’s plans for changes to England’s planning system.

SOSCA says the threats it faces from the government’s drive for more housebuilding in south-east England include 12,650 unnecessary new homes across the coastal plain with the strong possibility of many more − “the wrong houses in the wrong places” − which will inevitably lead to extensive and irreversible damage through pollution and flooding. It says Chichester is being forced by the government to build far more new houses than it can safely accommodate.

Residents say a real threat is the untreated sewage that is pumped into the harbour, for which the local water company, Southern Water, has been penalised. It was fined £126 million in 2019 for spills of waste water into the environment from its sewage plants and for deliberately misreporting its performance. A great number of these discharges went into Chichester Harbour. The Environment Agency is reported to have launched a criminal investigation into the case.

Chichester Harbour Trust says not enough is being done to improve water quality in the Harbour. Its chairman, John Nelson, said: “We all need to force the regulators to take immediate action before we have an environmental and public health catastrophe.”

In January this year the Chichester Observer reported that over the 2020 Christmas period there were uninterrupted sewage discharges into Chichester Harbour for six days. Mr Nelson said: “Given Southern Water’s record over the Christmas period the time has come to implement radical change. The Trust is calling on the regulatory body Ofwat to use its legislative powers to put Southern Water into special administration in order to avoid an environmental catastrophe.”

Natural England is the government’s official environment adviser. It has published a new and authoritative report which describes Chichester Harbour, globally important for migratory birds, as now being in an “unfavourable and declining” condition, because of increasing development and rising sea levels.

Serious climate change adaptation and mitigation needs to be factored into the planning process immediately, says SOSCA. “Ironically, the UK government is promoting global coastal wetland conservation through its Blue Forests Initiative but failing to support the efforts of its own citizens”, said Libby Alexander. − Climate News Network

* * * * * * *

Dr Carolyn Cobbold is a Research Fellow at the University of Cambridge. A former journalist, she has been writing about climate change issues since the mid-1980s. Twitter: @DrCobbold

A declining English wetland will embarrass the UK government at November’s UN climate conference, campaigners say.

LONDON, 23 March, 2021− The area around Chichester Harbour on Britain’s south coast overlooks the English Channel. Famed as a beauty spot, it is a draw for holiday-makers from the crowded towns and cities of southern Britain. It is also one of the UK’s key habitats for many bird species and for endangered mammals such as water voles. But the condition of this declining English wetland is stirring concern.

Coastal wetlands are not only important for wildlife and tourism, conservationists argue. They are one of nature’s most efficient ecosystems for absorbing carbon dioxide, and among the best forms of coastal protection, increasingly recognised for making low-lying areas more resilient and adaptable to sea level rise.

A report by researchers at the University of Cambridge, UK, published in the journal Nature Sustainability, spells out how the value of natural wetlands far exceeds that of managed or farmed land.

The low-lying coastal plain surrounding the ancient Roman city of Chichester is one of the UK areas most vulnerable to sea level rise, increased storminess and intense rainfall.

“The sad plight of Chichester’s wetlands is an embarrassment for the government as it prepares to host COP-26, the UN’s annual climate conference”

It has done pioneering work in climate change mitigation and adaptation, including protecting the Medmerry Reserve wetlands, Europe’s largest coastal realignment scheme  when it opened in 2013. The Harbour contains the largest salt marsh on the south coast, but nearly half of it has been lost since 1970.

But now local people charge the government with neglecting their efforts to increase the area’s resilience. Libby Alexander founded the Save our South Coast Alliance (SOSCA). She says: “The sad plight of Chichester’s wetlands is an embarrassment for the government as it prepares to host COP-26, the UN’s annual climate conference, due to be held this year in Glasgow in November.” Nor is the physical condition of the Harbour her only concern.

“The government continues to preach to us and the rest of the world about climate change and the environment”, she says, “but practices an entirely different agenda. It is driving forward a building programme which is endangering the future of some of the country’s most important wetlands.”

Unfavourable condition

A report in the Guardian newspaper described the fear of many local people at “the threat of ‘rural sprawl’ creating new landscapes … the ‘suburbanisation’ of the countryside”, resulting from the government’s plans for changes to England’s planning system.

SOSCA says the threats it faces from the government’s drive for more housebuilding in south-east England include 12,650 unnecessary new homes across the coastal plain with the strong possibility of many more − “the wrong houses in the wrong places” − which will inevitably lead to extensive and irreversible damage through pollution and flooding. It says Chichester is being forced by the government to build far more new houses than it can safely accommodate.

Residents say a real threat is the untreated sewage that is pumped into the harbour, for which the local water company, Southern Water, has been penalised. It was fined £126 million in 2019 for spills of waste water into the environment from its sewage plants and for deliberately misreporting its performance. A great number of these discharges went into Chichester Harbour. The Environment Agency is reported to have launched a criminal investigation into the case.

Chichester Harbour Trust says not enough is being done to improve water quality in the Harbour. Its chairman, John Nelson, said: “We all need to force the regulators to take immediate action before we have an environmental and public health catastrophe.”

In January this year the Chichester Observer reported that over the 2020 Christmas period there were uninterrupted sewage discharges into Chichester Harbour for six days. Mr Nelson said: “Given Southern Water’s record over the Christmas period the time has come to implement radical change. The Trust is calling on the regulatory body Ofwat to use its legislative powers to put Southern Water into special administration in order to avoid an environmental catastrophe.”

Natural England is the government’s official environment adviser. It has published a new and authoritative report which describes Chichester Harbour, globally important for migratory birds, as now being in an “unfavourable and declining” condition, because of increasing development and rising sea levels.

Serious climate change adaptation and mitigation needs to be factored into the planning process immediately, says SOSCA. “Ironically, the UK government is promoting global coastal wetland conservation through its Blue Forests Initiative but failing to support the efforts of its own citizens”, said Libby Alexander. − Climate News Network

* * * * * * *

Dr Carolyn Cobbold is a Research Fellow at the University of Cambridge. A former journalist, she has been writing about climate change issues since the mid-1980s. Twitter: @DrCobbold

Nature left alone offers more than if we exploit it

Save nature, save money. It’s a simple argument. Wilderness cleared and ploughed offers us less than nature left alone.

LONDON, 19 March, 2021 − British scientists have once again made the commercial case for conserving wilderness. They have demonstrated that in its pristine state − mangrove swamps, wetlands, savannahs, forests and so on − nature left alone is of more value to humankind than as exploited real estate.

This argument has been made already, and more than once. But this time the researchers can provide the detail for their argument: they report in the journal Nature Sustainability that they had devised an accounting methodology to test such arguments, and then applied this in 24 selected sites around the planet.

Some of the value would be in intangibles such as providing a shelter for the wild things and wild plants; some of it would be measurable. For instance, if the damage inherent in carbon spilled into the atmosphere through habitat destruction or fossil fuel combustion presents an overall cost to society of $31 a tonne − and this is a conservative estimate − then almost three quarters of the sample sites have greater value simply as natural habitats.

And that includes 100% of all forests. If that greenhouse gas carbon was valued at a paltry $5 a tonne, almost two thirds of the sites would still be, over a 50-year period, a better investment left untouched.

“At current levels of habitat conversion, conserving and restoring sites typically benefits human prosperity”

But what climate scientists now call “natural capital” − the invisible services  provided by nature in crop pollination, water filtration and planetary air conditioning − is of measurable commercial value even without the vital role of carbon sink. Of the 24 sites, 42% would still be worth more in their natural form than converted to cropland.

“Stemming biodiversity loss is a vital goal in itself, but nature also fundamentally underpins human wellbeing,” said Richard Bradbury, of the University of Cambridge. “We need nature-related financial disclosure, and incentives for nature-focused land management, whether through taxes and regulation or subsidies for ecosystem services.”

And his Cambridge co-author Andrew Balmford said: “Current rates of habitat conversion are driving a species extinction crisis unlike anything in human history. Even if you are only interested in dollars and cents, we can see that conserving and restoring nature is now very often the best bet for human prosperity.”

In fact the researchers made their conclusions based on 62 sites, but concentrated on 24 simply because in these cases they had the most reliable information about the potential commercial value of their sample against which to measure the value of restoring it, or protecting it, or both.

Valuable saltmarsh

If Nepal’s Shivapuri-Nagarjun National Park was turned from forest to farmland, investors would gain immediate capital from the value of the timber, and a longer-term income from crops. But the loss of carbon storage would be 60%, and the damage to water quality would be 88%, and Nepal would be $11m worse off.

Even a saltmarsh near Preston in the United Kingdom proved to be worth $2000 a hectare in terms of its value in mitigating carbon emissions: no income from crops or forage grazing could match that.

That left 38 sites for which the economic data was less certain: even in these cases, the “goods and services” delivered by the site in its natural state was, for two thirds of them, of more value to humankind as a whole than calculated exploitation by a few.

“Our findings indicate that, at current levels of habitat conversion, conserving and restoring sites typically benefits human prosperity,” the authors say. − Climate News Network

Save nature, save money. It’s a simple argument. Wilderness cleared and ploughed offers us less than nature left alone.

LONDON, 19 March, 2021 − British scientists have once again made the commercial case for conserving wilderness. They have demonstrated that in its pristine state − mangrove swamps, wetlands, savannahs, forests and so on − nature left alone is of more value to humankind than as exploited real estate.

This argument has been made already, and more than once. But this time the researchers can provide the detail for their argument: they report in the journal Nature Sustainability that they had devised an accounting methodology to test such arguments, and then applied this in 24 selected sites around the planet.

Some of the value would be in intangibles such as providing a shelter for the wild things and wild plants; some of it would be measurable. For instance, if the damage inherent in carbon spilled into the atmosphere through habitat destruction or fossil fuel combustion presents an overall cost to society of $31 a tonne − and this is a conservative estimate − then almost three quarters of the sample sites have greater value simply as natural habitats.

And that includes 100% of all forests. If that greenhouse gas carbon was valued at a paltry $5 a tonne, almost two thirds of the sites would still be, over a 50-year period, a better investment left untouched.

“At current levels of habitat conversion, conserving and restoring sites typically benefits human prosperity”

But what climate scientists now call “natural capital” − the invisible services  provided by nature in crop pollination, water filtration and planetary air conditioning − is of measurable commercial value even without the vital role of carbon sink. Of the 24 sites, 42% would still be worth more in their natural form than converted to cropland.

“Stemming biodiversity loss is a vital goal in itself, but nature also fundamentally underpins human wellbeing,” said Richard Bradbury, of the University of Cambridge. “We need nature-related financial disclosure, and incentives for nature-focused land management, whether through taxes and regulation or subsidies for ecosystem services.”

And his Cambridge co-author Andrew Balmford said: “Current rates of habitat conversion are driving a species extinction crisis unlike anything in human history. Even if you are only interested in dollars and cents, we can see that conserving and restoring nature is now very often the best bet for human prosperity.”

In fact the researchers made their conclusions based on 62 sites, but concentrated on 24 simply because in these cases they had the most reliable information about the potential commercial value of their sample against which to measure the value of restoring it, or protecting it, or both.

Valuable saltmarsh

If Nepal’s Shivapuri-Nagarjun National Park was turned from forest to farmland, investors would gain immediate capital from the value of the timber, and a longer-term income from crops. But the loss of carbon storage would be 60%, and the damage to water quality would be 88%, and Nepal would be $11m worse off.

Even a saltmarsh near Preston in the United Kingdom proved to be worth $2000 a hectare in terms of its value in mitigating carbon emissions: no income from crops or forage grazing could match that.

That left 38 sites for which the economic data was less certain: even in these cases, the “goods and services” delivered by the site in its natural state was, for two thirds of them, of more value to humankind as a whole than calculated exploitation by a few.

“Our findings indicate that, at current levels of habitat conversion, conserving and restoring sites typically benefits human prosperity,” the authors say. − Climate News Network

Ireland’s peat is helping to fight climate chaos

A winning natural way to absorb greenhouse gases, Ireland’s peat is one route for the country to tackle the climate crisis.

My grandfather cut more turf in a day
Than any other man on Toner’s bog.
Once I carried him milk in a bottle
Corked sloppily with paper. He straightened up
To drink it, then fell to right away
Nicking and slicing neatly, heaving sods
Over his shoulder, going down and down
For the good turf. Digging.

− From ‘Digging’, by Seamus Heaney

COUNTY MAYO, IRELAND, 2 February, 2021 − Ireland’s peat is offering the country a novel way to back the global effort to save the planet from overheating dangerously. It is helping to lock up the carbon emissions which are feeding the steady rise in the Earth’s temperature.

For generations its farmers have cut turf from the bog lands for fuel, and now their laborious, back-breaking work, seen as an integral part of Irish rural life, immortalised in songs, paintings – and picture postcard images − is earning them plaudits for protecting the atmosphere.

Seamus Heaney, Ireland’s most famous modern-day poet and winner of the Nobel prize in literature in 1995, wrote of turf-cutting rituals and the wild beauty of bog lands. In many rural areas the turf fire is still the centrepiece of home life. As part of the battle against climate chaos, though, old habits stretching back for centuries are having to change.

Carrownagappul is a 325-hectare area of bog land near the village of Mountbellew, in County Galway in the west of Ireland. Locals say the turf – also called peat – cut from the bog land is the best in Ireland.

Altogether, 100 families have what are called turbary rights to Carrownagappul, part of an old and complex system allowing certain people to cut and carry away turf from the area.

“There is no better, quicker or cheaper way for Ireland to reduce its carbon footprint than restoring peat lands”

Areas of peat or turf – formed by an accumulation of decayed vegetation – act as a vital carbon sink, soaking up and storing vast amounts of climate-changing greenhouse gases.

Peat lands around the world have been drained and destroyed at a great rate over the years: as a result large amounts of greenhouse gases have been released into the atmosphere. Drought and rising temperatures have caused fires in many regions, drying out peat deposits. Nearly 20% of Ireland’s land is bog land, storing an estimated one billion tonnes of carbon.

Under a programme called The Living Bog – backed up with €5.4 million (£4.7m) of funds from the European Union – Ireland is now seeking to restore dozens of its bogs and make them able, once again, to store large amounts of carbon.

At Carrownagappul drains have been blocked to raise water levels and so re-wet the bog land: this encourages the growth of sphagnum moss, one of the main constituents of peat.

Ronan Casey is a spokesman for The Living Bog project. In an interview with the Irish Times Casey says it’s hard to overstate the importance of restoring Ireland’s peat lands as the country battles against climate chaos.

Paid to stop

“There is no better, quicker or cheaper way for Ireland to reduce its carbon footprint than restoring peat lands”, Casey tells the newspaper. “Peat lands are Ireland’s biggest carbon store; one-fifth of our soil is peat soil.

“Locking CO2 in is just as good as trying to plant trees somewhere else. They (peat bogs) store far more carbon dioxide than forests. A 15cm-thick peat layer contains more carbon per hectare than a tropical forest.”

Many of those who once cut turf at Carrownagappul have been given cash payments to stop their activities. The aim is to turn the area into a centre for tourism with an educational facility explaining the history and ecological importance of the bog.

A board walk is being built across the bog. Peat land is rich in flora and fauna. Casey refers to Ireland’s peat lands as the country’s coral reef.

As part of a scheme to encourage the local community to participate in the restoration work at Carrownagappul, a series of lectures and talks at schools is being arranged.

Not so green

At one stage the Irish government promoted the use of turf in order to achieve greater energy self-sufficiency. In the 1960s 40% of the country’s electricity was generated by turf-fired power plants. Most of these plants – chronically inefficient and heavily subsidised – are now being phased out: the government says all will be shut down by 2030 or sooner.

Work to restore peat lands is going on in several parts of the country. Bord na Mona, the semi-state company that once specialised in developing the country’s peat resources and running turf-powered power plants, has diversified into renewable energy projects and recycling; it is now spending €126 million restoring 80,000 hectares of bog.

But there has been resistance to bringing an end to the old turf-cutting ways, with people in some areas insisting on their ancient rights and saying that turf is still an important heating fuel, particularly in rural areas. The government is accused of being half-hearted about fighting climate change by allowing turf cutting to continue in some regions.

Despite its green and pastoral image, per head of population Ireland is one of the main emitters of climate-changing greenhouse gases in Europe, due in large part to activities in the agricultural sector.

The burping and flatulence of the country’s seven million-strong cattle herd results in the emission of large amounts of methane gas. Fertilisers add to the country’s emissions. − Climate News Network

A winning natural way to absorb greenhouse gases, Ireland’s peat is one route for the country to tackle the climate crisis.

My grandfather cut more turf in a day
Than any other man on Toner’s bog.
Once I carried him milk in a bottle
Corked sloppily with paper. He straightened up
To drink it, then fell to right away
Nicking and slicing neatly, heaving sods
Over his shoulder, going down and down
For the good turf. Digging.

− From ‘Digging’, by Seamus Heaney

COUNTY MAYO, IRELAND, 2 February, 2021 − Ireland’s peat is offering the country a novel way to back the global effort to save the planet from overheating dangerously. It is helping to lock up the carbon emissions which are feeding the steady rise in the Earth’s temperature.

For generations its farmers have cut turf from the bog lands for fuel, and now their laborious, back-breaking work, seen as an integral part of Irish rural life, immortalised in songs, paintings – and picture postcard images − is earning them plaudits for protecting the atmosphere.

Seamus Heaney, Ireland’s most famous modern-day poet and winner of the Nobel prize in literature in 1995, wrote of turf-cutting rituals and the wild beauty of bog lands. In many rural areas the turf fire is still the centrepiece of home life. As part of the battle against climate chaos, though, old habits stretching back for centuries are having to change.

Carrownagappul is a 325-hectare area of bog land near the village of Mountbellew, in County Galway in the west of Ireland. Locals say the turf – also called peat – cut from the bog land is the best in Ireland.

Altogether, 100 families have what are called turbary rights to Carrownagappul, part of an old and complex system allowing certain people to cut and carry away turf from the area.

“There is no better, quicker or cheaper way for Ireland to reduce its carbon footprint than restoring peat lands”

Areas of peat or turf – formed by an accumulation of decayed vegetation – act as a vital carbon sink, soaking up and storing vast amounts of climate-changing greenhouse gases.

Peat lands around the world have been drained and destroyed at a great rate over the years: as a result large amounts of greenhouse gases have been released into the atmosphere. Drought and rising temperatures have caused fires in many regions, drying out peat deposits. Nearly 20% of Ireland’s land is bog land, storing an estimated one billion tonnes of carbon.

Under a programme called The Living Bog – backed up with €5.4 million (£4.7m) of funds from the European Union – Ireland is now seeking to restore dozens of its bogs and make them able, once again, to store large amounts of carbon.

At Carrownagappul drains have been blocked to raise water levels and so re-wet the bog land: this encourages the growth of sphagnum moss, one of the main constituents of peat.

Ronan Casey is a spokesman for The Living Bog project. In an interview with the Irish Times Casey says it’s hard to overstate the importance of restoring Ireland’s peat lands as the country battles against climate chaos.

Paid to stop

“There is no better, quicker or cheaper way for Ireland to reduce its carbon footprint than restoring peat lands”, Casey tells the newspaper. “Peat lands are Ireland’s biggest carbon store; one-fifth of our soil is peat soil.

“Locking CO2 in is just as good as trying to plant trees somewhere else. They (peat bogs) store far more carbon dioxide than forests. A 15cm-thick peat layer contains more carbon per hectare than a tropical forest.”

Many of those who once cut turf at Carrownagappul have been given cash payments to stop their activities. The aim is to turn the area into a centre for tourism with an educational facility explaining the history and ecological importance of the bog.

A board walk is being built across the bog. Peat land is rich in flora and fauna. Casey refers to Ireland’s peat lands as the country’s coral reef.

As part of a scheme to encourage the local community to participate in the restoration work at Carrownagappul, a series of lectures and talks at schools is being arranged.

Not so green

At one stage the Irish government promoted the use of turf in order to achieve greater energy self-sufficiency. In the 1960s 40% of the country’s electricity was generated by turf-fired power plants. Most of these plants – chronically inefficient and heavily subsidised – are now being phased out: the government says all will be shut down by 2030 or sooner.

Work to restore peat lands is going on in several parts of the country. Bord na Mona, the semi-state company that once specialised in developing the country’s peat resources and running turf-powered power plants, has diversified into renewable energy projects and recycling; it is now spending €126 million restoring 80,000 hectares of bog.

But there has been resistance to bringing an end to the old turf-cutting ways, with people in some areas insisting on their ancient rights and saying that turf is still an important heating fuel, particularly in rural areas. The government is accused of being half-hearted about fighting climate change by allowing turf cutting to continue in some regions.

Despite its green and pastoral image, per head of population Ireland is one of the main emitters of climate-changing greenhouse gases in Europe, due in large part to activities in the agricultural sector.

The burping and flatulence of the country’s seven million-strong cattle herd results in the emission of large amounts of methane gas. Fertilisers add to the country’s emissions. − Climate News Network

Extreme drought and fire risk may double by 2060

Climate change may soon double the impact of extreme drought and fire. And it’s a two-way traffic.

LONDON, 25 January, 2021 − As climate change threatens a doubling of the impact of extreme drought and fire within a generation, researchers are uncovering the influence of human activity on both these growing risks.

One study has found that human numbers exposed to the hazard of extreme drought are likely to double in the decades to come, as global heating bakes away the groundwater and limits annual snowfall.

Another team of researchers says the risks of extreme wildfire could also rise twofold in the next 40 years in the Mediterranean, southern Africa, eastern North America and the Amazon. In those places already severely scorched by frequent fire − western North America, equatorial Africa, south-east Asia and Australia − hazards could rise by 50%.

And a third, separate study warns that global temperature rise will shift the patterns of rainfall around the tropics − with the consequent risks to tropical crop harvests and to equatorial ecosystems such as rainforest and savannah.

All three studies are reminders of the intricacies of the planetary climate system and the impact of human action in the last hundred years.

“Areas of the southern hemisphere, where water scarcity is already a problem, will be disproportionately affected. We predict this will affect food security and escalate human migration and conflict.”

An international research team reports in the journal Nature Climate Change that it looked at the simple problem of global terrestrial water storage: all the moisture in the canopies of forest trees, in the mountain snows and ice, in the lakes, rivers, wetlands, and in the soil itself.

This wealth of stored water is a big player in the patterns of global flooding and drought in the monsoon climates and the arid lands alike. But, the researchers say, there has so far been no study of the potential impact of global climate change on global terrestrial water storage overall.

So researchers from the US, China, Japan and Europe began modelling tomorrow’s world. And they found that, while 3% of the planet’s people were vulnerable to extreme drought in the timespan from 1976 to 2005, later in the century this proportion could increase to 7% or even 8%.

“More and more people will suffer from extreme droughts if a medium-to-high level of global warming continues and water management is maintained in its present state,” warned Yadu Pokhrel, an engineer at Michigan State University, who led the research.

“Areas of the southern hemisphere, where water scarcity is already a problem, will be disproportionately affected. We predict this increase in water scarcity will affect food security and escalate human migration and conflict.”

Fire chances increased

Australia is a southern hemisphere country that knows about water scarcity: its wildfires in 2019 broke all records and sent a vast cloud of smoke to an altitude of 35 kms.

And, on the evidence of a new study in the journal Nature Communications, it won’t be the last such extreme event. Californian scientists, struck by the scale and intensity of Californian wildfires in 2017 and 2018, report that they took a closer look at the way greenhouse gas emissions and human land use change have played into the risks of extreme fire weather.

The simple act of setting forests afire to clear land for farm use has amplified the risk of extreme blazes in the Amazon and North America by 30% in the last century. Fires create aerosols that could, by absorbing sunlight, help cool the terrain beneath them − in some zones. But they could also affect rainfall levels and raise the chances of fire. The nature of such impacts varies from place to place.

“South-east Asia relies on the monsoon, but aerosols cause so much cooling on land that they can actually suppress a monsoon,” said Danielle Touma of the University of California at Santa Barbara. “It’s not just whether you have aerosols or not, it’s the way the regional climate interacts with aerosols.”

Aerosols − with other forces − cannot just suppress a monsoon, they can shift rain patterns permanently. The tropics, too, have begun to feel the heat of the moment.

Drought stress rises

The footprint of extreme drought and fire is massive. Californian researchers report in Nature Climate Change that, across two thirds of the globe, the tropical rainbelt is likely to shift north over eastern Africa and the Indian Ocean to cause more drought stress in south-eastern Africa and Madagascar and intensified flooding in south Asia.

In the western hemisphere, however, as the Gulf Stream current and the North Atlantic deep water formation weaken, the rain belt could move south to bring greater drought stress to Central America.

And once again, climate change driven by global heating is at work with other human influences to alter what had for most of human history been a stable pattern of climate.

“In Asia, projected reductions in aerosol emissions, glacier melting in the Himalayas and loss of snow cover in northern areas brought on by climate change will cause the atmosphere to heat up faster than in other regions,” said James Randerson of the University of California, Irvine, one of the authors.

“We know the rainbelt shifts towards this heating, and that its northward movement in the eastern hemisphere is consistent with these expected impacts of climate change.” − Climate News Network

Climate change may soon double the impact of extreme drought and fire. And it’s a two-way traffic.

LONDON, 25 January, 2021 − As climate change threatens a doubling of the impact of extreme drought and fire within a generation, researchers are uncovering the influence of human activity on both these growing risks.

One study has found that human numbers exposed to the hazard of extreme drought are likely to double in the decades to come, as global heating bakes away the groundwater and limits annual snowfall.

Another team of researchers says the risks of extreme wildfire could also rise twofold in the next 40 years in the Mediterranean, southern Africa, eastern North America and the Amazon. In those places already severely scorched by frequent fire − western North America, equatorial Africa, south-east Asia and Australia − hazards could rise by 50%.

And a third, separate study warns that global temperature rise will shift the patterns of rainfall around the tropics − with the consequent risks to tropical crop harvests and to equatorial ecosystems such as rainforest and savannah.

All three studies are reminders of the intricacies of the planetary climate system and the impact of human action in the last hundred years.

“Areas of the southern hemisphere, where water scarcity is already a problem, will be disproportionately affected. We predict this will affect food security and escalate human migration and conflict.”

An international research team reports in the journal Nature Climate Change that it looked at the simple problem of global terrestrial water storage: all the moisture in the canopies of forest trees, in the mountain snows and ice, in the lakes, rivers, wetlands, and in the soil itself.

This wealth of stored water is a big player in the patterns of global flooding and drought in the monsoon climates and the arid lands alike. But, the researchers say, there has so far been no study of the potential impact of global climate change on global terrestrial water storage overall.

So researchers from the US, China, Japan and Europe began modelling tomorrow’s world. And they found that, while 3% of the planet’s people were vulnerable to extreme drought in the timespan from 1976 to 2005, later in the century this proportion could increase to 7% or even 8%.

“More and more people will suffer from extreme droughts if a medium-to-high level of global warming continues and water management is maintained in its present state,” warned Yadu Pokhrel, an engineer at Michigan State University, who led the research.

“Areas of the southern hemisphere, where water scarcity is already a problem, will be disproportionately affected. We predict this increase in water scarcity will affect food security and escalate human migration and conflict.”

Fire chances increased

Australia is a southern hemisphere country that knows about water scarcity: its wildfires in 2019 broke all records and sent a vast cloud of smoke to an altitude of 35 kms.

And, on the evidence of a new study in the journal Nature Communications, it won’t be the last such extreme event. Californian scientists, struck by the scale and intensity of Californian wildfires in 2017 and 2018, report that they took a closer look at the way greenhouse gas emissions and human land use change have played into the risks of extreme fire weather.

The simple act of setting forests afire to clear land for farm use has amplified the risk of extreme blazes in the Amazon and North America by 30% in the last century. Fires create aerosols that could, by absorbing sunlight, help cool the terrain beneath them − in some zones. But they could also affect rainfall levels and raise the chances of fire. The nature of such impacts varies from place to place.

“South-east Asia relies on the monsoon, but aerosols cause so much cooling on land that they can actually suppress a monsoon,” said Danielle Touma of the University of California at Santa Barbara. “It’s not just whether you have aerosols or not, it’s the way the regional climate interacts with aerosols.”

Aerosols − with other forces − cannot just suppress a monsoon, they can shift rain patterns permanently. The tropics, too, have begun to feel the heat of the moment.

Drought stress rises

The footprint of extreme drought and fire is massive. Californian researchers report in Nature Climate Change that, across two thirds of the globe, the tropical rainbelt is likely to shift north over eastern Africa and the Indian Ocean to cause more drought stress in south-eastern Africa and Madagascar and intensified flooding in south Asia.

In the western hemisphere, however, as the Gulf Stream current and the North Atlantic deep water formation weaken, the rain belt could move south to bring greater drought stress to Central America.

And once again, climate change driven by global heating is at work with other human influences to alter what had for most of human history been a stable pattern of climate.

“In Asia, projected reductions in aerosol emissions, glacier melting in the Himalayas and loss of snow cover in northern areas brought on by climate change will cause the atmosphere to heat up faster than in other regions,” said James Randerson of the University of California, Irvine, one of the authors.

“We know the rainbelt shifts towards this heating, and that its northward movement in the eastern hemisphere is consistent with these expected impacts of climate change.” − Climate News Network

More trees may do less to slow the climate crisis

In theory, more trees should mean a lower risk of dangerous climate change. In practice, it may not be so simple.

LONDON, 6 January, 2021 − The belief that more trees and better-protected forests can help contain climate change looks a little less sure − if only because climate change has already begun to affect the world’s trees and forests.

Researchers have in the last few weeks established a panoply of evidence that higher temperatures and more carbon dioxide may not be recipes for green growth in a greenhouse world.

In the tropics, as the thermometer rises, trees grow more vigorously − but overall lifespans are getting shorter. This must ultimately make the forests less efficient as absorbers of atmospheric carbon.

To compound the hazard to the rainforests, the proportion of the canopy that has always been fire-resistant is showing signs of decrease: in parts of Indonesia, only 10% of the forests remain fireproof.

Climate change and more importantly human disturbance continues to put the survival of whole groups of plants at risk: a new study finds that almost one-third of all the world’s 430 oak species are in danger of extinction.

A separate study of 447 North American trees suggests that they might not have what it takes to keep pace with changes in temperature and rainfall expected in a world of global heating.

Limited gains

And there is yet further evidence that more carbon dioxide does not inevitably mean more potential nourishment for plants: a study by the US space agency Nasa suggests that what scientists call the “carbon dioxide fertilisation effect” has been dwindling since 1982.

Finally, even the gains inevitable with rising temperatures in some regions could be limited. Another Nasa study finds that although Siberia, Canada and Alaska are becoming greener as the mercury rises, the increasing drought and tree death in the Amazon rainforest and others has offset this: another blow for those who hope more growth means more carbon absorption.

None of this should be a great surprise: the more researchers look in fine detail at the challenge of restoring natural habitat as part of the planetary arsenal against climate change, the more problems they have identified.

Although researchers have demonstrated that massive forest planting and restoration could in principle reduce the extra atmospheric carbon amassed over the last century, the details are less certain.

With more heat comes more drought which could turn some forests into sources of carbon rather than sinks. The increasing heat could affect the ability of some species to germinate, thus changing the makeup of the forests.

Trees may not only be dying younger, but growing shorter as conditions change.

“Many regions in the tropics are heating up particularly rapidly and substantial areas will become warmer, on average, than approximately 25°C”

And although spring is occurring ever earlier, so is leaf fall: all these things reduce the efficiency of forests as greedy consumers of carbon.

So the latest harvest of research is simply further confirmation that the global heating to which the world is already committed is going to change the nature of those habitats that have − until now − kept the planet at an even temperature.

That means that restoring forests is not just a matter of planting trees: foresters will need to identify the right trees for climate regimes that have yet to be established.

Tropical rainforests cover only 7% of the planet’s land surface, but they shelter and nourish around half of all the planet’s plants and animal species. Around half of the Earth’s stocks of sequestered carbon are locked in the trunks, branches, leaves and roots.

Researchers report in the Proceedings of the National Academy of Sciences that they examined growth data from more than 100,000 trees of 438 different species found at 3,433 places around the world. They found that as temperatures go beyond 25°C, tree lifespans decline.

“Many regions in the tropics are heating up particularly rapidly and substantial areas will become warmer, on average, than approximately 25°C,” said Emanuel Gloor, of the University of Leeds in the UK, one of the authors.

Human interference

“Our findings, which are the first to demonstrate that there is a temperature threshold, suggest that for trees in this region, their longevity is likely to be negatively affected.”

Rainforests maintain their own microclimates: they keep themselves humid, and therefore more or less fireproof, as long as they remain intact, even during a drought. Researchers report in Communications Earth & Environment that they found 90% of the natural forest cover of Sumatra and Kalimantan had been so badly degraded by human clearance and disturbance that it was no longer fire-resistant. What was true for Indonesia could probably be true too for Central Africa or the Amazon.

“Contrary to the widely-held perception that worsening droughts are threatening the remaining rainforests, tropical forests in Indonesia become susceptible to fire only after human disturbance,” said Tadas Nikonovas of Swansea University in Wales, who led the research.

Human disturbance of natural wilderness threatens not just forests as a whole, but individual species of trees, each of which can be a natural ecosystem, supporting other plants and animals. English oaks, for instance, provide food and shelter to more than 2,300 kinds of moss, fungus, lichen, bird, mammal and insect.

Researchers for the Morton Arboretum in Illinois in the US report that of the world’s 430 species of oak, 113 are threatened with extinction: these include 32 species in Mexico, 36 in China, 20 in Vietnam and 16 in the US.

Tropical trees have naturally faster life-cycles. Trees in cooler regions can on average survive for more than 300 years. Climate change however is likely to happen over a few decades. Can trees keep pace with change at that rate?

Plants need water

Researchers from the University of Maine report in the Journal of Biogeography that they think not. They looked at the climatic ranges most suitable for 447 North American trees and shrubs to find that overall, these were at only 48.6% of their full potential. That is, the trees are no longer in equilibrium with present climate, and must increasingly be at a disadvantage as climate change accelerates.

And although the main driver of global heating and thus climate change − ever-higher ratios of carbon dioxide in the atmosphere − confers some advantage on species that live by photosynthesis, this advantage may not be guaranteed. A space-based study in the journal Science found that over the last four decades, as CO2 ratios in the atmosphere rose, 86% of terrestrial ecosystems became progressively less efficient at absorbing the stuff.

That is, the world’s green canopies have slowed climate change, but their ability to go on doing so may be limited. That is because even though more carbon dioxide should mean more growth, unless there is more nitrogen and more soil moisture as well, a plant’s capacity to respond is limited.

And that, says a second study, in the journal AGU Advances, is less of a problem in some places than others. The Arctic is greening rapidly as average temperatures rise, and there is no shortage of moisture from the thawing permafrost, nor of partly decomposed plant material, to serve as nourishment.

A survey of growth from 1982 to 2016 found that carbon absorption increased in Canada, Alaska and Siberia. But global heating has begun to reduce soil moisture in the tropics, and the gains of the Arctic are not enough to offset losses in what had once been rainforest. Nor are the polar regions likely to go on getting ever-greener.

“I don’t expect that we have to wait another 35 years to see water limitations becoming a factor in the Arctic as well,” said one of the authors, Rolf Reichle, of the Goddard Space Flight Centre in Maryland in the US. − Climate News Network

In theory, more trees should mean a lower risk of dangerous climate change. In practice, it may not be so simple.

LONDON, 6 January, 2021 − The belief that more trees and better-protected forests can help contain climate change looks a little less sure − if only because climate change has already begun to affect the world’s trees and forests.

Researchers have in the last few weeks established a panoply of evidence that higher temperatures and more carbon dioxide may not be recipes for green growth in a greenhouse world.

In the tropics, as the thermometer rises, trees grow more vigorously − but overall lifespans are getting shorter. This must ultimately make the forests less efficient as absorbers of atmospheric carbon.

To compound the hazard to the rainforests, the proportion of the canopy that has always been fire-resistant is showing signs of decrease: in parts of Indonesia, only 10% of the forests remain fireproof.

Climate change and more importantly human disturbance continues to put the survival of whole groups of plants at risk: a new study finds that almost one-third of all the world’s 430 oak species are in danger of extinction.

A separate study of 447 North American trees suggests that they might not have what it takes to keep pace with changes in temperature and rainfall expected in a world of global heating.

Limited gains

And there is yet further evidence that more carbon dioxide does not inevitably mean more potential nourishment for plants: a study by the US space agency Nasa suggests that what scientists call the “carbon dioxide fertilisation effect” has been dwindling since 1982.

Finally, even the gains inevitable with rising temperatures in some regions could be limited. Another Nasa study finds that although Siberia, Canada and Alaska are becoming greener as the mercury rises, the increasing drought and tree death in the Amazon rainforest and others has offset this: another blow for those who hope more growth means more carbon absorption.

None of this should be a great surprise: the more researchers look in fine detail at the challenge of restoring natural habitat as part of the planetary arsenal against climate change, the more problems they have identified.

Although researchers have demonstrated that massive forest planting and restoration could in principle reduce the extra atmospheric carbon amassed over the last century, the details are less certain.

With more heat comes more drought which could turn some forests into sources of carbon rather than sinks. The increasing heat could affect the ability of some species to germinate, thus changing the makeup of the forests.

Trees may not only be dying younger, but growing shorter as conditions change.

“Many regions in the tropics are heating up particularly rapidly and substantial areas will become warmer, on average, than approximately 25°C”

And although spring is occurring ever earlier, so is leaf fall: all these things reduce the efficiency of forests as greedy consumers of carbon.

So the latest harvest of research is simply further confirmation that the global heating to which the world is already committed is going to change the nature of those habitats that have − until now − kept the planet at an even temperature.

That means that restoring forests is not just a matter of planting trees: foresters will need to identify the right trees for climate regimes that have yet to be established.

Tropical rainforests cover only 7% of the planet’s land surface, but they shelter and nourish around half of all the planet’s plants and animal species. Around half of the Earth’s stocks of sequestered carbon are locked in the trunks, branches, leaves and roots.

Researchers report in the Proceedings of the National Academy of Sciences that they examined growth data from more than 100,000 trees of 438 different species found at 3,433 places around the world. They found that as temperatures go beyond 25°C, tree lifespans decline.

“Many regions in the tropics are heating up particularly rapidly and substantial areas will become warmer, on average, than approximately 25°C,” said Emanuel Gloor, of the University of Leeds in the UK, one of the authors.

Human interference

“Our findings, which are the first to demonstrate that there is a temperature threshold, suggest that for trees in this region, their longevity is likely to be negatively affected.”

Rainforests maintain their own microclimates: they keep themselves humid, and therefore more or less fireproof, as long as they remain intact, even during a drought. Researchers report in Communications Earth & Environment that they found 90% of the natural forest cover of Sumatra and Kalimantan had been so badly degraded by human clearance and disturbance that it was no longer fire-resistant. What was true for Indonesia could probably be true too for Central Africa or the Amazon.

“Contrary to the widely-held perception that worsening droughts are threatening the remaining rainforests, tropical forests in Indonesia become susceptible to fire only after human disturbance,” said Tadas Nikonovas of Swansea University in Wales, who led the research.

Human disturbance of natural wilderness threatens not just forests as a whole, but individual species of trees, each of which can be a natural ecosystem, supporting other plants and animals. English oaks, for instance, provide food and shelter to more than 2,300 kinds of moss, fungus, lichen, bird, mammal and insect.

Researchers for the Morton Arboretum in Illinois in the US report that of the world’s 430 species of oak, 113 are threatened with extinction: these include 32 species in Mexico, 36 in China, 20 in Vietnam and 16 in the US.

Tropical trees have naturally faster life-cycles. Trees in cooler regions can on average survive for more than 300 years. Climate change however is likely to happen over a few decades. Can trees keep pace with change at that rate?

Plants need water

Researchers from the University of Maine report in the Journal of Biogeography that they think not. They looked at the climatic ranges most suitable for 447 North American trees and shrubs to find that overall, these were at only 48.6% of their full potential. That is, the trees are no longer in equilibrium with present climate, and must increasingly be at a disadvantage as climate change accelerates.

And although the main driver of global heating and thus climate change − ever-higher ratios of carbon dioxide in the atmosphere − confers some advantage on species that live by photosynthesis, this advantage may not be guaranteed. A space-based study in the journal Science found that over the last four decades, as CO2 ratios in the atmosphere rose, 86% of terrestrial ecosystems became progressively less efficient at absorbing the stuff.

That is, the world’s green canopies have slowed climate change, but their ability to go on doing so may be limited. That is because even though more carbon dioxide should mean more growth, unless there is more nitrogen and more soil moisture as well, a plant’s capacity to respond is limited.

And that, says a second study, in the journal AGU Advances, is less of a problem in some places than others. The Arctic is greening rapidly as average temperatures rise, and there is no shortage of moisture from the thawing permafrost, nor of partly decomposed plant material, to serve as nourishment.

A survey of growth from 1982 to 2016 found that carbon absorption increased in Canada, Alaska and Siberia. But global heating has begun to reduce soil moisture in the tropics, and the gains of the Arctic are not enough to offset losses in what had once been rainforest. Nor are the polar regions likely to go on getting ever-greener.

“I don’t expect that we have to wait another 35 years to see water limitations becoming a factor in the Arctic as well,” said one of the authors, Rolf Reichle, of the Goddard Space Flight Centre in Maryland in the US. − Climate News Network

Drylands hit harder by poverty than richer regions

The arrival of the rains leaves the drylands hit harder than richer areas. Once again, climate change sows injustice.

LONDON, 7 December, 2020 − Not even the climate can be even-handed. When the rains come they leave the world’s drylands hit harder: the wealthier fare better and the poorest get relatively a little poorer. And the evidence is visible literally at the grassroots.

European scientists have been measuring vegetation growth as recorded in fine detail by satellite observation over the last 20 years. And they report that in the developing world, the vegetation that sprouts after rainfall on arid lands is more meagre, while in the better-off nations the same rainfall on the same kind of dryland terrain produces more healthy growth.

The consequence, researchers warn in the journal Nature Sustainability, could result in more food shortages, more disruption, and growing numbers of climate refugees.

“We observe a clear trend of arid areas developing in a negative direction in the most economically challenged countries,” said Rasmus Fensholt, of the University of Copenhagen, one of the authors.

“Here it is apparent that the growth of vegetation has become increasingly decoupled from the water resources available, and that there is simply less vegetation in relation to the amount of rainfall. The opposite is the case in the wealthiest countries.”

“One consequence of declining vegetation in the world’s poorer arid regions may be an increase in climate refugees from various African countries. There is no indication that the problem will diminish”

Roughly 40% of the Earth’s habitable land is arid or semi-arid, and the global drylands are home to almost a third of all humanity, around half of all the planet’s birds and mammals, as well as providing range for livestock and land for crops. Most of the world’s drylands are also home to many of the world’s least developed countries, and many of the poorest citizenry.

And, in a world of climate change driven by ever-rising global temperatures, fuelled in turn by greenhouse gas emissions from increasing fossil fuel use, things don’t look promising.

Research from the last four decades has repeatedly predicted that although global rainfall may be higher in total, those regions already well-watered will tend to become wetter, while those that have adapted to arid climate regimes will get drier. By the end of this century the proportion defined as dryland may have expanded by 23%.

And although higher temperatures, higher levels of atmospheric carbon and changes in rainfall regimes have had the overall effect of “greening” many of the drylands, those already struggling to survive are getting less benefit from any rain that falls.

The scientists, from Denmark, Norway, Sweden and the Netherlands, made a close analysis of satellite imagery from 2000 to 2015 to identify not rainfall changes, but vegetation productivity in relation to rainfall: they found pronounced differences across regions and continents. Drylands in Africa and Asia fared proportionately less well compared to South America and Australia.

Upward trend reversed

What made the difference, they think, is the number and the plight of the people on whom the rain fell. Rapid population growth in Africa meant greater pressure on land less suitable for agriculture, and more intense grazing on already fragile grassland cover.

In the richer nations, conversely, farms had expanded and intensified with help from fertiliser and irrigation.

This is not the first study to find that in a world of climate change, the poorest − among them those who have contributed least to global heating − will be hit hardest. The match of more people with less productive land can only mean more competition for less food at higher prices.

“One consequence of declining vegetation in the world’s poorer arid regions may be an increase in climate refugees from various African countries. According to what we have seen in this study, there is no indication that the problem will diminish in future,” Professor Fensholt said.

“We have been pleased to see that, for a number of years, vegetation has been on an upwards trend in arid regions. But if we dig only a tiny bit deeper and look at how successfully precipitation has translated into vegetation, then climate change seems to be hitting unevenly, which is troubling.” − Climate News Network

The arrival of the rains leaves the drylands hit harder than richer areas. Once again, climate change sows injustice.

LONDON, 7 December, 2020 − Not even the climate can be even-handed. When the rains come they leave the world’s drylands hit harder: the wealthier fare better and the poorest get relatively a little poorer. And the evidence is visible literally at the grassroots.

European scientists have been measuring vegetation growth as recorded in fine detail by satellite observation over the last 20 years. And they report that in the developing world, the vegetation that sprouts after rainfall on arid lands is more meagre, while in the better-off nations the same rainfall on the same kind of dryland terrain produces more healthy growth.

The consequence, researchers warn in the journal Nature Sustainability, could result in more food shortages, more disruption, and growing numbers of climate refugees.

“We observe a clear trend of arid areas developing in a negative direction in the most economically challenged countries,” said Rasmus Fensholt, of the University of Copenhagen, one of the authors.

“Here it is apparent that the growth of vegetation has become increasingly decoupled from the water resources available, and that there is simply less vegetation in relation to the amount of rainfall. The opposite is the case in the wealthiest countries.”

“One consequence of declining vegetation in the world’s poorer arid regions may be an increase in climate refugees from various African countries. There is no indication that the problem will diminish”

Roughly 40% of the Earth’s habitable land is arid or semi-arid, and the global drylands are home to almost a third of all humanity, around half of all the planet’s birds and mammals, as well as providing range for livestock and land for crops. Most of the world’s drylands are also home to many of the world’s least developed countries, and many of the poorest citizenry.

And, in a world of climate change driven by ever-rising global temperatures, fuelled in turn by greenhouse gas emissions from increasing fossil fuel use, things don’t look promising.

Research from the last four decades has repeatedly predicted that although global rainfall may be higher in total, those regions already well-watered will tend to become wetter, while those that have adapted to arid climate regimes will get drier. By the end of this century the proportion defined as dryland may have expanded by 23%.

And although higher temperatures, higher levels of atmospheric carbon and changes in rainfall regimes have had the overall effect of “greening” many of the drylands, those already struggling to survive are getting less benefit from any rain that falls.

The scientists, from Denmark, Norway, Sweden and the Netherlands, made a close analysis of satellite imagery from 2000 to 2015 to identify not rainfall changes, but vegetation productivity in relation to rainfall: they found pronounced differences across regions and continents. Drylands in Africa and Asia fared proportionately less well compared to South America and Australia.

Upward trend reversed

What made the difference, they think, is the number and the plight of the people on whom the rain fell. Rapid population growth in Africa meant greater pressure on land less suitable for agriculture, and more intense grazing on already fragile grassland cover.

In the richer nations, conversely, farms had expanded and intensified with help from fertiliser and irrigation.

This is not the first study to find that in a world of climate change, the poorest − among them those who have contributed least to global heating − will be hit hardest. The match of more people with less productive land can only mean more competition for less food at higher prices.

“One consequence of declining vegetation in the world’s poorer arid regions may be an increase in climate refugees from various African countries. According to what we have seen in this study, there is no indication that the problem will diminish in future,” Professor Fensholt said.

“We have been pleased to see that, for a number of years, vegetation has been on an upwards trend in arid regions. But if we dig only a tiny bit deeper and look at how successfully precipitation has translated into vegetation, then climate change seems to be hitting unevenly, which is troubling.” − Climate News Network

Big builders’ plans threaten to wreck forest survival

Plans by corporate power and government investors risk corporate good intentions and national vows for forest survival.

LONDON, 24 November, 2020 − Forest survival in the world’s great conservation targets − the Amazon, the Congo and South-east Asia, for example − is at risk from not just ranchers, loggers and illegal foresters: it’s also under assault from some of the planet’s biggest spenders: governments and the big banks, giant mining corporations and road builders.

A new report warns that in the Amazon region alone − across Bolivia, Brazil, Colombia, Peru and Ecuador − governments have promised $27bn worth of investment on 12,000 kms (7,456 miles) of roads over the next five years. If all the promised infrastructure goes ahead, that could mean the loss of 24,000 square kilometres of forest in the next 20 years.

The Indonesian government is planning to drive a 4,000 km network of highway through a national park in Papua, western New Guinea, for access to 500 sq kms of mining concessions. A new planned railway in Kalimantan, Indonesia, will open up new opportunities for palm oil plantations and coal mining concessions.

And in sub-Saharan Africa nations plan dozens of “international development corridors” to provide access to minerals and to energy. The plans threaten to cut through 400 protected areas and degrade another 1800.

Threat intensified

“Big new projects under way or planned in the Amazon, Indonesia, Meso-America, the Congo basin and beyond, reveal that our insatiable appetite for coal, minerals, metals, energy and agricultural commodities like soy has opened up a new front in the battle to protect the world’s forests,” said Franziska Haupt, executive director of Climate Focus, Berlin, and the lead author of a new report on efforts so far to limit the destruction of the world’s forests.

“Some governments are compounding this threat and rolling back forest protections, as countries struggle to cope with the economic fallout of Covid-19.”

Forests are key to limiting climate change. It is not enough simply to switch from fossil fuels to renewable energy to halt global heating: the climate emergency also requires nations to halt the destruction of, and restore, the world’s great forests.

But much of the promised investment will be devoted to destroying forest and then compounding the damage by producing new reserves of fossil fuels to increase levels of greenhouse gas emissions.

“We are living in a dreamworld of pledges, but a reality of very little progress, lack of transparency, vested interests and short-termism … Alas, reality will always catch us up”

“Many of these projects would never get the green light if the true value of forests was factored in − their role in reducing climate change, protecting animal habitats and reducing the spread of zoonotic diseases [infections caught from other creatures], keeping water sources clean, providing economic opportunity and a long list of other benefits without a price tag,” said Erin Matson, a consultant at Climate Focus, and a co-author.

“Forests are at a dangerous tipping point, and these new large-scale infrastructure projects could push us over the edge and undermine global efforts to stop deforestation.

“There’s a very small − and closing − window of opportunity now to rethink and re-orient these projects in a more sustainable direction. Governments, companies and investors all need to step up, commit to more transparency and act quickly to avoid further harm to people, wildlife and nature.”

The report points out that mining is the world’s “most violent” economic sector, with the largest share of environmental conflicts. In 2019, 50 environmental defenders were murdered.

“Local peoples tend to have little say in economic development approaches and the allocation and use of forest lands,” the report says. “Instead, powerful corporations and national elites influence decision-making to facilitate resource exploitation, while grassroots actors who express their preferences are often shunted aside or ignored.”

Doubtful promise

Forest survival is tough going. Roads, too, are part of the problem: roads and road networks make it easier for farmers and loggers to clear land. They could account for as much as 16% of the destruction of tropical and subtropical forests.

Six years ago, in what became known as the New York Declaration on Forests, endorsed by the world’s governments, multinationals and non-governmental organisations, there were international pledges to halve deforestation by 2020, and end it by 2030.

The 2020 target will not be met. The 2030 pledge looks increasingly improbable. In 2019, a World Bank analysis of 29 case studies of sites of large-scale mining in forests could not find a single example of a mining operation that properly addressed and limited the risks to the forest and its biodiversity.

“This is a salutary reminder that we are living in a dreamworld of pledges, but a reality of very little progress, lack of transparency, vested interests and short-termism,” said Robert Nasi, director general of the International Centre for Forest Research. “Alas, reality will always catch us up.” − Climate News Network

Plans by corporate power and government investors risk corporate good intentions and national vows for forest survival.

LONDON, 24 November, 2020 − Forest survival in the world’s great conservation targets − the Amazon, the Congo and South-east Asia, for example − is at risk from not just ranchers, loggers and illegal foresters: it’s also under assault from some of the planet’s biggest spenders: governments and the big banks, giant mining corporations and road builders.

A new report warns that in the Amazon region alone − across Bolivia, Brazil, Colombia, Peru and Ecuador − governments have promised $27bn worth of investment on 12,000 kms (7,456 miles) of roads over the next five years. If all the promised infrastructure goes ahead, that could mean the loss of 24,000 square kilometres of forest in the next 20 years.

The Indonesian government is planning to drive a 4,000 km network of highway through a national park in Papua, western New Guinea, for access to 500 sq kms of mining concessions. A new planned railway in Kalimantan, Indonesia, will open up new opportunities for palm oil plantations and coal mining concessions.

And in sub-Saharan Africa nations plan dozens of “international development corridors” to provide access to minerals and to energy. The plans threaten to cut through 400 protected areas and degrade another 1800.

Threat intensified

“Big new projects under way or planned in the Amazon, Indonesia, Meso-America, the Congo basin and beyond, reveal that our insatiable appetite for coal, minerals, metals, energy and agricultural commodities like soy has opened up a new front in the battle to protect the world’s forests,” said Franziska Haupt, executive director of Climate Focus, Berlin, and the lead author of a new report on efforts so far to limit the destruction of the world’s forests.

“Some governments are compounding this threat and rolling back forest protections, as countries struggle to cope with the economic fallout of Covid-19.”

Forests are key to limiting climate change. It is not enough simply to switch from fossil fuels to renewable energy to halt global heating: the climate emergency also requires nations to halt the destruction of, and restore, the world’s great forests.

But much of the promised investment will be devoted to destroying forest and then compounding the damage by producing new reserves of fossil fuels to increase levels of greenhouse gas emissions.

“We are living in a dreamworld of pledges, but a reality of very little progress, lack of transparency, vested interests and short-termism … Alas, reality will always catch us up”

“Many of these projects would never get the green light if the true value of forests was factored in − their role in reducing climate change, protecting animal habitats and reducing the spread of zoonotic diseases [infections caught from other creatures], keeping water sources clean, providing economic opportunity and a long list of other benefits without a price tag,” said Erin Matson, a consultant at Climate Focus, and a co-author.

“Forests are at a dangerous tipping point, and these new large-scale infrastructure projects could push us over the edge and undermine global efforts to stop deforestation.

“There’s a very small − and closing − window of opportunity now to rethink and re-orient these projects in a more sustainable direction. Governments, companies and investors all need to step up, commit to more transparency and act quickly to avoid further harm to people, wildlife and nature.”

The report points out that mining is the world’s “most violent” economic sector, with the largest share of environmental conflicts. In 2019, 50 environmental defenders were murdered.

“Local peoples tend to have little say in economic development approaches and the allocation and use of forest lands,” the report says. “Instead, powerful corporations and national elites influence decision-making to facilitate resource exploitation, while grassroots actors who express their preferences are often shunted aside or ignored.”

Doubtful promise

Forest survival is tough going. Roads, too, are part of the problem: roads and road networks make it easier for farmers and loggers to clear land. They could account for as much as 16% of the destruction of tropical and subtropical forests.

Six years ago, in what became known as the New York Declaration on Forests, endorsed by the world’s governments, multinationals and non-governmental organisations, there were international pledges to halve deforestation by 2020, and end it by 2030.

The 2020 target will not be met. The 2030 pledge looks increasingly improbable. In 2019, a World Bank analysis of 29 case studies of sites of large-scale mining in forests could not find a single example of a mining operation that properly addressed and limited the risks to the forest and its biodiversity.

“This is a salutary reminder that we are living in a dreamworld of pledges, but a reality of very little progress, lack of transparency, vested interests and short-termism,” said Robert Nasi, director general of the International Centre for Forest Research. “Alas, reality will always catch us up.” − Climate News Network

Mixed farming beats intensive agriculture methods

It sounds like the conservationist’s dream. But a return to traditional mixed farming ways could pay off for farmers too.

LONDON, 23 November, 2020 − Once again, researchers have shown that it should be possible to feed the human race and leave enough space for the rest of creation, simply by going back to centuries-old mixed farming practices.

That would mean an end to highly intensively-farmed landscapes composed of vast fields that were home to just one crop, and a return to a number of once-traditional husbandry methods. It sounds counter-intuitive, but European researchers are convinced that it could be good value.

They report in the journal Science Advances that they looked at more than 5,000 studies that made more than 40,000 comparisons between what they term diversified and simplified agriculture.

And they found that crop yield in general either kept to the same level or even increased when farmers adopted what they called diversified practices of the kind that sustained subsistence farmers for many centuries.

These include intercropping − different crops side by side − and multiple crops in rotation, strips of flowers to encourage pollinating insects, lower levels of disturbance of the soil and hedges, and forested shelter belts to encourage wildlife alongside farmland.

“Most often, diversification practices resulted in win-win support of services and crop yields”

The payoff? Better ecosystem services such as pollination, the regulation of crop pests by natural enemies, a more efficient turnover of nutrients, higher water quality, and in many cases better storage of carbon in ways that could mitigate climate change.

This, of course, is not how big agribusiness delivers much of the world’s food.

“The trend is that we are simplifying major cropping systems worldwide,” said Giovanni Tamburini, an ecologist at the Swedish University of Agricultural Sciences in Uppsala, who led the study.

“We grow monoculture on enlarged fields in homogenised landscapes. According to our study, diversification can reverse the negative impacts that we observe in simplified forms of cropping on the environment and on production itself.”

It’s an old argument. Is it better for a farmer to invest all in one vast crop of maize or wheat or soy, regularly nourished by commercial fertilisers, routinely sprayed to suppress pests, moulds and mildews, with the land ploughed and harrowed after harvest for the next crop, and always at risk of frost or flood, locust swarms, drought or blight?

All-round winners

Or would it be better in the long run for the farmer to spread the risk by changing and multiplying the crops, and to rely more on undisturbed soils and local habitats for birds and insects that would demolish some of the pests (and of course take some of the crop)?

Researchers have repeatedly argued that both to contain climate change and to preserve the natural world from which all human nourishment and almost all human wealth ultimately derive, farming practices must change, and so must human appetite. The argument remains: what is the best way to set about change down on the farm itself?

There have already been a large number of studies of this question. There have also been meta-analyses, or studies of collected studies. Dr Tamburini and his colleagues identified 41,946 comparisons embedded in 5,160 original studies. They also found 98 meta-analyses. And they took a fresh look at the whole lot to identify what could be win-win, trade-off and lose-lose outcomes.

They found that diversification is better for biodiversity, pollination, pest control, nutrient cycling, soil fertility and water regulation at least 63% of the time. “Most often, diversification practices resulted in win-win support of services and crop yields,” they report.

“Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales.” − Climate News Network

It sounds like the conservationist’s dream. But a return to traditional mixed farming ways could pay off for farmers too.

LONDON, 23 November, 2020 − Once again, researchers have shown that it should be possible to feed the human race and leave enough space for the rest of creation, simply by going back to centuries-old mixed farming practices.

That would mean an end to highly intensively-farmed landscapes composed of vast fields that were home to just one crop, and a return to a number of once-traditional husbandry methods. It sounds counter-intuitive, but European researchers are convinced that it could be good value.

They report in the journal Science Advances that they looked at more than 5,000 studies that made more than 40,000 comparisons between what they term diversified and simplified agriculture.

And they found that crop yield in general either kept to the same level or even increased when farmers adopted what they called diversified practices of the kind that sustained subsistence farmers for many centuries.

These include intercropping − different crops side by side − and multiple crops in rotation, strips of flowers to encourage pollinating insects, lower levels of disturbance of the soil and hedges, and forested shelter belts to encourage wildlife alongside farmland.

“Most often, diversification practices resulted in win-win support of services and crop yields”

The payoff? Better ecosystem services such as pollination, the regulation of crop pests by natural enemies, a more efficient turnover of nutrients, higher water quality, and in many cases better storage of carbon in ways that could mitigate climate change.

This, of course, is not how big agribusiness delivers much of the world’s food.

“The trend is that we are simplifying major cropping systems worldwide,” said Giovanni Tamburini, an ecologist at the Swedish University of Agricultural Sciences in Uppsala, who led the study.

“We grow monoculture on enlarged fields in homogenised landscapes. According to our study, diversification can reverse the negative impacts that we observe in simplified forms of cropping on the environment and on production itself.”

It’s an old argument. Is it better for a farmer to invest all in one vast crop of maize or wheat or soy, regularly nourished by commercial fertilisers, routinely sprayed to suppress pests, moulds and mildews, with the land ploughed and harrowed after harvest for the next crop, and always at risk of frost or flood, locust swarms, drought or blight?

All-round winners

Or would it be better in the long run for the farmer to spread the risk by changing and multiplying the crops, and to rely more on undisturbed soils and local habitats for birds and insects that would demolish some of the pests (and of course take some of the crop)?

Researchers have repeatedly argued that both to contain climate change and to preserve the natural world from which all human nourishment and almost all human wealth ultimately derive, farming practices must change, and so must human appetite. The argument remains: what is the best way to set about change down on the farm itself?

There have already been a large number of studies of this question. There have also been meta-analyses, or studies of collected studies. Dr Tamburini and his colleagues identified 41,946 comparisons embedded in 5,160 original studies. They also found 98 meta-analyses. And they took a fresh look at the whole lot to identify what could be win-win, trade-off and lose-lose outcomes.

They found that diversification is better for biodiversity, pollination, pest control, nutrient cycling, soil fertility and water regulation at least 63% of the time. “Most often, diversification practices resulted in win-win support of services and crop yields,” they report.

“Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales.” − Climate News Network

Shrinking world leaves less room for wild creatures

Wild creatures are losing their range. One day jaguars and rhinos, pandas and tigers, may have nowhere left to go.

LONDON, 18 November, 2020 − Thanks to climate change and to the human colonisation of the natural landscape, the world’s wild creatures have vanishing space in which to roam. In the last two centuries birds, mammals and amphibians have lost − this is an average figure − almost a fifth of their natural range.

By the close of the century, this freedom will have been limited even more, by almost a fourth of their living space. That is a conclusion based on close observation by generations of naturalists since 1700, of almost 17,000 species on all the main continents. And those figures, remember, are simply averages.

Individual species may have lost much, much more of the habitat and climate regime on which they depend to survive. According to the International Union for Conservation of Nature’s species Red List the jaguar has lost 21% of its living space; the cheetah 28%; the black rhinoceros 53%.

Even those charismatic creatures slow in movement and static of habit have felt the confinement. The panda has 11% less freedom. The koala’s range has been reduced by 22%.

Tropics hit hardest

And despite decades of conservation effort, the Bengal tiger’s hunting grounds have been diminished by a fifth.

“The habitat size of almost all known birds, mammals and amphibians is shrinking, primarily because of land conversion by humans as we continue to expand our agricultural and urban areas,” said Robert Beyer, a zoologist at the University of Cambridge in the UK, first author of the study, in the journal Nature Communications, of the habitat of 16,919 animals.

One in six of these has already lost half its estimated natural range. By 2100, it could be more than one in four, depending on a range of climate scenarios.

The swiftest and most dramatic changes have been in the tropical zones, as wilderness has given way to palm oil plantation or cattle range. In many cases, the tropical species’ ranges were smaller to begin with.

“The habitat size of almost all known birds, mammals and amphibians is shrinking, primarily because of land conversion by humans as we continue to expand our agricultural and urban areas”

“The tropics are biodiversity hotspots with lots of small-range species. If one hectare of forest is converted to agricultural land, a lot more species lose larger proportions of their home than in places like Europe,” Dr Beyer said.

“Species in the Amazon have adapted to living in tropical rainforest. If climate change causes this ecosystem to change, many of those species won’t be able to survive − or they will be pushed into smaller areas of remaining rainforest. We found that the higher the carbon emissions, the worse it gets for most species in terms of habitat loss.”

Researchers have calculated that perhaps a million species could be threatened with extinction as a consequence of the human conversion of wilderness and human-fuelled climate change. Cambridge co-author Andrea Manica warned that what happens to the creatures of the tropical wilderness will depend on just how much more fossil fuels humans burn, and how rapaciously human intruders scorch and clear the forests and grasslands.

“While our study quantifies the drastic consequences for species’ ranges, if global land use and climate change are left unchecked, it also demonstrates the tremendous potential of timely and concerted policy action for halting − and indeed reversing − previous trends in global range contractions,” he said.

“It all depends on what we do next.” Remembering the needs of the wild creatures who share the planet would be a start. − Climate News Network

Wild creatures are losing their range. One day jaguars and rhinos, pandas and tigers, may have nowhere left to go.

LONDON, 18 November, 2020 − Thanks to climate change and to the human colonisation of the natural landscape, the world’s wild creatures have vanishing space in which to roam. In the last two centuries birds, mammals and amphibians have lost − this is an average figure − almost a fifth of their natural range.

By the close of the century, this freedom will have been limited even more, by almost a fourth of their living space. That is a conclusion based on close observation by generations of naturalists since 1700, of almost 17,000 species on all the main continents. And those figures, remember, are simply averages.

Individual species may have lost much, much more of the habitat and climate regime on which they depend to survive. According to the International Union for Conservation of Nature’s species Red List the jaguar has lost 21% of its living space; the cheetah 28%; the black rhinoceros 53%.

Even those charismatic creatures slow in movement and static of habit have felt the confinement. The panda has 11% less freedom. The koala’s range has been reduced by 22%.

Tropics hit hardest

And despite decades of conservation effort, the Bengal tiger’s hunting grounds have been diminished by a fifth.

“The habitat size of almost all known birds, mammals and amphibians is shrinking, primarily because of land conversion by humans as we continue to expand our agricultural and urban areas,” said Robert Beyer, a zoologist at the University of Cambridge in the UK, first author of the study, in the journal Nature Communications, of the habitat of 16,919 animals.

One in six of these has already lost half its estimated natural range. By 2100, it could be more than one in four, depending on a range of climate scenarios.

The swiftest and most dramatic changes have been in the tropical zones, as wilderness has given way to palm oil plantation or cattle range. In many cases, the tropical species’ ranges were smaller to begin with.

“The habitat size of almost all known birds, mammals and amphibians is shrinking, primarily because of land conversion by humans as we continue to expand our agricultural and urban areas”

“The tropics are biodiversity hotspots with lots of small-range species. If one hectare of forest is converted to agricultural land, a lot more species lose larger proportions of their home than in places like Europe,” Dr Beyer said.

“Species in the Amazon have adapted to living in tropical rainforest. If climate change causes this ecosystem to change, many of those species won’t be able to survive − or they will be pushed into smaller areas of remaining rainforest. We found that the higher the carbon emissions, the worse it gets for most species in terms of habitat loss.”

Researchers have calculated that perhaps a million species could be threatened with extinction as a consequence of the human conversion of wilderness and human-fuelled climate change. Cambridge co-author Andrea Manica warned that what happens to the creatures of the tropical wilderness will depend on just how much more fossil fuels humans burn, and how rapaciously human intruders scorch and clear the forests and grasslands.

“While our study quantifies the drastic consequences for species’ ranges, if global land use and climate change are left unchecked, it also demonstrates the tremendous potential of timely and concerted policy action for halting − and indeed reversing − previous trends in global range contractions,” he said.

“It all depends on what we do next.” Remembering the needs of the wild creatures who share the planet would be a start. − Climate News Network