Category Archives: Military

UK’s plutonium stockpile is an embarrassing risk

Plutonium used to be called the world’s most valuable substance. It’s now recognised as a highly dangerous liability.

LONDON, 3 September, 2020 – After 70 years of producing plutonium in reprocessing works the United Kingdom, now with 140 tonnes of it, the largest stockpile in the world, finds it has no use for the metal – and needs to spend £4.5 billion (US$6bn) just to keep it safe.

Having already spent at least that much since the 1950s employing thousands of workers at the Sellafield plant in north-west England to refine the plutonium, the British government has now been told this was a useless endeavour, producing fissile material which, as a security risk, is a burden for future generations.

To cope with the problem the government has now authorised the building of new plants to refine, repackage and store the plutonium for another 140 years, in the hope that some time in the future someone will find a use for it.

Plutonium was once described as the most valuable substance in the world – because with seven kilograms a nation could make a devastating nuclear bomb and become a superpower.

Non-stop production

The UK began making plutonium in the 1950s so that it could keep up with the US and Russia in obtaining such a bomb, and since then it has not stopped, although it has earmarked its current stockpile for peaceful purposes.

The plan, once there was enough military plutonium to use for bombs, was to make plutonium-based fuels for electricity production, but the technology has proved too expensive to be viable.

So the plutonium is now a liability, costing more than £300 million a ton to make safe and store. It will be permanently guarded by a special armed police force for the next 140 years to prevent terrorists getting access to it – the additional cost of this 24-hour surveillance being kept secret because it is “a matter of national security.”

Some of the plutonium has been stored for so long that it already needs what is called “emergency repackaging” to keep it safe. Some of it decays into a more radioactive substance, americium-241, which remains a danger for another 300 years.

Sudden revelation

To avoid immediate danger to workers this plutonium will have to be re-packaged again to meet the standard required for it to enter a new store, so far unbuilt.

Rachel Western, a Friends of the Earth researcher, who obtained a Ph.D studying decision-making in nuclear waste management, said: “It is shocking that after half a century of production of plutonium at Sellafield they have discovered how dangerous it is, so that we are suddenly faced with emergency action.”

One of the extraordinary aspects of this history is that successive governments, both Conservative and Labour, have been warned repeatedly by scientists, engineers and environment groups that the plutonium is a liability, not an asset. Despite that, in the 1990s (having already built up a vast stock of plutonium) ministers authorised the new reprocessing works to begin operations.

After a life of 20 years this reprocessing plant, known as Thorp (the Thermal Oxide Reprocessing Plant), shut down in 2018, and another that has been working since the 1950s is due to close in 2021 – in the meantime still turning out more plutonium that has no end use.

“Continued, indefinite, long-term storage leaves a burden of security risks and proliferation sensitivities for future generations”

This reporter, who worked for The Guardian newspaper, was assigned to follow Britain’s plutonium story from the 1980s. After a long planning inquiry into the Thorp plant, which was to cost £1.8 billion, a debate broke out on whether the UK needed any more plutonium

The original plan for Thorp was to make money for the UK by reprocessing spent nuclear fuels at Sellafield from around the world to recover plutonium and uranium to re-use in reactors. Everyone outside the industry said that this would be uneconomic, and so it proved. But the government went ahead anyway.

The idea was to make a new fuel called MOX, mixed oxides of plutonium and uranium, to burn in reactors that would provide energy but effectively render the plutonium useless for making weapons.

In order to justify opening the second reprocessing works the government authorised the building of an additional MOX plant, but it never worked properly and was abandoned as a catastrophic financial failure. Despite this, Sellafield continued to separate plutonium.

Looking for alternative

Papers passed to the Climate News Network show what an expensive legacy this plutonium production line has proved to be.

The Nuclear Decommissioning Authority (NDA), the government body charged with dealing with the UK’s nuclear wastes, said in its 2019 document Progress on Plutonium: “Continued, indefinite, long-term storage leaves a burden of security risks and proliferation sensitivities for future generations to manage.”

It outlined a series of possibilities for using the plutonium, including the already failed alternative of making MOX fuel. In that and future documents these alternatives were discussed and found to be too expensive, unproven or simply impractical, because there were no reactors available to burn the plutonium.

As a result, repacking the dangerously unstable plutonium and then storing it for future generations to deal with is the chosen option until an alternative can be found. The most likely, according to the NDA document, seems to be mixing it with concrete or ceramics and burying it in a deep depository.

Cost increase

Costs are not discussed in that document. However, following a request by the UK’s Public Accounts Committee, an all-party body of members of parliament, the costs of dealing with the plutonium were disclosed by the NDA.

The evidence says in part: “The costs of the programme to manage the indefinite storage of UK-held plutonium are expected to increase between £0.5-£1 billion from the current estimate of £3.5 billion.”

These costs include the current “contingency repack capability” which is code for emergency treatment for old plutonium stores; the building of a new state of the art retreatment plant; and the construction of a giant new store to take all the plutonium. This it is hoped will be ready by 2027, with extensions to be added in 2033 and 2040.

Other documents, also seen by the Climate News Network, explain that one of the problems that Sellafield faces is that plutonium breaks down.

Completely unusable

Radioactive substances decay into what are called daughter products, also highly dangerous, that have different properties and in this case dilute the purity of the plutonium. This is why nuclear warheads constantly have to be remade with pure plutonium.

At Sellafield some of this refined plutonium has been left in store for so long that it is regarded as unusable in any form and will have to be disposed of. Other plutonium could be purified for use, if a use could be found.

The documents made clear that the plutonium in these old stores was too dangerous to leave until the new facilities could be built. The NDA’s 2020 annual report said: ”In the last 12 months Sellafield has started to recover some of the most degraded plutonium storage packages, therefore beginning to mitigate one of the more significant challenges associated with storing these materials.”

Sellafield has more than 1,000 empty buildings and nearly 10,000 employees looking after the nuclear waste created since the 1950s. – Climate News Network

Plutonium used to be called the world’s most valuable substance. It’s now recognised as a highly dangerous liability.

LONDON, 3 September, 2020 – After 70 years of producing plutonium in reprocessing works the United Kingdom, now with 140 tonnes of it, the largest stockpile in the world, finds it has no use for the metal – and needs to spend £4.5 billion (US$6bn) just to keep it safe.

Having already spent at least that much since the 1950s employing thousands of workers at the Sellafield plant in north-west England to refine the plutonium, the British government has now been told this was a useless endeavour, producing fissile material which, as a security risk, is a burden for future generations.

To cope with the problem the government has now authorised the building of new plants to refine, repackage and store the plutonium for another 140 years, in the hope that some time in the future someone will find a use for it.

Plutonium was once described as the most valuable substance in the world – because with seven kilograms a nation could make a devastating nuclear bomb and become a superpower.

Non-stop production

The UK began making plutonium in the 1950s so that it could keep up with the US and Russia in obtaining such a bomb, and since then it has not stopped, although it has earmarked its current stockpile for peaceful purposes.

The plan, once there was enough military plutonium to use for bombs, was to make plutonium-based fuels for electricity production, but the technology has proved too expensive to be viable.

So the plutonium is now a liability, costing more than £300 million a ton to make safe and store. It will be permanently guarded by a special armed police force for the next 140 years to prevent terrorists getting access to it – the additional cost of this 24-hour surveillance being kept secret because it is “a matter of national security.”

Some of the plutonium has been stored for so long that it already needs what is called “emergency repackaging” to keep it safe. Some of it decays into a more radioactive substance, americium-241, which remains a danger for another 300 years.

Sudden revelation

To avoid immediate danger to workers this plutonium will have to be re-packaged again to meet the standard required for it to enter a new store, so far unbuilt.

Rachel Western, a Friends of the Earth researcher, who obtained a Ph.D studying decision-making in nuclear waste management, said: “It is shocking that after half a century of production of plutonium at Sellafield they have discovered how dangerous it is, so that we are suddenly faced with emergency action.”

One of the extraordinary aspects of this history is that successive governments, both Conservative and Labour, have been warned repeatedly by scientists, engineers and environment groups that the plutonium is a liability, not an asset. Despite that, in the 1990s (having already built up a vast stock of plutonium) ministers authorised the new reprocessing works to begin operations.

After a life of 20 years this reprocessing plant, known as Thorp (the Thermal Oxide Reprocessing Plant), shut down in 2018, and another that has been working since the 1950s is due to close in 2021 – in the meantime still turning out more plutonium that has no end use.

“Continued, indefinite, long-term storage leaves a burden of security risks and proliferation sensitivities for future generations”

This reporter, who worked for The Guardian newspaper, was assigned to follow Britain’s plutonium story from the 1980s. After a long planning inquiry into the Thorp plant, which was to cost £1.8 billion, a debate broke out on whether the UK needed any more plutonium

The original plan for Thorp was to make money for the UK by reprocessing spent nuclear fuels at Sellafield from around the world to recover plutonium and uranium to re-use in reactors. Everyone outside the industry said that this would be uneconomic, and so it proved. But the government went ahead anyway.

The idea was to make a new fuel called MOX, mixed oxides of plutonium and uranium, to burn in reactors that would provide energy but effectively render the plutonium useless for making weapons.

In order to justify opening the second reprocessing works the government authorised the building of an additional MOX plant, but it never worked properly and was abandoned as a catastrophic financial failure. Despite this, Sellafield continued to separate plutonium.

Looking for alternative

Papers passed to the Climate News Network show what an expensive legacy this plutonium production line has proved to be.

The Nuclear Decommissioning Authority (NDA), the government body charged with dealing with the UK’s nuclear wastes, said in its 2019 document Progress on Plutonium: “Continued, indefinite, long-term storage leaves a burden of security risks and proliferation sensitivities for future generations to manage.”

It outlined a series of possibilities for using the plutonium, including the already failed alternative of making MOX fuel. In that and future documents these alternatives were discussed and found to be too expensive, unproven or simply impractical, because there were no reactors available to burn the plutonium.

As a result, repacking the dangerously unstable plutonium and then storing it for future generations to deal with is the chosen option until an alternative can be found. The most likely, according to the NDA document, seems to be mixing it with concrete or ceramics and burying it in a deep depository.

Cost increase

Costs are not discussed in that document. However, following a request by the UK’s Public Accounts Committee, an all-party body of members of parliament, the costs of dealing with the plutonium were disclosed by the NDA.

The evidence says in part: “The costs of the programme to manage the indefinite storage of UK-held plutonium are expected to increase between £0.5-£1 billion from the current estimate of £3.5 billion.”

These costs include the current “contingency repack capability” which is code for emergency treatment for old plutonium stores; the building of a new state of the art retreatment plant; and the construction of a giant new store to take all the plutonium. This it is hoped will be ready by 2027, with extensions to be added in 2033 and 2040.

Other documents, also seen by the Climate News Network, explain that one of the problems that Sellafield faces is that plutonium breaks down.

Completely unusable

Radioactive substances decay into what are called daughter products, also highly dangerous, that have different properties and in this case dilute the purity of the plutonium. This is why nuclear warheads constantly have to be remade with pure plutonium.

At Sellafield some of this refined plutonium has been left in store for so long that it is regarded as unusable in any form and will have to be disposed of. Other plutonium could be purified for use, if a use could be found.

The documents made clear that the plutonium in these old stores was too dangerous to leave until the new facilities could be built. The NDA’s 2020 annual report said: ”In the last 12 months Sellafield has started to recover some of the most degraded plutonium storage packages, therefore beginning to mitigate one of the more significant challenges associated with storing these materials.”

Sellafield has more than 1,000 empty buildings and nearly 10,000 employees looking after the nuclear waste created since the 1950s. – Climate News Network

The poor pay for the grim legacy of uranium mining

Uranium mining costs humans dearly. The nuclear industry prefers not to discuss the price paid by miners and their families.

LONDON, 31 July, 2020 – The scars left on barren landscapes by uranium mining are rendered more frightening in many countries – in the former Soviet bloc, for example – by the signs warning would-be visitors of their presence, decorated with little more than a skull-and-crossbones.

The signs use few words to explain that vast areas of land, containing small mountains of mine tailings, will be dangerous to intruders for billions of years, by which time the deadly alpha particles in the dust should have decayed.

But the terrible price paid by the poor miners and indigenous peoples who have had their lands torn apart to get at the uranium ore is now laid bare  in a new publication, The Uranium Atlas, Facts and Data about the Raw Material of the Nuclear Age. It is the work of a band of researchers from around the world, first published in German and now updated in English.

The central message of the Atlas is uncompromising: “The price for keeping the nuclear power stations in South Korea, China, Japan, Russia, the EU and USA online is paid by the people in the mining regions: their health and livelihoods are destroyed.”

The particles inhaled by uranium miners bring lung cancer, and the dust carried back to their homes endangers their families, even unborn children. Although uranium is everywhere, even in seawater, extracting it for use in nuclear power stations is a messy business.

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided”

The Atlas shows how extracting uranium from the ore is carried out in remote locations, often on the lands of indigenous peoples, for example in Canada, Australia and the US. More recently, though, two African states, Namibia and Niger, have joined the list of prime examples.

At the mines large quantities of rock have to be crushed and treated with chemicals to leach out the uranium. For a uranium content of 0.1%, 10,000 tonnes of ore must be mined to yield one tonne of uranium.

The ore is then ground down and the uranium chemically extracted, producing a form of powdered concentrate called yellowcake, totalling 7.11 kgs of usable material left over from the original 10,000 tonnes of ore.

The yellowcake then has to be transported long distances to the countries which use nuclear power so that they can extract the fissile material needed to fuel power stations and make nuclear weapons – uranium-235.

Little European mining

The point the “Atlas” is making is that supposedly civilised and crowded countries that rely on nuclear power to keep the lights on will not allow uranium mining at home because of the destruction it causes and the danger to the health of their citizens.

The authors write: ”At the start of 2020 there were still 124 nuclear power plants in operation in the EU, making it the world’s largest consumer of uranium. The nuclear fuel is imported from outside the EU and there is strong opposition to any new uranium mining in Europe.”

With maps and diagrams the Atlas traces the history and current operations of the uranium mining business, but comments: “The exact pathway of uranium is hard to follow: the mining companies do not disclose where they deliver the uranium and the power plant operators do not reveal where the uranium for their power plants comes from.”

Not surprisingly, the researchers conclude that nuclear power has no place in the modern world, and that renewable technologies are both cheaper and safer than power from uranium.

They say: “One kilogram of uranium-235 contains enough energy to generate 24 million kilowatt hours of heat; one kilogram of coal can generate only eight. As a result the nuclear industry has always promoted nuclear power as a better alternative to fossil fuels, and is now using the climate crisis to justify its continued – and expanded – use.

High subsidies

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided.

“For almost 70 years the nuclear industry has been highly subsidised and has never been able to stand on its own two feet economically.

“From cleaning up the damage caused by uranium mining, to routine operations, to decommissioning and final storage of nuclear waste, the industry has neither calculated the real costs of its activities nor has it adequately disclosed its financial conditions.

“Viewed as an essential component of the construction of nuclear weapons and the maintenance of nuclear submarine fleets, the nuclear power industry has always been a steady recipient of generous state subsidies.” – Climate News Network

Uranium mining costs humans dearly. The nuclear industry prefers not to discuss the price paid by miners and their families.

LONDON, 31 July, 2020 – The scars left on barren landscapes by uranium mining are rendered more frightening in many countries – in the former Soviet bloc, for example – by the signs warning would-be visitors of their presence, decorated with little more than a skull-and-crossbones.

The signs use few words to explain that vast areas of land, containing small mountains of mine tailings, will be dangerous to intruders for billions of years, by which time the deadly alpha particles in the dust should have decayed.

But the terrible price paid by the poor miners and indigenous peoples who have had their lands torn apart to get at the uranium ore is now laid bare  in a new publication, The Uranium Atlas, Facts and Data about the Raw Material of the Nuclear Age. It is the work of a band of researchers from around the world, first published in German and now updated in English.

The central message of the Atlas is uncompromising: “The price for keeping the nuclear power stations in South Korea, China, Japan, Russia, the EU and USA online is paid by the people in the mining regions: their health and livelihoods are destroyed.”

The particles inhaled by uranium miners bring lung cancer, and the dust carried back to their homes endangers their families, even unborn children. Although uranium is everywhere, even in seawater, extracting it for use in nuclear power stations is a messy business.

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided”

The Atlas shows how extracting uranium from the ore is carried out in remote locations, often on the lands of indigenous peoples, for example in Canada, Australia and the US. More recently, though, two African states, Namibia and Niger, have joined the list of prime examples.

At the mines large quantities of rock have to be crushed and treated with chemicals to leach out the uranium. For a uranium content of 0.1%, 10,000 tonnes of ore must be mined to yield one tonne of uranium.

The ore is then ground down and the uranium chemically extracted, producing a form of powdered concentrate called yellowcake, totalling 7.11 kgs of usable material left over from the original 10,000 tonnes of ore.

The yellowcake then has to be transported long distances to the countries which use nuclear power so that they can extract the fissile material needed to fuel power stations and make nuclear weapons – uranium-235.

Little European mining

The point the “Atlas” is making is that supposedly civilised and crowded countries that rely on nuclear power to keep the lights on will not allow uranium mining at home because of the destruction it causes and the danger to the health of their citizens.

The authors write: ”At the start of 2020 there were still 124 nuclear power plants in operation in the EU, making it the world’s largest consumer of uranium. The nuclear fuel is imported from outside the EU and there is strong opposition to any new uranium mining in Europe.”

With maps and diagrams the Atlas traces the history and current operations of the uranium mining business, but comments: “The exact pathway of uranium is hard to follow: the mining companies do not disclose where they deliver the uranium and the power plant operators do not reveal where the uranium for their power plants comes from.”

Not surprisingly, the researchers conclude that nuclear power has no place in the modern world, and that renewable technologies are both cheaper and safer than power from uranium.

They say: “One kilogram of uranium-235 contains enough energy to generate 24 million kilowatt hours of heat; one kilogram of coal can generate only eight. As a result the nuclear industry has always promoted nuclear power as a better alternative to fossil fuels, and is now using the climate crisis to justify its continued – and expanded – use.

High subsidies

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided.

“For almost 70 years the nuclear industry has been highly subsidised and has never been able to stand on its own two feet economically.

“From cleaning up the damage caused by uranium mining, to routine operations, to decommissioning and final storage of nuclear waste, the industry has neither calculated the real costs of its activities nor has it adequately disclosed its financial conditions.

“Viewed as an essential component of the construction of nuclear weapons and the maintenance of nuclear submarine fleets, the nuclear power industry has always been a steady recipient of generous state subsidies.” – Climate News Network

Nuclear tests affected the weather 60 years ago

Cold War nuclear tests did change the weather in the 1960s. The Earth did not catch fire, but a hard rain did begin to fall.

LONDON, 19 May, 2020 – Sixty years on, British scientists have confirmed a once-popular belief: that atmospheric nuclear tests of early weapons under development affected the daily weather. A new study of  weather records from 1962 to 1964 reveals the signature of experimental atomic and thermonuclear explosions during the early days of the Cold War.

The scientists measured atmospheric electric charge and cloud data to find that on those days when radioactively-generated electric charge was higher, clouds were thicker and there was up to a quarter more rain than on those days when charge was low.

The climate impact of nuclear detonations may not have been as devastating as many older lay people appeared to think at the time, and some good came of the tests: researchers who studied radiation distribution as it spread around the planet from weapons test sites built up a body of data that delivered a new way to follow atmospheric circulation patterns.

“We have now re-used this data to examine the effect on rainfall,” said Giles Harrison of the University of Reading in the UK. “The politically charged atmosphere of the Cold War led to a nuclear arms race and worldwide anxiety. Decades later, that global cloud has yielded a silver lining, in giving us a unique way to study how electric charge affects rain.”

Between 1945 and 1980 US, Soviet, British and French governments exploded 510 megatons of nuclear weaponry underground, under water and in the lower and upper atmosphere. Of this, 428 megatons – the equivalent of 29,000 bombs of the size dropped onto Hiroshima in Japan at the end of the Second World War – was in the open air, and the greatest concentration of tests was in the late 1950s and early 1960s.

Weather grumbles

Scientists began to collect strontium-90 isotopes and other radioactive fission products in the rain that fell after such tests. By 1960, people in Europe and the US could be heard grumbling about the supposed impact on the weather of tests carried out 10,000 kilometres away.

British cinemagoers were treated to an improbable vision of climate catastrophe triggered by nuclear tests in the 1961 film The Day the Earth Caught Fire. The US government commissioned the Rand Corporation to deliver an inconclusive report in 1966 on the effect upon weather, but by then an international treaty had banned tests in the atmosphere, in the water and in space.

Very slowly, public concern about radioactive fallout and its consequences for the weather began to fade.

Scientists continued to contemplate the climate effects of nuclear confrontation in other ways: in 1983 US researchers proposed a possible nuclear winter, triggered by radioactive mushroom clouds from burning cities that would reach the stratosphere and dim the sun’s light for a decade.

But long before then, peace and prosperity had created another climatic danger: the accelerating combustion of fossil fuels had begun to raise atmospheric greenhouse gas levels to trigger global warming, and climate scientists began to adopt nuclear yardsticks to measure the effect.

“The atmospheric conditions of 1962-64 were exceptional and it is unlikely they will be repeated, for many reasons”

One calculation is that by flying in jet planes or driving cars or generating electric power, humankind is now adding the equivalent in heat energy of five Hiroshima explosions every second to the world’s atmosphere, thus inexorably altering the global climate.

That has not stopped other scientists from worrying about the chilling effects upon climate and human civilisation of even a limited nuclear  exchange. But the supposed impact of bursts of nuclear radiation upon the weather has been more or less forgotten.

Now Professor Harrison and colleagues have returned to the puzzle in the journal Physical Review Letters, to find that the answer could be disentangled from weather records collected in Kew, near London, and 1000 kms away in Lerwick in the Shetland Islands north-east of Scotland, a site selected because it would be least affected by soot, sulphur particles and other kinds of industrial pollution.

Nuclear radiation ionises the matter in its path to create electrically-charged atoms and molecules. Electric charge changes the way water droplets in clouds collide and combine – think of dramatic thunderstorms, lightning and torrential rain – and this affects the size of the droplets and the volume of rain: that is, the rain doesn’t fall at all until the droplets get big enough.

Usually, the sun does most of the work, but in comparing the weather records from two stations, the researchers were for the first time able to factor in the contribution from Cold War test explosions in the Nevada desert, or the Siberian Arctic, or the faraway south Pacific, on Scottish rainfall between 1962 and 1964.

Difference disappeared

They found 150 days in which atmospheric electricity was high or low, while cloudy in Lerwick: they also found a difference in precipitation which, they say, disappeared once the build-up of nuclear radioactive fallout had vanished.

Their statistical analyses suggest no serious or lasting change, but the connection was there: where radioactivity was high, rainfall increased from 2.1mm per day to 2.6mm – a 24% increase in daily rain. Clouds, too, were thicker.

The study remains as one more piece of the climate jigsaw, as a test of measuring technique, and one more reminder of the lessons still to be learned from the Cold War.

It confirms a deepening understanding of the intricate machinery that delivers the first drops of rain, and ideally scientists won’t get many chances to test their understanding in the same way again.

The authors conclude, in the clipped tones favoured by research publications: “The atmospheric conditions of 1962-64 were exceptional and it is unlikely they will be repeated, for many reasons.” – Climate News Network

Cold War nuclear tests did change the weather in the 1960s. The Earth did not catch fire, but a hard rain did begin to fall.

LONDON, 19 May, 2020 – Sixty years on, British scientists have confirmed a once-popular belief: that atmospheric nuclear tests of early weapons under development affected the daily weather. A new study of  weather records from 1962 to 1964 reveals the signature of experimental atomic and thermonuclear explosions during the early days of the Cold War.

The scientists measured atmospheric electric charge and cloud data to find that on those days when radioactively-generated electric charge was higher, clouds were thicker and there was up to a quarter more rain than on those days when charge was low.

The climate impact of nuclear detonations may not have been as devastating as many older lay people appeared to think at the time, and some good came of the tests: researchers who studied radiation distribution as it spread around the planet from weapons test sites built up a body of data that delivered a new way to follow atmospheric circulation patterns.

“We have now re-used this data to examine the effect on rainfall,” said Giles Harrison of the University of Reading in the UK. “The politically charged atmosphere of the Cold War led to a nuclear arms race and worldwide anxiety. Decades later, that global cloud has yielded a silver lining, in giving us a unique way to study how electric charge affects rain.”

Between 1945 and 1980 US, Soviet, British and French governments exploded 510 megatons of nuclear weaponry underground, under water and in the lower and upper atmosphere. Of this, 428 megatons – the equivalent of 29,000 bombs of the size dropped onto Hiroshima in Japan at the end of the Second World War – was in the open air, and the greatest concentration of tests was in the late 1950s and early 1960s.

Weather grumbles

Scientists began to collect strontium-90 isotopes and other radioactive fission products in the rain that fell after such tests. By 1960, people in Europe and the US could be heard grumbling about the supposed impact on the weather of tests carried out 10,000 kilometres away.

British cinemagoers were treated to an improbable vision of climate catastrophe triggered by nuclear tests in the 1961 film The Day the Earth Caught Fire. The US government commissioned the Rand Corporation to deliver an inconclusive report in 1966 on the effect upon weather, but by then an international treaty had banned tests in the atmosphere, in the water and in space.

Very slowly, public concern about radioactive fallout and its consequences for the weather began to fade.

Scientists continued to contemplate the climate effects of nuclear confrontation in other ways: in 1983 US researchers proposed a possible nuclear winter, triggered by radioactive mushroom clouds from burning cities that would reach the stratosphere and dim the sun’s light for a decade.

But long before then, peace and prosperity had created another climatic danger: the accelerating combustion of fossil fuels had begun to raise atmospheric greenhouse gas levels to trigger global warming, and climate scientists began to adopt nuclear yardsticks to measure the effect.

“The atmospheric conditions of 1962-64 were exceptional and it is unlikely they will be repeated, for many reasons”

One calculation is that by flying in jet planes or driving cars or generating electric power, humankind is now adding the equivalent in heat energy of five Hiroshima explosions every second to the world’s atmosphere, thus inexorably altering the global climate.

That has not stopped other scientists from worrying about the chilling effects upon climate and human civilisation of even a limited nuclear  exchange. But the supposed impact of bursts of nuclear radiation upon the weather has been more or less forgotten.

Now Professor Harrison and colleagues have returned to the puzzle in the journal Physical Review Letters, to find that the answer could be disentangled from weather records collected in Kew, near London, and 1000 kms away in Lerwick in the Shetland Islands north-east of Scotland, a site selected because it would be least affected by soot, sulphur particles and other kinds of industrial pollution.

Nuclear radiation ionises the matter in its path to create electrically-charged atoms and molecules. Electric charge changes the way water droplets in clouds collide and combine – think of dramatic thunderstorms, lightning and torrential rain – and this affects the size of the droplets and the volume of rain: that is, the rain doesn’t fall at all until the droplets get big enough.

Usually, the sun does most of the work, but in comparing the weather records from two stations, the researchers were for the first time able to factor in the contribution from Cold War test explosions in the Nevada desert, or the Siberian Arctic, or the faraway south Pacific, on Scottish rainfall between 1962 and 1964.

Difference disappeared

They found 150 days in which atmospheric electricity was high or low, while cloudy in Lerwick: they also found a difference in precipitation which, they say, disappeared once the build-up of nuclear radioactive fallout had vanished.

Their statistical analyses suggest no serious or lasting change, but the connection was there: where radioactivity was high, rainfall increased from 2.1mm per day to 2.6mm – a 24% increase in daily rain. Clouds, too, were thicker.

The study remains as one more piece of the climate jigsaw, as a test of measuring technique, and one more reminder of the lessons still to be learned from the Cold War.

It confirms a deepening understanding of the intricate machinery that delivers the first drops of rain, and ideally scientists won’t get many chances to test their understanding in the same way again.

The authors conclude, in the clipped tones favoured by research publications: “The atmospheric conditions of 1962-64 were exceptional and it is unlikely they will be repeated, for many reasons.” – Climate News Network

At last: a fair deal for our atomic love affair

However you view the argument, nuclear passions run strong. This film gives you a breathless ride through our atomic love affair.

LONDON, 15 May, 2020 – It’s probably hard to imagine a dispassionate account of the West’s atomic love affair, the way so many of us have been beguiled by the notion of both civil and military nuclear power.

And, although it’s taken more than a decade to come to the big screen, the wait has been worthwhile. Anyone interested in nuclear power, politics, or simply how to make a documentary, should watch The Atom: A Love Affair.

It’s hard to beat the New Scientist’s summary of the film (6 November, 2019): “It takes no sides and pulls no punches in its witty and admirably objective archival account of the West’s relationship with nuclear power.”

Vicki Lesley, of Tenner Films, UK, who directed the film, has amassed a remarkable library of clips of scientists, politicians, campaigners, old newsreels and up-to-date interviews, to chart the evolution of nuclear power from the first atom bombs to the present, the start of the so-called nuclear renaissance.

To someone who has used for teaching purposes other excellent but much shorter films directed and produced by Lesley, it seemed likely that this feature-length documentary, running for 90 minutes, might be anti-nuclear. But it is much cleverer than that.

Open approach

In the best traditions of journalism and documentary-making, she has allowed the facts and the people to speak for themselves, with a clever commentary delivered by Lily Cole knitting it all together.

There are people in the film who clearly do not like nuclear power, but equally there are enthusiasts, among them scientists and politicians who saw, and still see, the technology as the answer to humankind’s insatiable energy needs.

Few subjects arouse such strong feelings as nuclear power, and the film’s publicity is right to describe it as a sweeping story of technological obsession, political imperatives and powerful conflicting passions.

For those, like me, who have written extensively about the technology and have come to believe that nuclear power is far too expensive, too slow and too much a waste of resources to help in tackling climate change, it reinforced my views. But whatever your opinion of nuclear power, The Atom is worth watching, both as a history lesson and to test your own beliefs.

The movie, and the need for nuclear reactors, all began with the atom bomb, and the perceived need for Western powers to make nuclear weapons. The documentary recalls how the first nuclear power stations in Britain were designed to manufacture fissile material, particularly  plutonium.

‘Ludicrous’ pretence

The public, however, could not be told this, so the stations were launched as civil nuclear power plants, producing energy “too cheap to meter”.

This ludicrous claim was based on the fact that the UK’s Ministry of Defence footed the entire bill for the project, because the government wanted the plutonium for nuclear weapons. It could therefore be said that the electricity produced as a by-product of the process and fed into the grid was cost-free. The reality was, however, and still is, that nuclear power is very expensive.

These deceptions, which in the view of some were necessary during the Cold War, ingrained a habit of secrecy into the industry that continued for decades. Many would argue it still persists.

But the movie makes no such judgements. What it does do is remind all those with an interest in the industry of the important milestones in its relatively short life: the many dreams of new types of reactors like fast breeders, which worked but could not be scaled up to work commercially, for instance, and the terrible accidents like Three Mile Island and Chernobyl.

But it is not all doomy. There are plenty of jokes, clever interchanges of archive footage to put both sides of the argument, but equally no dishonesty or tricks. There is none of the poor judgement of some TV documentaries when clips are cut to make the participants appear to have made statements that they later qualified.

“The Atom is worth watching, both as a history lesson and to test your own beliefs”

This film captures the mood of the moments in history it is reporting, and sometimes makes you laugh at the naivety of those involved.

It has taken more than a decade to complete the film, mainly because Lesley struggled to finance the production while being a mother and earning a living as a documentary maker for TV companies.

Finally she won the backing of Dartmouth Films, which has organised public viewings. While there have been some private showings already, achieving wider distribution of documentaries, even one as excellent as this, is hard.

However, the film is being shown on Curzon Home Cinema on 15 May, with a Q&A session afterwards with Lesley and Cole.

At a time when millions of people are still locked down by the coronavirus pandemic, it is a perfect moment to launch such an entertaining and educational film. – Climate News Network

However you view the argument, nuclear passions run strong. This film gives you a breathless ride through our atomic love affair.

LONDON, 15 May, 2020 – It’s probably hard to imagine a dispassionate account of the West’s atomic love affair, the way so many of us have been beguiled by the notion of both civil and military nuclear power.

And, although it’s taken more than a decade to come to the big screen, the wait has been worthwhile. Anyone interested in nuclear power, politics, or simply how to make a documentary, should watch The Atom: A Love Affair.

It’s hard to beat the New Scientist’s summary of the film (6 November, 2019): “It takes no sides and pulls no punches in its witty and admirably objective archival account of the West’s relationship with nuclear power.”

Vicki Lesley, of Tenner Films, UK, who directed the film, has amassed a remarkable library of clips of scientists, politicians, campaigners, old newsreels and up-to-date interviews, to chart the evolution of nuclear power from the first atom bombs to the present, the start of the so-called nuclear renaissance.

To someone who has used for teaching purposes other excellent but much shorter films directed and produced by Lesley, it seemed likely that this feature-length documentary, running for 90 minutes, might be anti-nuclear. But it is much cleverer than that.

Open approach

In the best traditions of journalism and documentary-making, she has allowed the facts and the people to speak for themselves, with a clever commentary delivered by Lily Cole knitting it all together.

There are people in the film who clearly do not like nuclear power, but equally there are enthusiasts, among them scientists and politicians who saw, and still see, the technology as the answer to humankind’s insatiable energy needs.

Few subjects arouse such strong feelings as nuclear power, and the film’s publicity is right to describe it as a sweeping story of technological obsession, political imperatives and powerful conflicting passions.

For those, like me, who have written extensively about the technology and have come to believe that nuclear power is far too expensive, too slow and too much a waste of resources to help in tackling climate change, it reinforced my views. But whatever your opinion of nuclear power, The Atom is worth watching, both as a history lesson and to test your own beliefs.

The movie, and the need for nuclear reactors, all began with the atom bomb, and the perceived need for Western powers to make nuclear weapons. The documentary recalls how the first nuclear power stations in Britain were designed to manufacture fissile material, particularly  plutonium.

‘Ludicrous’ pretence

The public, however, could not be told this, so the stations were launched as civil nuclear power plants, producing energy “too cheap to meter”.

This ludicrous claim was based on the fact that the UK’s Ministry of Defence footed the entire bill for the project, because the government wanted the plutonium for nuclear weapons. It could therefore be said that the electricity produced as a by-product of the process and fed into the grid was cost-free. The reality was, however, and still is, that nuclear power is very expensive.

These deceptions, which in the view of some were necessary during the Cold War, ingrained a habit of secrecy into the industry that continued for decades. Many would argue it still persists.

But the movie makes no such judgements. What it does do is remind all those with an interest in the industry of the important milestones in its relatively short life: the many dreams of new types of reactors like fast breeders, which worked but could not be scaled up to work commercially, for instance, and the terrible accidents like Three Mile Island and Chernobyl.

But it is not all doomy. There are plenty of jokes, clever interchanges of archive footage to put both sides of the argument, but equally no dishonesty or tricks. There is none of the poor judgement of some TV documentaries when clips are cut to make the participants appear to have made statements that they later qualified.

“The Atom is worth watching, both as a history lesson and to test your own beliefs”

This film captures the mood of the moments in history it is reporting, and sometimes makes you laugh at the naivety of those involved.

It has taken more than a decade to complete the film, mainly because Lesley struggled to finance the production while being a mother and earning a living as a documentary maker for TV companies.

Finally she won the backing of Dartmouth Films, which has organised public viewings. While there have been some private showings already, achieving wider distribution of documentaries, even one as excellent as this, is hard.

However, the film is being shown on Curzon Home Cinema on 15 May, with a Q&A session afterwards with Lesley and Cole.

At a time when millions of people are still locked down by the coronavirus pandemic, it is a perfect moment to launch such an entertaining and educational film. – Climate News Network

UK plutonium stockpile is a costly headache

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The end of reprocessing spent nuclear fuel has left an expensive UK plutonium stockpile with no peaceful use.

LONDON, 23 April, 2020 − For 70 years Britain has been dissolving spent nuclear fuel in acid, separating the plutonium and uranium it contains and stockpiling the plutonium in the hope of finding some peaceful use for it, to no avail: all it has to show today is a UK plutonium stockpile.

To comply with its international obligations not to discharge any more liquid radioactive waste into the Irish Sea, the United Kingdom government agreed more than 20 years ago under the Ospar Convention on the protection of the north-east Atlantic to shut its nuclear fuel reprocessing works at Sellafield in northwestern England at the end of this year.

As well as 139 tonnes of plutonium, which has to be both carefully stored to prevent a nuclear chain reaction and protected by armed guards as well, to avoid terrorist attack, there are thousands of tonnes of depleted uranium at Sellafield.

The reprocessing plant shut down prematurely as a result of a Covid-19 outbreak among its employees, and most of the 11,500 workers there have been sent home, leaving a skeleton staff to keep the site safe. Whether the plant will be restarted after the epidemic is unknown.

Fewer than half Sellafield’s workers are involved in reprocessing. Most are engaged in cleaning up after decades of nuclear energy generation and related experiments. There are 200 buildings at the massive site, many of them disused. It costs British taxpayers around £2.3 billion (US$2.8bn) a year to run Sellafield and keep it safe.

Solution needed soon

While the British government has been reluctant to make any decision on what to do about its stockpiled plutonium and uranium, the Bulletin of the Atomic Scientists has expressed alarm about the danger it poses.

“The United Kingdom has to find a solution for its plutonium stockpile, and quickly,” its report says.

The scientists point out that there is enough plutonium to make hundreds of thousands of nuclear weapons, and that it is a permanent proliferation risk. The annual cost of £73m to keep the plutonium safe is dwarfed by the much larger cost of trying to make safe the whole site with its thousands of tonnes of nuclear waste.

The Bulletin reports that the original reason for the reprocessing works was to produce plutonium for nuclear weapons. The UK supplied the US at times, as well as producing its own weapons. A 2014 agreement between the British and US governments gives an outline of the nuclear links which then existed between them.

“The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource”

For decades there were also plans to use plutonium in fast breeder reactors and to blend it with uranium to make Mixed Oxide Fuel (MOX) .

This was a time when governments believed that the world’s supply of uranium would run out and that re-using it with plutonium would be a way of generating large amounts of electricity, as a way to avoid burning fossil fuels and as part of the solution to climate change.

MOX was one possible fuel. Using recycled plutonium in fast breeder reactors was another possibility. And a third option was new-style reactors that burned plutonium, theoretically possible but never built.

But uranium did not run out, and MOX did not prove economic. It and the new reactors proved so technically difficult they were abandoned.

Despite these setbacks, successive British governments have continued reprocessing, always refusing to class plutonium as a waste, while still exploring ways of using it in some kind of new reactor. This is likely to remain the official position even after reprocessing ends in December.

The UK’s Nuclear Decommissioning Authority, the agency that runs Sellafield, faced by this indecision, continues to store the plutonium behind three barbed-wire barricades, guarded by the only armed civilian police force in the country.

Here to stay?

One of the tricky political problems is that 23 tonnes of the plutonium is owned by Japan, which sent its spent fuel to be reprocessed at Sellafield but is unable to use the recycled material, which cannot be returned to Japan in its current state because of nuclear proliferation concerns.

The Bulletin of the Atomic Scientists has examined all the potential options suggested to put the 139 tonnes of plutonium to some useful peaceful purpose (in other words, to create energy), but concludes that none of them is viable.

It says: “The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource, and authority should again take a closer look at immobilisation options.”

Among the solutions that have been suggested is to mix the plutonium with ceramics to immobilise and stabilise it, so that it can be safely stored or disposed of, not used for weapons. The government has so far rejected that option. − Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The end of reprocessing spent nuclear fuel has left an expensive UK plutonium stockpile with no peaceful use.

LONDON, 23 April, 2020 − For 70 years Britain has been dissolving spent nuclear fuel in acid, separating the plutonium and uranium it contains and stockpiling the plutonium in the hope of finding some peaceful use for it, to no avail: all it has to show today is a UK plutonium stockpile.

To comply with its international obligations not to discharge any more liquid radioactive waste into the Irish Sea, the United Kingdom government agreed more than 20 years ago under the Ospar Convention on the protection of the north-east Atlantic to shut its nuclear fuel reprocessing works at Sellafield in northwestern England at the end of this year.

As well as 139 tonnes of plutonium, which has to be both carefully stored to prevent a nuclear chain reaction and protected by armed guards as well, to avoid terrorist attack, there are thousands of tonnes of depleted uranium at Sellafield.

The reprocessing plant shut down prematurely as a result of a Covid-19 outbreak among its employees, and most of the 11,500 workers there have been sent home, leaving a skeleton staff to keep the site safe. Whether the plant will be restarted after the epidemic is unknown.

Fewer than half Sellafield’s workers are involved in reprocessing. Most are engaged in cleaning up after decades of nuclear energy generation and related experiments. There are 200 buildings at the massive site, many of them disused. It costs British taxpayers around £2.3 billion (US$2.8bn) a year to run Sellafield and keep it safe.

Solution needed soon

While the British government has been reluctant to make any decision on what to do about its stockpiled plutonium and uranium, the Bulletin of the Atomic Scientists has expressed alarm about the danger it poses.

“The United Kingdom has to find a solution for its plutonium stockpile, and quickly,” its report says.

The scientists point out that there is enough plutonium to make hundreds of thousands of nuclear weapons, and that it is a permanent proliferation risk. The annual cost of £73m to keep the plutonium safe is dwarfed by the much larger cost of trying to make safe the whole site with its thousands of tonnes of nuclear waste.

The Bulletin reports that the original reason for the reprocessing works was to produce plutonium for nuclear weapons. The UK supplied the US at times, as well as producing its own weapons. A 2014 agreement between the British and US governments gives an outline of the nuclear links which then existed between them.

“The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource”

For decades there were also plans to use plutonium in fast breeder reactors and to blend it with uranium to make Mixed Oxide Fuel (MOX) .

This was a time when governments believed that the world’s supply of uranium would run out and that re-using it with plutonium would be a way of generating large amounts of electricity, as a way to avoid burning fossil fuels and as part of the solution to climate change.

MOX was one possible fuel. Using recycled plutonium in fast breeder reactors was another possibility. And a third option was new-style reactors that burned plutonium, theoretically possible but never built.

But uranium did not run out, and MOX did not prove economic. It and the new reactors proved so technically difficult they were abandoned.

Despite these setbacks, successive British governments have continued reprocessing, always refusing to class plutonium as a waste, while still exploring ways of using it in some kind of new reactor. This is likely to remain the official position even after reprocessing ends in December.

The UK’s Nuclear Decommissioning Authority, the agency that runs Sellafield, faced by this indecision, continues to store the plutonium behind three barbed-wire barricades, guarded by the only armed civilian police force in the country.

Here to stay?

One of the tricky political problems is that 23 tonnes of the plutonium is owned by Japan, which sent its spent fuel to be reprocessed at Sellafield but is unable to use the recycled material, which cannot be returned to Japan in its current state because of nuclear proliferation concerns.

The Bulletin of the Atomic Scientists has examined all the potential options suggested to put the 139 tonnes of plutonium to some useful peaceful purpose (in other words, to create energy), but concludes that none of them is viable.

It says: “The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource, and authority should again take a closer look at immobilisation options.”

Among the solutions that have been suggested is to mix the plutonium with ceramics to immobilise and stabilise it, so that it can be safely stored or disposed of, not used for weapons. The government has so far rejected that option. − Climate News Network

Regional nuclear war could bring global hunger

Limited nuclear war could certainly slow planetary heating. But it could also cast a lethal wider chill, unleashing global hunger.

LONDON, 25 March, 2020 – If a limited nuclear war is not already a contradiction in terms, it could still prove far wider in scope, inflicting global hunger without limit.

US and European scientists have worked out how to dramatically lower planetary temperatures and reduce rainfall. They do not recommend their latest study of explosive geo-engineering as a way of addressing the climate crisis, warning instead that even a very limited nuclear war between two nations could devastate global harvests.

Just possibly, they say, it could claim more lives in the non-combatant nations than in the incinerated cities of the warring states.

“Our results add to the reasons that nuclear weapons must be eliminated because, if they exist, they can be used with tragic consequences for the world,” said Alan Robock of Rutgers University in the US.

“As horrible as the direct effects of nuclear weapons would be, more people could die outside the target areas due to famine.”

Hypothetical studies like this can help illustrate the vulnerability of world food stocks to climate change, the scale on which climate change can and may yet happen, and the difficulties inherent in any attempts at global technofix.

No winners

They also demonstrate that – for everybody on the planet – nuclear war of any kind could be a confrontation with no winners.

It is a given among climate scientists that violent volcanic eruptions which hurl sulphate aerosols and soot particles into the stratosphere can suppress global average temperatures over a period of years.

That is why, as greenhouse gas emissions from fossil fuel use build up in the atmosphere, and annual average global temperatures continue to climb, researchers repeatedly revisit the argument for deliberately and systematically darkening the skies to blot out some of the incoming sunlight and reduce global heating.

But again and again, scientists have used their war game models of potential nuclear battle to highlight the hazards of darkening the skies precipitately in a nuclear exchange.

The latest is published in the Proceedings of the National Academy of Sciences and calculates that any encounter that uses less than even 1% of the world’s nuclear arsenal could trigger the worst global food losses in modern history, and disrupt harvests and food trade worldwide for about a decade.

“Major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global”

The impact of this would turn out to be even worse than the impact of human-made climate change by the end of the century.

“We now know that nuclear conflict would not be just a terrible tragedy in the region where it happens – it is also an underestimated risk for food security,” said Jonas Jägermeyr of Germany’s Potsdam Institute for Climate Impact Research.

“We find severe losses in agricultural production, but more importantly we evaluate trade repercussions affecting local food availability. It turns out that major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global, because we all depend on the same climate system.”

The regional crisis, in this case, would be a nuclear exchange involving perhaps 100 Hiroshima-scale warheads over the most densely populated cities of India and Pakistan, neighbouring states with both nuclear weapons and a history of hostility.

The exchange could put five million tonnes of smoke and soot into the upper atmosphere, where the jet stream winds would start to sweep it around the hemisphere. Global average temperatures would drop by 1.8°C, and rainfall would be reduced by 8% for at least five years.

Fossil fuel combustion over the last two centuries has already warmed the planet by around 1°C, to threaten world harvests. But until now, nobody has calculated the cost of a sudden plunge in temperatures.

Four years to zero

The researchers did not factor in the losses in the combatant countries, nor the worldwide damage from radioactive fallout. They just considered the impact on all the other nations that stayed neutral.

In the first year, stocks of maize, wheat, rice and soy in the world’s granaries would buffer the immediate losses. But within four years, global grain stocks would be at almost zero and international trade systems would come to a stop.

Maize and wheat supplies would shrink by at least 20% in more than 70 countries, with about 1.3bn people. By the fourth year, 132 out of 153 countries, home to 5bn people, would experience shortages higher than 10%. Corn production in the US and Canada – source of 40% of all maize – would drop by 17.5% by the fifth year of darkened skies.

The scientists based their calculations on only 5 million tonnes of soot and ash in the stratosphere. In fact, a war between the two nations could yield 16 million tonnes of soot, and be three times as devastating.

And anyone who thinks that at least global warming would have been brought to a halt can think again. After about a decade, the researchers say, global temperatures would again start to surge. – Climate News Network

Limited nuclear war could certainly slow planetary heating. But it could also cast a lethal wider chill, unleashing global hunger.

LONDON, 25 March, 2020 – If a limited nuclear war is not already a contradiction in terms, it could still prove far wider in scope, inflicting global hunger without limit.

US and European scientists have worked out how to dramatically lower planetary temperatures and reduce rainfall. They do not recommend their latest study of explosive geo-engineering as a way of addressing the climate crisis, warning instead that even a very limited nuclear war between two nations could devastate global harvests.

Just possibly, they say, it could claim more lives in the non-combatant nations than in the incinerated cities of the warring states.

“Our results add to the reasons that nuclear weapons must be eliminated because, if they exist, they can be used with tragic consequences for the world,” said Alan Robock of Rutgers University in the US.

“As horrible as the direct effects of nuclear weapons would be, more people could die outside the target areas due to famine.”

Hypothetical studies like this can help illustrate the vulnerability of world food stocks to climate change, the scale on which climate change can and may yet happen, and the difficulties inherent in any attempts at global technofix.

No winners

They also demonstrate that – for everybody on the planet – nuclear war of any kind could be a confrontation with no winners.

It is a given among climate scientists that violent volcanic eruptions which hurl sulphate aerosols and soot particles into the stratosphere can suppress global average temperatures over a period of years.

That is why, as greenhouse gas emissions from fossil fuel use build up in the atmosphere, and annual average global temperatures continue to climb, researchers repeatedly revisit the argument for deliberately and systematically darkening the skies to blot out some of the incoming sunlight and reduce global heating.

But again and again, scientists have used their war game models of potential nuclear battle to highlight the hazards of darkening the skies precipitately in a nuclear exchange.

The latest is published in the Proceedings of the National Academy of Sciences and calculates that any encounter that uses less than even 1% of the world’s nuclear arsenal could trigger the worst global food losses in modern history, and disrupt harvests and food trade worldwide for about a decade.

“Major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global”

The impact of this would turn out to be even worse than the impact of human-made climate change by the end of the century.

“We now know that nuclear conflict would not be just a terrible tragedy in the region where it happens – it is also an underestimated risk for food security,” said Jonas Jägermeyr of Germany’s Potsdam Institute for Climate Impact Research.

“We find severe losses in agricultural production, but more importantly we evaluate trade repercussions affecting local food availability. It turns out that major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global, because we all depend on the same climate system.”

The regional crisis, in this case, would be a nuclear exchange involving perhaps 100 Hiroshima-scale warheads over the most densely populated cities of India and Pakistan, neighbouring states with both nuclear weapons and a history of hostility.

The exchange could put five million tonnes of smoke and soot into the upper atmosphere, where the jet stream winds would start to sweep it around the hemisphere. Global average temperatures would drop by 1.8°C, and rainfall would be reduced by 8% for at least five years.

Fossil fuel combustion over the last two centuries has already warmed the planet by around 1°C, to threaten world harvests. But until now, nobody has calculated the cost of a sudden plunge in temperatures.

Four years to zero

The researchers did not factor in the losses in the combatant countries, nor the worldwide damage from radioactive fallout. They just considered the impact on all the other nations that stayed neutral.

In the first year, stocks of maize, wheat, rice and soy in the world’s granaries would buffer the immediate losses. But within four years, global grain stocks would be at almost zero and international trade systems would come to a stop.

Maize and wheat supplies would shrink by at least 20% in more than 70 countries, with about 1.3bn people. By the fourth year, 132 out of 153 countries, home to 5bn people, would experience shortages higher than 10%. Corn production in the US and Canada – source of 40% of all maize – would drop by 17.5% by the fifth year of darkened skies.

The scientists based their calculations on only 5 million tonnes of soot and ash in the stratosphere. In fact, a war between the two nations could yield 16 million tonnes of soot, and be three times as devastating.

And anyone who thinks that at least global warming would have been brought to a halt can think again. After about a decade, the researchers say, global temperatures would again start to surge. – Climate News Network

2020 starts with the plain prospect of rising heat

Emissions will climb further. Each decade is warmer than the last. The oceans are feeling the rising heat. The economy is threatened. And that’s just January.

LONDON, 24 January, 2020 – The year is less than four weeks old, but scientists already know that carbon dioxide emissions will continue to head upwards – as they have every year since measurements began leading to a continuation of the Earth’s rising heat.

And they warn that the rise will be steeper than usual, partly because of the devastating bush fires in Australia.

The warning is a reminder that global heating and climate change create their own positive feedbacks: more numerous and calamitous forest fires surrender more carbon dioxide to the atmosphere, which helps raise temperatures, accentuate droughts and heat extremes, and create conditions for even more catastrophic forest fires.

The news is that the proportion of the greenhouse gas in the atmosphere will peak at 417 parts per million (ppm) in the next 11 months, but settle to an average of just over 414 ppm. This represents a predicted 10% increase on the previous year’s rise, and a fifth of that can be pinned on blazing eucalypts in New South Wales.

Atmospheric scientists began keeping meticulous records of CO2 levels in the atmosphere in 1958. The average for most of human history – until the Industrial Revolution and the mass exploitation of coal, oil and gas – was no higher than 285 ppm.

The warning, from the British Met Office, comes hard on the heels of an address by America’s President Trump – who has previously claimed that climate change is a hoax – at Davos in Switzerland. He told the World Economic Forum (WEF) to disregard those he dismissed as “prophets of doom”.

“The amount of heat we have put into the world’s oceans in the last 25 years equals to 3.6 billion Hiroshima atomic bomb explosions”

In fact he was addressing an organisation that had only recently issued its own warning that “severe threats to our climate” accounted for all the identified top long-term risks that face the modern world.

The WEF Global Risks Report warned of extreme weather events with major damage to property, infrastructure and loss of human life. It also pointed to other hazards: among them the failure of attempts to mitigate or adapt to climate change by governments and industry; human-induced environmental damage; and to biodiversity loss and ecosystem collapse, all of which are inseparable from the climate crisis.

Even the fifth set of global risks was environmental: these included earthquakes, tsunamis, volcanic eruptions and geomagnetic storms.

And, the WEF said, time to address these threats was running out. “The political landscape is polarised, sea levels are rising and climate fires are burning. This is the year when world leaders must work with all sectors of society to repair and invigorate our systems of co-operation, not just for short-term benefit, but for tackling our deep-rooted risks,” said Borge Brende, president of the WEF.

And as the WEF issued its own doom-laden warnings, scientists at two great US research agencies confirmed those fears. The space agency NASA and the US National Oceanic and Atmospheric Administration examined their separate datasets to pronounce 2019 the second warmest year since global records began, and to confirm that the decade just ended was also the warmest since records began.

Relentless increase

“Every decade since the 1960s has been warmer than the one before,” said Gavin Schmidt of the Goddard Institute for Space Studies.

The British Met Office – working from yet another set of data – agreed that 2019 had been 1.05°C above the average for most of human history, and that the last five years were the warmest since records began in 1850.

And only days beforehand, Chinese scientists had taken the temperature of the world’s oceans to find them warmer than at any time in recorded history. The past 10 years had been the warmest decade for ocean temperatures worldwide.

In 2019, they write in the journal Advances in Atmospheric Sciences, a partnership of 14 researchers from 11 institutes around the world had measured from the surface to a depth of 2000 metres to find that the global ocean – and 70% of the planet is covered in blue water – is now 0.075°C warmer on average than it was between 1981 and 2010.

Measured in the basic units of heat-energy, this means that the seas have soaked up 228,000,000,000,000,000,000,000 joules of heat.

100 seconds to midnight

“That’s a lot of zeros indeed. To make it easier to understand, I did a calculation,” said Lijing Cheng, of the Chinese Academy of Sciences, who led the study.

“The amount of heat we have put into the world’s oceans in the last 25 years equals to 3.6 billion Hiroshima atomic bomb explosions. This measured ocean warming is irrefutable and is further proof of global warming. There are no reasonable alternatives aside from the human emissions of heat-trapping gases to explain this heating.”

On 23 January the Bulletin of the Atomic Scientists announced that it had moved the hands of its symbolic Doomsday Clock to 100 seconds from midnight the closest they have ever been to the time chosen to represent apocalypse.

The reason? “Humanity continues to face two simultaneous existential dangers nuclear war and climate change that are compounded by a threat multiplier, cyber-enabled information warfare, that undercuts society’s ability to respond”, say the scientists.

“World leaders have allowed the international political infrastructure for managing them to erode.” – Climate News Network

Emissions will climb further. Each decade is warmer than the last. The oceans are feeling the rising heat. The economy is threatened. And that’s just January.

LONDON, 24 January, 2020 – The year is less than four weeks old, but scientists already know that carbon dioxide emissions will continue to head upwards – as they have every year since measurements began leading to a continuation of the Earth’s rising heat.

And they warn that the rise will be steeper than usual, partly because of the devastating bush fires in Australia.

The warning is a reminder that global heating and climate change create their own positive feedbacks: more numerous and calamitous forest fires surrender more carbon dioxide to the atmosphere, which helps raise temperatures, accentuate droughts and heat extremes, and create conditions for even more catastrophic forest fires.

The news is that the proportion of the greenhouse gas in the atmosphere will peak at 417 parts per million (ppm) in the next 11 months, but settle to an average of just over 414 ppm. This represents a predicted 10% increase on the previous year’s rise, and a fifth of that can be pinned on blazing eucalypts in New South Wales.

Atmospheric scientists began keeping meticulous records of CO2 levels in the atmosphere in 1958. The average for most of human history – until the Industrial Revolution and the mass exploitation of coal, oil and gas – was no higher than 285 ppm.

The warning, from the British Met Office, comes hard on the heels of an address by America’s President Trump – who has previously claimed that climate change is a hoax – at Davos in Switzerland. He told the World Economic Forum (WEF) to disregard those he dismissed as “prophets of doom”.

“The amount of heat we have put into the world’s oceans in the last 25 years equals to 3.6 billion Hiroshima atomic bomb explosions”

In fact he was addressing an organisation that had only recently issued its own warning that “severe threats to our climate” accounted for all the identified top long-term risks that face the modern world.

The WEF Global Risks Report warned of extreme weather events with major damage to property, infrastructure and loss of human life. It also pointed to other hazards: among them the failure of attempts to mitigate or adapt to climate change by governments and industry; human-induced environmental damage; and to biodiversity loss and ecosystem collapse, all of which are inseparable from the climate crisis.

Even the fifth set of global risks was environmental: these included earthquakes, tsunamis, volcanic eruptions and geomagnetic storms.

And, the WEF said, time to address these threats was running out. “The political landscape is polarised, sea levels are rising and climate fires are burning. This is the year when world leaders must work with all sectors of society to repair and invigorate our systems of co-operation, not just for short-term benefit, but for tackling our deep-rooted risks,” said Borge Brende, president of the WEF.

And as the WEF issued its own doom-laden warnings, scientists at two great US research agencies confirmed those fears. The space agency NASA and the US National Oceanic and Atmospheric Administration examined their separate datasets to pronounce 2019 the second warmest year since global records began, and to confirm that the decade just ended was also the warmest since records began.

Relentless increase

“Every decade since the 1960s has been warmer than the one before,” said Gavin Schmidt of the Goddard Institute for Space Studies.

The British Met Office – working from yet another set of data – agreed that 2019 had been 1.05°C above the average for most of human history, and that the last five years were the warmest since records began in 1850.

And only days beforehand, Chinese scientists had taken the temperature of the world’s oceans to find them warmer than at any time in recorded history. The past 10 years had been the warmest decade for ocean temperatures worldwide.

In 2019, they write in the journal Advances in Atmospheric Sciences, a partnership of 14 researchers from 11 institutes around the world had measured from the surface to a depth of 2000 metres to find that the global ocean – and 70% of the planet is covered in blue water – is now 0.075°C warmer on average than it was between 1981 and 2010.

Measured in the basic units of heat-energy, this means that the seas have soaked up 228,000,000,000,000,000,000,000 joules of heat.

100 seconds to midnight

“That’s a lot of zeros indeed. To make it easier to understand, I did a calculation,” said Lijing Cheng, of the Chinese Academy of Sciences, who led the study.

“The amount of heat we have put into the world’s oceans in the last 25 years equals to 3.6 billion Hiroshima atomic bomb explosions. This measured ocean warming is irrefutable and is further proof of global warming. There are no reasonable alternatives aside from the human emissions of heat-trapping gases to explain this heating.”

On 23 January the Bulletin of the Atomic Scientists announced that it had moved the hands of its symbolic Doomsday Clock to 100 seconds from midnight the closest they have ever been to the time chosen to represent apocalypse.

The reason? “Humanity continues to face two simultaneous existential dangers nuclear war and climate change that are compounded by a threat multiplier, cyber-enabled information warfare, that undercuts society’s ability to respond”, say the scientists.

“World leaders have allowed the international political infrastructure for managing them to erode.” – Climate News Network

Our children await a radioactive legacy

We are leaving our children a radioactive legacy, the lethal waste that current governments still cannot make safe.

LONDON, 26 November, 2019 − After 70 years of building and operating nuclear power plants across the world, governments are bequeathing to future generations a radioactive legacy.

They remain unable to deal with the huge quantities of highly radioactive spent fuel they produce, says a group of independent experts − and as more reactors are reaching the end of their lives, the situation is worsening fast.

That is the conclusion of the first World Nuclear Waste Report (WNWR), produced by a group which says there are ever-growing challenges in waste management and no sustainable long-term solutions. They include two British academics: the economist Professor Gordon MacKerron, of the University of Sussex, and the independent radiation biologist Dr Ian Fairlie.

“Despite many plans and declared political intentions, huge uncertainties remain, and much of the costs and the challenges will fall onto future generations,” the report says.

Persistent risk

The waste, which can remain dangerous for more than 100,000 years, constitutes a continuous health hazard because of the routine release of radioactive gas and liquid waste into the environment. Yet it is likely to be another century before the problem is solved, the WNWR report says.

It notes: “The continued practice of storing spent nuclear fuel for long periods in pools at nuclear power plants (wet storage) constitutes a major risk to the public and to the environment.” There are now an estimated 250,000 tons of spent fuel in storage in 14 countries.

Despite its stark findings, the report makes no comment on the ethics of continuing to build nuclear stations when there is no way to get rid of the wastes they create.

The authors do not even quote the sixth report of the UK Royal Commission on Environmental Pollution from 1976, only 20 years after the dawn of the nuclear age, chaired by the physicist Sir Brian Flowers.

Beyond reasonable doubt

That said: “There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future.”

Successive British governments, along with the rest of the world, ignored Flowers. 40 years on, there are massive stockpiles of radioactive waste in every nuclear nation across the planet.

However, because the problem is now so vast, this latest report concentrates on describing the issues faced in the democracies of Europe where there is a lot of official information available. Even here, governments have failed to properly estimate the true cost of dealing with the waste, and most are many decades away from finding any solutions.

Finland is the only country in the world currently building a permanent repository for its high-level waste. Many other countries have tried and failed, either because the geology proved unsuitable or because of objections from those affected.

“There should be no commitment to a large programme of nuclear fission power until a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future”

As a result, spent fuel from reactors and other highly dangerous waste is in interim storage that carries severe safety risks, not least from loss of cooling water or terrorist attack. There are 60,000 tons of spent fuel in store in Europe alone.

The bill for dealing with the waste is huge, but no government has yet calculated accurately what it is, nor has any put aside enough funds to deal with it. By mid-2019 there were 181 closed nuclear reactors globally, but only 19 had been fully decommissioned, with just 10 restored as greenfield sites.

The report does not comment on governments’ competence or honesty, but it does make it clear they are not facing up to reality. For example, the UK has more than 100 tons of stored plutonium, for which it has no use − but it refuses to class plutonium as a waste. The report says it will cost at least £3 billion ($3.8bn) “to manage” whatever decision is reached to deal with it.

Each of the countries in Europe that has nuclear power stations is studied in the report. Spent fuel is the single most dangerous source of highly radioactive waste, and all 16 countries in Europe with highly irradiated fuel have yet to deal with it. France has the highest number of spent fuel rods with 13,990 tons in cooling ponds, Germany 8,485, the UK 7,700.

Information withheld

France has the largest unresolved stockpile of all categories of nuclear waste, plus the legacy of a uranium mining industry. The cost of decommissioning and waste management was put at €43.7 billion ($60.3bn) in 2014, but this is almost certainly an underestimate, the report says.

Looking outside Europe, the US probably has the largest and most complex volumes of nuclear waste in the world, the experts say. Yet it has no plans for dealing with it, and vast quantities of all types of waste are in temporary storage.

The authors admit that, despite their year-long study, the report cannot be comprehensive. This is because information from some countries, for example Russia and China, is not available. But they add that across the world all governments are failing to face up to the size of the task and its costs.

Although some countries had set notional dates for dealing with their wastes as far into the future as 2060, others had no idea at all. The authors promise to produce updated reports in future years. − Climate News Network

We are leaving our children a radioactive legacy, the lethal waste that current governments still cannot make safe.

LONDON, 26 November, 2019 − After 70 years of building and operating nuclear power plants across the world, governments are bequeathing to future generations a radioactive legacy.

They remain unable to deal with the huge quantities of highly radioactive spent fuel they produce, says a group of independent experts − and as more reactors are reaching the end of their lives, the situation is worsening fast.

That is the conclusion of the first World Nuclear Waste Report (WNWR), produced by a group which says there are ever-growing challenges in waste management and no sustainable long-term solutions. They include two British academics: the economist Professor Gordon MacKerron, of the University of Sussex, and the independent radiation biologist Dr Ian Fairlie.

“Despite many plans and declared political intentions, huge uncertainties remain, and much of the costs and the challenges will fall onto future generations,” the report says.

Persistent risk

The waste, which can remain dangerous for more than 100,000 years, constitutes a continuous health hazard because of the routine release of radioactive gas and liquid waste into the environment. Yet it is likely to be another century before the problem is solved, the WNWR report says.

It notes: “The continued practice of storing spent nuclear fuel for long periods in pools at nuclear power plants (wet storage) constitutes a major risk to the public and to the environment.” There are now an estimated 250,000 tons of spent fuel in storage in 14 countries.

Despite its stark findings, the report makes no comment on the ethics of continuing to build nuclear stations when there is no way to get rid of the wastes they create.

The authors do not even quote the sixth report of the UK Royal Commission on Environmental Pollution from 1976, only 20 years after the dawn of the nuclear age, chaired by the physicist Sir Brian Flowers.

Beyond reasonable doubt

That said: “There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future.”

Successive British governments, along with the rest of the world, ignored Flowers. 40 years on, there are massive stockpiles of radioactive waste in every nuclear nation across the planet.

However, because the problem is now so vast, this latest report concentrates on describing the issues faced in the democracies of Europe where there is a lot of official information available. Even here, governments have failed to properly estimate the true cost of dealing with the waste, and most are many decades away from finding any solutions.

Finland is the only country in the world currently building a permanent repository for its high-level waste. Many other countries have tried and failed, either because the geology proved unsuitable or because of objections from those affected.

“There should be no commitment to a large programme of nuclear fission power until a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future”

As a result, spent fuel from reactors and other highly dangerous waste is in interim storage that carries severe safety risks, not least from loss of cooling water or terrorist attack. There are 60,000 tons of spent fuel in store in Europe alone.

The bill for dealing with the waste is huge, but no government has yet calculated accurately what it is, nor has any put aside enough funds to deal with it. By mid-2019 there were 181 closed nuclear reactors globally, but only 19 had been fully decommissioned, with just 10 restored as greenfield sites.

The report does not comment on governments’ competence or honesty, but it does make it clear they are not facing up to reality. For example, the UK has more than 100 tons of stored plutonium, for which it has no use − but it refuses to class plutonium as a waste. The report says it will cost at least £3 billion ($3.8bn) “to manage” whatever decision is reached to deal with it.

Each of the countries in Europe that has nuclear power stations is studied in the report. Spent fuel is the single most dangerous source of highly radioactive waste, and all 16 countries in Europe with highly irradiated fuel have yet to deal with it. France has the highest number of spent fuel rods with 13,990 tons in cooling ponds, Germany 8,485, the UK 7,700.

Information withheld

France has the largest unresolved stockpile of all categories of nuclear waste, plus the legacy of a uranium mining industry. The cost of decommissioning and waste management was put at €43.7 billion ($60.3bn) in 2014, but this is almost certainly an underestimate, the report says.

Looking outside Europe, the US probably has the largest and most complex volumes of nuclear waste in the world, the experts say. Yet it has no plans for dealing with it, and vast quantities of all types of waste are in temporary storage.

The authors admit that, despite their year-long study, the report cannot be comprehensive. This is because information from some countries, for example Russia and China, is not available. But they add that across the world all governments are failing to face up to the size of the task and its costs.

Although some countries had set notional dates for dealing with their wastes as far into the future as 2060, others had no idea at all. The authors promise to produce updated reports in future years. − Climate News Network

Nuclear war could ruin Earth and leave only losers

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

‘Small’ nuclear war could bring global cooling

Smoke from Canadian forest fires was so vast it bore comparison with a nuclear bomb’s mushroom cloud – and the global cooling that might unleash.

LONDON, 21 August, 2019 − If a nuclear war should ever break out, any survivors could have to cope not just with the immediate effects of blast and radioactivity, but with climate mayhem as well: global cooling with unknowable consequences.

The wildfires in the Canadian province of British Columbia in the summer of 2017 were the worst the region had ever seen. They were so bad that the smoke from the sustained blaze rose 23 kms into the upper stratosphere and stayed there for eight months.

And that has given US scientists the chance once again to model the consequences of a nuclear winter after thermonuclear war.

“This process of injecting soot into the stratosphere and seeing it extend its lifetime by self-lofting was previously modelled as a consequence of nuclear winter in the case of an all-out war between the United States and Russia, in which smoke from burning cities would change the global climate,” said Alan Robock, an environmental scientist at Rutgers University.

“Even a relatively small nuclear war between India and Pakistan could cause climate change unprecedented in recorded human history, and global food crises.”

“The observed rapid plume, latitudinal spread, and photochemical reactions provided new insight into potential global climate impacts from nuclear war”

Professor Robock and colleagues report in the journal Science that they used computer simulations and satellite observations to test an old worry: what happens when black carbon or other obstructions get into the stratosphere. Sulphate aerosols discharged to stratospheric heights from volcanoes have been observed to lower global average temperatures.

The eruption of Mt Pinatubo in the Philippines in 1991 blasted 20 million tonnes of sulphur dioxide into the stratosphere and lowered global temperatures by around 0.5°C, and the same observations have prompted scientists to propose an untested and potentially dangerous solution to runaway global heating, by spraying aerosols into the upper atmosphere.

The unprecedented fires in British Columbia that began in July 2017 provided them with experimental evidence: the devastation was so bad that 40,000 people were evacuated from their homes and the provincial government declared a state of emergency that lasted 10 weeks. Altogether the fires destroyed 1.2 million hectares of forest and caused $564m worth of damage.

What interested the US scientists was the smoke. It formed a pyrocumulonimbus cloud larger than any ever observed before and rose 12 kilometres. There was hardly enough mass in the plume to cool the planet in any measurable way, but it had bulk enough to provide information on how the cloud dispersed and how it lingered.

The soot in the cloud absorbed solar radiation and the air around each particle became hotter, which made it rise even further. Within two months, it had reached 23kms. The stratosphere is above the rain clouds, so there was nothing to wash the soot down again. The stratosphere is also home to the jet stream, and high winds took the soot around the whole hemisphere.

Future unpredictable

And that gave Professor Robock and his colleagues the chance to test models of what might happen if, instead of forest fires, the smoke had come from cities reduced to ash by a thermonuclear exchange.

The smoke from British Columbia held 300,000 tonnes of soot. A nuclear war between India and Pakistan however could put 15 million tonnes into the upper atmosphere, and a war between the US and Russia could generate 150 million tonnes.

Nobody knows what then might happen. More than 30 years ago, US scientists raised the spectre of nuclear winter: a world in which sunlight was weakened, summers were cancelled, and harvests failed.

The hypothesis was, thankfully, never put to the test, and in any case was challenged by other scientists. The Canadian fires, themselves perhaps made more devastating by global warming, delivered some vital clues. The next step is to apply the evidence from 2017 to see whether, after a nuclear war, the much-feared enduring winter would follow.

“The observed rapid plume, latitudinal spread, and photochemical reactions provided new insight into potential global climate impacts from nuclear war,” the scientists write. − Climate News Network

Smoke from Canadian forest fires was so vast it bore comparison with a nuclear bomb’s mushroom cloud – and the global cooling that might unleash.

LONDON, 21 August, 2019 − If a nuclear war should ever break out, any survivors could have to cope not just with the immediate effects of blast and radioactivity, but with climate mayhem as well: global cooling with unknowable consequences.

The wildfires in the Canadian province of British Columbia in the summer of 2017 were the worst the region had ever seen. They were so bad that the smoke from the sustained blaze rose 23 kms into the upper stratosphere and stayed there for eight months.

And that has given US scientists the chance once again to model the consequences of a nuclear winter after thermonuclear war.

“This process of injecting soot into the stratosphere and seeing it extend its lifetime by self-lofting was previously modelled as a consequence of nuclear winter in the case of an all-out war between the United States and Russia, in which smoke from burning cities would change the global climate,” said Alan Robock, an environmental scientist at Rutgers University.

“Even a relatively small nuclear war between India and Pakistan could cause climate change unprecedented in recorded human history, and global food crises.”

“The observed rapid plume, latitudinal spread, and photochemical reactions provided new insight into potential global climate impacts from nuclear war”

Professor Robock and colleagues report in the journal Science that they used computer simulations and satellite observations to test an old worry: what happens when black carbon or other obstructions get into the stratosphere. Sulphate aerosols discharged to stratospheric heights from volcanoes have been observed to lower global average temperatures.

The eruption of Mt Pinatubo in the Philippines in 1991 blasted 20 million tonnes of sulphur dioxide into the stratosphere and lowered global temperatures by around 0.5°C, and the same observations have prompted scientists to propose an untested and potentially dangerous solution to runaway global heating, by spraying aerosols into the upper atmosphere.

The unprecedented fires in British Columbia that began in July 2017 provided them with experimental evidence: the devastation was so bad that 40,000 people were evacuated from their homes and the provincial government declared a state of emergency that lasted 10 weeks. Altogether the fires destroyed 1.2 million hectares of forest and caused $564m worth of damage.

What interested the US scientists was the smoke. It formed a pyrocumulonimbus cloud larger than any ever observed before and rose 12 kilometres. There was hardly enough mass in the plume to cool the planet in any measurable way, but it had bulk enough to provide information on how the cloud dispersed and how it lingered.

The soot in the cloud absorbed solar radiation and the air around each particle became hotter, which made it rise even further. Within two months, it had reached 23kms. The stratosphere is above the rain clouds, so there was nothing to wash the soot down again. The stratosphere is also home to the jet stream, and high winds took the soot around the whole hemisphere.

Future unpredictable

And that gave Professor Robock and his colleagues the chance to test models of what might happen if, instead of forest fires, the smoke had come from cities reduced to ash by a thermonuclear exchange.

The smoke from British Columbia held 300,000 tonnes of soot. A nuclear war between India and Pakistan however could put 15 million tonnes into the upper atmosphere, and a war between the US and Russia could generate 150 million tonnes.

Nobody knows what then might happen. More than 30 years ago, US scientists raised the spectre of nuclear winter: a world in which sunlight was weakened, summers were cancelled, and harvests failed.

The hypothesis was, thankfully, never put to the test, and in any case was challenged by other scientists. The Canadian fires, themselves perhaps made more devastating by global warming, delivered some vital clues. The next step is to apply the evidence from 2017 to see whether, after a nuclear war, the much-feared enduring winter would follow.

“The observed rapid plume, latitudinal spread, and photochemical reactions provided new insight into potential global climate impacts from nuclear war,” the scientists write. − Climate News Network