Category Archives: Nature

*

Desert dust cools vulnerable Red Sea corals

Desert dust whipped up by strong winds and volcanic aerosols alter the climate as the world warms.

LONDON, 20 May, 2019 − Located between two of the hottest and driest places on earth, the Red Sea is being protected by the desert dust that the winds whip up in the lands that surround it.

The dust so effectively blocks out the sun that the Red Sea is kept cool, saving its coral reefs from dangerous overheating and providing nutrients that keep its waters healthy.

The sea lies between North Africa and the Arabian Peninsula, the world’s largest region for generating dust, which strong summer winds pump down a narrowing mountain-fringed passage that forces it into the air over the widest southern portion of the sea.

The research, carried out by the King Abdullah University of Science and Technology (KAUST, the first mixed-gender university in Saudi Arabia), is part of a wider programme to discover the effect of dust in the atmosphere in changing the weather and climate.

Cooling influence

Volcanic eruptions can have a significant effect by ejecting aerosol particles into the upper atmosphere where they block out some of the sun’s rays, radiating heat back into space, a process known as radiative forcing. Dust blown from deserts also has a strong regional effect.

Sergey Osipov, postdoctoral fellow and co-author with his supervisor Georgiy Stenchikov of the Red Sea study, said: “We show that summer conditions over the Red Sea produce the world’s largest aerosol radiative forcing, and yet the impact of dust on the Red Sea was never studied − it was simply unknown.”

A surprising finding relates to biological productivity. “Dust deposition adds nutrients,” he said. “However, we find that dust radiative forcing slows down the Red Sea circulation and reduces the main nutrient supply to the Red Sea through the Bab-el Mandeb strait. The net effect on overall bioproductivity remains to be established.”

Volcanoes’ impact

Large volcanic eruptions, such as the 1991 eruption of Mount Pinatubo in the Philippines, inject vast amounts of sulphur dioxide into the upper atmosphere, where it is converted into tiny sulphate aerosol droplets.

These sulphate aerosols spread around the globe, exerting a strong radiative forcing effect, and reducing global temperature for nearly two years by 0.6°C before the dust finally settled back to earth.

The university is using its supercomputer to look at the effects of dust on the whole of the region, which is extremely arid and hurls large quantities of dust into the atmosphere, potentially changing weather patterns. It is important for future climate projections to predict droughts and famines that might cause mass migrations of the region’s peoples.

Another KAUST climate modelling study reveals potential changes in the West African monsoon caused by global warming and the dust it creates.

African monsoon

Home to more than 300 million people, West Africa has an agriculture-based economy: its food security is affected by the monsoon, making it important to understand present and future variability.

A KAUST doctoral student, Jerry Raj, simulated the monsoon under present and future climates. The results show that West Africa will become generally hotter as a result of climate change – with higher areas of the Sahel and Western Sahara projected to have increased temperatures of 4°C or more by the century’s end.

The simulations also indicate precipitation increases over the equatorial Atlantic and the Guinean coast, yet the southern Sahel appears drier. At the same time, Western Sahara experiences a moderate increase of rain.

Finally, and crucially for farmers sowing crops, the onset of the monsoon occurs earlier over the eastern part of the region, but is delayed over the western part.

“Strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood”

“Climate projection is the first and the most important step toward adaptation policies aimed at avoiding damaging environmental and socio-economic consequences,” Raj said.

Another doctoral student, Evgeniya Predybaylo, is looking further afield at the impact of large volcanic eruptions on a major natural climate variation, the El Niño‐Southern Oscillation.

This periodic warm water flush in the Pacific drives extreme weather events like hurricane and tornado activity as well as coral bleaching. It also causes floods and droughts and disrupts fish populations.

Forecasting El Niño events would help people prepare for possible collapses of fish stocks and agricultural crises, says Predybaylo. However, El Niño is notoriously difficult to predict, but volcanic eruptions may play a role.

El Niño link?

“Interestingly, strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood,” says Predybaylo.

She says the response to volcanoes partly depends on the eruption’s seasonal timing: summer eruptions induce stronger El Niños than winter or spring eruptions.
Ocean conditions prevailing at the time of the eruption also play a role.

“Radiative forcing following large eruptions generally results in surface cooling,” explains Predybaylo. “However, the tropical Pacific often shows a warming response. We show that this is due to uneven equatorial ocean cooling and changes in trade winds.”

“A Pinatubo-size eruption may partially determine the phase, magnitude and duration of El Niño, but it is crucial to account for the eruption season and ocean conditions just before the eruption,” she says. − Climate News Network

Desert dust whipped up by strong winds and volcanic aerosols alter the climate as the world warms.

LONDON, 20 May, 2019 − Located between two of the hottest and driest places on earth, the Red Sea is being protected by the desert dust that the winds whip up in the lands that surround it.

The dust so effectively blocks out the sun that the Red Sea is kept cool, saving its coral reefs from dangerous overheating and providing nutrients that keep its waters healthy.

The sea lies between North Africa and the Arabian Peninsula, the world’s largest region for generating dust, which strong summer winds pump down a narrowing mountain-fringed passage that forces it into the air over the widest southern portion of the sea.

The research, carried out by the King Abdullah University of Science and Technology (KAUST, the first mixed-gender university in Saudi Arabia), is part of a wider programme to discover the effect of dust in the atmosphere in changing the weather and climate.

Cooling influence

Volcanic eruptions can have a significant effect by ejecting aerosol particles into the upper atmosphere where they block out some of the sun’s rays, radiating heat back into space, a process known as radiative forcing. Dust blown from deserts also has a strong regional effect.

Sergey Osipov, postdoctoral fellow and co-author with his supervisor Georgiy Stenchikov of the Red Sea study, said: “We show that summer conditions over the Red Sea produce the world’s largest aerosol radiative forcing, and yet the impact of dust on the Red Sea was never studied − it was simply unknown.”

A surprising finding relates to biological productivity. “Dust deposition adds nutrients,” he said. “However, we find that dust radiative forcing slows down the Red Sea circulation and reduces the main nutrient supply to the Red Sea through the Bab-el Mandeb strait. The net effect on overall bioproductivity remains to be established.”

Volcanoes’ impact

Large volcanic eruptions, such as the 1991 eruption of Mount Pinatubo in the Philippines, inject vast amounts of sulphur dioxide into the upper atmosphere, where it is converted into tiny sulphate aerosol droplets.

These sulphate aerosols spread around the globe, exerting a strong radiative forcing effect, and reducing global temperature for nearly two years by 0.6°C before the dust finally settled back to earth.

The university is using its supercomputer to look at the effects of dust on the whole of the region, which is extremely arid and hurls large quantities of dust into the atmosphere, potentially changing weather patterns. It is important for future climate projections to predict droughts and famines that might cause mass migrations of the region’s peoples.

Another KAUST climate modelling study reveals potential changes in the West African monsoon caused by global warming and the dust it creates.

African monsoon

Home to more than 300 million people, West Africa has an agriculture-based economy: its food security is affected by the monsoon, making it important to understand present and future variability.

A KAUST doctoral student, Jerry Raj, simulated the monsoon under present and future climates. The results show that West Africa will become generally hotter as a result of climate change – with higher areas of the Sahel and Western Sahara projected to have increased temperatures of 4°C or more by the century’s end.

The simulations also indicate precipitation increases over the equatorial Atlantic and the Guinean coast, yet the southern Sahel appears drier. At the same time, Western Sahara experiences a moderate increase of rain.

Finally, and crucially for farmers sowing crops, the onset of the monsoon occurs earlier over the eastern part of the region, but is delayed over the western part.

“Strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood”

“Climate projection is the first and the most important step toward adaptation policies aimed at avoiding damaging environmental and socio-economic consequences,” Raj said.

Another doctoral student, Evgeniya Predybaylo, is looking further afield at the impact of large volcanic eruptions on a major natural climate variation, the El Niño‐Southern Oscillation.

This periodic warm water flush in the Pacific drives extreme weather events like hurricane and tornado activity as well as coral bleaching. It also causes floods and droughts and disrupts fish populations.

Forecasting El Niño events would help people prepare for possible collapses of fish stocks and agricultural crises, says Predybaylo. However, El Niño is notoriously difficult to predict, but volcanic eruptions may play a role.

El Niño link?

“Interestingly, strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood,” says Predybaylo.

She says the response to volcanoes partly depends on the eruption’s seasonal timing: summer eruptions induce stronger El Niños than winter or spring eruptions.
Ocean conditions prevailing at the time of the eruption also play a role.

“Radiative forcing following large eruptions generally results in surface cooling,” explains Predybaylo. “However, the tropical Pacific often shows a warming response. We show that this is due to uneven equatorial ocean cooling and changes in trade winds.”

“A Pinatubo-size eruption may partially determine the phase, magnitude and duration of El Niño, but it is crucial to account for the eruption season and ocean conditions just before the eruption,” she says. − Climate News Network

*

Crops at risk from changing climate

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

*

Irish schools fail to teach climate change

Students at Irish schools are being let down by the country’s education system, say lawmakers demanding full climate change literacy.

DUBLIN, 10 May, 2019 − There’s a yawning gap in Irish schools, say the country’s legislators: they’re just not telling the new generation what it needs to know about climate change, although young people in many countries are on the march, protesting against governments’ inaction on the mounting problems associated with the issue.

Inspired in part by the actions of people like Greta Thunberg, the 16-year-old Swedish schoolgirl who has very publicly challenged world leaders to act to prevent climate meltdown, the young around the world are demanding urgent action.

This movement has come about almost entirely on young peoples’ own initiative; in many countries there is still a serious lack in the education system of any information on climate change.

In Ireland – a country where leading government officials have been forced to admit their failure to tackle climate change – students are given little or no guidance on the subject.

Climate competence needed

Now a hard-hitting report by the Oireachtas – or Parliament – Joint Committee on Climate Action (JCCA), an all-party group, says that must change. Schools, says the report, must ensure that the next generation is fully literate on the subject of climate change.

“The current curriculums do not focus enough on climate change and geography, a critical subject for engaging in the topic, has been removed as a core subject at Junior Certificate level.

“There are insufficient opportunities in the formal education system to learn about or to act on climate change”, says the report.

Ireland, a relatively sparsely populated country with little heavy industry, is among the worst performers in the European Union on climate change.

The report says the country’s emissions of highly damaging greenhouse gases are still at 1990 levels; a fast-expanding cattle population is responsible for producing a large amount of GHGs. Inadequate action on tackling GHG emissions in the housing and transport sectors is also to blame for Ireland’s bad performance.

“The current curriculums do not focus enough on climate change … Climate change is not tomorrow’s problem”

The JCCA study says that in tandem with more emphasis being placed on issues associated with global warming in the education system, there should also be public information campaigns, and state-funded media should be more vocal on the subject.

Met Eireann, the state meteorological service, should play a greater role and be more proactive on the issue, says the report.

The state’s response to a warming world has been insufficient, says the JCCA; urgent action must be taken. “Climate change is not tomorrow’s problem”, says the report.

Changes in climate are affecting Ireland in several ways, some big, some small. The Irish Times reports that the numbers of wild salmon returning to spawn in Irish waters are at their lowest level since records were first compiled.

Scottish parallel

Similar declines have been reported in Scotland, where the survival of wild salmon is said to be “at crisis point.”

In one of nature’s great migrations, mature wild salmon swim many hundreds of miles through the ocean to lay their eggs where they first began life. In the 1970s, 1.7 million salmon were recorded returning to Irish rivers. That number has now dropped to about 200,000.

Dr Ciarán Byrne, CEO of Inland Fisheries Ireland, says the decline in numbers is due to several factors, including climate change. Rising temperatures at sea could be influencing migration patterns.

Warmer ocean temperatures could also be encouraging the growth of sea lice, which attach themselves to the salmon, ultimately causing their death. − Climate News Network

Students at Irish schools are being let down by the country’s education system, say lawmakers demanding full climate change literacy.

DUBLIN, 10 May, 2019 − There’s a yawning gap in Irish schools, say the country’s legislators: they’re just not telling the new generation what it needs to know about climate change, although young people in many countries are on the march, protesting against governments’ inaction on the mounting problems associated with the issue.

Inspired in part by the actions of people like Greta Thunberg, the 16-year-old Swedish schoolgirl who has very publicly challenged world leaders to act to prevent climate meltdown, the young around the world are demanding urgent action.

This movement has come about almost entirely on young peoples’ own initiative; in many countries there is still a serious lack in the education system of any information on climate change.

In Ireland – a country where leading government officials have been forced to admit their failure to tackle climate change – students are given little or no guidance on the subject.

Climate competence needed

Now a hard-hitting report by the Oireachtas – or Parliament – Joint Committee on Climate Action (JCCA), an all-party group, says that must change. Schools, says the report, must ensure that the next generation is fully literate on the subject of climate change.

“The current curriculums do not focus enough on climate change and geography, a critical subject for engaging in the topic, has been removed as a core subject at Junior Certificate level.

“There are insufficient opportunities in the formal education system to learn about or to act on climate change”, says the report.

Ireland, a relatively sparsely populated country with little heavy industry, is among the worst performers in the European Union on climate change.

The report says the country’s emissions of highly damaging greenhouse gases are still at 1990 levels; a fast-expanding cattle population is responsible for producing a large amount of GHGs. Inadequate action on tackling GHG emissions in the housing and transport sectors is also to blame for Ireland’s bad performance.

“The current curriculums do not focus enough on climate change … Climate change is not tomorrow’s problem”

The JCCA study says that in tandem with more emphasis being placed on issues associated with global warming in the education system, there should also be public information campaigns, and state-funded media should be more vocal on the subject.

Met Eireann, the state meteorological service, should play a greater role and be more proactive on the issue, says the report.

The state’s response to a warming world has been insufficient, says the JCCA; urgent action must be taken. “Climate change is not tomorrow’s problem”, says the report.

Changes in climate are affecting Ireland in several ways, some big, some small. The Irish Times reports that the numbers of wild salmon returning to spawn in Irish waters are at their lowest level since records were first compiled.

Scottish parallel

Similar declines have been reported in Scotland, where the survival of wild salmon is said to be “at crisis point.”

In one of nature’s great migrations, mature wild salmon swim many hundreds of miles through the ocean to lay their eggs where they first began life. In the 1970s, 1.7 million salmon were recorded returning to Irish rivers. That number has now dropped to about 200,000.

Dr Ciarán Byrne, CEO of Inland Fisheries Ireland, says the decline in numbers is due to several factors, including climate change. Rising temperatures at sea could be influencing migration patterns.

Warmer ocean temperatures could also be encouraging the growth of sea lice, which attach themselves to the salmon, ultimately causing their death. − Climate News Network

*

New orchards offer life to wild species

While many of the UK’s traditional orchards are vanishing, new orchards are being planted to help wildlife and to slow global warming.

LONDON, 8 May, 2019 − New orchards are appearing across the UK to stop the widespread decline of rare insects and birds, and to slow down climate change.

The National Trust, Britain’s largest conservation organisation, which owns hundreds of miles of coastline as well as country houses and farms, already looks after 200 orchards, but is to create another 68 across England by 2025 to try to halt a national decline.

There are still 25,350 hectares (62,650 acres) of orchards in the country − but that is 63% less than in 1950. Many are commercial monocultures. As a result, many rare types of apple are in danger of being lost and plum, pear and damson production is in decline.

Apart from saving endangered species of fruit from old orchards, the Trust is keen to preserve the bees that thrive on the springtime blossom and many other rare species of insect that live only on fruit trees. Unlike commercial growers, the Trust will be managing its new orchards without pesticides, and specifically for wildlife.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth”

It will provide new habitats for insects like the noble chafer, a rare and beautiful relative of the scarab beetle, coloured a metallic bronze-green, as well as many other species that live mainly in old orchards.

Traditional orchards are far better for wildlife than commercial ones because they often contain very old trees, and have more space between them. Wildflower meadows are often grown underneath the trees to encourage insects to pollinate blossom when the trees burst into bloom.

The new orchards will also store carbon in the trunks of the growing trees and in the grassland below.

National Trust rangers and their volunteer teams will keep a close eye on the trees and encourage tits and other insect-eating birds to nest in the trees to eat caterpillars and help keep other pests down.

Ideal home

Dr David Bullock, head of species and habitat conservation at the Trust, said: “We launched a new wildlife and nature strategy in 2015. We identified traditional orchards as being of particular importance because they provide the perfect home for a variety of birds, pollinators and insects, as well as being great for people.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth. The amazing number of apple and other traditional fruit varieties that we can plant reflects the wonderful diversity of life.”

Traditional orchards were listed as one of the 65 priority habitats in the UK’s Natural Environment and Rural Communities Act 2006, but they have continued to decline.

Dr Bullock says that as well as providing homes for wildlife traditional orchards are also important for conserving heritage fruit varieties such as two cider apples, called Jackets and Petticoats, and Ashmead’s Kernel.

Hopeful sign

“They are also vital for people. They provide us with delicious local and seasonal food and drink, they are places for people to enjoy and gather, have great cultural significance, and are places of beauty.”

One of the Trust’s properties, Cotehele, a medieval house in Cornwall in the far south-west of England, has seven orchards covering approximately 15 acres (six hectares), which are home to over 125 varieties of apple tree including the Cornish Honeypinnick, Limberlimb, Pig’s’ Nose and Lemon Pippin.

David Bouch, head gardener at Cotehele, says: “As we’re so far south, many flowers and trees come into bloom slightly earlier than elsewhere in the country because we experience milder winter temperatures.

“Apple blossom is such a delicate flower. It starts off with a tinge of pink when in bud, before bursting forth to reveal a fragile, snowy white flower which, for me, is hopefully a sign of the last of the frosts and the orchard bursting into life, from the bees to the wildflowers to the hope of a successful apple harvest.” − Climate News Network

While many of the UK’s traditional orchards are vanishing, new orchards are being planted to help wildlife and to slow global warming.

LONDON, 8 May, 2019 − New orchards are appearing across the UK to stop the widespread decline of rare insects and birds, and to slow down climate change.

The National Trust, Britain’s largest conservation organisation, which owns hundreds of miles of coastline as well as country houses and farms, already looks after 200 orchards, but is to create another 68 across England by 2025 to try to halt a national decline.

There are still 25,350 hectares (62,650 acres) of orchards in the country − but that is 63% less than in 1950. Many are commercial monocultures. As a result, many rare types of apple are in danger of being lost and plum, pear and damson production is in decline.

Apart from saving endangered species of fruit from old orchards, the Trust is keen to preserve the bees that thrive on the springtime blossom and many other rare species of insect that live only on fruit trees. Unlike commercial growers, the Trust will be managing its new orchards without pesticides, and specifically for wildlife.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth”

It will provide new habitats for insects like the noble chafer, a rare and beautiful relative of the scarab beetle, coloured a metallic bronze-green, as well as many other species that live mainly in old orchards.

Traditional orchards are far better for wildlife than commercial ones because they often contain very old trees, and have more space between them. Wildflower meadows are often grown underneath the trees to encourage insects to pollinate blossom when the trees burst into bloom.

The new orchards will also store carbon in the trunks of the growing trees and in the grassland below.

National Trust rangers and their volunteer teams will keep a close eye on the trees and encourage tits and other insect-eating birds to nest in the trees to eat caterpillars and help keep other pests down.

Ideal home

Dr David Bullock, head of species and habitat conservation at the Trust, said: “We launched a new wildlife and nature strategy in 2015. We identified traditional orchards as being of particular importance because they provide the perfect home for a variety of birds, pollinators and insects, as well as being great for people.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth. The amazing number of apple and other traditional fruit varieties that we can plant reflects the wonderful diversity of life.”

Traditional orchards were listed as one of the 65 priority habitats in the UK’s Natural Environment and Rural Communities Act 2006, but they have continued to decline.

Dr Bullock says that as well as providing homes for wildlife traditional orchards are also important for conserving heritage fruit varieties such as two cider apples, called Jackets and Petticoats, and Ashmead’s Kernel.

Hopeful sign

“They are also vital for people. They provide us with delicious local and seasonal food and drink, they are places for people to enjoy and gather, have great cultural significance, and are places of beauty.”

One of the Trust’s properties, Cotehele, a medieval house in Cornwall in the far south-west of England, has seven orchards covering approximately 15 acres (six hectares), which are home to over 125 varieties of apple tree including the Cornish Honeypinnick, Limberlimb, Pig’s’ Nose and Lemon Pippin.

David Bouch, head gardener at Cotehele, says: “As we’re so far south, many flowers and trees come into bloom slightly earlier than elsewhere in the country because we experience milder winter temperatures.

“Apple blossom is such a delicate flower. It starts off with a tinge of pink when in bud, before bursting forth to reveal a fragile, snowy white flower which, for me, is hopefully a sign of the last of the frosts and the orchard bursting into life, from the bees to the wildflowers to the hope of a successful apple harvest.” − Climate News Network

*

Humans drive sixth mass extinction wave

For the sixth time since life on Earth began, scientists say, mass extinction is a threat. This time, though, is different. The cause is us.

LONDON, 7 May, 2019 − About one million of the world’s animal and plant species are now at risk of extinction − the largest number in human history ever to be facing the threat of oblivion, scientists say. Many species could be wiped out within decades. And their plight is caused by humans, and will inevitably affect us too.

The warning was delivered by a British scientist, Professor Sir Robert Watson, chair of the UN’s Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), speaking in the French capital, Paris.

He told an IPBES meeting held to approve the summary of its new global assessment report on the state of life on Earth that the implications for human life were grave. The overwhelming evidence gathered in the assessment presented “an ominous picture. The health of ecosystems on which we and all other species depend is deteriorating more rapidly than ever.

“We are eroding the very foundations of our economies, livelihoods, food security, health and quality of life worldwide.”

“The essential, interconnected web of life on Earth is getting smaller and increasingly frayed, This loss is a direct result of human activity … ”

But Professor Watson, a previous chair of the UN’s Intergovernmental Panel on Climate Change (IPCC), does not preach despair. Despite the “truly unsustainable rate” of species loss that would affect human wellbeing for this generation and for its descendants, despite the accelerating pace of extinction, he believes there is still hope.

“We are in trouble if we don’t act, but there are a range of actions that can be taken to protect nature and meet human goals for health and development. It is not too late to make a difference, but only if we start now at every level from local to global.” Transformative change, system-wide and including goals and values, could allow humankind to restore nature and to use it sustainably, he said.

In an unusually forthright challenge to individuals, businesses and governments which continue to question or ignore the findings of science in pursuit of their own interests, Professor Watson, a globally-renowned environment scientist, acknowledged that that sort of change “can expect opposition from those with interests vested in the status quo”. Such opposition “can be overcome for the broader public good”, he added.

The assessment report’s findings make spine-chilling reading. It says the average abundance of native species in most major land-based habitats has fallen by at least 20%, mostly since 1900. More than 40% of amphibians and more than a third of all marine mammals are threatened. The picture is less clear for insects, but available evidence supports a tentative estimate of 10% being threatened.

Global impact

“The essential, interconnected web of life on Earth is getting smaller and increasingly frayed,” said Professor Josef Settele, one of the co-chairs of the global assessment, of the Helmholtz Centre for Environmental Research in Germany . “This loss is a direct result of human activity and constitutes a direct threat to human well-being in all regions of the world.”

The summary says there are five main causes of the crisis. In descending order they are: changes in land and sea use; direct exploitation of animals and plants; climate change; pollution; and invasive alien species.

It adds plenty of detail:

•Three-quarters of the land-based environment and about 66% of the marine environment have been significantly altered by human actions. On average these trends have been less severe or avoided in areas held or managed by indigenous peoples and local communities

•More than a third of the world’s land surface and nearly 75% of freshwater resources are now devoted to crop or livestock production

•Raw timber demand has risen by 45% and approximately 60 billion tons of renewable and non-renewable resources are now extracted globally every year – having nearly doubled since 1980

Land degradation has reduced the productivity of 23% of the global land surface, up to US$577bn in annual global crops are at risk from pollinator loss, and 100-300 million people are at increased risk of floods and hurricanes because of loss of coastal habitats and protection

•Since 1980 plastic pollution has increased tenfold

•Since 1992 urban areas have more than doubled

•In 2015, 33% of marine fish stocks were being harvested at unsustainable levels.

.Numbers unknown

Scientists point out that unlike the five earlier great waves of extinction to have occurred on the planet, this one is human-driven. IPBES has explained simply and clearly that humankind and its activities are responsible for what is happening, and that we shall have to pay the price.

IPBES has also succeeded in diagnosing the extent of the crisis overwhelming the natural world with a new degree of precision, despite the fact that nobody can say with any certainty how many species the Earth contains.

The Paris meeting approved the 40-page summary of the full IPBES report, which will be published later this year. At the end of 2020 two conferences, on the natural world and climate change, will provide global leaders with an opportunity to make specific plans for action.

Extinction Rebellion (XR), the group whose protests in April brought traffic in parts of London to a halt for a week and which is active in several other countries as well, is known for its vociferous demands for steps to tackle climate change.

It is careful to spell out its insistence that climate change and the fate of the natural world are twin threats, of equal gravity and urgency. − Climate News Network

For the sixth time since life on Earth began, scientists say, mass extinction is a threat. This time, though, is different. The cause is us.

LONDON, 7 May, 2019 − About one million of the world’s animal and plant species are now at risk of extinction − the largest number in human history ever to be facing the threat of oblivion, scientists say. Many species could be wiped out within decades. And their plight is caused by humans, and will inevitably affect us too.

The warning was delivered by a British scientist, Professor Sir Robert Watson, chair of the UN’s Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), speaking in the French capital, Paris.

He told an IPBES meeting held to approve the summary of its new global assessment report on the state of life on Earth that the implications for human life were grave. The overwhelming evidence gathered in the assessment presented “an ominous picture. The health of ecosystems on which we and all other species depend is deteriorating more rapidly than ever.

“We are eroding the very foundations of our economies, livelihoods, food security, health and quality of life worldwide.”

“The essential, interconnected web of life on Earth is getting smaller and increasingly frayed, This loss is a direct result of human activity … ”

But Professor Watson, a previous chair of the UN’s Intergovernmental Panel on Climate Change (IPCC), does not preach despair. Despite the “truly unsustainable rate” of species loss that would affect human wellbeing for this generation and for its descendants, despite the accelerating pace of extinction, he believes there is still hope.

“We are in trouble if we don’t act, but there are a range of actions that can be taken to protect nature and meet human goals for health and development. It is not too late to make a difference, but only if we start now at every level from local to global.” Transformative change, system-wide and including goals and values, could allow humankind to restore nature and to use it sustainably, he said.

In an unusually forthright challenge to individuals, businesses and governments which continue to question or ignore the findings of science in pursuit of their own interests, Professor Watson, a globally-renowned environment scientist, acknowledged that that sort of change “can expect opposition from those with interests vested in the status quo”. Such opposition “can be overcome for the broader public good”, he added.

The assessment report’s findings make spine-chilling reading. It says the average abundance of native species in most major land-based habitats has fallen by at least 20%, mostly since 1900. More than 40% of amphibians and more than a third of all marine mammals are threatened. The picture is less clear for insects, but available evidence supports a tentative estimate of 10% being threatened.

Global impact

“The essential, interconnected web of life on Earth is getting smaller and increasingly frayed,” said Professor Josef Settele, one of the co-chairs of the global assessment, of the Helmholtz Centre for Environmental Research in Germany . “This loss is a direct result of human activity and constitutes a direct threat to human well-being in all regions of the world.”

The summary says there are five main causes of the crisis. In descending order they are: changes in land and sea use; direct exploitation of animals and plants; climate change; pollution; and invasive alien species.

It adds plenty of detail:

•Three-quarters of the land-based environment and about 66% of the marine environment have been significantly altered by human actions. On average these trends have been less severe or avoided in areas held or managed by indigenous peoples and local communities

•More than a third of the world’s land surface and nearly 75% of freshwater resources are now devoted to crop or livestock production

•Raw timber demand has risen by 45% and approximately 60 billion tons of renewable and non-renewable resources are now extracted globally every year – having nearly doubled since 1980

Land degradation has reduced the productivity of 23% of the global land surface, up to US$577bn in annual global crops are at risk from pollinator loss, and 100-300 million people are at increased risk of floods and hurricanes because of loss of coastal habitats and protection

•Since 1980 plastic pollution has increased tenfold

•Since 1992 urban areas have more than doubled

•In 2015, 33% of marine fish stocks were being harvested at unsustainable levels.

.Numbers unknown

Scientists point out that unlike the five earlier great waves of extinction to have occurred on the planet, this one is human-driven. IPBES has explained simply and clearly that humankind and its activities are responsible for what is happening, and that we shall have to pay the price.

IPBES has also succeeded in diagnosing the extent of the crisis overwhelming the natural world with a new degree of precision, despite the fact that nobody can say with any certainty how many species the Earth contains.

The Paris meeting approved the 40-page summary of the full IPBES report, which will be published later this year. At the end of 2020 two conferences, on the natural world and climate change, will provide global leaders with an opportunity to make specific plans for action.

Extinction Rebellion (XR), the group whose protests in April brought traffic in parts of London to a halt for a week and which is active in several other countries as well, is known for its vociferous demands for steps to tackle climate change.

It is careful to spell out its insistence that climate change and the fate of the natural world are twin threats, of equal gravity and urgency. − Climate News Network

*

Human impact on climate is 100 years old

When did the human impact on climate begin? At least a century ago, with the arrival of the bi-plane, the chauffeur-driven car and the Jazz Age.

LONDON, 2 May, 2019 − Our influence on the Earth’s environment has lasted for a century: the human impact on droughts and moisture patterns began at least 100 years ago, researchers now say.

US scientists used new analytic techniques and almost a thousand years of tree-ring data to build up a picture of drought and rainfall worldwide for the last century. And they report in the journal Nature that they have identified the human fingerprint upon climate variation as far back as the first days of the motor car and the infant aircraft industry.

The pattern of change, in which regions prone to drought such as the western US became more arid, grew visible between 1900 and 1949. The researchers saw the same pattern of drying in those decades in Australia, Europe, the Mediterranean, western Russia and southeast Asia.

At the same time more rain and snow fell in western China, much of central Asia, the Indian subcontinent, Indonesia and central Canada.

Clear signal apparent

Kate Marvel of the Nasa Goddard Institute for Space Studies, who led the research, said: “It’s mind-boggling. There really is a clear signal of the effects of greenhouse gases on the hydroclimate.”

And Benjamin Cook of both the Nasa Institute and the Lamont-Doherty Earth Observatory at Columbia University, said: “We asked, does the real world look like what the models tell us to expect? The answer is yes.

“The big thing we learned is that climate change started affecting global patterns of drought in the early 20th century. We expect this pattern to keep emerging as climate change continues.”

For four decades it has been a given of climate change research that average planetary warming will intensify all the extremes of weather: in particular, drought and flood.

“All the models are projecting that you should see unprecedented drying soon, in a lot of places”

The problem has been that droughts and floods have always happened. But could scientists identify the signature of human change – the clearing of the forests, the intensification of agriculture, the growth of the cities and the ever-increasing use of fossil fuels to dump ever more carbon dioxide in the atmosphere – in any one flood or drought? Until this century, researchers were unwilling to name the guilty party.

No longer. In recent years researchers have done more than just blame overall warming on human activity, and in particular the increasing hazard of extremes of heat, drought and flood.

They have linked human behaviour with drought in California and with record temperatures in 2013 in Australia.

The Nasa-led research is not quite the first to claim to have detected very early evidence of climate change. A team led by Chinese scientists reported in April in the journal Nature Sustainability that tree ring evidence from the Tibetan plateau suggested that humans may have begun altering the pattern of seasonal temperatures – that is, the differences between winter and summer – as early as the 1870s, at least in the northern hemisphere.

Puzzle solved?

But the latest study from Dr Marvel and colleagues identifies such evidence on a wider scale, and may even have resolved the puzzle of the extremes that did not happen.

The research found three distinct periods of change. The first was marked by more drought in some places, more precipitation in others in the first half of the 20th century. But by the height of the Cold War, and the space race mid-century, it became harder to see a pattern, and climate events seemed more random, and climates cooler.

The researchers now think the huge volumes of aerosols from power stations, factory chimneys and vehicle exhausts between 1950 and 1975 altered weather patterns in different ways, affecting cloud formation, rainfall and temperature, to mask the effect of greenhouse gas increases.

These were the years of choking smog, grime and soot, sulphurous droplets, acid rain, corroding historic buildings and urban respiratory disease on an epidemic scale.

Stronger patternn expected

And then developed nations started introducing clean air legislation and other pollution controls. Round about 1981, tentative evidence of the impact of human-driven greenhouse gas emissions began to show again in the climate record, although not as boldly as in the first half of the century.

If the researchers have got it right, the pattern of increasing drought, matched elsewhere by increasing precipitation, will continue to become stronger.

“If we don’t see it coming in stronger in, say, the next 10 years, we might have to wonder whether we are right,” Dr Marvel said. “But all the models are projecting that you should see unprecedented drying soon, in a lot of places.”

And the researchers warn that the consequences for humankind, especially in North America and Eurasia, could be severe. − Climate News Network

When did the human impact on climate begin? At least a century ago, with the arrival of the bi-plane, the chauffeur-driven car and the Jazz Age.

LONDON, 2 May, 2019 − Our influence on the Earth’s environment has lasted for a century: the human impact on droughts and moisture patterns began at least 100 years ago, researchers now say.

US scientists used new analytic techniques and almost a thousand years of tree-ring data to build up a picture of drought and rainfall worldwide for the last century. And they report in the journal Nature that they have identified the human fingerprint upon climate variation as far back as the first days of the motor car and the infant aircraft industry.

The pattern of change, in which regions prone to drought such as the western US became more arid, grew visible between 1900 and 1949. The researchers saw the same pattern of drying in those decades in Australia, Europe, the Mediterranean, western Russia and southeast Asia.

At the same time more rain and snow fell in western China, much of central Asia, the Indian subcontinent, Indonesia and central Canada.

Clear signal apparent

Kate Marvel of the Nasa Goddard Institute for Space Studies, who led the research, said: “It’s mind-boggling. There really is a clear signal of the effects of greenhouse gases on the hydroclimate.”

And Benjamin Cook of both the Nasa Institute and the Lamont-Doherty Earth Observatory at Columbia University, said: “We asked, does the real world look like what the models tell us to expect? The answer is yes.

“The big thing we learned is that climate change started affecting global patterns of drought in the early 20th century. We expect this pattern to keep emerging as climate change continues.”

For four decades it has been a given of climate change research that average planetary warming will intensify all the extremes of weather: in particular, drought and flood.

“All the models are projecting that you should see unprecedented drying soon, in a lot of places”

The problem has been that droughts and floods have always happened. But could scientists identify the signature of human change – the clearing of the forests, the intensification of agriculture, the growth of the cities and the ever-increasing use of fossil fuels to dump ever more carbon dioxide in the atmosphere – in any one flood or drought? Until this century, researchers were unwilling to name the guilty party.

No longer. In recent years researchers have done more than just blame overall warming on human activity, and in particular the increasing hazard of extremes of heat, drought and flood.

They have linked human behaviour with drought in California and with record temperatures in 2013 in Australia.

The Nasa-led research is not quite the first to claim to have detected very early evidence of climate change. A team led by Chinese scientists reported in April in the journal Nature Sustainability that tree ring evidence from the Tibetan plateau suggested that humans may have begun altering the pattern of seasonal temperatures – that is, the differences between winter and summer – as early as the 1870s, at least in the northern hemisphere.

Puzzle solved?

But the latest study from Dr Marvel and colleagues identifies such evidence on a wider scale, and may even have resolved the puzzle of the extremes that did not happen.

The research found three distinct periods of change. The first was marked by more drought in some places, more precipitation in others in the first half of the 20th century. But by the height of the Cold War, and the space race mid-century, it became harder to see a pattern, and climate events seemed more random, and climates cooler.

The researchers now think the huge volumes of aerosols from power stations, factory chimneys and vehicle exhausts between 1950 and 1975 altered weather patterns in different ways, affecting cloud formation, rainfall and temperature, to mask the effect of greenhouse gas increases.

These were the years of choking smog, grime and soot, sulphurous droplets, acid rain, corroding historic buildings and urban respiratory disease on an epidemic scale.

Stronger patternn expected

And then developed nations started introducing clean air legislation and other pollution controls. Round about 1981, tentative evidence of the impact of human-driven greenhouse gas emissions began to show again in the climate record, although not as boldly as in the first half of the century.

If the researchers have got it right, the pattern of increasing drought, matched elsewhere by increasing precipitation, will continue to become stronger.

“If we don’t see it coming in stronger in, say, the next 10 years, we might have to wonder whether we are right,” Dr Marvel said. “But all the models are projecting that you should see unprecedented drying soon, in a lot of places.”

And the researchers warn that the consequences for humankind, especially in North America and Eurasia, could be severe. − Climate News Network

*

Cold-blooded sealife runs double heat risk

Extremes of heat are twice as risky for cold-blooded sealife as for other ectotherms. A hot rock could be safer than the deep sea.

LONDON, 29 April, 2019 – When it comes to global warming, there may no longer be plenty of fish in the sea: new research suggests that cold-blooded sealife may be twice as likely to be at risk in its natural habitat as land-dwelling ectotherms.

This finding is unexpected: the ocean is, in both area and volume, the single biggest living space on the planet. Fish that feel the heat can move towards the poles when temperatures get too high.

But when US researchers took a closer look at the data available on the thermal discomfort zones – those moments when cold-blooded creatures begin to overheat and need to find a safe, cool place in which to lie low – those spiders and lizards that survive in the tropics and temperate zones actually stand a better chance of finding somewhere to hide, and thus living through heatwaves, than their marine cousins.

“New conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity”

“We find that, globally, marine species are being eliminated from their habitats by warming temperatures twice as often as land species,” said Malin Pinsky, of Rutgers University in New Brunswick.

“The findings suggest that new conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity.”

He and colleagues report in the journal Nature that they searched the literature for detailed information on 400 species, and calculated the safe conditions for 88 marine and 294 land animals. They also identified the coolest temperatures available to each species during the hottest parts of the year.

More terrestrial refuges

And they found that, on average, fish and marine animals were more likely to live on the edge of temperatures that could become dangerously high. Land animals – insects and reptiles – could disappear into the forests, seek the shade or go underground: something sea creatures could not do.

That terrestrial reptiles and amphibians and marine animals are at risk is not news: researchers have already recorded significant movements of sea species in response to heat extremes off the Californian coast.

There has been repeated evidence that rising global temperature, as a consequence of greenhouse gas emissions from fossil fuel use, has begun to affect commercial fisheries, and other researchers have made it emphatically clear that only determined human action to contain global warming and protect breeding grounds can keep fish on the family supper table.

What most would not have expected was to find that land animals were less at risk, simply because they were land-dwellers.

Limited evidence

Research of this kind tends to deliver findings that can be challenged, and the authors concede that their conclusions are limited by the available evidence. Of 159 separate studies, 153 were in the northern hemisphere and 137 were from the temperate latitudes. Of their marine ectotherms, only 7% were pelagic: these are the fish – among them cod and tuna – that can swim to deeper, cooler layers when surface temperatures soar.

The remaining 93% included slow-moving bottom-dwellers such as lobsters, horseshoe crabs, abalone and snails, which may have nowhere left to go when life locally gets too hot to handle. The researchers make it clear that they are not talking about complete global extinctions of species: they choose the phrase “local extirpations”.

And they make it clear that land-dwelling cold-blooded animals are by no means safe from increasingly frequent, intense episodes of heat extremes driven by climate change: they would continue to be vulnerable to loss of what the researchers call “local refugia” – for example woodland cover – which “would make habitat fragmentation and changes in land use critical drivers of species loss on land.” – Climate News Network

Extremes of heat are twice as risky for cold-blooded sealife as for other ectotherms. A hot rock could be safer than the deep sea.

LONDON, 29 April, 2019 – When it comes to global warming, there may no longer be plenty of fish in the sea: new research suggests that cold-blooded sealife may be twice as likely to be at risk in its natural habitat as land-dwelling ectotherms.

This finding is unexpected: the ocean is, in both area and volume, the single biggest living space on the planet. Fish that feel the heat can move towards the poles when temperatures get too high.

But when US researchers took a closer look at the data available on the thermal discomfort zones – those moments when cold-blooded creatures begin to overheat and need to find a safe, cool place in which to lie low – those spiders and lizards that survive in the tropics and temperate zones actually stand a better chance of finding somewhere to hide, and thus living through heatwaves, than their marine cousins.

“New conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity”

“We find that, globally, marine species are being eliminated from their habitats by warming temperatures twice as often as land species,” said Malin Pinsky, of Rutgers University in New Brunswick.

“The findings suggest that new conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity.”

He and colleagues report in the journal Nature that they searched the literature for detailed information on 400 species, and calculated the safe conditions for 88 marine and 294 land animals. They also identified the coolest temperatures available to each species during the hottest parts of the year.

More terrestrial refuges

And they found that, on average, fish and marine animals were more likely to live on the edge of temperatures that could become dangerously high. Land animals – insects and reptiles – could disappear into the forests, seek the shade or go underground: something sea creatures could not do.

That terrestrial reptiles and amphibians and marine animals are at risk is not news: researchers have already recorded significant movements of sea species in response to heat extremes off the Californian coast.

There has been repeated evidence that rising global temperature, as a consequence of greenhouse gas emissions from fossil fuel use, has begun to affect commercial fisheries, and other researchers have made it emphatically clear that only determined human action to contain global warming and protect breeding grounds can keep fish on the family supper table.

What most would not have expected was to find that land animals were less at risk, simply because they were land-dwellers.

Limited evidence

Research of this kind tends to deliver findings that can be challenged, and the authors concede that their conclusions are limited by the available evidence. Of 159 separate studies, 153 were in the northern hemisphere and 137 were from the temperate latitudes. Of their marine ectotherms, only 7% were pelagic: these are the fish – among them cod and tuna – that can swim to deeper, cooler layers when surface temperatures soar.

The remaining 93% included slow-moving bottom-dwellers such as lobsters, horseshoe crabs, abalone and snails, which may have nowhere left to go when life locally gets too hot to handle. The researchers make it clear that they are not talking about complete global extinctions of species: they choose the phrase “local extirpations”.

And they make it clear that land-dwelling cold-blooded animals are by no means safe from increasingly frequent, intense episodes of heat extremes driven by climate change: they would continue to be vulnerable to loss of what the researchers call “local refugia” – for example woodland cover – which “would make habitat fragmentation and changes in land use critical drivers of species loss on land.” – Climate News Network

*

Restoring forests rules out growing crops

Restoring forests is helpful, but planting crops to do so is not. Only one of these options soaks up enough atmospheric carbon.

LONDON, 15 April, 2019 − Nations of the world are committed to restoring forests covering an area the size of India to soak up carbon dioxide and combat climate change. But British scientists have identified a serious flaw in the plan.

“Two-thirds of the area committed to global reforestation for carbon storage is slated to grow crops,” they write in the journal Nature. “This raises serious concerns.”

Their argument is simple. To limit global warming to no more than 1.5°C by the end of the century requires both rapid cuts in emissions of carbon dioxide from fossil fuel use, and investment in efficient ways of removing CO2 from the atmosphere.

Altogether 43 tropical and subtropical nations have pledged to restore 350 million hectares of forest to remove 42 billion tonnes of carbon from the atmosphere by 2100.

Little natural forest

Many of them, including Brazil, China and India, have already committed to 292 million hectares of new canopy. But in their analysis of the plans published so far, the scientists say that only 34% of this accumulated area would go back to natural forest.

Another 45% would be covered by plantations of one species harvested for biomass or timber, and 21% would be devoted to agroforestry: a mix of crops sheltered by stands of woodland.

In their calculations, this altogether would remove only 16 bn tonnes of carbon. That is because natural forests restored and subsequently protected would hold 40 times the carbon of a monoculture plantation and six times more than any mix of trees and crops.

“There is a scandal here,” said Simon Lewis, a geographer at University College London, who led the analysis. “To most people, forest restoration means bringing back natural forests, but policy makers are calling vast monocultures ‘forest restoration.’ And worse, the advertised climate benefits are absent.”

“To most people, forest restoration means bringing back natural forests, but policy makers are calling vast monocultures ‘forest restoration’”

Forests are only part of the answer to the challenge of containing climate change. To keep to the promise made by 195 nations in Paris in 2015, humankind has to find ways to remove 730 bn tonnes of CO2 from the atmosphere, which translates to 199 bn tonnes of carbon.

If the world found ways to boost the total area of global forest, woodland and woody savannahs, this could absorb perhaps a quarter of the total needed to keep planetary warming to no more than 1.5°C. And many countries have signed up to convert degraded land to new tree canopy.

“But will this policy work?” the scientists ask. “We show that under current plans, it will not. A closer look at countries’ reports reveals that almost half the pledged area is set to become plantations of commercial trees.”

Their point is that plantations can support local economies, but are poorer at storing carbon. Natural forests require little or no disturbance from humans, whereas the regular clearing and harvesting of plantations releases stored carbon dioxide back into the atmosphere every 10 or 20 years, while natural forests go on sequestering the greenhouse gas for decades. Natural regeneration is the cheapest and easiest option.

Land use shift

Most of the monoculture commitments are in large countries such as Brazil, China, Indonesia, Nigeria and the Democratic Republic of the Congo. The scientists suggest such plans have been insufficiently thought through. Drastic increases in tropical plantation for commercial crops would mark a major shift in global land use and could be accompanied by a fall in prices, with potentially unsatisfactory economic consequences.

And, they argue, policymakers are in any case misinterpreting the term forest restoration: it should not include plantations of a single species, such as eucalypt or rubber, which would do little for carbon sequestration. If commercial plantations were planted across the whole 350 million hectares, the entire crop would soak up and store just one billion tonnes of carbon.

“Of course new natural forests alone are not sufficient to meet our climate goals,” said Charlotte Wheeler of the University of Edinburgh, another of the authors. “Emissions from fossil fuels and deforestation must also stop.

“Other ways to remove carbon from the atmosphere are also needed. But no scenario has been produced that keeps climate change below dangerous levels without the large-scale restoration of natural forests.” − Climate News Network

Restoring forests is helpful, but planting crops to do so is not. Only one of these options soaks up enough atmospheric carbon.

LONDON, 15 April, 2019 − Nations of the world are committed to restoring forests covering an area the size of India to soak up carbon dioxide and combat climate change. But British scientists have identified a serious flaw in the plan.

“Two-thirds of the area committed to global reforestation for carbon storage is slated to grow crops,” they write in the journal Nature. “This raises serious concerns.”

Their argument is simple. To limit global warming to no more than 1.5°C by the end of the century requires both rapid cuts in emissions of carbon dioxide from fossil fuel use, and investment in efficient ways of removing CO2 from the atmosphere.

Altogether 43 tropical and subtropical nations have pledged to restore 350 million hectares of forest to remove 42 billion tonnes of carbon from the atmosphere by 2100.

Little natural forest

Many of them, including Brazil, China and India, have already committed to 292 million hectares of new canopy. But in their analysis of the plans published so far, the scientists say that only 34% of this accumulated area would go back to natural forest.

Another 45% would be covered by plantations of one species harvested for biomass or timber, and 21% would be devoted to agroforestry: a mix of crops sheltered by stands of woodland.

In their calculations, this altogether would remove only 16 bn tonnes of carbon. That is because natural forests restored and subsequently protected would hold 40 times the carbon of a monoculture plantation and six times more than any mix of trees and crops.

“There is a scandal here,” said Simon Lewis, a geographer at University College London, who led the analysis. “To most people, forest restoration means bringing back natural forests, but policy makers are calling vast monocultures ‘forest restoration.’ And worse, the advertised climate benefits are absent.”

“To most people, forest restoration means bringing back natural forests, but policy makers are calling vast monocultures ‘forest restoration’”

Forests are only part of the answer to the challenge of containing climate change. To keep to the promise made by 195 nations in Paris in 2015, humankind has to find ways to remove 730 bn tonnes of CO2 from the atmosphere, which translates to 199 bn tonnes of carbon.

If the world found ways to boost the total area of global forest, woodland and woody savannahs, this could absorb perhaps a quarter of the total needed to keep planetary warming to no more than 1.5°C. And many countries have signed up to convert degraded land to new tree canopy.

“But will this policy work?” the scientists ask. “We show that under current plans, it will not. A closer look at countries’ reports reveals that almost half the pledged area is set to become plantations of commercial trees.”

Their point is that plantations can support local economies, but are poorer at storing carbon. Natural forests require little or no disturbance from humans, whereas the regular clearing and harvesting of plantations releases stored carbon dioxide back into the atmosphere every 10 or 20 years, while natural forests go on sequestering the greenhouse gas for decades. Natural regeneration is the cheapest and easiest option.

Land use shift

Most of the monoculture commitments are in large countries such as Brazil, China, Indonesia, Nigeria and the Democratic Republic of the Congo. The scientists suggest such plans have been insufficiently thought through. Drastic increases in tropical plantation for commercial crops would mark a major shift in global land use and could be accompanied by a fall in prices, with potentially unsatisfactory economic consequences.

And, they argue, policymakers are in any case misinterpreting the term forest restoration: it should not include plantations of a single species, such as eucalypt or rubber, which would do little for carbon sequestration. If commercial plantations were planted across the whole 350 million hectares, the entire crop would soak up and store just one billion tonnes of carbon.

“Of course new natural forests alone are not sufficient to meet our climate goals,” said Charlotte Wheeler of the University of Edinburgh, another of the authors. “Emissions from fossil fuels and deforestation must also stop.

“Other ways to remove carbon from the atmosphere are also needed. But no scenario has been produced that keeps climate change below dangerous levels without the large-scale restoration of natural forests.” − Climate News Network

*

Termites show humans how to keep their cool

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

*

Worse tropical winds will kill more trees

More greenhouse gases mean worse tropical winds and fiercer storms. That could mean more forest damage . . . and more greenhouse gas emissions . . .

LONDON, 28 March, 2019 − Worse tropical winds will spell worse danger to forests, in a cycle that feeds on itself. Hurricane Maria, which in 2017 slammed into Puerto Rico, shut down the electricity supply for the entire US island of 3.3 million people, and claimed almost 3,000 lives. And it also killed or damaged at least 20 million trees, or possibly 40 million.

If what happened in the track of Maria is a pointer to the future, then hurricanes, typhoons and tropical cyclones will join drought, wildfire and men with chainsaws as a new threat to the world’s tropical forests, the biggest absorbers of carbon on the terrestrial surface.

Living forests absorb carbon. Dying and decaying trees release greenhouse gases. The damage by Maria has already been estimated to have released 5.75 million tonnes of carbon to the atmosphere. This is about one-fortieth of all the carbon taken up by all the forests in the US.

“The expected changes in hurricane winds and rainfall may have profound consequences for the long-term resilience of tropical forests in the North Atlantic basin”

Hurricanes are linked with rising sea surface temperatures. Researchers have been warning for decades that in a warming world, extremes of heat, drought, flood and windstorm will become more destructive. So Hurricane Maria could be a taste of things to come.

“These hurricanes are going to kill more trees,” said Maria Uriarte, of the Earth Institute of Columbia University. “They’re going to break more trees. The factors that protected many trees in the past will no longer apply. Forests will become shorter and smaller because they won’t have time to regrow, and they will be less diverse.”

Maria blew into Puerto Rico in October 2017, with winds of up to 250 kms an hour. It dropped 500 mm of rain to become the island’s worst storm for 90 years.

To make their estimate of the destruction, Professor Uriarte and colleagues surveyed a 16-hectare plot of the island’s El Yunque national forest near the capital, San Juan: a plot that has been monitored after violent windstorm assault in 1989 by Hurricane Hugo and then in 1998 by Hurricane Georges.

Much fiercer impact

They report in the journal Nature Communications that Hurricane Maria killed twice as many trees outright as previous storms, and snapped more than three times as many trunks. Some species experienced breakage rates of up to 12 times that of previous hurricanes. Among them, and unexpectedly, were some of the slowest-growing, most valuable hardwoods. About half of all trees with broken trunks are expected to die within two or three years.

Some species survived well: among them the sierra palm, a tree able to bend with the wind, and if stripped sprout again from the top. Such species could be the inheritors of future hurricanes and grow quickly to take advantage of cleared forest space. So future forests could be dominated by shorter, and less diverse, foliage.

And the future is unpromising. Atlantic Ocean sea surface temperatures are rising, and climate simulations predict that by 2100 the highest sustained hurricane winds could increase by 15%. Warmer air can hold more moisture, so rainfall near storm centres could increase by 20%. Extreme winds fell trees; rain destabilises soil and makes uprooting easier.

“Maria transformed tropical forests across the island into leafless tangles of damaged and downed trees,” the researchers write. And they warn: “The expected changes in hurricane winds and rainfall may have profound consequences for the long-term resilience of tropical forests in the North Atlantic basin.” − Climate News Network

More greenhouse gases mean worse tropical winds and fiercer storms. That could mean more forest damage . . . and more greenhouse gas emissions . . .

LONDON, 28 March, 2019 − Worse tropical winds will spell worse danger to forests, in a cycle that feeds on itself. Hurricane Maria, which in 2017 slammed into Puerto Rico, shut down the electricity supply for the entire US island of 3.3 million people, and claimed almost 3,000 lives. And it also killed or damaged at least 20 million trees, or possibly 40 million.

If what happened in the track of Maria is a pointer to the future, then hurricanes, typhoons and tropical cyclones will join drought, wildfire and men with chainsaws as a new threat to the world’s tropical forests, the biggest absorbers of carbon on the terrestrial surface.

Living forests absorb carbon. Dying and decaying trees release greenhouse gases. The damage by Maria has already been estimated to have released 5.75 million tonnes of carbon to the atmosphere. This is about one-fortieth of all the carbon taken up by all the forests in the US.

“The expected changes in hurricane winds and rainfall may have profound consequences for the long-term resilience of tropical forests in the North Atlantic basin”

Hurricanes are linked with rising sea surface temperatures. Researchers have been warning for decades that in a warming world, extremes of heat, drought, flood and windstorm will become more destructive. So Hurricane Maria could be a taste of things to come.

“These hurricanes are going to kill more trees,” said Maria Uriarte, of the Earth Institute of Columbia University. “They’re going to break more trees. The factors that protected many trees in the past will no longer apply. Forests will become shorter and smaller because they won’t have time to regrow, and they will be less diverse.”

Maria blew into Puerto Rico in October 2017, with winds of up to 250 kms an hour. It dropped 500 mm of rain to become the island’s worst storm for 90 years.

To make their estimate of the destruction, Professor Uriarte and colleagues surveyed a 16-hectare plot of the island’s El Yunque national forest near the capital, San Juan: a plot that has been monitored after violent windstorm assault in 1989 by Hurricane Hugo and then in 1998 by Hurricane Georges.

Much fiercer impact

They report in the journal Nature Communications that Hurricane Maria killed twice as many trees outright as previous storms, and snapped more than three times as many trunks. Some species experienced breakage rates of up to 12 times that of previous hurricanes. Among them, and unexpectedly, were some of the slowest-growing, most valuable hardwoods. About half of all trees with broken trunks are expected to die within two or three years.

Some species survived well: among them the sierra palm, a tree able to bend with the wind, and if stripped sprout again from the top. Such species could be the inheritors of future hurricanes and grow quickly to take advantage of cleared forest space. So future forests could be dominated by shorter, and less diverse, foliage.

And the future is unpromising. Atlantic Ocean sea surface temperatures are rising, and climate simulations predict that by 2100 the highest sustained hurricane winds could increase by 15%. Warmer air can hold more moisture, so rainfall near storm centres could increase by 20%. Extreme winds fell trees; rain destabilises soil and makes uprooting easier.

“Maria transformed tropical forests across the island into leafless tangles of damaged and downed trees,” the researchers write. And they warn: “The expected changes in hurricane winds and rainfall may have profound consequences for the long-term resilience of tropical forests in the North Atlantic basin.” − Climate News Network