Category Archives: Nature

Climate change is drying out parched world

Researchers say most of the water vanishing from the Aral Sea and the Great Salt Lake is now in the oceans of this increasingly parched world.

LONDON, 5 December, 2018 – Climate change has begun to dry out the heart of almost every continent. This parched world’s landlocked basins – they make up a fifth of the Earth’s surface – have lost at least 100 billion tonnes of water every year since the century began. And US researchers now know where that water has gone.

Groundwater, lake and inland sea evaporation from inland Australia, the US West, the Chilean deserts, Saharan Africa, the Middle East and central Asia is now in the oceans, to account for 4mm, or at least 8%, of global sea level rise so far.

In effect, many of the world’s arid zones are becoming progressively more arid, according to a new study in the journal Nature Geoscience.

“Human activities such as groundwater depletion are significantly accelerating this drying”

Researchers used 14 years of observation by a set of orbiting satellites – known as GRACE, for Gravity Recovery and Climate Experiment – to observe the steady desiccation of regions that geographers know as endorheic basins. These are inland regions into which mountain streams, subterranean flows and sluggish rivers drain: among them the Caspian and the Aral Seas in Eurasia, and the Great Salt Lake in the US.

They are very different from the world’s great exorheic basins, better known as the Nile, the Amazon, the Mississippi and the Yangtze, all of which flow into the sea.

People in exorheic basins know their water supply will always be replenished. People farming or grazing cattle in the endorheic basins can now see their most vital resource slowly vanishing.

Evidence mounts

“Over the past few decades, we have seen increasing evidence of perturbations to the endorheic water balance,” said Jida Wang, a geographer at Kansas State University, who led the study.

“This includes, for example, the desiccating Aral Sea, the depleting Arabian aquifer and the retreating Eurasian glaciers. This evidence motivated us to ask: Is the total water storage across the global endorheic system, about one-fifth of the continental surface, undergoing a net decline?”

The GRACE satellites have already answered a series of huge questions about the world’s traffic in ice and water: they have “weighed” the loss of ice in the Antarctic, and put a total to the impact of devastating floods in Australia in 2011.

Speed of disappearance

And the remote sensing instruments now deliver a measure of the rate at which endorheic water is disappearing. Not only does it account for nearly one tenth of sea level rise so far, it adds up to nearly half the loss of water from retreating mountain glaciers in the densely occupied countries – that is, excluding Greenland and Antarctica – and it matches the entire extraction of groundwater, everywhere in the world, for irrigation and to nourish towns and cities in the drier regions.

The parching of the inland basins is uneven – some report more rainfall – but around 75% have been steadily getting drier. “The water losses from the world’s endorheic basins are yet another example of how climate change is further drying the already dry arid and semi-arid regions of the globe,” said Jay Famiglietti, one of the co-authors, who directs the Global Institute of Water Security, at the University of Saskatchewan in Canada.

“Meanwhile, human activities such as groundwater depletion are significantly accelerating this drying.” – Climate News Network

Researchers say most of the water vanishing from the Aral Sea and the Great Salt Lake is now in the oceans of this increasingly parched world.

LONDON, 5 December, 2018 – Climate change has begun to dry out the heart of almost every continent. This parched world’s landlocked basins – they make up a fifth of the Earth’s surface – have lost at least 100 billion tonnes of water every year since the century began. And US researchers now know where that water has gone.

Groundwater, lake and inland sea evaporation from inland Australia, the US West, the Chilean deserts, Saharan Africa, the Middle East and central Asia is now in the oceans, to account for 4mm, or at least 8%, of global sea level rise so far.

In effect, many of the world’s arid zones are becoming progressively more arid, according to a new study in the journal Nature Geoscience.

“Human activities such as groundwater depletion are significantly accelerating this drying”

Researchers used 14 years of observation by a set of orbiting satellites – known as GRACE, for Gravity Recovery and Climate Experiment – to observe the steady desiccation of regions that geographers know as endorheic basins. These are inland regions into which mountain streams, subterranean flows and sluggish rivers drain: among them the Caspian and the Aral Seas in Eurasia, and the Great Salt Lake in the US.

They are very different from the world’s great exorheic basins, better known as the Nile, the Amazon, the Mississippi and the Yangtze, all of which flow into the sea.

People in exorheic basins know their water supply will always be replenished. People farming or grazing cattle in the endorheic basins can now see their most vital resource slowly vanishing.

Evidence mounts

“Over the past few decades, we have seen increasing evidence of perturbations to the endorheic water balance,” said Jida Wang, a geographer at Kansas State University, who led the study.

“This includes, for example, the desiccating Aral Sea, the depleting Arabian aquifer and the retreating Eurasian glaciers. This evidence motivated us to ask: Is the total water storage across the global endorheic system, about one-fifth of the continental surface, undergoing a net decline?”

The GRACE satellites have already answered a series of huge questions about the world’s traffic in ice and water: they have “weighed” the loss of ice in the Antarctic, and put a total to the impact of devastating floods in Australia in 2011.

Speed of disappearance

And the remote sensing instruments now deliver a measure of the rate at which endorheic water is disappearing. Not only does it account for nearly one tenth of sea level rise so far, it adds up to nearly half the loss of water from retreating mountain glaciers in the densely occupied countries – that is, excluding Greenland and Antarctica – and it matches the entire extraction of groundwater, everywhere in the world, for irrigation and to nourish towns and cities in the drier regions.

The parching of the inland basins is uneven – some report more rainfall – but around 75% have been steadily getting drier. “The water losses from the world’s endorheic basins are yet another example of how climate change is further drying the already dry arid and semi-arid regions of the globe,” said Jay Famiglietti, one of the co-authors, who directs the Global Institute of Water Security, at the University of Saskatchewan in Canada.

“Meanwhile, human activities such as groundwater depletion are significantly accelerating this drying.” – Climate News Network

Wild plant ancestors need more protection

Everything that humans eat or drink comes directly or indirectly from plants. Many wild plant ancestors, of even the most precious species, could be at risk.

LONDON, 27 November, 2018 – Only a small percentage of the wild plant ancestors vital to human life can be considered safe from extinction.

Botanists who have monitored the conservation status of almost 7,000 species – the wild forerunners of plants that humans use for food, medicine, shelter, fuel and livestock feed – found that most could be counted as not properly conserved and protected.

And another wild plant – perhaps the most valuable of all at price per measured weight – could be eliminated for ever by climate change driven by profligate human combustion of fossil fuels. The prized Mediterranean truffle may have disappeared from the woodlands of France, Spain and Italy by 2100, according to a separate study.

All the world’s most important crops are selected, bred and cultivated from wild ancestors: these original forerunners remain a significant reservoir of genes that could be important to a species’ survival.

But when researchers came to measure progress in global conservation goals, they found that only three species in 100 could be counted as “sufficiently conserved.”

“If we want to get serious about protecting these species … we have a long way to go before they are fully protected”

Many of these wild originals are of global commercial importance. They include the wild relatives of billion-dollar crops such as coffee, chocolate, vanilla, cinnamon and even the little fir most favoured in Europe as a Christmas tree.

Colin Khoury, a specialist in biodiversity at the International Centre for Tropical Agriculture in Colombia, and colleagues report in the journal Ecological Indicators that they drew on some of the 43 million records of 6,941 plants of socio-economic importance or cultural value – in effect, plants that make money for people – in 220 countries.

Under UN sustainable development guidelines, and as targets set by the Convention on Biological Diversity, the nations of the world agreed to meet a series of ambitious conservation goals by 2020.

The scientists devised a Useful Plants Indicator which sorted wild crop ancestors into their status as conserved species in national parks or protected forests, and as specimens in gene banks, botanical gardens and so on.

Coffee in peril

They found that the wild coffee plants Coffea liberica and Coffea arabica were far from safe, and 32 other coffee species were also rated as nowhere near sufficiently protected: two thirds of the coffee species were not recorded in gene banks at all.

Coffee is a crop sensitive to temperature, and as the global thermometer rises, coffee producers in both Ethiopia and Latin America face an uncertain economic future.

Much the same was true for Theobroma cacao, the wild ancestor of the chocolate of the tropical Americas, the flavouring bean Vanilla planiofolia and the wild spice cinnamon, or Cinnamomum verra. Unexpectedly, the fir Abies nordmanniana, alias the Nordmann fir or Christmas tree is, in the wild, in an even more precarious situation: the researchers rate it as one of the high priority species for conservation.

Some of the species were – for the time being – protected in national parks but not collected safely in gene banks and botanic gardens. But as the world warms, and climates change, the species may have to shift their range, into landscapes at hazard from ecosystem disruption.

“The indicator shows that the network of protected areas around the world is doing something significant for useful plants,” Dr Khoury said. “But if we want to get serious about protecting these species, especially the ones that are vulnerable, we have a long way to go before they are fully protected.”

Truffle threat

Meanwhile, the truffle species Tuber melanosporum – trading at more than £1,000 (US$1,300) per kilogram – could be lost to commerce within a generation or two: a new study in the journal Science of the Total Environment finds that under the most likely global warming scenarios the climate of its native habitat will become warmer and drier, and production of the wild and farmed species could dwindle by between 78% and 100% between 2071 and 2100.

Paul Thomas, of the University of Stirling, who has already tested black truffle plantations in Scotland, studied 36 years of truffle harvest records to reach his bleak conclusion.

He warns that the collapse of the truffle harvest could happen even earlier, thanks to the heatwaves, forest fires, droughts, pests and diseases that come with climate change. Europe risks losing an industry worth hundreds of millions along with an iconic species and a regional way of life.

“This is a wake-up call to the impacts of climate change in the not-too-distant future,” Dr Thomas said. “These findings indicate that conservational initiatives are required to form some protection of this important and iconic species.” – Climate News Network

Everything that humans eat or drink comes directly or indirectly from plants. Many wild plant ancestors, of even the most precious species, could be at risk.

LONDON, 27 November, 2018 – Only a small percentage of the wild plant ancestors vital to human life can be considered safe from extinction.

Botanists who have monitored the conservation status of almost 7,000 species – the wild forerunners of plants that humans use for food, medicine, shelter, fuel and livestock feed – found that most could be counted as not properly conserved and protected.

And another wild plant – perhaps the most valuable of all at price per measured weight – could be eliminated for ever by climate change driven by profligate human combustion of fossil fuels. The prized Mediterranean truffle may have disappeared from the woodlands of France, Spain and Italy by 2100, according to a separate study.

All the world’s most important crops are selected, bred and cultivated from wild ancestors: these original forerunners remain a significant reservoir of genes that could be important to a species’ survival.

But when researchers came to measure progress in global conservation goals, they found that only three species in 100 could be counted as “sufficiently conserved.”

“If we want to get serious about protecting these species … we have a long way to go before they are fully protected”

Many of these wild originals are of global commercial importance. They include the wild relatives of billion-dollar crops such as coffee, chocolate, vanilla, cinnamon and even the little fir most favoured in Europe as a Christmas tree.

Colin Khoury, a specialist in biodiversity at the International Centre for Tropical Agriculture in Colombia, and colleagues report in the journal Ecological Indicators that they drew on some of the 43 million records of 6,941 plants of socio-economic importance or cultural value – in effect, plants that make money for people – in 220 countries.

Under UN sustainable development guidelines, and as targets set by the Convention on Biological Diversity, the nations of the world agreed to meet a series of ambitious conservation goals by 2020.

The scientists devised a Useful Plants Indicator which sorted wild crop ancestors into their status as conserved species in national parks or protected forests, and as specimens in gene banks, botanical gardens and so on.

Coffee in peril

They found that the wild coffee plants Coffea liberica and Coffea arabica were far from safe, and 32 other coffee species were also rated as nowhere near sufficiently protected: two thirds of the coffee species were not recorded in gene banks at all.

Coffee is a crop sensitive to temperature, and as the global thermometer rises, coffee producers in both Ethiopia and Latin America face an uncertain economic future.

Much the same was true for Theobroma cacao, the wild ancestor of the chocolate of the tropical Americas, the flavouring bean Vanilla planiofolia and the wild spice cinnamon, or Cinnamomum verra. Unexpectedly, the fir Abies nordmanniana, alias the Nordmann fir or Christmas tree is, in the wild, in an even more precarious situation: the researchers rate it as one of the high priority species for conservation.

Some of the species were – for the time being – protected in national parks but not collected safely in gene banks and botanic gardens. But as the world warms, and climates change, the species may have to shift their range, into landscapes at hazard from ecosystem disruption.

“The indicator shows that the network of protected areas around the world is doing something significant for useful plants,” Dr Khoury said. “But if we want to get serious about protecting these species, especially the ones that are vulnerable, we have a long way to go before they are fully protected.”

Truffle threat

Meanwhile, the truffle species Tuber melanosporum – trading at more than £1,000 (US$1,300) per kilogram – could be lost to commerce within a generation or two: a new study in the journal Science of the Total Environment finds that under the most likely global warming scenarios the climate of its native habitat will become warmer and drier, and production of the wild and farmed species could dwindle by between 78% and 100% between 2071 and 2100.

Paul Thomas, of the University of Stirling, who has already tested black truffle plantations in Scotland, studied 36 years of truffle harvest records to reach his bleak conclusion.

He warns that the collapse of the truffle harvest could happen even earlier, thanks to the heatwaves, forest fires, droughts, pests and diseases that come with climate change. Europe risks losing an industry worth hundreds of millions along with an iconic species and a regional way of life.

“This is a wake-up call to the impacts of climate change in the not-too-distant future,” Dr Thomas said. “These findings indicate that conservational initiatives are required to form some protection of this important and iconic species.” – Climate News Network

Tropical forests flee uphill to escape heat

The tropical forests of the Andes are responding to climate change. But a tree can climb only so far before it has nowhere to go.

LONDON, 22 November, 2018 − Tropical forests are racing uphill to escape global warming. Some of them may lose the race.

A meticulous and sustained study of nearly 200 plots of forest in Colombia, Ecuador, Peru and northern Argentina has found that where they can, tropical species are moving uphill as the thermometer rises. But there is a problem: can a species that flourished in one ecosystem in the Andes and Amazon migrate and colonise another at higher altitude?

A new study in the journal Nature finds that some of them cannot. “Andean forests must be added to the growing list of ecosystems and species that lack the ability to quickly and cohesively respond to climate change and thus face high risk of extinction, biodiversity loss and functional collapse,” they conclude.

Plants and animals in mountain communities everywhere in the temperate world seem to be on the move: many of the studies however focus on observations of selected species in one country or mountain zone, or even on one mountain.

Wider perspective

Belén Fabrique and Kenneth Feeley of the University of Miami and colleagues went looking for the big picture. They selected 186 closely-monitored tracts of forest in what scientists call the Tropical Andes Biodiversity Hotspot, at altitudes of from 300 to 3,000 metres. These forest plots together are home to 120 different plant families divided into 528 genera and 2,024 tree named species, including palms, tree ferns and lianas.

They then looked for a way to measure change in a mix of such diversity − in effect, a local ecosystem − and selected a measure called the community temperature index, already used to monitor shifts in bird and butterfly populations elsewhere. Since most of the plots had been surveyed each year over a 20-year period, they had a way of detecting and tracking change.

Temperate species of trees are adapted to big seasonal shifts in temperature. Trees in the lowland tropics are not. Tropical trees that migrate uphill run the risk of encountering an environmental roadblock, a shift in the ecosystem.

“In the Andes, the ecosystems can change very fast and very dramatically, for example from sunny and dry premontane forests to sopping wet cloud forests. These changes, called ecotones, appear to be blocking species migrations,” said Belén Fabrique, who designed the study.

“The faster climate change happens, the faster we will lose our tropical forests, which means that climate change will happen even faster”

“These ecotone barriers make it harder for plants to relocate their populations – and if they can’t relocate, they will go extinct.”

In response to climate change – driven by ever-higher emissions of greenhouse gases from the combustion of fossil fuels – the researchers confirmed that the thermophilic or heat-loving species were shifting to higher ground, while the abundance of the species adapted to cool conditions was declining. But the rate of change in the mix of these forest plots was not uniform: some Andean species were being driven out as rainfall and cloud cover conditions became intolerable.

“Thermophilisation is a mouthful of a word but it means that forests are becoming more heat-loving over time because as the world warms up, the species that prefer cold are being kicked out or are dying off and the heat-loving species are moving up and taking their place,” said Professor Feeley.

“Everything is moving up the mountain, so the species near the tops of the mountains are running out of places to go and may soon face the risk of mountain-top extinction.”

Taxonomical logjam

The next step is to try to work out how climate operates on specific Andean plants: a challenge because many of them have yet to be identified and named. Only then can researchers work out the ecological consequences of their loss.

The irony is that forest ecosystems play a key role in moderating climate change.

“Tropical forests are one of the most important players in the world’s global carbon cycle. They slow down climate change by taking a lot of carbon out of the atmosphere and putting it into their growth,” Professor Feeley said.

“So the faster climate change happens, the faster we will lose our tropical forests, which means that climate change will happen even faster.” – Climate News Network

The tropical forests of the Andes are responding to climate change. But a tree can climb only so far before it has nowhere to go.

LONDON, 22 November, 2018 − Tropical forests are racing uphill to escape global warming. Some of them may lose the race.

A meticulous and sustained study of nearly 200 plots of forest in Colombia, Ecuador, Peru and northern Argentina has found that where they can, tropical species are moving uphill as the thermometer rises. But there is a problem: can a species that flourished in one ecosystem in the Andes and Amazon migrate and colonise another at higher altitude?

A new study in the journal Nature finds that some of them cannot. “Andean forests must be added to the growing list of ecosystems and species that lack the ability to quickly and cohesively respond to climate change and thus face high risk of extinction, biodiversity loss and functional collapse,” they conclude.

Plants and animals in mountain communities everywhere in the temperate world seem to be on the move: many of the studies however focus on observations of selected species in one country or mountain zone, or even on one mountain.

Wider perspective

Belén Fabrique and Kenneth Feeley of the University of Miami and colleagues went looking for the big picture. They selected 186 closely-monitored tracts of forest in what scientists call the Tropical Andes Biodiversity Hotspot, at altitudes of from 300 to 3,000 metres. These forest plots together are home to 120 different plant families divided into 528 genera and 2,024 tree named species, including palms, tree ferns and lianas.

They then looked for a way to measure change in a mix of such diversity − in effect, a local ecosystem − and selected a measure called the community temperature index, already used to monitor shifts in bird and butterfly populations elsewhere. Since most of the plots had been surveyed each year over a 20-year period, they had a way of detecting and tracking change.

Temperate species of trees are adapted to big seasonal shifts in temperature. Trees in the lowland tropics are not. Tropical trees that migrate uphill run the risk of encountering an environmental roadblock, a shift in the ecosystem.

“In the Andes, the ecosystems can change very fast and very dramatically, for example from sunny and dry premontane forests to sopping wet cloud forests. These changes, called ecotones, appear to be blocking species migrations,” said Belén Fabrique, who designed the study.

“The faster climate change happens, the faster we will lose our tropical forests, which means that climate change will happen even faster”

“These ecotone barriers make it harder for plants to relocate their populations – and if they can’t relocate, they will go extinct.”

In response to climate change – driven by ever-higher emissions of greenhouse gases from the combustion of fossil fuels – the researchers confirmed that the thermophilic or heat-loving species were shifting to higher ground, while the abundance of the species adapted to cool conditions was declining. But the rate of change in the mix of these forest plots was not uniform: some Andean species were being driven out as rainfall and cloud cover conditions became intolerable.

“Thermophilisation is a mouthful of a word but it means that forests are becoming more heat-loving over time because as the world warms up, the species that prefer cold are being kicked out or are dying off and the heat-loving species are moving up and taking their place,” said Professor Feeley.

“Everything is moving up the mountain, so the species near the tops of the mountains are running out of places to go and may soon face the risk of mountain-top extinction.”

Taxonomical logjam

The next step is to try to work out how climate operates on specific Andean plants: a challenge because many of them have yet to be identified and named. Only then can researchers work out the ecological consequences of their loss.

The irony is that forest ecosystems play a key role in moderating climate change.

“Tropical forests are one of the most important players in the world’s global carbon cycle. They slow down climate change by taking a lot of carbon out of the atmosphere and putting it into their growth,” Professor Feeley said.

“So the faster climate change happens, the faster we will lose our tropical forests, which means that climate change will happen even faster.” – Climate News Network

Biofuel land grab will slash nature’s space

Growing enough greenery to provide cleaner fuel and slow climate change will need a biofuel land grab: a 10 to 30-fold rise in land devoted to green crops.

LONDON, 21 November, 2018 − Replacing fossil fuels with alternatives derived from some natural sources may be prohibitively high: the biofuel land grab needed could require at least 10% more land than the world uses now to grow green crops, conservationists say.

But that’s the good news. They believe the total increase in green energy-related land use could be much higher, closer to 30%, meaning “crushing” pressure on habitats for plants and animals, and undermining the essential diversity of species on Earth.

Their warning was spelt out at a UN biodiversity meeting in Egypt by Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services, IPBES.

IPBES says it exists to organise knowledge about the Earth’s biodiversity to offer information for political decisions globally, like the work over the last 30 years of the Intergovernmental Panel on Climate Change, the IPCC.

Extremely urgent

She said the latest IPCC report, on limiting climate warming to 1.5°C, had given “a sense of extreme urgency for these exchanges on tradeoffs and synergies between climate, biodiversity and land degradation.”

Dr. Larigauderie said most IPCC scenarios foresaw a major increase in the land area needed to cultivate biofuel crops like maize (or corn, as it is also known) to slow the pace of warming by 2050 − up to 724 million hectares in total, an area almost the size of Australia. The current amount of land used for biofuel crops is uncertain, but conservationists say it lies somewhere between 15 and 30m ha.

“The key issue here is: where would this huge amount of new land come from”, she asked. “Is there currently such a large amount of ‘marginal land’ available or would this compete with biodiversity? Some scientists argue that there is very little marginal land left.

“Protecting the invaluable contributions of nature to people will be the defining challenge of decades to come”

“This important issue needs to be clarified, but the demand for land for energy will almost certainly increase, with negative consequences for biodiversity.”

Dr. Larigauderie was speaking at the start of the annual conference of the states which support the UN Convention on Biological Diversity.

Deep cuts in the greenhouse gas emissions from human activities which drive global warming would be possible without massive bioenergy resources, she said, but this would need substantial cuts in energy use as well as rapid increases in the production of low-carbon energy from wind, solar and nuclear power.

Safeguarding the variety of plant and animal species and the services nature provides was itself essential to reducing global warming, she said. Land ecosystems today soak up about a third of annual carbon dioxide emissions, with the world’s oceans accounting for about another quarter annually.

Forests achieve more

In any case, Dr Larigauderie said, reforestation was better at protecting the climate than most biofuel crops. In temperate climates, one reforested hectare was four times more effective in climate mitigation than a hectare of maize used for biofuel.

“All methods that produce healthier ecosystems should be promoted as a way to combat climate change”, she said. “This includes afforestation and reforestation, as well as restoration − implemented properly using native species, for example.”

IPBES plans to publish a primer detailing elements of its Global Assessment of Biodiversity in May 2019. The British scientist Sir Robert Watson, formerly chair of the IPCC and now chair of IPBES, says: “The loss of species, ecosystems and genetic diversity is already a global and generational threat to human well-being. Protecting the invaluable contributions of nature to people will be the defining challenge of decades to come.

“Policies, efforts and actions − at every level − will only succeed, however, when based on the best knowledge and evidence. This is what the IPBES Global Assessment provides.” − Climate News Network

Growing enough greenery to provide cleaner fuel and slow climate change will need a biofuel land grab: a 10 to 30-fold rise in land devoted to green crops.

LONDON, 21 November, 2018 − Replacing fossil fuels with alternatives derived from some natural sources may be prohibitively high: the biofuel land grab needed could require at least 10% more land than the world uses now to grow green crops, conservationists say.

But that’s the good news. They believe the total increase in green energy-related land use could be much higher, closer to 30%, meaning “crushing” pressure on habitats for plants and animals, and undermining the essential diversity of species on Earth.

Their warning was spelt out at a UN biodiversity meeting in Egypt by Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services, IPBES.

IPBES says it exists to organise knowledge about the Earth’s biodiversity to offer information for political decisions globally, like the work over the last 30 years of the Intergovernmental Panel on Climate Change, the IPCC.

Extremely urgent

She said the latest IPCC report, on limiting climate warming to 1.5°C, had given “a sense of extreme urgency for these exchanges on tradeoffs and synergies between climate, biodiversity and land degradation.”

Dr. Larigauderie said most IPCC scenarios foresaw a major increase in the land area needed to cultivate biofuel crops like maize (or corn, as it is also known) to slow the pace of warming by 2050 − up to 724 million hectares in total, an area almost the size of Australia. The current amount of land used for biofuel crops is uncertain, but conservationists say it lies somewhere between 15 and 30m ha.

“The key issue here is: where would this huge amount of new land come from”, she asked. “Is there currently such a large amount of ‘marginal land’ available or would this compete with biodiversity? Some scientists argue that there is very little marginal land left.

“Protecting the invaluable contributions of nature to people will be the defining challenge of decades to come”

“This important issue needs to be clarified, but the demand for land for energy will almost certainly increase, with negative consequences for biodiversity.”

Dr. Larigauderie was speaking at the start of the annual conference of the states which support the UN Convention on Biological Diversity.

Deep cuts in the greenhouse gas emissions from human activities which drive global warming would be possible without massive bioenergy resources, she said, but this would need substantial cuts in energy use as well as rapid increases in the production of low-carbon energy from wind, solar and nuclear power.

Safeguarding the variety of plant and animal species and the services nature provides was itself essential to reducing global warming, she said. Land ecosystems today soak up about a third of annual carbon dioxide emissions, with the world’s oceans accounting for about another quarter annually.

Forests achieve more

In any case, Dr Larigauderie said, reforestation was better at protecting the climate than most biofuel crops. In temperate climates, one reforested hectare was four times more effective in climate mitigation than a hectare of maize used for biofuel.

“All methods that produce healthier ecosystems should be promoted as a way to combat climate change”, she said. “This includes afforestation and reforestation, as well as restoration − implemented properly using native species, for example.”

IPBES plans to publish a primer detailing elements of its Global Assessment of Biodiversity in May 2019. The British scientist Sir Robert Watson, formerly chair of the IPCC and now chair of IPBES, says: “The loss of species, ecosystems and genetic diversity is already a global and generational threat to human well-being. Protecting the invaluable contributions of nature to people will be the defining challenge of decades to come.

“Policies, efforts and actions − at every level − will only succeed, however, when based on the best knowledge and evidence. This is what the IPBES Global Assessment provides.” − Climate News Network

Mosquito evolution may alter as world warms

In the long term, some creatures will adapt to climate change and evolve. Mosquito evolution could bring new species – and new diseases.

LONDON, 15 November, 2018 – The hot breath of climate change could blow in new health hazards – if the past is a reliable guide. A shift in mosquito evolution could be triggered by ever greater levels of carbon dioxide in the atmosphere, fossil evidence matched with climate simulations suggests.

And in a new climate, and with new opportunities, there could follow new diseases, according to British researchers.

Mosquitoes already carry infections such as malaria, yellow fever, Zika virus, West Nile virus and dengue fever: diseases that kill millions each year. And mosquitoes are more than usually sensitive to CO2, which they exploit to detect potential sources of blood from the mammals on which they prey.

Researchers have repeatedly worried about what warming temperatures and changing climate could do for the mosquito-borne return of malaria to those cooler climates normally considered safe, and about the potential spread of tsetse fly as its normal habitat becomes too hot.

But any new emergent diseases from the mosquito remain academic: the scientists foresee evolutionary opportunities, likely to emerge over very long timespans.

“It’s only the female mosquitoes that take a blood meal, and they use the CO2 that mammals and other vertebrates exhale as a very general cue to locate their hosts”

Researchers report in the journal Communications Biology that they looked carefully at what they could establish about mosquito evolution, composed a “supertree” of the disease-bearing insect and its relatives, and mapped it against what they knew of past climate change.

There are mosquito fossils – though not very many – but these served as a kind of check on the evidence from the mathematical models of evolution that emerged.

As carbon dioxide levels rise, with ever greater combustion of fossil fuels to drive global warming, it could paradoxically be more difficult for mosquitoes to prey on their usual hosts. Environmental change provides opportunities for new evolutionary niches – and perhaps mosquitoes could find new hosts, and new infectious diseases could evolve?

“It’s only the female mosquitoes that take a blood meal, and they use the CO2 that mammals and other vertebrates exhale as a very general cue to locate their hosts.

Other clues

“One line of thinking is that as ambient levels of atmospheric CO2 rose, mosquitoes may have found it increasingly difficult to distinguish between the CO2 from their hosts and those background levels,” said Matthew Wills, of the University of Bath, one of the authors.

“Vision, body heat and other smells might then have become more important in locating their blood meals, but many of these cues tend to be more specific to particular hosts. As a general rule, we know that a strong host specificity can be an important driver of speciation in parasites, and the same may be true in mosquitoes.”

And Katie Davis, of the University of York, said: “We found that the increase in the diversity of mammals led directly to a rise in the number of mosquito species, and also that there is a relationship between CO2 levels and the number of mammal species, but there are still missing pieces of this puzzle, so we can still only speculate at this stage.”

But, she said, the research showed that mosquitoes could adapt to climate change and evolve. “With increased speciation, however, comes the added risk of disease increase and the return of certain diseases that had eradicated them or never experienced them before.” – Climate News Network

In the long term, some creatures will adapt to climate change and evolve. Mosquito evolution could bring new species – and new diseases.

LONDON, 15 November, 2018 – The hot breath of climate change could blow in new health hazards – if the past is a reliable guide. A shift in mosquito evolution could be triggered by ever greater levels of carbon dioxide in the atmosphere, fossil evidence matched with climate simulations suggests.

And in a new climate, and with new opportunities, there could follow new diseases, according to British researchers.

Mosquitoes already carry infections such as malaria, yellow fever, Zika virus, West Nile virus and dengue fever: diseases that kill millions each year. And mosquitoes are more than usually sensitive to CO2, which they exploit to detect potential sources of blood from the mammals on which they prey.

Researchers have repeatedly worried about what warming temperatures and changing climate could do for the mosquito-borne return of malaria to those cooler climates normally considered safe, and about the potential spread of tsetse fly as its normal habitat becomes too hot.

But any new emergent diseases from the mosquito remain academic: the scientists foresee evolutionary opportunities, likely to emerge over very long timespans.

“It’s only the female mosquitoes that take a blood meal, and they use the CO2 that mammals and other vertebrates exhale as a very general cue to locate their hosts”

Researchers report in the journal Communications Biology that they looked carefully at what they could establish about mosquito evolution, composed a “supertree” of the disease-bearing insect and its relatives, and mapped it against what they knew of past climate change.

There are mosquito fossils – though not very many – but these served as a kind of check on the evidence from the mathematical models of evolution that emerged.

As carbon dioxide levels rise, with ever greater combustion of fossil fuels to drive global warming, it could paradoxically be more difficult for mosquitoes to prey on their usual hosts. Environmental change provides opportunities for new evolutionary niches – and perhaps mosquitoes could find new hosts, and new infectious diseases could evolve?

“It’s only the female mosquitoes that take a blood meal, and they use the CO2 that mammals and other vertebrates exhale as a very general cue to locate their hosts.

Other clues

“One line of thinking is that as ambient levels of atmospheric CO2 rose, mosquitoes may have found it increasingly difficult to distinguish between the CO2 from their hosts and those background levels,” said Matthew Wills, of the University of Bath, one of the authors.

“Vision, body heat and other smells might then have become more important in locating their blood meals, but many of these cues tend to be more specific to particular hosts. As a general rule, we know that a strong host specificity can be an important driver of speciation in parasites, and the same may be true in mosquitoes.”

And Katie Davis, of the University of York, said: “We found that the increase in the diversity of mammals led directly to a rise in the number of mosquito species, and also that there is a relationship between CO2 levels and the number of mammal species, but there are still missing pieces of this puzzle, so we can still only speculate at this stage.”

But, she said, the research showed that mosquitoes could adapt to climate change and evolve. “With increased speciation, however, comes the added risk of disease increase and the return of certain diseases that had eradicated them or never experienced them before.” – Climate News Network

Arctic shorebirds face rising predation risk

Rapid warning means rapid change in the north. That’s bad news for the hardy Arctic shorebirds and delicate plants that once found safety there.

LONDON, 13 November, 2018 – Vulnerable baby birds are no longer safe in their nests. New research shows that nest predation – the theft of the eggs of migrant Arctic shorebirds such as plovers and sandpipers in the high latitudes of the northern hemisphere – has risen threefold in the last 70 years.

A second study suggests that the very thing that encourages Arctic plant growth – the rapid warming of the north polar regions – also means a loss of vital snow cover for the delicate plants in the high mountains that depend on snow for winter insulation. This is bad news for the snow buttercup, mountain sorrel and mossplant.

British, Czech, Russian and |Hungarian researchers report in the journal Science that they compared rates of nest robbery over two timespans, from 1944 to 1999 and from 2000 to 2015, around the world.

Altogether the study covered 38,191 nests in 237 populations of 111 species in 149 locations. Nest predation in the tropics was always higher – perhaps because there are more predators – and tropical bird species tend to counter offspring loss by living longer to generate more.

But, the researchers found, nest predation in temperate Europe, Asia and North America had doubled. And in the Arctic, nestling loss by shorebirds had risen threefold.

“The future changes in northern species populations may be abrupt, giving rise to ecological surprises that are hard to predict”

In fact, certain species have always flown far north to breed because until the Arctic began to warm rapidly, as a consequence of ever higher levels of the greenhouse gas carbon dioxide in the atmosphere, the Arctic provided a relatively safe space for ground-nesting birds.

The reason for ever greater nest losses? This has yet to be established. But the guess is that as change comes to the plants and animal life of the Arctic, either predator species have changed, or the loss of familiar prey has forced a change of diet on hunters.

Because snow cover in the high Arctic has changed the lemming population has crashed, and the carnivores that hunted lemmings may now have turned to birds’ nests.

“These findings are alarming. The Earth is a fragile planet with complex ecosystems, thus changes in predator-prey relationships can lead to cascading effects through the food web with detrimental consequences for many organisms thousands of kilometres away,” said Tamás Székely, a biologist at the University of Bath, UK, with research posts at Hungarian and Chinese universities.

Final blow

“Migration of shorebirds from the Arctic to the tropics is now one of the largest movements of biomass in the world. But with increased nest predation, the babies are no longer making the journeys with their parents. This could be the last nail in the coffin for critically-endangered species such as the spoon-billed sandpiper.”

And Vojtěch Kubelka, of Charles University in Prague, who led the research, said the Arctic was no longer a safe harbour for breeding birds. “On the contrary, the Arctic now represents an extensive ecological trap.”

Rapid warming of the north polar regions also means a more rapid invasion of plants from further south and a change in plant response.

Finnish scientists report in the journal Nature Climate Change that changes in snow cover on the high ground may be an even greater danger to Arctic biodiversity than rising temperatures.

Snow cover crucial

They looked at satellite data and computer-based models of probable change as humans burn ever more fossil fuels to drive global warming and climate change, and applied the results to 273 flowering plants, mosses and lichens at 1200 locations in the mountains of northern Scandinavia.

Snow that now lingers until late spring provides vital protection for fragile growths and prevents hardier southern species from colonising the same habitat. In brief, it limits the competition.

The great unknown remains snowfall: while climate scientists can be sure of likely future temperatures at any latitude, it is much harder to predict changes in precipitation. But if the snow cover is reduced, then local extinction rates could accelerate. Plants that once maintained a precarious hold in extreme conditions could vanish with the snows.

“Our findings show that the future changes in northern species populations may be abrupt, giving rise to ecological surprises that are hard to predict, such as fast eradications of populations in some places and the invasion of flexible species into new places”, said Risto Heikkinen from the Finnish Environment Institute. – Climate News Network

Rapid warning means rapid change in the north. That’s bad news for the hardy Arctic shorebirds and delicate plants that once found safety there.

LONDON, 13 November, 2018 – Vulnerable baby birds are no longer safe in their nests. New research shows that nest predation – the theft of the eggs of migrant Arctic shorebirds such as plovers and sandpipers in the high latitudes of the northern hemisphere – has risen threefold in the last 70 years.

A second study suggests that the very thing that encourages Arctic plant growth – the rapid warming of the north polar regions – also means a loss of vital snow cover for the delicate plants in the high mountains that depend on snow for winter insulation. This is bad news for the snow buttercup, mountain sorrel and mossplant.

British, Czech, Russian and |Hungarian researchers report in the journal Science that they compared rates of nest robbery over two timespans, from 1944 to 1999 and from 2000 to 2015, around the world.

Altogether the study covered 38,191 nests in 237 populations of 111 species in 149 locations. Nest predation in the tropics was always higher – perhaps because there are more predators – and tropical bird species tend to counter offspring loss by living longer to generate more.

But, the researchers found, nest predation in temperate Europe, Asia and North America had doubled. And in the Arctic, nestling loss by shorebirds had risen threefold.

“The future changes in northern species populations may be abrupt, giving rise to ecological surprises that are hard to predict”

In fact, certain species have always flown far north to breed because until the Arctic began to warm rapidly, as a consequence of ever higher levels of the greenhouse gas carbon dioxide in the atmosphere, the Arctic provided a relatively safe space for ground-nesting birds.

The reason for ever greater nest losses? This has yet to be established. But the guess is that as change comes to the plants and animal life of the Arctic, either predator species have changed, or the loss of familiar prey has forced a change of diet on hunters.

Because snow cover in the high Arctic has changed the lemming population has crashed, and the carnivores that hunted lemmings may now have turned to birds’ nests.

“These findings are alarming. The Earth is a fragile planet with complex ecosystems, thus changes in predator-prey relationships can lead to cascading effects through the food web with detrimental consequences for many organisms thousands of kilometres away,” said Tamás Székely, a biologist at the University of Bath, UK, with research posts at Hungarian and Chinese universities.

Final blow

“Migration of shorebirds from the Arctic to the tropics is now one of the largest movements of biomass in the world. But with increased nest predation, the babies are no longer making the journeys with their parents. This could be the last nail in the coffin for critically-endangered species such as the spoon-billed sandpiper.”

And Vojtěch Kubelka, of Charles University in Prague, who led the research, said the Arctic was no longer a safe harbour for breeding birds. “On the contrary, the Arctic now represents an extensive ecological trap.”

Rapid warming of the north polar regions also means a more rapid invasion of plants from further south and a change in plant response.

Finnish scientists report in the journal Nature Climate Change that changes in snow cover on the high ground may be an even greater danger to Arctic biodiversity than rising temperatures.

Snow cover crucial

They looked at satellite data and computer-based models of probable change as humans burn ever more fossil fuels to drive global warming and climate change, and applied the results to 273 flowering plants, mosses and lichens at 1200 locations in the mountains of northern Scandinavia.

Snow that now lingers until late spring provides vital protection for fragile growths and prevents hardier southern species from colonising the same habitat. In brief, it limits the competition.

The great unknown remains snowfall: while climate scientists can be sure of likely future temperatures at any latitude, it is much harder to predict changes in precipitation. But if the snow cover is reduced, then local extinction rates could accelerate. Plants that once maintained a precarious hold in extreme conditions could vanish with the snows.

“Our findings show that the future changes in northern species populations may be abrupt, giving rise to ecological surprises that are hard to predict, such as fast eradications of populations in some places and the invasion of flexible species into new places”, said Risto Heikkinen from the Finnish Environment Institute. – Climate News Network

Iraq’s climate stresses are set to worsen

After years of repression, invasion and conflict, Iraq’s climate stresses now threaten new miseries, including more intense heat and dwindling rainfall.

LONDON, 12 November, 2018 − Iraq’s climate stresses are worsening, raising the prospect of a hotter, drier future for a country which has already seen widespread devastation.

It’s been invaded and bombed, had a third of its territory taken over by terrorist groups, hundreds of thousands have been killed and much of its infrastructure has been destroyed.

Now Iraq and its 39 million people are facing the hazards of climate change; a prolonged drought and soaring temperatures earlier this year ruined crops. Swathes of land in what was, in ancient times, one of the richest agricultural regions on Earth are drying up and turning into desert.

“Iraq is one of the Middle East’s most climate-vulnerable countries”

A recent report by the Expert Working Group on Climate-related Security Risks – made up of academics including members of the Stockholm International Peace Research Institute (SIPRI) – paints a stark picture of what’s happening in Iraq.

“Climate change is currently manifesting itself in prolonged heat waves, erratic precipitation, higher than average temperatures and increased disaster intensity”, says the report.

Its authors say that over the past summer Iraq suffered from its worst water shortage crisis for 80 years. They say flows of water in many rivers have decreased by up to 40% over recent decades.

The outlook is grim; the study says that due to climate change, average rainfall across the country is likely to decrease by 9% by mid-century, though the intensity of storms is set to increase. Temperatures in Iraq, which regularly reach more than 40°C in the summer months, are set to rise further – by an average of 2°C by 2050.

Livelihoods at risk

“Iraq is one of the Middle East’s most climate-vulnerable countries”, says the Working Group.

“The combination of its hydrological limitations, increasing temperatures and extreme weather events puts pressure on basic resources and undermines livelihood security for Iraq’s population.”

Oil revenues account for more than 80% of Iraq’s gross domestic product (GDP), but a majority of the workforce is involved in agriculture and has been hit hard by the drought and worsening climate conditions.

One of the regions of the country that has suffered most from shifting weather patterns and drought is the marshlands of the south, near the city of Basra.

Unique community

The marshlands, where the mighty Tigris and Euphrates rivers which flow through Iraq meet and divide into dozens of channels, formerly covered an area of more than 20,000 square kilometres and were once home to up to half a million people – widely referred to as Marsh Arabs – with a unique way of life.

In the early 1990s, Saddam Hussein, the country’s former ruler, dammed and drained the marshes after tribespeople in the area backed an uprising against his regime. After Saddam was toppled, locals tore down the dams and dykes and brought life back to the region.

Now, once again, the dense channels and waterways of southern Iraq are under threat.

Cross-border impacts

Reductions in rainfall and other climate-related events are only one part of what is a disaster unfolding in one of the most diverse and ecologically rich areas in the Middle East.

Misuse of upriver water resources by the Baghdad government and dams constructed across the Iraqi border, in Iran and Turkey, are severely reducing water levels in the Tigris and Euphrates.

As water levels have plummeted, salinity has increased dramatically, particularly in the south of the country, due to evaporation and saltwater intrusion from the Gulf. Often, because of salinity and pollution, there is little or no drinkable tap water in Basra, a city of more than 2 million.

During the drought last summer, thousands were hospitalised with water-borne diseases.

Corruption threat

Buffaloes, bird life and fish are dying. Reeds and other plant life are being destroyed.

Several people have been killed as protests have erupted over government ineptitude and the lack of basic infrastructure and jobs in what is Iraq’s most oil-rich province.

The Working Group’s report says generally poor governance is exacerbating an already precarious set of circumstances. Civil unrest and terrorism could further destabilise the country.

Widespread corruption is a serious problem. “This factor severely reduces the Iraqi government’s capacity to address security risks and stabilisation strategies, including those relating to climate change”, says the report. − Climate News Network

After years of repression, invasion and conflict, Iraq’s climate stresses now threaten new miseries, including more intense heat and dwindling rainfall.

LONDON, 12 November, 2018 − Iraq’s climate stresses are worsening, raising the prospect of a hotter, drier future for a country which has already seen widespread devastation.

It’s been invaded and bombed, had a third of its territory taken over by terrorist groups, hundreds of thousands have been killed and much of its infrastructure has been destroyed.

Now Iraq and its 39 million people are facing the hazards of climate change; a prolonged drought and soaring temperatures earlier this year ruined crops. Swathes of land in what was, in ancient times, one of the richest agricultural regions on Earth are drying up and turning into desert.

“Iraq is one of the Middle East’s most climate-vulnerable countries”

A recent report by the Expert Working Group on Climate-related Security Risks – made up of academics including members of the Stockholm International Peace Research Institute (SIPRI) – paints a stark picture of what’s happening in Iraq.

“Climate change is currently manifesting itself in prolonged heat waves, erratic precipitation, higher than average temperatures and increased disaster intensity”, says the report.

Its authors say that over the past summer Iraq suffered from its worst water shortage crisis for 80 years. They say flows of water in many rivers have decreased by up to 40% over recent decades.

The outlook is grim; the study says that due to climate change, average rainfall across the country is likely to decrease by 9% by mid-century, though the intensity of storms is set to increase. Temperatures in Iraq, which regularly reach more than 40°C in the summer months, are set to rise further – by an average of 2°C by 2050.

Livelihoods at risk

“Iraq is one of the Middle East’s most climate-vulnerable countries”, says the Working Group.

“The combination of its hydrological limitations, increasing temperatures and extreme weather events puts pressure on basic resources and undermines livelihood security for Iraq’s population.”

Oil revenues account for more than 80% of Iraq’s gross domestic product (GDP), but a majority of the workforce is involved in agriculture and has been hit hard by the drought and worsening climate conditions.

One of the regions of the country that has suffered most from shifting weather patterns and drought is the marshlands of the south, near the city of Basra.

Unique community

The marshlands, where the mighty Tigris and Euphrates rivers which flow through Iraq meet and divide into dozens of channels, formerly covered an area of more than 20,000 square kilometres and were once home to up to half a million people – widely referred to as Marsh Arabs – with a unique way of life.

In the early 1990s, Saddam Hussein, the country’s former ruler, dammed and drained the marshes after tribespeople in the area backed an uprising against his regime. After Saddam was toppled, locals tore down the dams and dykes and brought life back to the region.

Now, once again, the dense channels and waterways of southern Iraq are under threat.

Cross-border impacts

Reductions in rainfall and other climate-related events are only one part of what is a disaster unfolding in one of the most diverse and ecologically rich areas in the Middle East.

Misuse of upriver water resources by the Baghdad government and dams constructed across the Iraqi border, in Iran and Turkey, are severely reducing water levels in the Tigris and Euphrates.

As water levels have plummeted, salinity has increased dramatically, particularly in the south of the country, due to evaporation and saltwater intrusion from the Gulf. Often, because of salinity and pollution, there is little or no drinkable tap water in Basra, a city of more than 2 million.

During the drought last summer, thousands were hospitalised with water-borne diseases.

Corruption threat

Buffaloes, bird life and fish are dying. Reeds and other plant life are being destroyed.

Several people have been killed as protests have erupted over government ineptitude and the lack of basic infrastructure and jobs in what is Iraq’s most oil-rich province.

The Working Group’s report says generally poor governance is exacerbating an already precarious set of circumstances. Civil unrest and terrorism could further destabilise the country.

Widespread corruption is a serious problem. “This factor severely reduces the Iraqi government’s capacity to address security risks and stabilisation strategies, including those relating to climate change”, says the report. − Climate News Network

Flash floods increase as mercury climbs

Heavy rain must fall somewhere. The danger lies in where it falls and on what kind of terrain. As cities grow, the risk of flash floods rises.

LONDON, 9 November, 2018 – Scientists once again have confirmed that humankind’s actions have triggered ever-greater extremes of rainfall – and an ever-greater rise in disastrous flash floods.

The study comes close on the heels of a warning by UN scientists of a dramatic increase in economic losses from climate-related disasters. Between 1998 and 2017, natural disasters cost the world’s nations direct losses of $2.9 trillion, and although earthquake and tsunami accounted for most deaths, floods, storms and other climate-related catastrophes accounted for 77% of the economic damage.

Scientists and engineers from China and the US report in the journal Nature Communications that flash floods now cause more deaths as well as more property and agricultural losses than any other severe weather-related hazards. These losses have been increasing for the last 50 years and over the last decade worldwide have topped $30bn a year.

And, they find, extremes in run–off from increasing extremes of rainfall are driven by what humans have done, and continue to do, to their planet: in the race for economic growth, people have burned ever more coal, oil and gas to dump ever-increasing levels of carbon dioxide emissions into the atmosphere.

Heat hazard rises

They have driven up global average temperatures by around 1°C in the last century, and without drastic action this average could reach 3°C by the century’s end.

As average temperatures rise, so does the hazard of extremes of heat. With every rise of 1°C the capacity of the atmosphere to absorb moisture rises by about 7%: higher temperatures are linked to ever-harder falls of rain. And rain that falls must go somewhere.

Moisture once naturally absorbed by forests, extensive wetlands or rich natural grasslands now increasingly lands on tarmacadam, brick, cement, tile or glass, to race down city streets, threaten ever more lives and sweep away costly homes, offices and bridges.

“Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions”

Altogether one billion people are now settled in floodplains: the lives at risk are on the increase. And, the researchers warn, the losses will go on rising.

Most researchers have been unwilling to link specific floods directly to global warming. That cautious attitude shifted in the last few years as separate teams of climate scientists made connections between global warming and disastrous flooding and destructive storms in Europe, in India and in the US.

Australia – more often linked with extended drought and wildfire hazards than floods – has identified ever greater dangers from extreme rainfall.

The Nature study was based on decades of rainfall, run-off and temperature data collected on a daily basis and forms part of a widening search for ways to adapt to a danger that, inevitably, looks set to increase, particularly in the US.

Growth in extremes

“We were trying to find the physical mechanisms behind why precipitation and run-off extremes are increasing all over the globe,” said Jiabo Yin, a Wuhan University student working at the Earth Institute in the University of Columbia, who led the research.

“We know that precipitation and run-off extremes will increase significantly in the future, and we need to modify our infrastructures accordingly. Our study establishes a framework for investigating the runoff response.”

Altogether, according to the UN Office for Disaster Risk Reduction’s latest survey, the world experienced more than 7,000 major disasters in the last two decades: floods and storms accounted for 43% and 28.2% of them and were the most frequent kinds of disaster.

Together, such disasters claimed 1.3 million lives – almost 750,000 of these to a total of 563 earthquakes and tsunamis. An estimated 4.4 billion people were hurt, or lost their homes, or were displaced or placed in need of emergency help.

Biggest losers

The greatest economic losers were the US, with almost $945 billion, and China with $492bn. Storms, floods and earthquakes put three European nations in the top ten, with France, Germany and Italy losing around $50bn each in those two decades.

Once again, the UN study highlights the gap between rich and poor. “Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions,” said Deberati Guha-Sapir, head of the UN’s Centre for Research on the Epidemiology of Disasters at the Catholic University of Louvain in Belgium.

“Clearly there is great room for improvement in data collection on economic losses, but we know from our analysis … that people in low income countries are six times more likely to lose all their worldly possessions or suffer injury in a disaster than people in high income countries.” – Climate News Network

Heavy rain must fall somewhere. The danger lies in where it falls and on what kind of terrain. As cities grow, the risk of flash floods rises.

LONDON, 9 November, 2018 – Scientists once again have confirmed that humankind’s actions have triggered ever-greater extremes of rainfall – and an ever-greater rise in disastrous flash floods.

The study comes close on the heels of a warning by UN scientists of a dramatic increase in economic losses from climate-related disasters. Between 1998 and 2017, natural disasters cost the world’s nations direct losses of $2.9 trillion, and although earthquake and tsunami accounted for most deaths, floods, storms and other climate-related catastrophes accounted for 77% of the economic damage.

Scientists and engineers from China and the US report in the journal Nature Communications that flash floods now cause more deaths as well as more property and agricultural losses than any other severe weather-related hazards. These losses have been increasing for the last 50 years and over the last decade worldwide have topped $30bn a year.

And, they find, extremes in run–off from increasing extremes of rainfall are driven by what humans have done, and continue to do, to their planet: in the race for economic growth, people have burned ever more coal, oil and gas to dump ever-increasing levels of carbon dioxide emissions into the atmosphere.

Heat hazard rises

They have driven up global average temperatures by around 1°C in the last century, and without drastic action this average could reach 3°C by the century’s end.

As average temperatures rise, so does the hazard of extremes of heat. With every rise of 1°C the capacity of the atmosphere to absorb moisture rises by about 7%: higher temperatures are linked to ever-harder falls of rain. And rain that falls must go somewhere.

Moisture once naturally absorbed by forests, extensive wetlands or rich natural grasslands now increasingly lands on tarmacadam, brick, cement, tile or glass, to race down city streets, threaten ever more lives and sweep away costly homes, offices and bridges.

“Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions”

Altogether one billion people are now settled in floodplains: the lives at risk are on the increase. And, the researchers warn, the losses will go on rising.

Most researchers have been unwilling to link specific floods directly to global warming. That cautious attitude shifted in the last few years as separate teams of climate scientists made connections between global warming and disastrous flooding and destructive storms in Europe, in India and in the US.

Australia – more often linked with extended drought and wildfire hazards than floods – has identified ever greater dangers from extreme rainfall.

The Nature study was based on decades of rainfall, run-off and temperature data collected on a daily basis and forms part of a widening search for ways to adapt to a danger that, inevitably, looks set to increase, particularly in the US.

Growth in extremes

“We were trying to find the physical mechanisms behind why precipitation and run-off extremes are increasing all over the globe,” said Jiabo Yin, a Wuhan University student working at the Earth Institute in the University of Columbia, who led the research.

“We know that precipitation and run-off extremes will increase significantly in the future, and we need to modify our infrastructures accordingly. Our study establishes a framework for investigating the runoff response.”

Altogether, according to the UN Office for Disaster Risk Reduction’s latest survey, the world experienced more than 7,000 major disasters in the last two decades: floods and storms accounted for 43% and 28.2% of them and were the most frequent kinds of disaster.

Together, such disasters claimed 1.3 million lives – almost 750,000 of these to a total of 563 earthquakes and tsunamis. An estimated 4.4 billion people were hurt, or lost their homes, or were displaced or placed in need of emergency help.

Biggest losers

The greatest economic losers were the US, with almost $945 billion, and China with $492bn. Storms, floods and earthquakes put three European nations in the top ten, with France, Germany and Italy losing around $50bn each in those two decades.

Once again, the UN study highlights the gap between rich and poor. “Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions,” said Deberati Guha-Sapir, head of the UN’s Centre for Research on the Epidemiology of Disasters at the Catholic University of Louvain in Belgium.

“Clearly there is great room for improvement in data collection on economic losses, but we know from our analysis … that people in low income countries are six times more likely to lose all their worldly possessions or suffer injury in a disaster than people in high income countries.” – Climate News Network

Human horde leaves little room for nature

Our species’ planetary advance has been inexorable. The human horde means under a quarter of the world’s land surface now counts as wilderness.

LONDON, 8 November, 2018 – Only 23% of the planet’s habitable terrestrial surface now remains as undisturbed wilderness, thanks to the spread of the human horde.

A century ago, as the human population explosion began, 85% of the world was undisturbed living space for all the other species. Yet between 1993 and 2009 – in the years that followed hard on the first global summit to consider the state of the planetary environment – an aggregation of areas of wilderness larger than India was delivered over to human exploitation, scientists warn in the journal Nature.

“These results are nothing short of a horror story for the planet’s last wild places,” said James Watson, a scientist at the University of Queensland and with the Wildlife Conservation Society.

“The loss of wilderness must be treated in the same way we treat extinction. There is no reversing, once the first cut enters. The decision is forever.”

Ocean impact

Professor Watson and colleagues argued in August that humans had in some way poisoned, polluted, exploited or disturbed almost all the planet’s oceans: only 13% could now be classified as undisturbed.

Now he and others have addressed the state of the wild terrestrial soils and rocks. Take Antarctica – essentially uninhabited, and with no terrestrial wildlife – out of the equation, and the scale of planetary devastation becomes more stark: humans have now left their mark on 77% of the world’s living space.

And the remaining wilderness is unevenly distributed: just 20 nations hold or govern 94% of the remaining marine and terrestrial wilderness areas. Russia, Canada, Australia, the US and Brazil host 70% of these unspoiled spaces.

Professor Watson and many others have repeatedly argued that humankind continues to put the world’s wildlife at risk. A new study by the World Wide Fund for Nature highlights the scale of destruction, but repeated surveys by teams of researchers on all continents have pointed up the same danger.

The combination of human intrusion into the wilderness and the spectre of climate change is a disaster for the 10 million or so species, most of them as yet unidentified, with which humans share the planet.

“These results are nothing short of a horror story for the planet’s last wild places”

“A century ago, only 15% of the Earth’s surface was used by humans to grow crops and raise livestock,” Professor Watson said.

“Today, more than 77% of land – excluding Antarctica – and 87% of the ocean has been modified by the direct effects of human activities. It might be hard to believe, but between 1993 and 2009, an area of terrestrial wilderness larger than India – a staggering 3.3 million square kilometres – was lost to human settlement, farming, mining and other pressures.

“And in the ocean, the only regions that are free of industrial fishing, pollution and shipping are almost completely confined to the polar regions.” – Climate News Network

Our species’ planetary advance has been inexorable. The human horde means under a quarter of the world’s land surface now counts as wilderness.

LONDON, 8 November, 2018 – Only 23% of the planet’s habitable terrestrial surface now remains as undisturbed wilderness, thanks to the spread of the human horde.

A century ago, as the human population explosion began, 85% of the world was undisturbed living space for all the other species. Yet between 1993 and 2009 – in the years that followed hard on the first global summit to consider the state of the planetary environment – an aggregation of areas of wilderness larger than India was delivered over to human exploitation, scientists warn in the journal Nature.

“These results are nothing short of a horror story for the planet’s last wild places,” said James Watson, a scientist at the University of Queensland and with the Wildlife Conservation Society.

“The loss of wilderness must be treated in the same way we treat extinction. There is no reversing, once the first cut enters. The decision is forever.”

Ocean impact

Professor Watson and colleagues argued in August that humans had in some way poisoned, polluted, exploited or disturbed almost all the planet’s oceans: only 13% could now be classified as undisturbed.

Now he and others have addressed the state of the wild terrestrial soils and rocks. Take Antarctica – essentially uninhabited, and with no terrestrial wildlife – out of the equation, and the scale of planetary devastation becomes more stark: humans have now left their mark on 77% of the world’s living space.

And the remaining wilderness is unevenly distributed: just 20 nations hold or govern 94% of the remaining marine and terrestrial wilderness areas. Russia, Canada, Australia, the US and Brazil host 70% of these unspoiled spaces.

Professor Watson and many others have repeatedly argued that humankind continues to put the world’s wildlife at risk. A new study by the World Wide Fund for Nature highlights the scale of destruction, but repeated surveys by teams of researchers on all continents have pointed up the same danger.

The combination of human intrusion into the wilderness and the spectre of climate change is a disaster for the 10 million or so species, most of them as yet unidentified, with which humans share the planet.

“These results are nothing short of a horror story for the planet’s last wild places”

“A century ago, only 15% of the Earth’s surface was used by humans to grow crops and raise livestock,” Professor Watson said.

“Today, more than 77% of land – excluding Antarctica – and 87% of the ocean has been modified by the direct effects of human activities. It might be hard to believe, but between 1993 and 2009, an area of terrestrial wilderness larger than India – a staggering 3.3 million square kilometres – was lost to human settlement, farming, mining and other pressures.

“And in the ocean, the only regions that are free of industrial fishing, pollution and shipping are almost completely confined to the polar regions.” – Climate News Network

Forest carbon storage puzzles scientists

How forest carbon storage affects climate change is a vital part of scientists’ calculations. But fresh uncertainties keep on sprouting.

LONDON, 6 November, 2018 – Two new studies have just made one of the puzzles confronting scientists even more perplexing: just how effective is forest carbon storage?

One research team thinks that their colleagues have been overestimating one of the big calculations of carbon storage: the estimates of atmospheric carbon locked into the timber of the world’s forests may have been systematically overestimated for at least 50 years.

And another has slightly more cheerful news: assumptions about what trees do at night or in the winter could be wrong. Even at night, vegetation is at work, absorbing nitrogen and building tissues with carbon.

Both studies are tentative. The resulting answers do not make a huge difference to the biggest climate puzzle of all: what happens to the carbon dioxide and other greenhouse gases emitted by the combustion of fossil fuels. This is known as the carbon budget.

But both studies are reminders that when it comes to understanding precisely how the planet’s climate machinery works, there are still many questions to be settled.

“No matter what, plants will not keep up with anthropogenic carbon dioxide emissions; it’s just that they might do better than current models suggest”

French scientists report in the American Journal of Botany that they took a new look at an old formula, the forester’s rule of thumb used for calculating the density of wood in growing trees. And, the scientists say, they have found a small mistake: one big enough, however, to lead to an overestimate of up to 5% in the carbon-storing capacity of an oak, a pine, a eucalypt or a fig.

Scientists at CIRAD, an agricultural research base in Montpellier, France, have kept a database of 1,300 wood species and almost 4,500 trees for the last 70 years. When researchers came to look at a conversion factor in calculations of density, they found something that failed to add up.

“To start with, I thought we had made a mistake in our calculations, or that there was some uncertainty surrounding measurement of the relevant data,” said Ghislain Vieilledent of CIRAD. “It was not easy to cast doubt on a formula that has been widely accepted for years and quoted in several scientific articles.”

It means that estimates of the carbon stored in the world’s forests – a vital component of the carbon budget calculations – could be too high by a relatively small factor. But the global sums are huge.

Uncertainties abound

Human industrial activity releases on average 34 billion tonnes of carbon dioxide each year. Land use is seen as a key factor in mitigating the effects of these emissions. The world’s forests are thought to absorb and store up to 11 billion tonnes of carbon dioxide from the atmosphere each year.

Quite how efficiently this happens depends on a huge range of other factors, including the levels of rainfall and the action of soil microbes and fungi. Nobody knows quite how vegetation will react to higher temperatures, higher ratios of carbon dioxide in the atmosphere, or longer droughts or heatwaves.

There are uncertainties about all these factors: an error in estimating the precise density of wood could be just another sprig of doubt in a forest of confusions.

On the other hand, it could be a straightforward finding that forests are now 5% less good at storing carbon than climate scientists have so far assumed.

Nocturnal activity

But any consequent gloom could be countered by another forest revelation, this time in the journal Nature Climate Change.

Scientists at the Lawrence Berkeley National Laboratory have fashioned a new global land model of the traffic between atmosphere, rocks and living things. They report that plants actually take up more carbon dioxide, and soils surrender less of that other greenhouse gas, nitrous oxide, than previously thought.

And they arrived at this conclusion by taking a closer look at what plants do at night.

The assumption is that they do nothing much at night: there is no photosynthesis, so there is no plant action.

Carbon budget queries

But, the US team says, there is evidence that where nutrients are abundant, plants go on taking up nutrients at night, and even in the non-growing season. In the Arctic, this may account for 20% more nitrogen consumption. In the tropics, it may be as high as 55%.

In which case, the carbon budget estimates could be wrong: the error in the calculation of nitrous oxide released could add up to the equivalent of 2.4 billion tonnes of carbon dioxide not spilled into the atmosphere from the forest floor.

“This is goodish news, with respect to what is currently in climate models,” said William Riley of Lawrence Berkeley Laboratory.

“But it is not good news in general – it’s not going to solve the problem. No matter what, plants will not keep up with anthropogenic carbon dioxide emissions; it’s just that they might do better than current models suggest.” – Climate News Network

How forest carbon storage affects climate change is a vital part of scientists’ calculations. But fresh uncertainties keep on sprouting.

LONDON, 6 November, 2018 – Two new studies have just made one of the puzzles confronting scientists even more perplexing: just how effective is forest carbon storage?

One research team thinks that their colleagues have been overestimating one of the big calculations of carbon storage: the estimates of atmospheric carbon locked into the timber of the world’s forests may have been systematically overestimated for at least 50 years.

And another has slightly more cheerful news: assumptions about what trees do at night or in the winter could be wrong. Even at night, vegetation is at work, absorbing nitrogen and building tissues with carbon.

Both studies are tentative. The resulting answers do not make a huge difference to the biggest climate puzzle of all: what happens to the carbon dioxide and other greenhouse gases emitted by the combustion of fossil fuels. This is known as the carbon budget.

But both studies are reminders that when it comes to understanding precisely how the planet’s climate machinery works, there are still many questions to be settled.

“No matter what, plants will not keep up with anthropogenic carbon dioxide emissions; it’s just that they might do better than current models suggest”

French scientists report in the American Journal of Botany that they took a new look at an old formula, the forester’s rule of thumb used for calculating the density of wood in growing trees. And, the scientists say, they have found a small mistake: one big enough, however, to lead to an overestimate of up to 5% in the carbon-storing capacity of an oak, a pine, a eucalypt or a fig.

Scientists at CIRAD, an agricultural research base in Montpellier, France, have kept a database of 1,300 wood species and almost 4,500 trees for the last 70 years. When researchers came to look at a conversion factor in calculations of density, they found something that failed to add up.

“To start with, I thought we had made a mistake in our calculations, or that there was some uncertainty surrounding measurement of the relevant data,” said Ghislain Vieilledent of CIRAD. “It was not easy to cast doubt on a formula that has been widely accepted for years and quoted in several scientific articles.”

It means that estimates of the carbon stored in the world’s forests – a vital component of the carbon budget calculations – could be too high by a relatively small factor. But the global sums are huge.

Uncertainties abound

Human industrial activity releases on average 34 billion tonnes of carbon dioxide each year. Land use is seen as a key factor in mitigating the effects of these emissions. The world’s forests are thought to absorb and store up to 11 billion tonnes of carbon dioxide from the atmosphere each year.

Quite how efficiently this happens depends on a huge range of other factors, including the levels of rainfall and the action of soil microbes and fungi. Nobody knows quite how vegetation will react to higher temperatures, higher ratios of carbon dioxide in the atmosphere, or longer droughts or heatwaves.

There are uncertainties about all these factors: an error in estimating the precise density of wood could be just another sprig of doubt in a forest of confusions.

On the other hand, it could be a straightforward finding that forests are now 5% less good at storing carbon than climate scientists have so far assumed.

Nocturnal activity

But any consequent gloom could be countered by another forest revelation, this time in the journal Nature Climate Change.

Scientists at the Lawrence Berkeley National Laboratory have fashioned a new global land model of the traffic between atmosphere, rocks and living things. They report that plants actually take up more carbon dioxide, and soils surrender less of that other greenhouse gas, nitrous oxide, than previously thought.

And they arrived at this conclusion by taking a closer look at what plants do at night.

The assumption is that they do nothing much at night: there is no photosynthesis, so there is no plant action.

Carbon budget queries

But, the US team says, there is evidence that where nutrients are abundant, plants go on taking up nutrients at night, and even in the non-growing season. In the Arctic, this may account for 20% more nitrogen consumption. In the tropics, it may be as high as 55%.

In which case, the carbon budget estimates could be wrong: the error in the calculation of nitrous oxide released could add up to the equivalent of 2.4 billion tonnes of carbon dioxide not spilled into the atmosphere from the forest floor.

“This is goodish news, with respect to what is currently in climate models,” said William Riley of Lawrence Berkeley Laboratory.

“But it is not good news in general – it’s not going to solve the problem. No matter what, plants will not keep up with anthropogenic carbon dioxide emissions; it’s just that they might do better than current models suggest.” – Climate News Network