Category Archives: Oceans

Ocean heatwaves drive more fish north

As sea water warms, sub-tropical fish swim north. They may do so more often as ocean heatwaves add to the sweltering.

LONDON, 22 March, 2019 – With a little help from ocean heatwaves, the world’s seas are changing. Researchers in California can now name 37 species that have shifted their range further north than ever before in response to unusually hot summers in the eastern Pacific.

In the years 2014-2016, the pelagic red crab Pleuroncodes planipes was spotted off Agate Beach, Oregon, a full 595 kilometres further north than ever before. A deepwater invertebrate called the black-tipped spiny dorid Acanthodoris rhodoceras also made it to Oregon, 620 kilometres from what had previously been its most northerly range.

Both were joined by an assortment of snails, sea butterflies, pteropods, nudibranchs, red algae, sea anemones, siphonophores, fish, dolphins, sea turtles and other citizens of the sub-tropical seas in making the great trek north to what had once been cooler waters, the researchers record in the journal Scientific Reports.

They collected their data in the wake of two significant changes in water temperatures. One involved a mysterious “blob” of warm water that made the journey south from the Gulf of Alaska, the other a blister of warm water on the way north associated with a natural phenomenon known as El Niño in 2015.

“Just as atmospheric heatwaves can destroy crops, forests and animal populations, marine heatwaves can devastate ocean ecosystems”

Altogether they recorded 67 rare, warm water sightings off California and Oregon: of these 37 had never been observed so far north.

“Against a backdrop of climate change, we hope southern species will track northward because that’s necessary for their persistence and survival,” said Eric Sanford, an ecologist at the University of California, Davis, who led the study.

“It’s perhaps a glimpse of what northern California’s coast might look like in the future as ocean temperatures continue to warm.”

And just in case anyone thinks the temperatures in 2014-2016 were a freak – a response to an unprecedented pattern of weather events – a second set of scientists has uncomfortable news.

Extreme heat increases

Not only were the oceans in 2018 hotter than at any time  since records began, but periods of extreme heat on the high seas – that is, marine heatwaves – are on the increase around the globe.

Between 1987 and 2016, the number of heatwave days per year was 54% higher than for the years 1925 to 1954. And this is true not just for the eastern Pacific but for many regions in the Atlantic and Indian Oceans as well.

This is likely to be bad news for individual species, bad news for ecosystems and bad news for the key species – kelps, corals, sea grasses and so on – that provide vital habitats for marine life, they report in the journal Nature Climate Change.

The researchers define marine heatwaves as episodes in which sea surface temperatures exceed the seasonal norm for at least five consecutive days.

Marine threat

Increasing heatwaves over land have already been identified as potentially a threat to human life. They will menace marine life as well, the scientists say.

“Ocean ecosystems currently face a number of threats, including overfishing, acidification and plastic pollution, but periods of extreme temperatures can cause rapid and profound ecological changes, leading to loss of habitat, local extinctions, reduced fisheries catches and altered food webs”, said Dan Smale, of the UK Marine Biological Association, who led the research.

“The major concern is that the oceans have warmed significantly as a consequence of manmade climate change, so that marine heatwaves have become more frequent and will likely intensify over the coming decades.

“Just as atmospheric heatwaves can destroy crops, forests and animal populations, marine heatwaves can devastate ocean ecosystems.” – Climate News Network

As sea water warms, sub-tropical fish swim north. They may do so more often as ocean heatwaves add to the sweltering.

LONDON, 22 March, 2019 – With a little help from ocean heatwaves, the world’s seas are changing. Researchers in California can now name 37 species that have shifted their range further north than ever before in response to unusually hot summers in the eastern Pacific.

In the years 2014-2016, the pelagic red crab Pleuroncodes planipes was spotted off Agate Beach, Oregon, a full 595 kilometres further north than ever before. A deepwater invertebrate called the black-tipped spiny dorid Acanthodoris rhodoceras also made it to Oregon, 620 kilometres from what had previously been its most northerly range.

Both were joined by an assortment of snails, sea butterflies, pteropods, nudibranchs, red algae, sea anemones, siphonophores, fish, dolphins, sea turtles and other citizens of the sub-tropical seas in making the great trek north to what had once been cooler waters, the researchers record in the journal Scientific Reports.

They collected their data in the wake of two significant changes in water temperatures. One involved a mysterious “blob” of warm water that made the journey south from the Gulf of Alaska, the other a blister of warm water on the way north associated with a natural phenomenon known as El Niño in 2015.

“Just as atmospheric heatwaves can destroy crops, forests and animal populations, marine heatwaves can devastate ocean ecosystems”

Altogether they recorded 67 rare, warm water sightings off California and Oregon: of these 37 had never been observed so far north.

“Against a backdrop of climate change, we hope southern species will track northward because that’s necessary for their persistence and survival,” said Eric Sanford, an ecologist at the University of California, Davis, who led the study.

“It’s perhaps a glimpse of what northern California’s coast might look like in the future as ocean temperatures continue to warm.”

And just in case anyone thinks the temperatures in 2014-2016 were a freak – a response to an unprecedented pattern of weather events – a second set of scientists has uncomfortable news.

Extreme heat increases

Not only were the oceans in 2018 hotter than at any time  since records began, but periods of extreme heat on the high seas – that is, marine heatwaves – are on the increase around the globe.

Between 1987 and 2016, the number of heatwave days per year was 54% higher than for the years 1925 to 1954. And this is true not just for the eastern Pacific but for many regions in the Atlantic and Indian Oceans as well.

This is likely to be bad news for individual species, bad news for ecosystems and bad news for the key species – kelps, corals, sea grasses and so on – that provide vital habitats for marine life, they report in the journal Nature Climate Change.

The researchers define marine heatwaves as episodes in which sea surface temperatures exceed the seasonal norm for at least five consecutive days.

Marine threat

Increasing heatwaves over land have already been identified as potentially a threat to human life. They will menace marine life as well, the scientists say.

“Ocean ecosystems currently face a number of threats, including overfishing, acidification and plastic pollution, but periods of extreme temperatures can cause rapid and profound ecological changes, leading to loss of habitat, local extinctions, reduced fisheries catches and altered food webs”, said Dan Smale, of the UK Marine Biological Association, who led the research.

“The major concern is that the oceans have warmed significantly as a consequence of manmade climate change, so that marine heatwaves have become more frequent and will likely intensify over the coming decades.

“Just as atmospheric heatwaves can destroy crops, forests and animal populations, marine heatwaves can devastate ocean ecosystems.” – Climate News Network

Oceanic carbon uptake could falter

What does oceanic carbon uptake achieve? Greenhouse gas that sinks below the waves slows global warming a little and makes the water more acidic.

LONDON, 20 March, 2019 − Scientists can now put a measure to the role of the waves as a climate shock absorber: they estimate that oceanic carbon uptake by the deep blue seas has consumed 34 billion tonnes of man-made carbon from the atmosphere between the years 1994 and 2007.

This is just about 31% of all the carbon emitted in that time by car exhausts, power station chimneys, aircraft, ships, tractors and scorched forest, as human economies expand and ever more fossil fuel is consumed.

This confident figure is based on a global survey of the chemistry and other physical properties of the ocean by scientists from seven nations on more than 50 research cruises, taking measurements of the ocean from the surface to a depth of six kilometres.

The researchers report in the journal Science that they already had the results of a global carbon survey of the oceans conducted at the close of the last century, and had calculated that from the dawn of the Industrial Revolution – when humans started using coal, and then oil and gas – to 1994, the oceans had already absorbed 118 billion tonnes.

“The marine sink does not just respond to the increase in atmospheric CO2. Its substantial sensitivity to climate variations suggests a significant potential for feedbacks”

For the latest exercise, they developed a statistical tool that helped them make the distinction between the man-made and the natural atmospheric carbon dioxide always found dissolved in water.

The good news is that the ocean remains for the moment a stable component of the planet’s carbon budget: overall, as more man-made carbon is emitted from exhausts and chimneys, the ocean takes up proportionally more.

The bad news is that this may not go on for ever. At some point, the planet’s seas could become saturated with carbon, leaving ever more in the atmosphere to accelerate global warming to ever more alarming temperatures.

And there is a second unhappy consequence: the more carbon dioxide absorbed by the oceans, the more the sea shifts towards a weak solution of carbonic acid, with potentially calamitous consequences both for marine life and for commercial fisheries.

Research like this is essentially of academic interest: it adds precision to the big picture of a vast ocean that absorbs carbon dioxide, and overturning currents that take it to great depths, and out of atmospheric circulation.

An active moderator

But it is also a reminder that the ocean plays an active role in moderating planetary temperatures, absorbing ever greater quantities of heat and responding with fiercer levels of energy.

It also confirms that although, on average, the high seas are responding to atmospheric change as expected, different ocean basins can vary: the North Atlantic actually absorbed 20% less CO2 than expected between 1994 and 2007, probably thanks to the slowing of the North Atlantic Meridional Overturning Circulation at the time.

And, the researchers say, the acidification of the oceans is on the increase, to depths of 3000 metres. The next step is to understand a little better the interplay between ocean, atmosphere and human emissions of greenhouse gases.

“We learned that the marine sink does not just respond to the increase in atmospheric CO2,” said Nicolas Gruber of the Swiss Federal Institute of Technology, always known as ETH Zurich, who led the study.

“Its substantial sensitivity to climate variations suggests a significant potential for feedbacks with the ongoing change in climate.” − Climate News Network

What does oceanic carbon uptake achieve? Greenhouse gas that sinks below the waves slows global warming a little and makes the water more acidic.

LONDON, 20 March, 2019 − Scientists can now put a measure to the role of the waves as a climate shock absorber: they estimate that oceanic carbon uptake by the deep blue seas has consumed 34 billion tonnes of man-made carbon from the atmosphere between the years 1994 and 2007.

This is just about 31% of all the carbon emitted in that time by car exhausts, power station chimneys, aircraft, ships, tractors and scorched forest, as human economies expand and ever more fossil fuel is consumed.

This confident figure is based on a global survey of the chemistry and other physical properties of the ocean by scientists from seven nations on more than 50 research cruises, taking measurements of the ocean from the surface to a depth of six kilometres.

The researchers report in the journal Science that they already had the results of a global carbon survey of the oceans conducted at the close of the last century, and had calculated that from the dawn of the Industrial Revolution – when humans started using coal, and then oil and gas – to 1994, the oceans had already absorbed 118 billion tonnes.

“The marine sink does not just respond to the increase in atmospheric CO2. Its substantial sensitivity to climate variations suggests a significant potential for feedbacks”

For the latest exercise, they developed a statistical tool that helped them make the distinction between the man-made and the natural atmospheric carbon dioxide always found dissolved in water.

The good news is that the ocean remains for the moment a stable component of the planet’s carbon budget: overall, as more man-made carbon is emitted from exhausts and chimneys, the ocean takes up proportionally more.

The bad news is that this may not go on for ever. At some point, the planet’s seas could become saturated with carbon, leaving ever more in the atmosphere to accelerate global warming to ever more alarming temperatures.

And there is a second unhappy consequence: the more carbon dioxide absorbed by the oceans, the more the sea shifts towards a weak solution of carbonic acid, with potentially calamitous consequences both for marine life and for commercial fisheries.

Research like this is essentially of academic interest: it adds precision to the big picture of a vast ocean that absorbs carbon dioxide, and overturning currents that take it to great depths, and out of atmospheric circulation.

An active moderator

But it is also a reminder that the ocean plays an active role in moderating planetary temperatures, absorbing ever greater quantities of heat and responding with fiercer levels of energy.

It also confirms that although, on average, the high seas are responding to atmospheric change as expected, different ocean basins can vary: the North Atlantic actually absorbed 20% less CO2 than expected between 1994 and 2007, probably thanks to the slowing of the North Atlantic Meridional Overturning Circulation at the time.

And, the researchers say, the acidification of the oceans is on the increase, to depths of 3000 metres. The next step is to understand a little better the interplay between ocean, atmosphere and human emissions of greenhouse gases.

“We learned that the marine sink does not just respond to the increase in atmospheric CO2,” said Nicolas Gruber of the Swiss Federal Institute of Technology, always known as ETH Zurich, who led the study.

“Its substantial sensitivity to climate variations suggests a significant potential for feedbacks with the ongoing change in climate.” − Climate News Network

More acidic seas devour marine food web

As more acidic seas spread across the globe, conditions for survival start to change. That could close vast volumes of ocean for vital forms of life.

LONDON, 13 March, 2019 – By the close of the century, parts of the Southern Ocean could become impoverished as more acidic seas displace abundant marine food resources. Tiny sea snails that form the basis of the food supply for one of the world’s richest ecosystems could disappear because the depth at which they can form their shells will have shifted.

Right now, in Antarctic waters, creatures known as pteropods can exploit the calcium carbonate dissolved in the oceans down to a depth of 1000 metres to grow their shells.

But as atmospheric carbon dioxide levels soar, as a consequence of profligate use of fossil fuels by humankind, the chemistry of the oceans will shift towards the acidic.

The ratios of two kinds of carbonate – calcite and aragonite – will alter. And by 2100, there won’t be enough aragonite.

“A pocket of corrosive water will sit just below the surface, making life difficult for these communities of primarily surface-dwelling organisms”

Right now, pteropods flourish in the top 300 metres of the ocean. By 2100, the survival zone for the pteropods will end at a depth of 83 metres.

And, scientists warn in the journal Nature Climate Change, this could “change food web dynamics and have cascading effects on global ocean ecosystems.” In other words, the larger fish and marine mammals that feed on the smaller creatures that in turn depend on a basic diet of pteropods will have nothing to eat.

And that can only be bad news for global fisheries.

All shelled marine creatures – the tiny coccolithophores that die and leave their shells as chalk, the clams and molluscs, the foraminifera that float on the surface or coat the rocks and the seafloor, and the corals that are the basis for rich tropical ecosystems, all depend on the right levels of calcite and aragonite to form their exoskeletons.

The oceans are the biggest living space on the planet: the waves cover 70% of all living space and the depth of the deepest trenches is far greater than the highest terrestrial mountain ranges.

Origin of life

The oceans are the crucible in which life first emerged, and the oceans ultimately provided the sediments from which humankind has built its cities.

US and Norwegian scientists chose one species with precise needs in one reach of ocean as an indicator or what climate change driven by ever greater levels of the greenhouse gas carbon dioxide could do to an ocean ecosystem.

They found that what they called the “aragonite saturation horizon” became dramatically shallower as the seas became more acidic.

“These calcifying organisms will struggle to build and maintain their shells as acidification proceeds,” said Nicole Lovenduski, of the University of Colorado at Boulder, one of the researchers.

Inevitable result

“In the future, a pocket of corrosive water will sit just below the surface, making life difficult for these communities of primarily surface-dwelling organisms.”

As the world warms, acidification of the oceans becomes inevitable. Researchers have repeatedly warned that such change can only diminish ocean life, harm the coral reefs and kelp forests that shelter the rich biodiversity of sea creatures, change the behaviour of fish and some kinds of shrimp and threaten the shellfish harvest.

But for the first time, scientists have been able to model the impact of atmospheric change on the ocean chemistry in one zone at precise depths. The message is that right now, the pteropods have plenty of sea space for survival. But the aragonite saturation horizon may have already begun to shift in some places: perhaps as early as 2006, or as late as 2038. Once change begins, it will continue.

“If emissions were curbed tomorrow, this suddenly shallow horizon would still appear, even if possibly delayed,” said Dr Lovenduski. “And that, inevitably, along with lack of time for organisms to adapt, is most concerning.” – Climate News Network

As more acidic seas spread across the globe, conditions for survival start to change. That could close vast volumes of ocean for vital forms of life.

LONDON, 13 March, 2019 – By the close of the century, parts of the Southern Ocean could become impoverished as more acidic seas displace abundant marine food resources. Tiny sea snails that form the basis of the food supply for one of the world’s richest ecosystems could disappear because the depth at which they can form their shells will have shifted.

Right now, in Antarctic waters, creatures known as pteropods can exploit the calcium carbonate dissolved in the oceans down to a depth of 1000 metres to grow their shells.

But as atmospheric carbon dioxide levels soar, as a consequence of profligate use of fossil fuels by humankind, the chemistry of the oceans will shift towards the acidic.

The ratios of two kinds of carbonate – calcite and aragonite – will alter. And by 2100, there won’t be enough aragonite.

“A pocket of corrosive water will sit just below the surface, making life difficult for these communities of primarily surface-dwelling organisms”

Right now, pteropods flourish in the top 300 metres of the ocean. By 2100, the survival zone for the pteropods will end at a depth of 83 metres.

And, scientists warn in the journal Nature Climate Change, this could “change food web dynamics and have cascading effects on global ocean ecosystems.” In other words, the larger fish and marine mammals that feed on the smaller creatures that in turn depend on a basic diet of pteropods will have nothing to eat.

And that can only be bad news for global fisheries.

All shelled marine creatures – the tiny coccolithophores that die and leave their shells as chalk, the clams and molluscs, the foraminifera that float on the surface or coat the rocks and the seafloor, and the corals that are the basis for rich tropical ecosystems, all depend on the right levels of calcite and aragonite to form their exoskeletons.

The oceans are the biggest living space on the planet: the waves cover 70% of all living space and the depth of the deepest trenches is far greater than the highest terrestrial mountain ranges.

Origin of life

The oceans are the crucible in which life first emerged, and the oceans ultimately provided the sediments from which humankind has built its cities.

US and Norwegian scientists chose one species with precise needs in one reach of ocean as an indicator or what climate change driven by ever greater levels of the greenhouse gas carbon dioxide could do to an ocean ecosystem.

They found that what they called the “aragonite saturation horizon” became dramatically shallower as the seas became more acidic.

“These calcifying organisms will struggle to build and maintain their shells as acidification proceeds,” said Nicole Lovenduski, of the University of Colorado at Boulder, one of the researchers.

Inevitable result

“In the future, a pocket of corrosive water will sit just below the surface, making life difficult for these communities of primarily surface-dwelling organisms.”

As the world warms, acidification of the oceans becomes inevitable. Researchers have repeatedly warned that such change can only diminish ocean life, harm the coral reefs and kelp forests that shelter the rich biodiversity of sea creatures, change the behaviour of fish and some kinds of shrimp and threaten the shellfish harvest.

But for the first time, scientists have been able to model the impact of atmospheric change on the ocean chemistry in one zone at precise depths. The message is that right now, the pteropods have plenty of sea space for survival. But the aragonite saturation horizon may have already begun to shift in some places: perhaps as early as 2006, or as late as 2038. Once change begins, it will continue.

“If emissions were curbed tomorrow, this suddenly shallow horizon would still appear, even if possibly delayed,” said Dr Lovenduski. “And that, inevitably, along with lack of time for organisms to adapt, is most concerning.” – Climate News Network

Pacific climate wobble speeds Arctic ice melt

Thanks to a natural sea temperature cycle, a Pacific climate wobble, the Arctic Ocean could be ice-free in the summer in a decade or two.

LONDON, 6 March, 2019 – Sunlit skies and bright blue water could come earlier to the Arctic – much earlier, thanks to a distant Pacific climate wobble.

Scientists now think that the Arctic Ocean could be effectively ice-free within the next 20 years, opening it to sea lanes across the polar waters between Europe, the US and east Asia.

Climate researchers have repeatedly warned, in the last two decades, that because of global warming the ice sheet that masks the Arctic Ocean has been thinning and could in effect vanish altogether in summertime by 2050.

New research has brought forward the prediction date. And this time the effective agency is not just global warming driven by profligate combustion of fossil fuels worldwide, but a natural cyclic phenomenon known to oceanographers as the interdecadal Pacific oscillation, or IPO.

“The trajectory is towards becoming ice-free in the summer …  there’s more chance of it being on the earlier end of that window than the later end”

Over a cycle of between one to three decades, the average ocean temperatures of the north Pacific shift up or down by about 0.5°C.

And a new study in the journal Geophysical Research Letters pinpoints the state of the present cycle: the Pacific ended its cold phase and started to warm up about five years ago.

James Screen of the University of Exeter, UK, and a colleague used computer modelling to merge the continuous upward rise in global average temperatures as a consequence of the build-up of greenhouse gases in the atmosphere with the pattern of predicted natural change in ocean surface temperatures to identify the moment when the summer ice will have melted.

The phrase “ice-free” is not a simple one, because some sea ice always remains, but oceanographers and glaciologists have their own definition: it happens when the area of summer sea ice falls below a million square kilometres.

Dramatic change likely

And this is now likely to happen some time between 2030 and 2050. Any argument is not about if, but when. The Arctic is just about the fastest-warming region of the planet, and in 2016 polar sea ice in both hemispheres  reached a record low: an area of ice the size of Mexico was lost.

Temperatures in the Arctic were recorded as up to 20°C above the average for some of the winter months. The long-term consequences are unpredictable, but since both ocean current and air movement are driven by the difference between equatorial and polar temperatures, dramatic climate change is likely to follow.

“The trajectory is towards becoming ice-free in the summer, but there is uncertainty as to when that is going to occur,” Dr Screen said.

“You can hedge your bets. The shift in the IPO means there’s more chance of it being on the earlier end of that window than the later end.” – Climate News Network

Thanks to a natural sea temperature cycle, a Pacific climate wobble, the Arctic Ocean could be ice-free in the summer in a decade or two.

LONDON, 6 March, 2019 – Sunlit skies and bright blue water could come earlier to the Arctic – much earlier, thanks to a distant Pacific climate wobble.

Scientists now think that the Arctic Ocean could be effectively ice-free within the next 20 years, opening it to sea lanes across the polar waters between Europe, the US and east Asia.

Climate researchers have repeatedly warned, in the last two decades, that because of global warming the ice sheet that masks the Arctic Ocean has been thinning and could in effect vanish altogether in summertime by 2050.

New research has brought forward the prediction date. And this time the effective agency is not just global warming driven by profligate combustion of fossil fuels worldwide, but a natural cyclic phenomenon known to oceanographers as the interdecadal Pacific oscillation, or IPO.

“The trajectory is towards becoming ice-free in the summer …  there’s more chance of it being on the earlier end of that window than the later end”

Over a cycle of between one to three decades, the average ocean temperatures of the north Pacific shift up or down by about 0.5°C.

And a new study in the journal Geophysical Research Letters pinpoints the state of the present cycle: the Pacific ended its cold phase and started to warm up about five years ago.

James Screen of the University of Exeter, UK, and a colleague used computer modelling to merge the continuous upward rise in global average temperatures as a consequence of the build-up of greenhouse gases in the atmosphere with the pattern of predicted natural change in ocean surface temperatures to identify the moment when the summer ice will have melted.

The phrase “ice-free” is not a simple one, because some sea ice always remains, but oceanographers and glaciologists have their own definition: it happens when the area of summer sea ice falls below a million square kilometres.

Dramatic change likely

And this is now likely to happen some time between 2030 and 2050. Any argument is not about if, but when. The Arctic is just about the fastest-warming region of the planet, and in 2016 polar sea ice in both hemispheres  reached a record low: an area of ice the size of Mexico was lost.

Temperatures in the Arctic were recorded as up to 20°C above the average for some of the winter months. The long-term consequences are unpredictable, but since both ocean current and air movement are driven by the difference between equatorial and polar temperatures, dramatic climate change is likely to follow.

“The trajectory is towards becoming ice-free in the summer, but there is uncertainty as to when that is going to occur,” Dr Screen said.

“You can hedge your bets. The shift in the IPO means there’s more chance of it being on the earlier end of that window than the later end.” – Climate News Network

Food supply falls as fish flee warmer seas

On the fishing grounds, they already know about global warming. As fish flee warmer seas there are winners – but many more losers.

LONDON, 4 March 2019 – Global warming has already begun to affect fishing worldwide as fish flee warmer seas, a new study says.

In the last 80 years, there has been an estimated drop of more than 4% in sustainable catches for many kinds of fish and shellfish. That is the average. In some regions – the East China Sea, for instance, and Europe’s North Sea –  the estimated decline was between 15% and 35%.

In the course of the last century, global average temperatures have crept up by about 1°C above the average for most of human history, as a reaction to the unconstrained burning of fossil fuels. If the world continues to burn ever-greater volumes of coal, oil and natural gas, it could be 3°C warmer or more by the end of the century.

Last year was only the fourth warmest for air surface temperatures, but the warmest since records began for the world’s oceans.

“Fisheries around the world have already responded to global warming. These aren’t hypothetical changes some time in the future”

US researchers report in the journal Science that they looked at the impact of ocean warming in 235 populations of 124 species of fish, crustaceans and molluscs in 38 ecological regions between the years 1930 and 2010.

They then matched the world data on fish catches with ocean temperature maps to estimate what warming has done to the sustainable catch – that is, the biggest haul fishing crews can make without reducing breeding stocks for the seasons to follow.

“We were stunned to find that fisheries around the world have already responded to global warming,” said Malin Pinsky of Rutgers University, and one of the authors. “These aren’t hypothetical changes some time in the future.”

The researchers found that some species in some climate zones actually benefited from warming, and fish with faster life cycles sometimes responded well, sometimes badly to the temperature changes. Some responded by shifting their geographical range.

More climate losers

But overall, said Christopher Free, once of Rutgers and now at the University of California, Santa Barbara, “among the populations we studied, the climate losers outweigh the climate winners.”

And his colleague Olaf Jensen, also from Rutgers, said: “Fish populations can only tolerate so much warning, though. Many of the species that have benefited from warming so far are likely to start declining as temperatures continue to rise.”

Fishermen off the coasts of Labrador and Newfoundland, in the Baltic, the Indian Ocean and the northeast US shelf may have seen more productive hauls of fish. But the biggest losses were in the Sea of Japan, the North Sea, off the Iberian coast and the Celtic-Biscay shelf.

Many fish species are adapted to a precise range of temperatures: they flourish not just in specific marine ecosystems but in thermal niches as well. Once things begin to change, they swim away or perish.

Marauding invaders

Fishermen in the North Atlantic have repeatedly observed changes in the available catch, as the cod shift north and the sardines migrate from increasingly uncomfortable warm waters. Warming in Mediterranean waters creates enticing conditions for invaders from the Red Sea and further south, at huge cost to the resident species.

The lesson is that fish stocks must be carefully conserved, and ocean reserves protected. Researchers have consistently warned that global warming and climate change – especially when combined with changes in ocean water chemistry as a consequence of carbon dioxide build-up in the atmosphere – could soon start to constrain an important source of nutrition: an estimated 3.2 billion people rely on the sea for an estimated 20% of their animal protein, especially in East Asia.

“This means 15% to 35% less fish available for food and employment in a region with some of the fastest-growing human populations in the world,” said Dr Free.

“Knowing exactly how fisheries will change under future warming is challenging, but we do know that failing to adapt to changing fisheries productivity will result in less food and fewer profits relative to today.” – Climate News Network

On the fishing grounds, they already know about global warming. As fish flee warmer seas there are winners – but many more losers.

LONDON, 4 March 2019 – Global warming has already begun to affect fishing worldwide as fish flee warmer seas, a new study says.

In the last 80 years, there has been an estimated drop of more than 4% in sustainable catches for many kinds of fish and shellfish. That is the average. In some regions – the East China Sea, for instance, and Europe’s North Sea –  the estimated decline was between 15% and 35%.

In the course of the last century, global average temperatures have crept up by about 1°C above the average for most of human history, as a reaction to the unconstrained burning of fossil fuels. If the world continues to burn ever-greater volumes of coal, oil and natural gas, it could be 3°C warmer or more by the end of the century.

Last year was only the fourth warmest for air surface temperatures, but the warmest since records began for the world’s oceans.

“Fisheries around the world have already responded to global warming. These aren’t hypothetical changes some time in the future”

US researchers report in the journal Science that they looked at the impact of ocean warming in 235 populations of 124 species of fish, crustaceans and molluscs in 38 ecological regions between the years 1930 and 2010.

They then matched the world data on fish catches with ocean temperature maps to estimate what warming has done to the sustainable catch – that is, the biggest haul fishing crews can make without reducing breeding stocks for the seasons to follow.

“We were stunned to find that fisheries around the world have already responded to global warming,” said Malin Pinsky of Rutgers University, and one of the authors. “These aren’t hypothetical changes some time in the future.”

The researchers found that some species in some climate zones actually benefited from warming, and fish with faster life cycles sometimes responded well, sometimes badly to the temperature changes. Some responded by shifting their geographical range.

More climate losers

But overall, said Christopher Free, once of Rutgers and now at the University of California, Santa Barbara, “among the populations we studied, the climate losers outweigh the climate winners.”

And his colleague Olaf Jensen, also from Rutgers, said: “Fish populations can only tolerate so much warning, though. Many of the species that have benefited from warming so far are likely to start declining as temperatures continue to rise.”

Fishermen off the coasts of Labrador and Newfoundland, in the Baltic, the Indian Ocean and the northeast US shelf may have seen more productive hauls of fish. But the biggest losses were in the Sea of Japan, the North Sea, off the Iberian coast and the Celtic-Biscay shelf.

Many fish species are adapted to a precise range of temperatures: they flourish not just in specific marine ecosystems but in thermal niches as well. Once things begin to change, they swim away or perish.

Marauding invaders

Fishermen in the North Atlantic have repeatedly observed changes in the available catch, as the cod shift north and the sardines migrate from increasingly uncomfortable warm waters. Warming in Mediterranean waters creates enticing conditions for invaders from the Red Sea and further south, at huge cost to the resident species.

The lesson is that fish stocks must be carefully conserved, and ocean reserves protected. Researchers have consistently warned that global warming and climate change – especially when combined with changes in ocean water chemistry as a consequence of carbon dioxide build-up in the atmosphere – could soon start to constrain an important source of nutrition: an estimated 3.2 billion people rely on the sea for an estimated 20% of their animal protein, especially in East Asia.

“This means 15% to 35% less fish available for food and employment in a region with some of the fastest-growing human populations in the world,” said Dr Free.

“Knowing exactly how fisheries will change under future warming is challenging, but we do know that failing to adapt to changing fisheries productivity will result in less food and fewer profits relative to today.” – Climate News Network

Carbon rise could cause cloud tipping point

The planet’s temperature could zoom in an ever more greenhouse world, as researchers identify a dangerous possible cloud tipping point.

LONDON, 27 February, 2019 − Climate scientists have confirmed a high-level hazard, a cloud tipping point, that could send global warming into a dramatic upwards spiral.

If carbon dioxide concentrations in the atmosphere become high enough, the clouds that shade and cool some of the tropical and subtropical oceans could become unstable and disperse. More radiation would slam into the ocean and the coasts, and surface temperatures could soar as high as 8°C above the levels for most of human history.

And this dramatic spike would be independent of any warming directly linked to the steady rise in carbon dioxide concentrations themselves, the scientists warn.

In Paris in 2015, a total of 195 nations vowed to take steps to contain global warming to “well below” a maximum of 2°C above the average before the start of the Industrial Revolution, powered by the exploitation of fossil fuels.

In the last 200 years, levels of the greenhouse gas carbon dioxide in the atmosphere have increased from 288 parts per million to around 410 ppm and the average global temperature has already increased by about 1°C.

“Our results show that there are dangerous climate change thresholds that we have been unaware of”

Researchers have repeatedly warned that the Paris promises have yet to be turned into coherent and consistent action, and that if the world goes on burning coal, oil and natural gas on a “business as usual” scenario, catastrophic consequences could follow.

Now US researchers warn in the journal Nature Geoscience that they know a bit more about the climate mechanisms by which global warming could accelerate.

If carbon dioxide ratios climb to 1,200 ppm – and without drastic action this could happen in the next century – then the Earth could reach a tipping point, and the marine stratus clouds that shade one-fifth of the low-latitude oceans and reflect between 30% and 60% of shortwave radiation back into space could break up and scatter.

The sunlight they normally block would slam into the deep blue sea, to warm the planet even faster.

Avoidance possible

“I think and hope that technological changes will slow carbon emissions so that we do not actually reach such high CO2 concentrations,” said Tapio Schneider, an environmental scientist at the Jet Propulsion Laboratory, the research centre managed for the US space agency NASA by the California Institute of Technology.

“But our results show that there are dangerous climate change thresholds that we have been unaware of.”

The role of clouds in the intricate interplay of sunlight, forests, oceans, rocks and atmosphere that controls the planet’s climate has been the subject of argument. Do clouds really slow warming? And if so, by how much, and under what conditions?

There may not be a simple answer, although researchers are fairly confident that the thinning of clouds over the California coasts may have made calamitous wildfires in the state more probable.

So to resolve what Professor Schneider calls “a blind spot” in climate modelling, he and his colleagues worked on a small-scale computer simulation of one representative section of the atmosphere above the subtropical ocean, and then used supercomputers to model the clouds and their turbulent movement over a mathematical representation of the sea. And then they started to tune up the atmospheric concentrations of carbon dioxide.

Carbon threshold

They found that, once CO2 levels reached 1,200 ppm, the decks of stratocumulus cloud vanished, and did not reappear until CO2 levels dropped to well below this dangerous threshold.

If – and this has yet to happen – other researchers use different approaches to confirm the result, then the US scientists will have established a better understanding of one component of natural climate control.

The research may also illuminate a puzzle of climate history: 50 million or more years ago, during a geological epoch called the Eocene, the Arctic ice cap melted. Climate models have shown that, for this to happen, atmospheric carbon ratios would need to rise to 4,000 ppm.

These, the Caltech team, suggests, would be “implausibly high” CO2 levels. The latest study suggests this might be an overestimate: a mere 1,200 ppm would be enough to set the planetary thermometer soaring. − Climate News Network

The planet’s temperature could zoom in an ever more greenhouse world, as researchers identify a dangerous possible cloud tipping point.

LONDON, 27 February, 2019 − Climate scientists have confirmed a high-level hazard, a cloud tipping point, that could send global warming into a dramatic upwards spiral.

If carbon dioxide concentrations in the atmosphere become high enough, the clouds that shade and cool some of the tropical and subtropical oceans could become unstable and disperse. More radiation would slam into the ocean and the coasts, and surface temperatures could soar as high as 8°C above the levels for most of human history.

And this dramatic spike would be independent of any warming directly linked to the steady rise in carbon dioxide concentrations themselves, the scientists warn.

In Paris in 2015, a total of 195 nations vowed to take steps to contain global warming to “well below” a maximum of 2°C above the average before the start of the Industrial Revolution, powered by the exploitation of fossil fuels.

In the last 200 years, levels of the greenhouse gas carbon dioxide in the atmosphere have increased from 288 parts per million to around 410 ppm and the average global temperature has already increased by about 1°C.

“Our results show that there are dangerous climate change thresholds that we have been unaware of”

Researchers have repeatedly warned that the Paris promises have yet to be turned into coherent and consistent action, and that if the world goes on burning coal, oil and natural gas on a “business as usual” scenario, catastrophic consequences could follow.

Now US researchers warn in the journal Nature Geoscience that they know a bit more about the climate mechanisms by which global warming could accelerate.

If carbon dioxide ratios climb to 1,200 ppm – and without drastic action this could happen in the next century – then the Earth could reach a tipping point, and the marine stratus clouds that shade one-fifth of the low-latitude oceans and reflect between 30% and 60% of shortwave radiation back into space could break up and scatter.

The sunlight they normally block would slam into the deep blue sea, to warm the planet even faster.

Avoidance possible

“I think and hope that technological changes will slow carbon emissions so that we do not actually reach such high CO2 concentrations,” said Tapio Schneider, an environmental scientist at the Jet Propulsion Laboratory, the research centre managed for the US space agency NASA by the California Institute of Technology.

“But our results show that there are dangerous climate change thresholds that we have been unaware of.”

The role of clouds in the intricate interplay of sunlight, forests, oceans, rocks and atmosphere that controls the planet’s climate has been the subject of argument. Do clouds really slow warming? And if so, by how much, and under what conditions?

There may not be a simple answer, although researchers are fairly confident that the thinning of clouds over the California coasts may have made calamitous wildfires in the state more probable.

So to resolve what Professor Schneider calls “a blind spot” in climate modelling, he and his colleagues worked on a small-scale computer simulation of one representative section of the atmosphere above the subtropical ocean, and then used supercomputers to model the clouds and their turbulent movement over a mathematical representation of the sea. And then they started to tune up the atmospheric concentrations of carbon dioxide.

Carbon threshold

They found that, once CO2 levels reached 1,200 ppm, the decks of stratocumulus cloud vanished, and did not reappear until CO2 levels dropped to well below this dangerous threshold.

If – and this has yet to happen – other researchers use different approaches to confirm the result, then the US scientists will have established a better understanding of one component of natural climate control.

The research may also illuminate a puzzle of climate history: 50 million or more years ago, during a geological epoch called the Eocene, the Arctic ice cap melted. Climate models have shown that, for this to happen, atmospheric carbon ratios would need to rise to 4,000 ppm.

These, the Caltech team, suggests, would be “implausibly high” CO2 levels. The latest study suggests this might be an overestimate: a mere 1,200 ppm would be enough to set the planetary thermometer soaring. − Climate News Network

Melting polar ice sheets will alter weather

Sea level rise and melting polar ice sheets may not cause a climate catastrophe, but they will certainly change weather patterns unpredictably.

LONDON, 15 February, 2019 – The global weather is about to get worse. The melting polar ice sheets will mean rainfall and windstorms could become more violent, and hot spells and ice storms could become more extreme.

This is because the ice sheets of Greenland and Antarctica are melting, to affect what were once stable ocean currents and airflow patterns around the globe.

Planetary surface temperatures could rise by 3°C or even 4°C by the end of the century. Global sea levels will rise in ways that would “enhance global temperature variability”, but this might not be as high as earlier studies have predicted. That is because the ice cliffs of Antarctica might not be so much at risk of disastrous collapse that would set the glaciers accelerating to the sea.

The latest revision of evidence from the melting ice sheets in two hemispheres – and there is plenty of evidence that melting is happening at ever greater rates – is based on two studies of what could happen to the world’s greatest reservoirs of frozen freshwater if nations pursue current policies, fossil fuel combustion continues to increase, and global average temperatures creep up to unprecedented levels.

“Even if we do include ice-cliff instability … the most likely contribution to sea level rise would be less than half a metre by 2100”

“Under current global government policies, we are heading towards 3 or 4 degrees of warming above pre-industrial levels, causing a significant amount of melt water from the Greenland and Antarctic ice sheets to enter Earth’s oceans. According to our models, this melt water will cause significant disruptions to ocean currents and change levels of warming around the world,” said Nick Golledge, a south polar researcher at Victoria University, in New Zealand.

He and colleagues from Canada, the US, Germany and the UK report in Nature that they matched satellite observations of what is happening to the ice sheets with detailed simulations of the complex effects of melting over time, and according to the human response so far to warnings of climate change.

In Paris in 2015, leaders from 195 nations vowed to contain global warming to “well below” an average rise of 2°C by 2100. But promises have yet to become concerted and coherent action, and researchers warn that on present policies, a 3°C rise seems inevitable.

Sea levels have already risen by about 14 cms in the last century: the worst scenarios have proposed a devastating rise of 130 cms by 2100. The fastest increase in the rise of sea levels is likely to happen between 2065 and 2075.

Gulf Stream weakens

As warmer melt water gets into the North Atlantic, that major ocean current the Gulf Stream is likely to be weakened. Air temperatures are likely to rise over eastern Canada, central America and the high Arctic. Northwestern Europe – scientists have been warning of this for years – will become cooler.

In the Antarctic, a lens of warm fresh water will form over the surface, allowing uprising warm ocean water to spread and cause what could be further Antarctic melting.

But how bad this could be is re-examined in a second, companion paper in Nature. Tamsin Edwards, now at King’s College London, Dr Golledge and others took a fresh look at an old scare: that the vast cliffs of ice – some of them 100 metres above sea level – around the Antarctic could become unstable and collapse, accelerating the retreat of the ice behind them.

They used geophysical techniques to analyse dramatic episodes of ice loss that must have happened 3 million years ago and 125,000 years ago, and they went back to the present patterns of melt. These losses, in their calculations, did not cause unstoppable ice loss in the past, and may not affect the future much either.

Instability less important

“We’ve shown that ice-cliff instability doesn’t appear to be an essential mechanism in reproducing past sea level changes and so this suggests ‘the jury’s still out’ when it comes to including it in future predictions,” said Dr Edwards.

“Even if we do include ice-cliff instability, our more thorough assessment shows the most likely contribution to sea level rise would be less than half a metre by 2100.”

At worst, there is a one in 20 chance that enough of Antarctica’s glacial burden will melt to raise sea levels by 39 cms. More likely, both studies conclude, under high levels of greenhouse gas concentrations, south polar ice will only melt to raise sea levels worldwide by about 15 cms. – Climate News Network

Sea level rise and melting polar ice sheets may not cause a climate catastrophe, but they will certainly change weather patterns unpredictably.

LONDON, 15 February, 2019 – The global weather is about to get worse. The melting polar ice sheets will mean rainfall and windstorms could become more violent, and hot spells and ice storms could become more extreme.

This is because the ice sheets of Greenland and Antarctica are melting, to affect what were once stable ocean currents and airflow patterns around the globe.

Planetary surface temperatures could rise by 3°C or even 4°C by the end of the century. Global sea levels will rise in ways that would “enhance global temperature variability”, but this might not be as high as earlier studies have predicted. That is because the ice cliffs of Antarctica might not be so much at risk of disastrous collapse that would set the glaciers accelerating to the sea.

The latest revision of evidence from the melting ice sheets in two hemispheres – and there is plenty of evidence that melting is happening at ever greater rates – is based on two studies of what could happen to the world’s greatest reservoirs of frozen freshwater if nations pursue current policies, fossil fuel combustion continues to increase, and global average temperatures creep up to unprecedented levels.

“Even if we do include ice-cliff instability … the most likely contribution to sea level rise would be less than half a metre by 2100”

“Under current global government policies, we are heading towards 3 or 4 degrees of warming above pre-industrial levels, causing a significant amount of melt water from the Greenland and Antarctic ice sheets to enter Earth’s oceans. According to our models, this melt water will cause significant disruptions to ocean currents and change levels of warming around the world,” said Nick Golledge, a south polar researcher at Victoria University, in New Zealand.

He and colleagues from Canada, the US, Germany and the UK report in Nature that they matched satellite observations of what is happening to the ice sheets with detailed simulations of the complex effects of melting over time, and according to the human response so far to warnings of climate change.

In Paris in 2015, leaders from 195 nations vowed to contain global warming to “well below” an average rise of 2°C by 2100. But promises have yet to become concerted and coherent action, and researchers warn that on present policies, a 3°C rise seems inevitable.

Sea levels have already risen by about 14 cms in the last century: the worst scenarios have proposed a devastating rise of 130 cms by 2100. The fastest increase in the rise of sea levels is likely to happen between 2065 and 2075.

Gulf Stream weakens

As warmer melt water gets into the North Atlantic, that major ocean current the Gulf Stream is likely to be weakened. Air temperatures are likely to rise over eastern Canada, central America and the high Arctic. Northwestern Europe – scientists have been warning of this for years – will become cooler.

In the Antarctic, a lens of warm fresh water will form over the surface, allowing uprising warm ocean water to spread and cause what could be further Antarctic melting.

But how bad this could be is re-examined in a second, companion paper in Nature. Tamsin Edwards, now at King’s College London, Dr Golledge and others took a fresh look at an old scare: that the vast cliffs of ice – some of them 100 metres above sea level – around the Antarctic could become unstable and collapse, accelerating the retreat of the ice behind them.

They used geophysical techniques to analyse dramatic episodes of ice loss that must have happened 3 million years ago and 125,000 years ago, and they went back to the present patterns of melt. These losses, in their calculations, did not cause unstoppable ice loss in the past, and may not affect the future much either.

Instability less important

“We’ve shown that ice-cliff instability doesn’t appear to be an essential mechanism in reproducing past sea level changes and so this suggests ‘the jury’s still out’ when it comes to including it in future predictions,” said Dr Edwards.

“Even if we do include ice-cliff instability, our more thorough assessment shows the most likely contribution to sea level rise would be less than half a metre by 2100.”

At worst, there is a one in 20 chance that enough of Antarctica’s glacial burden will melt to raise sea levels by 39 cms. More likely, both studies conclude, under high levels of greenhouse gas concentrations, south polar ice will only melt to raise sea levels worldwide by about 15 cms. – Climate News Network

Food webs alter as warmer seas change colour

Reflected sunlight tells a story: one of deeper shading in an ever-warmer ocean. That is because climate change will also alter green growth in the high seas.

LONDON, 11 February, 2019 – The Blue Planet is to get a little bluer as the world warms and climates change. Where the seas turn green, expect an even deeper verdant tint, new research suggests.

Since humans began increasing the levels of greenhouse gases in the atmosphere – by burning the fossil fuels that have provided the energy for both economic growth and a population explosion – the oceans have warmed in ways that affect marine life. They have grown ever more acidic, in ways that affect coral growth and fish behaviour.

But when US and British scientists tested a model of ocean physics, biogeochemistry and ecosystems – intending to simulate changes in the populations of marine phytoplankton or algae – they also incorporated some of the ocean’s optical properties. Since green plants photosynthesise, they absorb sunlight, and change reflectivity.

And, as mariners have known for centuries, the blue ocean is blue because levels of marine life in the warmer mid-ocean waters are very low.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious”

The researchers tweaked their simulation to see what the world would look like in 2100 if humanity carried on burning fossil fuels on the notorious business-as-usual scenario and took global average temperatures up to 3°C above historic levels.

And they found that higher temperatures would alter the global palette. More than half of the world’s oceans would intensify in colour. The subtropics would become even more blue, and the oceans that sweep around the poles would become an even deeper green, they report in the journal Nature Communications.

“The models suggest the changes won’t appear huge to the naked eye, and the ocean will still look like it has blue regions in the subtropics and greener regions near the equator and the poles,” said Stephanie Dutkiewicz, of the Massachusetts Institute of Technology, who led the research

Wider effects.

“That basic pattern will still be there. But it will be enough different that it will affect the rest of the food web that phytoplankton supports.”

The clearer the water, the bluer the reflection of the sunlight. From space, the world looks blue. Waters rich in phytoplankton are by definition rich too in chlorophyll that absorbs blue wavelengths and reflects a green tint. But changes in chlorophyll colouring, observed over the decades from satellite monitoring, can be affected by natural climate cycles and shifts in nutrient supply.

The researchers were looking for a more complete model of the wavelengths of visible light that are absorbed, scattered or reflected by living things. They devised one, and tested their new model against satellite evidence so far. When they found agreement with the past, they had also found yet another way to read the future

Explaining ecosystem change.

They tuned their simulated planet to the 3°C warming that seems inevitable unless humans rapidly shift from fossil fuels to renewable energy sources, to discover that wavelengths of light around the blue-green spectrum shifted the fastest. The shifts in colour could tell a story of altered ecosystems.

“The nice thing about this model is that we can use it as a laboratory, a place where we can experiment, to see how our planet is going to change,” Dr Dutkiewicz said.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious..

“Different types of phytoplankton absorb light differently, and if climate change shifts one community of phytoplankton to another, they will also change the types of food webs they can support.” – Climate News Network

Reflected sunlight tells a story: one of deeper shading in an ever-warmer ocean. That is because climate change will also alter green growth in the high seas.

LONDON, 11 February, 2019 – The Blue Planet is to get a little bluer as the world warms and climates change. Where the seas turn green, expect an even deeper verdant tint, new research suggests.

Since humans began increasing the levels of greenhouse gases in the atmosphere – by burning the fossil fuels that have provided the energy for both economic growth and a population explosion – the oceans have warmed in ways that affect marine life. They have grown ever more acidic, in ways that affect coral growth and fish behaviour.

But when US and British scientists tested a model of ocean physics, biogeochemistry and ecosystems – intending to simulate changes in the populations of marine phytoplankton or algae – they also incorporated some of the ocean’s optical properties. Since green plants photosynthesise, they absorb sunlight, and change reflectivity.

And, as mariners have known for centuries, the blue ocean is blue because levels of marine life in the warmer mid-ocean waters are very low.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious”

The researchers tweaked their simulation to see what the world would look like in 2100 if humanity carried on burning fossil fuels on the notorious business-as-usual scenario and took global average temperatures up to 3°C above historic levels.

And they found that higher temperatures would alter the global palette. More than half of the world’s oceans would intensify in colour. The subtropics would become even more blue, and the oceans that sweep around the poles would become an even deeper green, they report in the journal Nature Communications.

“The models suggest the changes won’t appear huge to the naked eye, and the ocean will still look like it has blue regions in the subtropics and greener regions near the equator and the poles,” said Stephanie Dutkiewicz, of the Massachusetts Institute of Technology, who led the research

Wider effects.

“That basic pattern will still be there. But it will be enough different that it will affect the rest of the food web that phytoplankton supports.”

The clearer the water, the bluer the reflection of the sunlight. From space, the world looks blue. Waters rich in phytoplankton are by definition rich too in chlorophyll that absorbs blue wavelengths and reflects a green tint. But changes in chlorophyll colouring, observed over the decades from satellite monitoring, can be affected by natural climate cycles and shifts in nutrient supply.

The researchers were looking for a more complete model of the wavelengths of visible light that are absorbed, scattered or reflected by living things. They devised one, and tested their new model against satellite evidence so far. When they found agreement with the past, they had also found yet another way to read the future

Explaining ecosystem change.

They tuned their simulated planet to the 3°C warming that seems inevitable unless humans rapidly shift from fossil fuels to renewable energy sources, to discover that wavelengths of light around the blue-green spectrum shifted the fastest. The shifts in colour could tell a story of altered ecosystems.

“The nice thing about this model is that we can use it as a laboratory, a place where we can experiment, to see how our planet is going to change,” Dr Dutkiewicz said.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious..

“Different types of phytoplankton absorb light differently, and if climate change shifts one community of phytoplankton to another, they will also change the types of food webs they can support.” – Climate News Network

Whales’ appetite for plastics yawns wide

Polluting fragments and fibres get everywhere. Whales’ appetite for plastics shows how that includes the living tissue of some of the biggest sea creatures.

LONDON, 6 February, 2019 − There seem to be few limits to whales’ appetite for plastics. Scientists who checked the stomachs and intestines of 50 whales, dolphins and seals found stranded and dead on British coasts have identified plastic particles ingested by every one of them.

So far the researchers make no link between what now seems ubiquitous plastic pollution of the seas and the health of the animals – the numbers in each were tiny – but the find is yet another indicator of the steady degradation of the planet’s biggest natural habitat by just one terrestrial species with a lately-acquired addiction to fossil fuels.

A small fraction of the world’s oil, coal and natural gas output is turned into plastics or organic polymers with versatile and enduring properties, and four-fifths of the particles were identified as synthetic fibres from clothes, fishing nets and toothbrushes: the remainder may have come from food packaging and plastic containers.

“It’s shocking – but not surprising – that every animal had ingested microplastics,” said Sarah Nelms of the University of Exeter and the Plymouth Marine Laboratory, who led the study.

“The number of particles in each animal was relatively low (average of 5.5 particles per animal) suggesting they eventually pass through the digestive system, or are regurgitated. We don’t yet know what effects the microplastics, or the chemicals on and in them, might have on marine mammals.”

“Over the years we have found microplastic in nearly all the species of marine animals we have looked at”

The find was not surprising because in the last few years researchers have repeatedly established that in the century since the first synthesis of artificial polymer materials, colossal quantities have ended up in the oceans in ever-tinier particles: they have been found in the high Arctic, in every litre of sampled seawater, in coral reefs and in polar bears.

The scientists write in the journal Scientific Reports that they found at least one microplastic particle in every animal they examined, in either stomach or intestine.

Altogether, in 10 species – the Atlantic white-sided dolphin, the bottlenose, common, striped, white-beaked and Risso’s dolphins, the grey seal, the harbour seal, the harbour porpoise and the pygmy sperm whale − they found 273 particles, and 261 of these were smaller than 5mm. Most were fibres, ranging in size from 2cms to 0.1mm; 16% were fragments. At least 26 marine mammals are known to use British waters.

Colossal quantities of microplastics get into the sea from a variety of sources. Rain washes away fragments of tyres and paint; debris gets spilled during transportation; microbeads get washed out of fibres and cosmetics; large objects get abraded, crushed and fragmented.

Effects unknown

The smaller the size, the easier it is for the particles to be taken up by small crustaceans called copepods, shellfish, fish, seabirds and the bigger sea creatures and the marine mammals at the top of the food chain.

“Over the years we have found microplastic in nearly all the species of marine animals we have looked at; from tiny zooplankton at the base of the marine food web to fish larvae, turtles and now dolphins, seals and whales,” said Pennie Lindeque, who heads the marine plastics research group at Plymouth Marine Laboratory.

“We don’t yet know the effects of these particles on marine mammals. Their small size means they may easily be expelled, but while microplastics are unlikely to be the main threat to these species, we are still concerned by the impact of the bacteria, viruses and contaminants carried on the plastic.

“This study provides more evidence that we all need to help reduce the amount of plastic waste released to our seas.” − Climate News Network

Polluting fragments and fibres get everywhere. Whales’ appetite for plastics shows how that includes the living tissue of some of the biggest sea creatures.

LONDON, 6 February, 2019 − There seem to be few limits to whales’ appetite for plastics. Scientists who checked the stomachs and intestines of 50 whales, dolphins and seals found stranded and dead on British coasts have identified plastic particles ingested by every one of them.

So far the researchers make no link between what now seems ubiquitous plastic pollution of the seas and the health of the animals – the numbers in each were tiny – but the find is yet another indicator of the steady degradation of the planet’s biggest natural habitat by just one terrestrial species with a lately-acquired addiction to fossil fuels.

A small fraction of the world’s oil, coal and natural gas output is turned into plastics or organic polymers with versatile and enduring properties, and four-fifths of the particles were identified as synthetic fibres from clothes, fishing nets and toothbrushes: the remainder may have come from food packaging and plastic containers.

“It’s shocking – but not surprising – that every animal had ingested microplastics,” said Sarah Nelms of the University of Exeter and the Plymouth Marine Laboratory, who led the study.

“The number of particles in each animal was relatively low (average of 5.5 particles per animal) suggesting they eventually pass through the digestive system, or are regurgitated. We don’t yet know what effects the microplastics, or the chemicals on and in them, might have on marine mammals.”

“Over the years we have found microplastic in nearly all the species of marine animals we have looked at”

The find was not surprising because in the last few years researchers have repeatedly established that in the century since the first synthesis of artificial polymer materials, colossal quantities have ended up in the oceans in ever-tinier particles: they have been found in the high Arctic, in every litre of sampled seawater, in coral reefs and in polar bears.

The scientists write in the journal Scientific Reports that they found at least one microplastic particle in every animal they examined, in either stomach or intestine.

Altogether, in 10 species – the Atlantic white-sided dolphin, the bottlenose, common, striped, white-beaked and Risso’s dolphins, the grey seal, the harbour seal, the harbour porpoise and the pygmy sperm whale − they found 273 particles, and 261 of these were smaller than 5mm. Most were fibres, ranging in size from 2cms to 0.1mm; 16% were fragments. At least 26 marine mammals are known to use British waters.

Colossal quantities of microplastics get into the sea from a variety of sources. Rain washes away fragments of tyres and paint; debris gets spilled during transportation; microbeads get washed out of fibres and cosmetics; large objects get abraded, crushed and fragmented.

Effects unknown

The smaller the size, the easier it is for the particles to be taken up by small crustaceans called copepods, shellfish, fish, seabirds and the bigger sea creatures and the marine mammals at the top of the food chain.

“Over the years we have found microplastic in nearly all the species of marine animals we have looked at; from tiny zooplankton at the base of the marine food web to fish larvae, turtles and now dolphins, seals and whales,” said Pennie Lindeque, who heads the marine plastics research group at Plymouth Marine Laboratory.

“We don’t yet know the effects of these particles on marine mammals. Their small size means they may easily be expelled, but while microplastics are unlikely to be the main threat to these species, we are still concerned by the impact of the bacteria, viruses and contaminants carried on the plastic.

“This study provides more evidence that we all need to help reduce the amount of plastic waste released to our seas.” − Climate News Network

Food shocks increase as world warms

Heat extremes harm harvests. So do floods, drought and high winds. Climate change spurs food shocks that threaten the supper table.

LONDON, 1 February, 2019 − More than ever, the world’s ways of keeping hunger at bay are taking a pounding as food shocks become more frequent. Potatoes are being baked in heat waves. Corn is being parched by drought. Fruit is being bitten by frost.

And a long-term study suggests that for the world’s farmers and graziers, fishing crews and fish farmers, things will get worse as the world warms. Australian and US scientists report in the journal Nature Sustainability that they examined the incidence of what they call “food shocks” across 134 nations over a period of 53 years.

They found that some regions and some kinds of farming have suffered worse than others; that food production is vulnerable to volatile climate and weather changes; and that the dangers are increasing with time.

The researchers looked at cases of dramatic crop failure, harvest loss and fishing fleet failures between 1961 and 2013, as recorded by the UN Food and Agriculture Organisation and other sources, and then mapped shock frequency and co-occurrence.

In their database of 741 available time-series of food production, they found 226 cases of food shock: dramatic interruption of supply.

Hunger increases

Agriculture and livestock emerged as slightly more vulnerable to shock than fisheries and aquaculture. South Asia suffered most from crop damage or loss; the Caribbean for livestock, and Eastern Europe for fisheries; some of these regions were hard hit in more than one sector.

“The frequency of shocks has increased across all sectors at a global scale,” the authors report. “Increasing shock frequency is a food security concern in itself. Conflict-related shocks across sub-Saharan Africa and the Middle East since 2010, combined with adverse climate conditions, are responsible for the first uptick in global hunger in recent times.”

More than half of all shocks to food production were climate-related, and drought was the biggest factor. Extreme weather accounted for a quarter of shocks to livestock, and disease outbreaks another 10%, but the biggest single factor for pastoral farmers arose from geopolitical conflict and other crises.

Fisheries seemed better protected, and the worst shocks to fish landings could be traced to overfishing. Disruption to fish farming – a relatively new form of food production – has grown at a faster rate and to a higher level than in any other sector.

Climate scientists and agricultural researchers have been warning for years that food security is at hazard from global warming and climate change, both driven by profligate human use of fossil fuels and unthinking destruction of forests and natural grasslands and wetlands.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often”

Heat extremes can harm cereal yields almost anywhere, but Africa and South-east Asia are particularly at risk from changes in precipitation patterns.

The latest study is a reminder that, in some ways, the future has already arrived: the forewarned rise in climate extremes such as flood, heat and drought can be detected in the annual harvest tally around the globe.

And although a high percentage of the food supply damage can be linked to social conflict or political stress, climate change seems increasingly to be a factor in civil and international violence.

A new study for the UN security council – co-incidentally released on the same day – confirms the picture. Hunger and conflict are in a persistent and deadly partnership that threatens millions.

Mass famine

The number of food shocks fluctuates from year to year, the Nature Sustainability authors say. That is because factors such as social conflict and climate change can in synergy create a number of shocks across different sectors at different times. At least 22 of the 134 nations experienced shocks in many sectors over the same five-year time period.

In some cases, these shocks ended with more than just empty shelves. The collapse of the Soviet Union late in the last century removed some economic support from North Korea: subsequent floods precipitated a famine that killed 200,000 people.

Iraq’s invasion of Kuwait in 1991, and the subsequent Gulf War, devastated agricultural land and cost Kuwait’s commercial fishermen their livelihoods. Drought in Afghanistan in 2001 and 2002 decimated cereal yields, pastoralists lost fodder for their cattle and animal disease incidence soared.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often,” said Richard Cottrell of the University of Tasmania, who led the study.

“Globalised trade and the dependence of many countries on food imports mean that food shocks are a global problem, and the international community faces a significant challenge to build resilience.” − Climate News Network

Heat extremes harm harvests. So do floods, drought and high winds. Climate change spurs food shocks that threaten the supper table.

LONDON, 1 February, 2019 − More than ever, the world’s ways of keeping hunger at bay are taking a pounding as food shocks become more frequent. Potatoes are being baked in heat waves. Corn is being parched by drought. Fruit is being bitten by frost.

And a long-term study suggests that for the world’s farmers and graziers, fishing crews and fish farmers, things will get worse as the world warms. Australian and US scientists report in the journal Nature Sustainability that they examined the incidence of what they call “food shocks” across 134 nations over a period of 53 years.

They found that some regions and some kinds of farming have suffered worse than others; that food production is vulnerable to volatile climate and weather changes; and that the dangers are increasing with time.

The researchers looked at cases of dramatic crop failure, harvest loss and fishing fleet failures between 1961 and 2013, as recorded by the UN Food and Agriculture Organisation and other sources, and then mapped shock frequency and co-occurrence.

In their database of 741 available time-series of food production, they found 226 cases of food shock: dramatic interruption of supply.

Hunger increases

Agriculture and livestock emerged as slightly more vulnerable to shock than fisheries and aquaculture. South Asia suffered most from crop damage or loss; the Caribbean for livestock, and Eastern Europe for fisheries; some of these regions were hard hit in more than one sector.

“The frequency of shocks has increased across all sectors at a global scale,” the authors report. “Increasing shock frequency is a food security concern in itself. Conflict-related shocks across sub-Saharan Africa and the Middle East since 2010, combined with adverse climate conditions, are responsible for the first uptick in global hunger in recent times.”

More than half of all shocks to food production were climate-related, and drought was the biggest factor. Extreme weather accounted for a quarter of shocks to livestock, and disease outbreaks another 10%, but the biggest single factor for pastoral farmers arose from geopolitical conflict and other crises.

Fisheries seemed better protected, and the worst shocks to fish landings could be traced to overfishing. Disruption to fish farming – a relatively new form of food production – has grown at a faster rate and to a higher level than in any other sector.

Climate scientists and agricultural researchers have been warning for years that food security is at hazard from global warming and climate change, both driven by profligate human use of fossil fuels and unthinking destruction of forests and natural grasslands and wetlands.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often”

Heat extremes can harm cereal yields almost anywhere, but Africa and South-east Asia are particularly at risk from changes in precipitation patterns.

The latest study is a reminder that, in some ways, the future has already arrived: the forewarned rise in climate extremes such as flood, heat and drought can be detected in the annual harvest tally around the globe.

And although a high percentage of the food supply damage can be linked to social conflict or political stress, climate change seems increasingly to be a factor in civil and international violence.

A new study for the UN security council – co-incidentally released on the same day – confirms the picture. Hunger and conflict are in a persistent and deadly partnership that threatens millions.

Mass famine

The number of food shocks fluctuates from year to year, the Nature Sustainability authors say. That is because factors such as social conflict and climate change can in synergy create a number of shocks across different sectors at different times. At least 22 of the 134 nations experienced shocks in many sectors over the same five-year time period.

In some cases, these shocks ended with more than just empty shelves. The collapse of the Soviet Union late in the last century removed some economic support from North Korea: subsequent floods precipitated a famine that killed 200,000 people.

Iraq’s invasion of Kuwait in 1991, and the subsequent Gulf War, devastated agricultural land and cost Kuwait’s commercial fishermen their livelihoods. Drought in Afghanistan in 2001 and 2002 decimated cereal yields, pastoralists lost fodder for their cattle and animal disease incidence soared.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often,” said Richard Cottrell of the University of Tasmania, who led the study.

“Globalised trade and the dependence of many countries on food imports mean that food shocks are a global problem, and the international community faces a significant challenge to build resilience.” − Climate News Network