Category Archives: Research

Food, waste, power: Ingenuity helps the climate

Electricity from the gentlest winds, plastic from exhaust, old packing turned into lunch: human ingenuity helps the climate.

LONDON, 7 October, 2020 − Chinese scientists have found a way to harness wind power when there is no wind, just a gentle breeze: one way in which human ingenuity helps the climate crisis towards a resolution.

There are others. Californian researchers have tested a copper wire catalyst that can convert carbon dioxide into ethylene. In effect, fuel exhaust could fuel industry − and help contain global heating.

And a team in the US Midwest has begun a military project to develop a portable system that could turn waste plastic and paper into food for soldiers in the field. If it works, it could add new resonance to the term “iron rations” and deliver another answer to the challenge of plastic waste.

All three advances are so far on a very small scale. Two of them depend on nano-engineering, the making of materials at scales of a billionth of a metre, while the third calls on help from the microbial world. None of them is yet near commercial exploitation.

But all of them are yet further examples of the astonishing ingenuity and resource at work in the world’s laboratories and universities, in pursuit of ways to recover energy, reduce fossil fuel dependence, recycle detritus, and contain climate change.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve”

Wind power worldwide is now big business, but not on days when there is no wind. Researchers in Beijing, Chongqing, Shanghai and Singapore write in the journal Cell Reports Physical Science that they have created a nanogenerator that can salvage energy from a breeze as mild as 1.6 metres a second. Worn on a sleeve, it could generate energy to power a cellphone while its wearer walks along a street

It works on a principle known as the tribo-electric effect. There is no turbine. Two plastic strips in a tube flutter and collide against each other in an airflow. When separated from contact, these two strips become electrically charged, and the energy can be captured and stored. The prototype can already power 100 LED lights and temperature sensors. It could be scaled up to 1000 watts.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve,” said Ya Yang, of the Chinese Academy of Sciences.

“Unlike wind turbines that use coils and magnets, where the costs are fixed, we can pick and choose low-cost materials for our device. Our device can be safely applied to nature reserves or cities, because it doesn’t have rotating structures.”

Quicker reaction

Ethylene is a chemical used to make plastics, solvents and cosmetics. Scientists report in the journal Nature Catalysis that they have exploited specially-shaped copper surfaces to reduce carbon dioxide (CO2) to ethylene, C2H4. Other researchers are attempting to turn CO2 into methane, or even jet fuel. Methane, or natural gas, is used industrially to make ethylene.

The latest study aims to cut out the natural gas, and make ethylene directly: world demand stands so far at 158 million tonnes, for plastic packaging or polyethylene, and other products.

“The idea of using copper to catalyse this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production,” said William Goddard, of the California Institute of Technology, and one of the authors.

“This study shows a solid path towards that mark, with the potential to transform ethylene production into a greener industry, using CO2 that would otherwise end up in the atmosphere.”

The ambition to convert plastic and paper waste into food is so far just that, an ambition: the US Defense Advanced Research Projects Agency (DARPA) has put up $2.7 million (£2.1m) towards a co-operative effort to solve a rubbish problem and deliver edible single-cell food rich in proteins and vitamins.

Appetite for plastic

Yeast is a nourishing single cell protein. So is the spread popular with Australians, called Vegemite. What the US researchers want is a system that soldiers could carry into the field, and concentrate waste into mouthfuls of high-protein nourishment. It is based on trials with biomass pyrolysis to turn paper into sugar, and the conversion of plastics into fatty compounds with heat and a little help from microbes.

“Plastics are in fact biodegradable but the process is very slow, as evidenced by the accumulation of plastic waste in the environment,” said Robert Brown of Iowa State University, principal investigator.

“We can dramatically increase oxo-degradation of plastics to fatty compounds by raising the temperature a few hundred degrees Fahrenheit. The cooled product is used to grow yeast or bacteria into single cell proteins suitable as food.”

The system would, the researchers say, “improve military logistics resiliency and extend military missions.” Beyond that, it could go a long way to helping with the challenge of growing plastic waste worldwide, and creating an extra source of food for an increasingly hungry world. − Climate News Network

Electricity from the gentlest winds, plastic from exhaust, old packing turned into lunch: human ingenuity helps the climate.

LONDON, 7 October, 2020 − Chinese scientists have found a way to harness wind power when there is no wind, just a gentle breeze: one way in which human ingenuity helps the climate crisis towards a resolution.

There are others. Californian researchers have tested a copper wire catalyst that can convert carbon dioxide into ethylene. In effect, fuel exhaust could fuel industry − and help contain global heating.

And a team in the US Midwest has begun a military project to develop a portable system that could turn waste plastic and paper into food for soldiers in the field. If it works, it could add new resonance to the term “iron rations” and deliver another answer to the challenge of plastic waste.

All three advances are so far on a very small scale. Two of them depend on nano-engineering, the making of materials at scales of a billionth of a metre, while the third calls on help from the microbial world. None of them is yet near commercial exploitation.

But all of them are yet further examples of the astonishing ingenuity and resource at work in the world’s laboratories and universities, in pursuit of ways to recover energy, reduce fossil fuel dependence, recycle detritus, and contain climate change.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve”

Wind power worldwide is now big business, but not on days when there is no wind. Researchers in Beijing, Chongqing, Shanghai and Singapore write in the journal Cell Reports Physical Science that they have created a nanogenerator that can salvage energy from a breeze as mild as 1.6 metres a second. Worn on a sleeve, it could generate energy to power a cellphone while its wearer walks along a street

It works on a principle known as the tribo-electric effect. There is no turbine. Two plastic strips in a tube flutter and collide against each other in an airflow. When separated from contact, these two strips become electrically charged, and the energy can be captured and stored. The prototype can already power 100 LED lights and temperature sensors. It could be scaled up to 1000 watts.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve,” said Ya Yang, of the Chinese Academy of Sciences.

“Unlike wind turbines that use coils and magnets, where the costs are fixed, we can pick and choose low-cost materials for our device. Our device can be safely applied to nature reserves or cities, because it doesn’t have rotating structures.”

Quicker reaction

Ethylene is a chemical used to make plastics, solvents and cosmetics. Scientists report in the journal Nature Catalysis that they have exploited specially-shaped copper surfaces to reduce carbon dioxide (CO2) to ethylene, C2H4. Other researchers are attempting to turn CO2 into methane, or even jet fuel. Methane, or natural gas, is used industrially to make ethylene.

The latest study aims to cut out the natural gas, and make ethylene directly: world demand stands so far at 158 million tonnes, for plastic packaging or polyethylene, and other products.

“The idea of using copper to catalyse this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production,” said William Goddard, of the California Institute of Technology, and one of the authors.

“This study shows a solid path towards that mark, with the potential to transform ethylene production into a greener industry, using CO2 that would otherwise end up in the atmosphere.”

The ambition to convert plastic and paper waste into food is so far just that, an ambition: the US Defense Advanced Research Projects Agency (DARPA) has put up $2.7 million (£2.1m) towards a co-operative effort to solve a rubbish problem and deliver edible single-cell food rich in proteins and vitamins.

Appetite for plastic

Yeast is a nourishing single cell protein. So is the spread popular with Australians, called Vegemite. What the US researchers want is a system that soldiers could carry into the field, and concentrate waste into mouthfuls of high-protein nourishment. It is based on trials with biomass pyrolysis to turn paper into sugar, and the conversion of plastics into fatty compounds with heat and a little help from microbes.

“Plastics are in fact biodegradable but the process is very slow, as evidenced by the accumulation of plastic waste in the environment,” said Robert Brown of Iowa State University, principal investigator.

“We can dramatically increase oxo-degradation of plastics to fatty compounds by raising the temperature a few hundred degrees Fahrenheit. The cooled product is used to grow yeast or bacteria into single cell proteins suitable as food.”

The system would, the researchers say, “improve military logistics resiliency and extend military missions.” Beyond that, it could go a long way to helping with the challenge of growing plastic waste worldwide, and creating an extra source of food for an increasingly hungry world. − Climate News Network

Wilder shores of science yield new ideas on climate

New ideas on climate mean earthquake scientists know more about global heating and astronomers worry over rising warmth.

LONDON, 22 September, 2020 – Science has extended research into the global heating crisis, thanks to new ideas on climate. And, conversely, climate change has extended science in unexpected ways.

Seismologists believe they may have a new way to take the temperature of the world’s oceans. And astronomers focused on distant galaxies have unwittingly amassed a 30-year record of climate change in the Earth’s own atmosphere.

Both discoveries, in the same week, start with the simple physics of sight and sound. US and Chinese researchers report in the journal Science that records from submarine earthquakes could now deliver an unexpected way of measuring the warmth of the water.

Submarine earthquakes create a pattern of sound that can be transmitted immense distances through the ocean without much weakening. And, since the speed of sound in water increases as the temperature of the water rises, the length of time the sound takes to reach detector equipment is itself an indicator of ocean temperature.

Seismologists know – from waves travelling through the Earth’s crust and its deep interior – when and where the earthquakes happen. Seismic waves sprint through rock at rates measured in kilometres per second. Sound waves propagate through oceans at rates measured in kilometres per hour.

“It is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B”

Just as the differences between the speed of lightning and the speed of thunder can establish the distance of an electrical storm, so if researchers know the time and distance of the sea floor event, they have a way of taking the temperature of the water. The constant rumbling of a living planet could offer a new set of easily assembled readings.

“The key is that we use repeating earthquakes – earthquakes that happen again and again in the same place,” said Wenbo Wu, of the California Institute of Technology, who led the Science study.

“We’re looking at earthquakes that occur off Sumatra in Indonesia, and we measure when they arrive in the central Indian Ocean. It takes about half an hour for them to travel that distance, with water temperature causing about one tenth of a second difference. It’s a very small fractional change, but we can measure it.”

The finding matters because – although humans have been recording local ground and air temperatures for at least 300 years, and worldwide for more than a century – it is much harder to be sure about ocean temperatures: the seas cover 70% of the planet, to an average depth of more than 3 kms, and the temperatures vary with both depth and latitude.

Sound goes deep

Oceanographic research is costly, technically challenging, and uneven. Researchers know that the oceans are responding to climate change driven by global heating as a consequence of greenhouse gas emissions: they do not, however, yet have an assured measure of how much heat the oceans have absorbed, and will go on absorbing.

“The ocean plays a role in the rate that the climate is changing,” said Jörn Callies of Caltech, a co-author. “The ocean is the main reservoir of energy in the climate system, and the deep ocean in particular is important to monitor. One advantage of our method is that the sound waves sample depths below 2,000 metres where there are very few conventional measurements.”

Paradoxically, astronomers need to know a great deal about the first few thousand metres of planet Earth as they peer into the furthest reaches of the universe: what they see and how well they see it is affected by atmospheric temperature, turbulence and moisture.

As ground-based telescopes become bigger and more sensitive – the Extremely Large Telescope now under construction at Paranal in northern Chile will collect light with a mirror 39 metres across – so do the challenges of eliminating the atmospheric turbulence that puts the twinkle in the stars of the night sky: cold air and warm air refract light differently, to create a blur. The bigger the telescope, the greater will be the problem of blur.

For three decades, scientists in the highest and driest part of Chile have been recording subtle and not so subtle atmospheric change. And according to the journal Nature Astronomy, climate change is already beginning to affect astronomical research, and will go on creating problems.

Terrestrial disturbances

“The data showed a 1.5°C increase in near-ground temperature over the last four decades at the Paranal Observatory,” said Susanne Crewell of the University of Cologne. “This is slightly higher than the worldwide average of 1°C since the pre-industrial age.”

Average wind speeds – wind also affects the precision of observations – have increased by 3 or 4 metres per second in the same period. Humidity, too, is expected to change as the world moves to what could be a 4°C average rise in temperature by the century’s end.

The message is that conditions on Earth can disturb the observations and mask the understanding of events billions of light years away and billions of years ago. Astronomers, too, need to sound the alarm about climate change, she and her colleagues write.

“To do so, a massive cultural shift is needed,” they conclude, “and it is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B.” – Climate News Network

New ideas on climate mean earthquake scientists know more about global heating and astronomers worry over rising warmth.

LONDON, 22 September, 2020 – Science has extended research into the global heating crisis, thanks to new ideas on climate. And, conversely, climate change has extended science in unexpected ways.

Seismologists believe they may have a new way to take the temperature of the world’s oceans. And astronomers focused on distant galaxies have unwittingly amassed a 30-year record of climate change in the Earth’s own atmosphere.

Both discoveries, in the same week, start with the simple physics of sight and sound. US and Chinese researchers report in the journal Science that records from submarine earthquakes could now deliver an unexpected way of measuring the warmth of the water.

Submarine earthquakes create a pattern of sound that can be transmitted immense distances through the ocean without much weakening. And, since the speed of sound in water increases as the temperature of the water rises, the length of time the sound takes to reach detector equipment is itself an indicator of ocean temperature.

Seismologists know – from waves travelling through the Earth’s crust and its deep interior – when and where the earthquakes happen. Seismic waves sprint through rock at rates measured in kilometres per second. Sound waves propagate through oceans at rates measured in kilometres per hour.

“It is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B”

Just as the differences between the speed of lightning and the speed of thunder can establish the distance of an electrical storm, so if researchers know the time and distance of the sea floor event, they have a way of taking the temperature of the water. The constant rumbling of a living planet could offer a new set of easily assembled readings.

“The key is that we use repeating earthquakes – earthquakes that happen again and again in the same place,” said Wenbo Wu, of the California Institute of Technology, who led the Science study.

“We’re looking at earthquakes that occur off Sumatra in Indonesia, and we measure when they arrive in the central Indian Ocean. It takes about half an hour for them to travel that distance, with water temperature causing about one tenth of a second difference. It’s a very small fractional change, but we can measure it.”

The finding matters because – although humans have been recording local ground and air temperatures for at least 300 years, and worldwide for more than a century – it is much harder to be sure about ocean temperatures: the seas cover 70% of the planet, to an average depth of more than 3 kms, and the temperatures vary with both depth and latitude.

Sound goes deep

Oceanographic research is costly, technically challenging, and uneven. Researchers know that the oceans are responding to climate change driven by global heating as a consequence of greenhouse gas emissions: they do not, however, yet have an assured measure of how much heat the oceans have absorbed, and will go on absorbing.

“The ocean plays a role in the rate that the climate is changing,” said Jörn Callies of Caltech, a co-author. “The ocean is the main reservoir of energy in the climate system, and the deep ocean in particular is important to monitor. One advantage of our method is that the sound waves sample depths below 2,000 metres where there are very few conventional measurements.”

Paradoxically, astronomers need to know a great deal about the first few thousand metres of planet Earth as they peer into the furthest reaches of the universe: what they see and how well they see it is affected by atmospheric temperature, turbulence and moisture.

As ground-based telescopes become bigger and more sensitive – the Extremely Large Telescope now under construction at Paranal in northern Chile will collect light with a mirror 39 metres across – so do the challenges of eliminating the atmospheric turbulence that puts the twinkle in the stars of the night sky: cold air and warm air refract light differently, to create a blur. The bigger the telescope, the greater will be the problem of blur.

For three decades, scientists in the highest and driest part of Chile have been recording subtle and not so subtle atmospheric change. And according to the journal Nature Astronomy, climate change is already beginning to affect astronomical research, and will go on creating problems.

Terrestrial disturbances

“The data showed a 1.5°C increase in near-ground temperature over the last four decades at the Paranal Observatory,” said Susanne Crewell of the University of Cologne. “This is slightly higher than the worldwide average of 1°C since the pre-industrial age.”

Average wind speeds – wind also affects the precision of observations – have increased by 3 or 4 metres per second in the same period. Humidity, too, is expected to change as the world moves to what could be a 4°C average rise in temperature by the century’s end.

The message is that conditions on Earth can disturb the observations and mask the understanding of events billions of light years away and billions of years ago. Astronomers, too, need to sound the alarm about climate change, she and her colleagues write.

“To do so, a massive cultural shift is needed,” they conclude, “and it is of prime importance that astronomy uses its unique perspective to claim this simple fact: there is no planet B.” – Climate News Network

Pandemic’s impacts are damaging climate research

Climate research is suffering permanent damage from some of the Covid-19 pandemic’s impacts, a UN report says.

LONDON, 9 September, 2020 − Whatever else the coronavirus onslaught is doing to humankind, some of the pandemic’s impacts are clear. It is making it harder for researchers to establish just what effect climate change is having on the planet.

A group of United Nations and other agencies is today launching a report, United in Science 2020, (webcast at 1600 hours New York time) which it calls “a high-level compilation of the latest climate science information”. It is being launched by the UN secretary-general, António Guterres, with a virtual link to his counterpart at the World Meteorological Organisation,  Petteri Taalas, in Geneva.

Much of what the report says will already be familiar, but its detailed finding that the pandemic is causing long-term damage to climate change monitoring is sobering.

Science advances by combining knowledge of the past with experience of the present and then combining them to forecast the probable future. That is how climate scientists have been able very recently to state that their earlier worst case scenario isn’t just an awful warning, but describes what is happening right now.

Several contenders have vied to be identified as the one who wrote: “You cannot manage what you cannot measure.” Which of them − if any − really did write that may not matter much. But it certainly matters for today’s researchers to know where the biosphere came from and where it is now if they are to have any idea where we shall all be in a few years.

Recalled to port

So it’s alarming that United in Science 2020, in its section on earth system observations, says: “The Covid-19 pandemic has produced significant impacts on the global observing systems, which in turn have affected the quality of forecasts and other weather, climate and ocean-related services.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models. Since June, there has been only a slight recovery. Observations at manually-operated weather stations, especially in Africa and South America, have also been badly disrupted.”

In March this year, it says, nearly all oceanographic research vessels were recalled to home ports. Commercial ships have been unable to contribute vital ocean and weather observations, and ocean buoys and other systems could not be maintained.

Four “valuable” full-depth ocean surveys of variables such as carbon, temperature, salinity, and water alkalinity, completed only once every decade, have been cancelled. Surface carbon measurements from ships, which cast light on the evolution of greenhouse gases, also effectively stopped.

The impacts on climate change monitoring are long-term. They are likely to prevent or restrict measurement of glaciers and the thickness of permafrost, usually conducted at the end of the thawing period.

In an ominous warning the report notes that the overall disruption of observations will introduce gaps in the historical time series of Essential Climate Variables, vital for understanding what is happening to the planetary climate.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models”

The report’s authors are also concerned about climate and water, where they expect the pandemic’s impacts to intensify existing problems. By 2050, they say, the number of people at risk of floods will increase from 1.2 billion now to 1.6 bn.

In the early to mid-2010s, 1.9 bn people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to between 2.7 and 3.2 bn people.

It is estimated that central Europe and the Caucasus have already reached peak water, and that the Tibetan Plateau region will do so between 2030 and 2050.

Runoff from snow cover, permafrost and glaciers in this region provides up to 45% of the total river flow, so a decrease would affect water availability for 1.7 bn people.

United in Science 2020 also says the world is a very long way from living up to its promises, with the targets of the Paris Agreement on climate change nowhere near being met.

The UN’s Emissions Gap Report 2019 compares “where we are likely to be and where we need to be” on cutting emissions of greenhouse gases (GHGs). The annual series of Gap Reports use gigatonnes (Gt) as units of measurement: one gigatonne is a billion metric tons.

Record emissions

Another frequent formula is GtCO2e, an abbreviation for “gigatonnes of equivalent carbon dioxide”. That’s a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect.

The 2019 Report says GHG emissions reached a record high of 55.3 GtCO2e in 2018. It continues: “There is no sign of GHG emissions peaking in the next few years; every year of postponed peaking means that deeper and faster cuts will be required.

“By 2030, emissions would need to be 25% and 55% lower than in 2018 to put the world on the least-cost pathway to limiting global warming to below 2 ̊C and 1.5°C respectively” [the two Paris Agreement targets].

The Gap in 2030 is estimated at 12-15 gigatonnes if the world is to limit global warming to below 2 °C. For the 1.5 °C goal, it is estimated at 29-32 Gt, roughly equivalent to the combined emissions of the world’s six largest emitters.

That’s an awful lot of GHGs which, as things stand, are going to be adding their heat to a torrid world a decade from now. − Climate News Network

Climate research is suffering permanent damage from some of the Covid-19 pandemic’s impacts, a UN report says.

LONDON, 9 September, 2020 − Whatever else the coronavirus onslaught is doing to humankind, some of the pandemic’s impacts are clear. It is making it harder for researchers to establish just what effect climate change is having on the planet.

A group of United Nations and other agencies is today launching a report, United in Science 2020, (webcast at 1600 hours New York time) which it calls “a high-level compilation of the latest climate science information”. It is being launched by the UN secretary-general, António Guterres, with a virtual link to his counterpart at the World Meteorological Organisation,  Petteri Taalas, in Geneva.

Much of what the report says will already be familiar, but its detailed finding that the pandemic is causing long-term damage to climate change monitoring is sobering.

Science advances by combining knowledge of the past with experience of the present and then combining them to forecast the probable future. That is how climate scientists have been able very recently to state that their earlier worst case scenario isn’t just an awful warning, but describes what is happening right now.

Several contenders have vied to be identified as the one who wrote: “You cannot manage what you cannot measure.” Which of them − if any − really did write that may not matter much. But it certainly matters for today’s researchers to know where the biosphere came from and where it is now if they are to have any idea where we shall all be in a few years.

Recalled to port

So it’s alarming that United in Science 2020, in its section on earth system observations, says: “The Covid-19 pandemic has produced significant impacts on the global observing systems, which in turn have affected the quality of forecasts and other weather, climate and ocean-related services.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models. Since June, there has been only a slight recovery. Observations at manually-operated weather stations, especially in Africa and South America, have also been badly disrupted.”

In March this year, it says, nearly all oceanographic research vessels were recalled to home ports. Commercial ships have been unable to contribute vital ocean and weather observations, and ocean buoys and other systems could not be maintained.

Four “valuable” full-depth ocean surveys of variables such as carbon, temperature, salinity, and water alkalinity, completed only once every decade, have been cancelled. Surface carbon measurements from ships, which cast light on the evolution of greenhouse gases, also effectively stopped.

The impacts on climate change monitoring are long-term. They are likely to prevent or restrict measurement of glaciers and the thickness of permafrost, usually conducted at the end of the thawing period.

In an ominous warning the report notes that the overall disruption of observations will introduce gaps in the historical time series of Essential Climate Variables, vital for understanding what is happening to the planetary climate.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models”

The report’s authors are also concerned about climate and water, where they expect the pandemic’s impacts to intensify existing problems. By 2050, they say, the number of people at risk of floods will increase from 1.2 billion now to 1.6 bn.

In the early to mid-2010s, 1.9 bn people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to between 2.7 and 3.2 bn people.

It is estimated that central Europe and the Caucasus have already reached peak water, and that the Tibetan Plateau region will do so between 2030 and 2050.

Runoff from snow cover, permafrost and glaciers in this region provides up to 45% of the total river flow, so a decrease would affect water availability for 1.7 bn people.

United in Science 2020 also says the world is a very long way from living up to its promises, with the targets of the Paris Agreement on climate change nowhere near being met.

The UN’s Emissions Gap Report 2019 compares “where we are likely to be and where we need to be” on cutting emissions of greenhouse gases (GHGs). The annual series of Gap Reports use gigatonnes (Gt) as units of measurement: one gigatonne is a billion metric tons.

Record emissions

Another frequent formula is GtCO2e, an abbreviation for “gigatonnes of equivalent carbon dioxide”. That’s a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect.

The 2019 Report says GHG emissions reached a record high of 55.3 GtCO2e in 2018. It continues: “There is no sign of GHG emissions peaking in the next few years; every year of postponed peaking means that deeper and faster cuts will be required.

“By 2030, emissions would need to be 25% and 55% lower than in 2018 to put the world on the least-cost pathway to limiting global warming to below 2 ̊C and 1.5°C respectively” [the two Paris Agreement targets].

The Gap in 2030 is estimated at 12-15 gigatonnes if the world is to limit global warming to below 2 °C. For the 1.5 °C goal, it is estimated at 29-32 Gt, roughly equivalent to the combined emissions of the world’s six largest emitters.

That’s an awful lot of GHGs which, as things stand, are going to be adding their heat to a torrid world a decade from now. − Climate News Network

Eat an orange and save an old lithium-ion battery

You could reclaim a lithium-ion battery with help from orange peel and juice – or make fuel directly from sunlight and air.

LONDON, 4 September, 2020 – Singapore scientists have found a way to recover valuable metals from a discarded lithium-ion battery – with minimal waste and serious help from old orange peel and a solution of citric acid.

And in Great Britain researchers have tested a simple solar reactor that can turn sunlight, carbon dioxide and water into the raw material for synthetic fuel.

Neither technology is anywhere near ready for commercial exploitation. But each could be scaled up.

The first confronts two global challenges: the devastating burden of uneaten food and the alarming build-up of electronic waste each year. The second improves on an idea from nature and turns sunlight and atmosphere directly into energy without the lengthy business of growing and burying forests and waiting 100 million years before they turn into fossil fuels.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better”

And each is a reminder of the startling levels of ingenuity and resource in the world’s laboratories, in the search for solutions to the seemingly intractable challenge of climate change, and the shift to clean energy.

Right now, batteries surrender their valuable component metals by being heated to 500°C, or dissolved in strong acids, or in solutions of hydrogen peroxide: there are secondary pollutants and health and safety risks at each stage.

Researchers from Nanyang Technological University in Singapore report in the journal Environmental Science and Technology that they made a kind of paste of crushed batteries, mixed it with powdered orange peel and added citric acid – almost any citrus fruit produces the stuff naturally – and at a temperature of 100°C recovered around 90% of the cobalt, lithium, nickel and manganese from the waste without producing any further new waste that could be toxic.

To make their point, the researchers then used those recovered metals to make new lithium-ion batteries.

Cellulose the key

By 2026, the market for the batteries in smartphones, notebooks, cameras, medical devices and electronic vehicles is expected to reach US$139bn (£105bn).

In Europe, only about 5% of the waste from these batteries is recycled. The key to the success of the experiment, the researchers say, proved to be the cellulose in the orange peel. It turned to sugar under heat during the reaction process, to help leach the important metals from the waste slurry.

The world is not short of disposable cellulose. Humans generate 1.3bn tonnes a year in the form of food waste. The world also generates 50 million tonnes of electronic waste every year. The Singapore studies suggest the real possibility of a circular economy with zero waste: so far, an environmentalist’s dream.

Another recurring environmentalist dream has been to steal a leaf from nature’s book and turn sunlight and carbon dioxide directly into stored energy. Carbon dioxide is a building block of all fuels.

Minimal waste

There have been repeated experiments to develop an “artificial leaf”. Researchers in the UK have announced a variant approach. They report in Nature Energy that they have tested a set of photo-catalysts on sheets made up of semi-conductor powders, to convert carbon dioxide and water to formic acid, which is a precursor to a range of possible synthetic fuels.

Sunlight delivers the power. There is no electric current involved, no wiring, no chemical reagents that have to be deployed, and the only waste is atomic oxygen. Right now, the test unit is only 20cms square. It could however be scaled up to several metres to produce clean fuel on energy farms.

“We were surprised how well it worked in terms of its selectivity – it produced almost no by-products,” said Qian Wang, a chemist at the University of Cambridge, who led the study.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better.” Climate News Network

You could reclaim a lithium-ion battery with help from orange peel and juice – or make fuel directly from sunlight and air.

LONDON, 4 September, 2020 – Singapore scientists have found a way to recover valuable metals from a discarded lithium-ion battery – with minimal waste and serious help from old orange peel and a solution of citric acid.

And in Great Britain researchers have tested a simple solar reactor that can turn sunlight, carbon dioxide and water into the raw material for synthetic fuel.

Neither technology is anywhere near ready for commercial exploitation. But each could be scaled up.

The first confronts two global challenges: the devastating burden of uneaten food and the alarming build-up of electronic waste each year. The second improves on an idea from nature and turns sunlight and atmosphere directly into energy without the lengthy business of growing and burying forests and waiting 100 million years before they turn into fossil fuels.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better”

And each is a reminder of the startling levels of ingenuity and resource in the world’s laboratories, in the search for solutions to the seemingly intractable challenge of climate change, and the shift to clean energy.

Right now, batteries surrender their valuable component metals by being heated to 500°C, or dissolved in strong acids, or in solutions of hydrogen peroxide: there are secondary pollutants and health and safety risks at each stage.

Researchers from Nanyang Technological University in Singapore report in the journal Environmental Science and Technology that they made a kind of paste of crushed batteries, mixed it with powdered orange peel and added citric acid – almost any citrus fruit produces the stuff naturally – and at a temperature of 100°C recovered around 90% of the cobalt, lithium, nickel and manganese from the waste without producing any further new waste that could be toxic.

To make their point, the researchers then used those recovered metals to make new lithium-ion batteries.

Cellulose the key

By 2026, the market for the batteries in smartphones, notebooks, cameras, medical devices and electronic vehicles is expected to reach US$139bn (£105bn).

In Europe, only about 5% of the waste from these batteries is recycled. The key to the success of the experiment, the researchers say, proved to be the cellulose in the orange peel. It turned to sugar under heat during the reaction process, to help leach the important metals from the waste slurry.

The world is not short of disposable cellulose. Humans generate 1.3bn tonnes a year in the form of food waste. The world also generates 50 million tonnes of electronic waste every year. The Singapore studies suggest the real possibility of a circular economy with zero waste: so far, an environmentalist’s dream.

Another recurring environmentalist dream has been to steal a leaf from nature’s book and turn sunlight and carbon dioxide directly into stored energy. Carbon dioxide is a building block of all fuels.

Minimal waste

There have been repeated experiments to develop an “artificial leaf”. Researchers in the UK have announced a variant approach. They report in Nature Energy that they have tested a set of photo-catalysts on sheets made up of semi-conductor powders, to convert carbon dioxide and water to formic acid, which is a precursor to a range of possible synthetic fuels.

Sunlight delivers the power. There is no electric current involved, no wiring, no chemical reagents that have to be deployed, and the only waste is atomic oxygen. Right now, the test unit is only 20cms square. It could however be scaled up to several metres to produce clean fuel on energy farms.

“We were surprised how well it worked in terms of its selectivity – it produced almost no by-products,” said Qian Wang, a chemist at the University of Cambridge, who led the study.

“Sometimes things don’t work as well as you expected, but this was a rare case where it actually worked better.” Climate News Network

Ancient coal fires led to prehistoric extinctions

Did eruptions set ancient coal fires burning? Global heating happened 250 million years ago, just as it is happening now.

LONDON, 29 June, 2020 – Geologists have linked one of the planet’s most devastating events to the burning of fossil fuels, as ancient coal fires set in train a global extinction wave.

Emissions from the fires on a massive scale can be connected to catastrophic events that extinguished most of life on Earth – and this time, humans were not to blame.

It all happened more than 250 million years ago, at the close of the  Permian period. And this time the match that lit the flame was massive but slow volcanic eruption in what is now Siberia, a burning that continued for two million years.

In a new study in the US journal Geology, US, Canadian and Russian scientists report that in the course of six expeditions to collect rock samples from a formation known as the Siberian Traps they repeatedly found samples of charred wood and fragments of burnt coal.

“Our study shows that the Siberian Traps magmas combusted large quantities of coal and organic matter during eruption”

Geologists have identified five major extinctions of life in the past, and biologists now argue that – because of human action – a sixth has begun. But the worst of these was the Permian: the oceans acidified to lethal levels as carbon dioxide ratios in the atmosphere soared, and tropical ocean temperature reached fever pitch at 40°C.

Altogether, 96% of marine species disappeared, and 70% of land creatures. The event closed the Permian era, and ushered in the Triassic, and the beginning of the dinosaurs.

For geologists, the past is the key to the present: what happened once can happen again. And it now seems that the fuel that generated the high temperatures and acidic oceans was coal, laid down in the 50 million years of the Carboniferous that ended with the arrival of the Permian.

The Permian catastrophe has puzzled palaeontologists for decades, and the latest finding is not likely to be the end of the argument. Catastrophic climate change has been linked to most of the ancient extinctions. High carbon levels in the late Permian atmosphere have been implicated from the start.

Spur to action

Highly acidic seas – the oceans are the oldest, largest and richest of life’s habitats – have been named as prime suspect. Damage to the ancient ozone layer has also been cited. But in all cases, the cause of the sudden surge in atmospheric carbon has been up for debate: humans are implicated in climate change now. But what caused it then?

The answer: slowly slurping fiery magma (molten rock) from ancient volcanic sources, enough to cover 7 million square kilometres; enough to amount to 4 million cubic kilometres of once-smoking basalt that spilled over vast areas of old forest, buried peat and deeper fields of coal.

“Our study shows that the Siberian Traps magmas intruded into and incorporated coal and organic material. That gives us direct evidence that the magmas also combusted large quantities of coal and organic matter during eruption,” said Linda Elkins-Tanton, of Arizona State University, who led the research.

“Seeing these similarities gives us extra impetus to take action now, and also to further understand how the Earth responds to changes like these in the longer term.” – Climate News Network

Did eruptions set ancient coal fires burning? Global heating happened 250 million years ago, just as it is happening now.

LONDON, 29 June, 2020 – Geologists have linked one of the planet’s most devastating events to the burning of fossil fuels, as ancient coal fires set in train a global extinction wave.

Emissions from the fires on a massive scale can be connected to catastrophic events that extinguished most of life on Earth – and this time, humans were not to blame.

It all happened more than 250 million years ago, at the close of the  Permian period. And this time the match that lit the flame was massive but slow volcanic eruption in what is now Siberia, a burning that continued for two million years.

In a new study in the US journal Geology, US, Canadian and Russian scientists report that in the course of six expeditions to collect rock samples from a formation known as the Siberian Traps they repeatedly found samples of charred wood and fragments of burnt coal.

“Our study shows that the Siberian Traps magmas combusted large quantities of coal and organic matter during eruption”

Geologists have identified five major extinctions of life in the past, and biologists now argue that – because of human action – a sixth has begun. But the worst of these was the Permian: the oceans acidified to lethal levels as carbon dioxide ratios in the atmosphere soared, and tropical ocean temperature reached fever pitch at 40°C.

Altogether, 96% of marine species disappeared, and 70% of land creatures. The event closed the Permian era, and ushered in the Triassic, and the beginning of the dinosaurs.

For geologists, the past is the key to the present: what happened once can happen again. And it now seems that the fuel that generated the high temperatures and acidic oceans was coal, laid down in the 50 million years of the Carboniferous that ended with the arrival of the Permian.

The Permian catastrophe has puzzled palaeontologists for decades, and the latest finding is not likely to be the end of the argument. Catastrophic climate change has been linked to most of the ancient extinctions. High carbon levels in the late Permian atmosphere have been implicated from the start.

Spur to action

Highly acidic seas – the oceans are the oldest, largest and richest of life’s habitats – have been named as prime suspect. Damage to the ancient ozone layer has also been cited. But in all cases, the cause of the sudden surge in atmospheric carbon has been up for debate: humans are implicated in climate change now. But what caused it then?

The answer: slowly slurping fiery magma (molten rock) from ancient volcanic sources, enough to cover 7 million square kilometres; enough to amount to 4 million cubic kilometres of once-smoking basalt that spilled over vast areas of old forest, buried peat and deeper fields of coal.

“Our study shows that the Siberian Traps magmas intruded into and incorporated coal and organic material. That gives us direct evidence that the magmas also combusted large quantities of coal and organic matter during eruption,” said Linda Elkins-Tanton, of Arizona State University, who led the research.

“Seeing these similarities gives us extra impetus to take action now, and also to further understand how the Earth responds to changes like these in the longer term.” – Climate News Network

Carbon-neutral aircraft might work with ion drive

Ion drive works in outer space. Just possibly, plasma power could fill the skies with carbon-neutral aircraft.

LONDON, 10 June, 2020 − Chinese engineers may have designed the basis for the first carbon-neutral aircraft, perhaps a commercial jet airliner powered entirely by very hot air through an ion drive. If it works on that scale, there would be no high-octane aviation spirit, no greenhouse gas emissions and no contribution to long-term global warming.

Nor would such planes be fuelled by anything defined as ordinary matter. The driving force that delivers the thrust and overcomes gravitational pull and air friction would be plasma, the fourth state of matter, and the power source of the sun and all the stars.

Think of a jet stream of ionised atoms − dismantled atomic particles − roaring through the engines to take the vehicle to take-off speeds. That’s the ambition.

Right now, according to scientists at Wuhan University, writing in the American Institute of Physics journal AIP Advances, what they have is a propulsion thruster that utilises air plasma induced by microwave ionisation. It would simply need air and electricity to produce high temperature and pressurised plasma.

They have already assembled an experimental apparatus and used it to lift a one kilogram steel ball over a 24mm-diameter quartz tube, at half a litre per second of airflow at 400 watts to produce just 10 newtons of thrust.

“A carbon emission-free thruster could potentially be used as a jet thruster in the atmosphere”

A newton is a unit of force that will accelerate one kg of mass at one metre per second, every second. The Wuhan achievement, they say, corresponds to a jet pressure of 24,000 newtons per square metre,

That is: with higher microwave power or greater airflow, they could achieve propulsion forces and jet pressures of the kind seen every minute of every day at commercial airports.

The journey from the laboratory equipment now – a one kilowatt magnetron, a circulator, a flattened wave guide, an igniter and a quartz tube – to a set of jet engines that can carry hundreds of passengers across half the world with complete confidence is going to be a long one: right now, the experiment is an indicator simply of the astonishing ingenuity being displayed in laboratories in Asia, Europe and America to find ways of reducing dependence on fossil fuels.

And aircraft – and particularly jet aircraft – present almost intractable challenges. Until now, no tested power source other than high-quality liquid fossil fuel can deliver what is needed to fly very heavy aircraft to the upper reaches of the atmosphere.

Rocket needed first

Relatively light all-electric planes with a short range are being tested now.  The US Space Agency Nasa has already deployed plasma power – science fiction fans have long known it as ion drive – in spacecraft, but at the low thrust levels needed to change the course of a spacecraft already in very high orbit and far from the planet’s gravitational drag.

But these first space probes had to be lifted into high orbit aboard a rocket. A team at Massachusetts Institute of Technology has tested, using a different approach, a plasma-powered glider: it flew 55 metres in 12 seconds before touching down again. But the driving force would never be enough to lift a cargo or passenger plane.

Swiss scientists have explored the idea of a solar-powered plane: in effect
however this would deploy solar energy to split carbon dioxide and water and turn them into synthetic natural gas.

The Wuhan experiment has the potential for a much bigger force. For the moment, that is all it has: potential. The researchers call their prototype “a home-made device”, and they add: “Given the same power consumption, its propulsion pressure is comparable to that of conventional airplane jet engines using fossil fuels.

“Therefore, such a carbon-emission free thruster could potentially be used as a jet thruster in the atmosphere.” − Climate News Network

Ion drive works in outer space. Just possibly, plasma power could fill the skies with carbon-neutral aircraft.

LONDON, 10 June, 2020 − Chinese engineers may have designed the basis for the first carbon-neutral aircraft, perhaps a commercial jet airliner powered entirely by very hot air through an ion drive. If it works on that scale, there would be no high-octane aviation spirit, no greenhouse gas emissions and no contribution to long-term global warming.

Nor would such planes be fuelled by anything defined as ordinary matter. The driving force that delivers the thrust and overcomes gravitational pull and air friction would be plasma, the fourth state of matter, and the power source of the sun and all the stars.

Think of a jet stream of ionised atoms − dismantled atomic particles − roaring through the engines to take the vehicle to take-off speeds. That’s the ambition.

Right now, according to scientists at Wuhan University, writing in the American Institute of Physics journal AIP Advances, what they have is a propulsion thruster that utilises air plasma induced by microwave ionisation. It would simply need air and electricity to produce high temperature and pressurised plasma.

They have already assembled an experimental apparatus and used it to lift a one kilogram steel ball over a 24mm-diameter quartz tube, at half a litre per second of airflow at 400 watts to produce just 10 newtons of thrust.

“A carbon emission-free thruster could potentially be used as a jet thruster in the atmosphere”

A newton is a unit of force that will accelerate one kg of mass at one metre per second, every second. The Wuhan achievement, they say, corresponds to a jet pressure of 24,000 newtons per square metre,

That is: with higher microwave power or greater airflow, they could achieve propulsion forces and jet pressures of the kind seen every minute of every day at commercial airports.

The journey from the laboratory equipment now – a one kilowatt magnetron, a circulator, a flattened wave guide, an igniter and a quartz tube – to a set of jet engines that can carry hundreds of passengers across half the world with complete confidence is going to be a long one: right now, the experiment is an indicator simply of the astonishing ingenuity being displayed in laboratories in Asia, Europe and America to find ways of reducing dependence on fossil fuels.

And aircraft – and particularly jet aircraft – present almost intractable challenges. Until now, no tested power source other than high-quality liquid fossil fuel can deliver what is needed to fly very heavy aircraft to the upper reaches of the atmosphere.

Rocket needed first

Relatively light all-electric planes with a short range are being tested now.  The US Space Agency Nasa has already deployed plasma power – science fiction fans have long known it as ion drive – in spacecraft, but at the low thrust levels needed to change the course of a spacecraft already in very high orbit and far from the planet’s gravitational drag.

But these first space probes had to be lifted into high orbit aboard a rocket. A team at Massachusetts Institute of Technology has tested, using a different approach, a plasma-powered glider: it flew 55 metres in 12 seconds before touching down again. But the driving force would never be enough to lift a cargo or passenger plane.

Swiss scientists have explored the idea of a solar-powered plane: in effect
however this would deploy solar energy to split carbon dioxide and water and turn them into synthetic natural gas.

The Wuhan experiment has the potential for a much bigger force. For the moment, that is all it has: potential. The researchers call their prototype “a home-made device”, and they add: “Given the same power consumption, its propulsion pressure is comparable to that of conventional airplane jet engines using fossil fuels.

“Therefore, such a carbon-emission free thruster could potentially be used as a jet thruster in the atmosphere.” − Climate News Network

Ancient ice-free polar forest could soon return

An ice-free polar forest once flourished, helped by enough heat and ample greenhouse gas. It could come back.

LONDON, 10 April, 2020 – Many millions of years ago, the southern continent wasn’t frozen at all, but basked in heat balmy enough for an ice-free polar forest to thrive. And ancient pre-history could repeat itself.

Climate scientists can tell you what the world could be like were today’s greenhouse gas concentrations to triple – which they could do if humans go on clearing tropical forests and burning fossil fuels.

They know because, 90 million years ago, the last time when carbon dioxide levels in the atmosphere went past the 1200 ppm (parts per million) mark, sea levels were 170 metres higher than today and the world was so warm that dense forests grew in what is now Antarctica.

At latitude 82 South, a region where the polar night lasts for four months, there was no icecap. Instead, the continental rocks were colonised by conifer forest, with a mix of tree ferns and an understorey of flowering shrubs.

Even though at that latitude the midday sun would have been relatively low in the sky, and the forests would have had to survive sustained winter darkness for a dozen weeks or more, average temperatures would have been that of modern day Tasmania, and a good 2C° warmer than modern Germany.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected”

German and British researchers report in the journal Nature that they took a closer look at a sequence of strangely-coloured mudstone in a core drilled 30 metres below the bottom of the sea floor, off West Antarctica.

The section of sediment had been preserved from the mid-Cretaceous, around 90 million years ago, in a world dominated by dinosaurs. By then, the first mammals may have evolved, the grasses were about to emerge, and seasonal flowering plants had begun to colonise a planet dominated for aeons by evergreens.

And in the preserved silt were pollens, spores, tangled roots and other plant material so well preserved that the researchers could not just identify the plant families, but even take a guess at parallels with modern forests. Before their eyes was evidence of something like the modern rainforests of New Zealand’s South Island, but deep inside the Antarctic Circle.

“The preservation of this 90 million-year-old forest is exceptional, but even more surprising is the world it reveals,” said Tina van de Flierdt, of Imperial College London.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected.”

British rain levels

Somewhere between 115 and 85 million years ago, the whole world was a lot hotter: in the tropics temperatures reached 35°C and the average temperature of that part of the Antarctic was 13°C. This is at least two degrees higher than the average temperature for modern Germany.

Average temperatures in summer went up to 18.5°C, and the water temperatures in the swamps and rivers tipped 20°C, only 900 kms from the then South Pole. Modern Antarctica is classed as desert, with minimal precipitation: then it would have seen 1120 mm a year. People from southwestern Scotland or parts of Wales would have felt at home.

It is an axiom of earth science that the present is key to the past: if such forests today can flourish at existing temperatures, then the same must have been true in the deep past.

So climate scientists from the start have taken a close interest in the evidence of intensely warm periods in the fossil record: a mix of plant and animal remains, the ratio of chemical isotopes preserved in rock, and even the air bubbles trapped in deep ice cores can help them reconstruct the temperatures, the composition of the atmosphere and the rainfall of, for example, the warmest periods of the Pliocene, when carbon dioxide levels in the atmosphere tipped the 1000 ppm mark, and average planetary temperatures rose by 9°C.

Prehistoric encore approaching?

In the past century, atmospheric CO2 levels have swollen from 285 ppm to more than 400 ppm, and the planetary thermometer has already crept up by 1°C above the level for most of human history. If human economies continue burning fossil fuels at an ever-increasing rate, the conditions that prevailed 56 million years ago could return by 2159.

The Cretaceous evidence will help climate scientists calibrate their models of a world in which greenhouse gas emissions go on rising.

“Before our study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1000 ppm,” said Johann Klages, of the Alfred Wegener Institute centre for polar and marine research in Germany, who led the study.

“But in our model-based experiments, it took concentration levels of 1120 to 1680 ppm to reach the average temperatures back then in Antarctica.” – Climate News Network

An ice-free polar forest once flourished, helped by enough heat and ample greenhouse gas. It could come back.

LONDON, 10 April, 2020 – Many millions of years ago, the southern continent wasn’t frozen at all, but basked in heat balmy enough for an ice-free polar forest to thrive. And ancient pre-history could repeat itself.

Climate scientists can tell you what the world could be like were today’s greenhouse gas concentrations to triple – which they could do if humans go on clearing tropical forests and burning fossil fuels.

They know because, 90 million years ago, the last time when carbon dioxide levels in the atmosphere went past the 1200 ppm (parts per million) mark, sea levels were 170 metres higher than today and the world was so warm that dense forests grew in what is now Antarctica.

At latitude 82 South, a region where the polar night lasts for four months, there was no icecap. Instead, the continental rocks were colonised by conifer forest, with a mix of tree ferns and an understorey of flowering shrubs.

Even though at that latitude the midday sun would have been relatively low in the sky, and the forests would have had to survive sustained winter darkness for a dozen weeks or more, average temperatures would have been that of modern day Tasmania, and a good 2C° warmer than modern Germany.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected”

German and British researchers report in the journal Nature that they took a closer look at a sequence of strangely-coloured mudstone in a core drilled 30 metres below the bottom of the sea floor, off West Antarctica.

The section of sediment had been preserved from the mid-Cretaceous, around 90 million years ago, in a world dominated by dinosaurs. By then, the first mammals may have evolved, the grasses were about to emerge, and seasonal flowering plants had begun to colonise a planet dominated for aeons by evergreens.

And in the preserved silt were pollens, spores, tangled roots and other plant material so well preserved that the researchers could not just identify the plant families, but even take a guess at parallels with modern forests. Before their eyes was evidence of something like the modern rainforests of New Zealand’s South Island, but deep inside the Antarctic Circle.

“The preservation of this 90 million-year-old forest is exceptional, but even more surprising is the world it reveals,” said Tina van de Flierdt, of Imperial College London.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected.”

British rain levels

Somewhere between 115 and 85 million years ago, the whole world was a lot hotter: in the tropics temperatures reached 35°C and the average temperature of that part of the Antarctic was 13°C. This is at least two degrees higher than the average temperature for modern Germany.

Average temperatures in summer went up to 18.5°C, and the water temperatures in the swamps and rivers tipped 20°C, only 900 kms from the then South Pole. Modern Antarctica is classed as desert, with minimal precipitation: then it would have seen 1120 mm a year. People from southwestern Scotland or parts of Wales would have felt at home.

It is an axiom of earth science that the present is key to the past: if such forests today can flourish at existing temperatures, then the same must have been true in the deep past.

So climate scientists from the start have taken a close interest in the evidence of intensely warm periods in the fossil record: a mix of plant and animal remains, the ratio of chemical isotopes preserved in rock, and even the air bubbles trapped in deep ice cores can help them reconstruct the temperatures, the composition of the atmosphere and the rainfall of, for example, the warmest periods of the Pliocene, when carbon dioxide levels in the atmosphere tipped the 1000 ppm mark, and average planetary temperatures rose by 9°C.

Prehistoric encore approaching?

In the past century, atmospheric CO2 levels have swollen from 285 ppm to more than 400 ppm, and the planetary thermometer has already crept up by 1°C above the level for most of human history. If human economies continue burning fossil fuels at an ever-increasing rate, the conditions that prevailed 56 million years ago could return by 2159.

The Cretaceous evidence will help climate scientists calibrate their models of a world in which greenhouse gas emissions go on rising.

“Before our study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1000 ppm,” said Johann Klages, of the Alfred Wegener Institute centre for polar and marine research in Germany, who led the study.

“But in our model-based experiments, it took concentration levels of 1120 to 1680 ppm to reach the average temperatures back then in Antarctica.” – Climate News Network

Climate research struggles to find funding

Climate research is the poor relation of the academic world. Since 1990 it’s won less than 5% of the research funds available.

LONDON, 17 February, 2020 – With the crisis of global heating now widely recognised as one of the most challenging issues facing the world today,  you might assume that vast amounts of money are going into climate research.

But researchers at the Norwegian Institute of International Affairs (NUPI)  and the University of Sussex in the UK say the reality is very different.

In a study published in the journal Energy Research & Social Science, they report how they examined a dataset containing details of 4.3 million research funding awards made from 1950 to 2021. In total, the awards were worth more than a trillion US dollars.

After sifting through copious amounts of material, the study’s authors estimate that in the period between 1990 and 2018, only from 2.4% to 4.6% of the total global research funding made available was devoted to investigating aspects of climate change.

They then analysed the various areas of climate change-related funding, looking specifically at the amounts given to research on the issue in the field of social science.

Meagre recent funding

The study comes up with several findings. “The first is that hardly any social science research was conducted on climate change before 1990”, the authors say.

“The second observation is how little funding has gone into research on climate change overall since 1990, regardless of discipline.”

They found that within the funding granted to climate change research, the social sciences received only a relatively minuscule amount.

“From 1990 to 2018, the natural and physical sciences received a total of US$40 billion (for climate change research) compared to only $4.6 bn for the social sciences and humanities.”

“While this research is valuable, it does not tackle head-on the most urgent question: how to change society to mitigate climate change right now”

Contrast these figures with the profits over a similar period by some of the world’s biggest oil companies. According to recent analysis for the Guardian newspaper BP, Shell, Chevron and Exxon made almost $2tn (£1.54tn) in profits in the 1990 to 2019 period – a time when the climate emergency was becoming widely recognised, including within the fossil fuel industry.

The study defines the social sciences as encompassing anthropology, economics, education, international relations, human geography, development, legal and media studies, political science, psychology and sociology.

The academics say the research carried out within social science has tended to concentrate on ways of adapting to climate change – such as how to manage extreme weather events and recover from disasters – rather than mitigating its effects.

“While this research is valuable, it does not tackle head-on the most urgent question: how to change society to mitigate climate change right now.”

Need for reform

Social science can play a key role in coming up with answers, says the study. It’s vital, the authors say, that issues be addressed such as how to persuade households to adopt low-carbon lifestyles, or how to promote decarbonisation among cultures and market economies as diverse as China, Russia, Saudi Arabia, Singapore and the UK.

“Although the natural and technical sciences often generate results that are, or are perceived to be, clearer and more concrete than the social sciences, they cannot handle issue areas – such as attitudes, norms, incentives and politics – that are intrinsically social.”

The study expresses caveats about its findings: its dataset on funding awards covers only competitive research grants. In some countries such as Germany, France and China, large amounts of research funding are distributed in the form of basic grants, and it is often difficult to know precisely on what areas such money is spent.

The study says social science has to reform itself and be more in tune with what’s happening. “Some social science research is wishy-washy, lacking an understanding of the natural sciences and the physical world.”

Social scientists, it says, need to do a better job of ensuring rigour and validity in their research. – Climate News Network

Climate research is the poor relation of the academic world. Since 1990 it’s won less than 5% of the research funds available.

LONDON, 17 February, 2020 – With the crisis of global heating now widely recognised as one of the most challenging issues facing the world today,  you might assume that vast amounts of money are going into climate research.

But researchers at the Norwegian Institute of International Affairs (NUPI)  and the University of Sussex in the UK say the reality is very different.

In a study published in the journal Energy Research & Social Science, they report how they examined a dataset containing details of 4.3 million research funding awards made from 1950 to 2021. In total, the awards were worth more than a trillion US dollars.

After sifting through copious amounts of material, the study’s authors estimate that in the period between 1990 and 2018, only from 2.4% to 4.6% of the total global research funding made available was devoted to investigating aspects of climate change.

They then analysed the various areas of climate change-related funding, looking specifically at the amounts given to research on the issue in the field of social science.

Meagre recent funding

The study comes up with several findings. “The first is that hardly any social science research was conducted on climate change before 1990”, the authors say.

“The second observation is how little funding has gone into research on climate change overall since 1990, regardless of discipline.”

They found that within the funding granted to climate change research, the social sciences received only a relatively minuscule amount.

“From 1990 to 2018, the natural and physical sciences received a total of US$40 billion (for climate change research) compared to only $4.6 bn for the social sciences and humanities.”

“While this research is valuable, it does not tackle head-on the most urgent question: how to change society to mitigate climate change right now”

Contrast these figures with the profits over a similar period by some of the world’s biggest oil companies. According to recent analysis for the Guardian newspaper BP, Shell, Chevron and Exxon made almost $2tn (£1.54tn) in profits in the 1990 to 2019 period – a time when the climate emergency was becoming widely recognised, including within the fossil fuel industry.

The study defines the social sciences as encompassing anthropology, economics, education, international relations, human geography, development, legal and media studies, political science, psychology and sociology.

The academics say the research carried out within social science has tended to concentrate on ways of adapting to climate change – such as how to manage extreme weather events and recover from disasters – rather than mitigating its effects.

“While this research is valuable, it does not tackle head-on the most urgent question: how to change society to mitigate climate change right now.”

Need for reform

Social science can play a key role in coming up with answers, says the study. It’s vital, the authors say, that issues be addressed such as how to persuade households to adopt low-carbon lifestyles, or how to promote decarbonisation among cultures and market economies as diverse as China, Russia, Saudi Arabia, Singapore and the UK.

“Although the natural and technical sciences often generate results that are, or are perceived to be, clearer and more concrete than the social sciences, they cannot handle issue areas – such as attitudes, norms, incentives and politics – that are intrinsically social.”

The study expresses caveats about its findings: its dataset on funding awards covers only competitive research grants. In some countries such as Germany, France and China, large amounts of research funding are distributed in the form of basic grants, and it is often difficult to know precisely on what areas such money is spent.

The study says social science has to reform itself and be more in tune with what’s happening. “Some social science research is wishy-washy, lacking an understanding of the natural sciences and the physical world.”

Social scientists, it says, need to do a better job of ensuring rigour and validity in their research. – Climate News Network