Tag Archives: Africa

Egyptian theatre aids climate change fight

To help to alert people to the hotter future ahead, an Egyptian theatre troupe is taking the climate message to villages to enlist farmers.

LONDON, 4 September, 2019 − Ever been to an Egyptian theatre? Go to one if you get the chance. You might have an enlightening time.

How to get the message about a warming world and the challenges ahead across to people in a straightforward, simple way is a problem as old as climate change itself:

In a project funded by the World Food Programme, a group of local actors is touring villages in Egypt, putting on performances on the theme of climate change. The aim is to persuade farmers to pool their efforts in order to adapt to the changing weather patterns already evident in many areas.

Egypt is considered a country acutely vulnerable to changes in climate. The Nile Delta, densely populated and the centre of Egypt’s vast agricultural sector, is already threatened by sea level rise, its lands eaten away by salt intrusion from the Mediterranean.

Several settlements along Egypt’s north coast, including Alexandria, the country’s second most populated city, are regularly inundated by seawater.

“The plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation”

Rising temperatures mean more water is being evaporated from the Nile, Egypt’s water lifeline. Extensive dam building upstream further threatens Nile water flows.

The theatre project, though, is playing to packed houses. The crowds are flocking in to see what is a mix of entertainment and information on ways that farming methods can be adapted to changes in climate. Light-hearted banter is part of the show.

Bloomberg news agency reports that the plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation, so as to conserve precious water resources.

One recent play, according to Bloomberg, featured a farmer unwilling to co-operate with his neighbours to fight climate change and refusing to help pay for a new irrigation canal. In the end, though, the farmer realises the folly of his actions.

Almost 30% of jobs in Egypt are in agriculture, and farmers regularly have to battle the impact of increases in temperature and more sporadic rainfall patterns.

Sun power replaces diesel

A heatwave in 2010 resulted in serious losses for Egypt’s wheat crop, a staple in the diet of the country’s population of nearly 100 million people. Earlier this year temperatures reached near-record levels, particularly in the south of the country. Last year sudden rain deluges caused flooding in several cities.

Bloomberg reports that the theatre shows have had an impact; in many areas solar-powered irrigation pumps have replaced diesel pumps.

Forecasts of sudden changes in weather are broadcast from mosques and via mobile phones. As a result of more co-operation between farmers and increased efficiency in the use of water resources, wheat output has improved, especially in the south of the country.

Recent reports have indicated that the Middle East and North Africa region (MENA) will have to endure ever-higher temperatures in the years ahead. Researchers say parts of the region can expect increased social unrest. Others have warned that extreme heat and humidity may make some areas uninhabitable, with outside activities having to be severely restricted.

Last month came a warning that the rising heat could threaten the lives of many thousands of Muslims performing the annual Hajj pilgrimage to Egypt’s neighbour Saudi Arabia. − Climate News Network

To help to alert people to the hotter future ahead, an Egyptian theatre troupe is taking the climate message to villages to enlist farmers.

LONDON, 4 September, 2019 − Ever been to an Egyptian theatre? Go to one if you get the chance. You might have an enlightening time.

How to get the message about a warming world and the challenges ahead across to people in a straightforward, simple way is a problem as old as climate change itself:

In a project funded by the World Food Programme, a group of local actors is touring villages in Egypt, putting on performances on the theme of climate change. The aim is to persuade farmers to pool their efforts in order to adapt to the changing weather patterns already evident in many areas.

Egypt is considered a country acutely vulnerable to changes in climate. The Nile Delta, densely populated and the centre of Egypt’s vast agricultural sector, is already threatened by sea level rise, its lands eaten away by salt intrusion from the Mediterranean.

Several settlements along Egypt’s north coast, including Alexandria, the country’s second most populated city, are regularly inundated by seawater.

“The plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation”

Rising temperatures mean more water is being evaporated from the Nile, Egypt’s water lifeline. Extensive dam building upstream further threatens Nile water flows.

The theatre project, though, is playing to packed houses. The crowds are flocking in to see what is a mix of entertainment and information on ways that farming methods can be adapted to changes in climate. Light-hearted banter is part of the show.

Bloomberg news agency reports that the plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation, so as to conserve precious water resources.

One recent play, according to Bloomberg, featured a farmer unwilling to co-operate with his neighbours to fight climate change and refusing to help pay for a new irrigation canal. In the end, though, the farmer realises the folly of his actions.

Almost 30% of jobs in Egypt are in agriculture, and farmers regularly have to battle the impact of increases in temperature and more sporadic rainfall patterns.

Sun power replaces diesel

A heatwave in 2010 resulted in serious losses for Egypt’s wheat crop, a staple in the diet of the country’s population of nearly 100 million people. Earlier this year temperatures reached near-record levels, particularly in the south of the country. Last year sudden rain deluges caused flooding in several cities.

Bloomberg reports that the theatre shows have had an impact; in many areas solar-powered irrigation pumps have replaced diesel pumps.

Forecasts of sudden changes in weather are broadcast from mosques and via mobile phones. As a result of more co-operation between farmers and increased efficiency in the use of water resources, wheat output has improved, especially in the south of the country.

Recent reports have indicated that the Middle East and North Africa region (MENA) will have to endure ever-higher temperatures in the years ahead. Researchers say parts of the region can expect increased social unrest. Others have warned that extreme heat and humidity may make some areas uninhabitable, with outside activities having to be severely restricted.

Last month came a warning that the rising heat could threaten the lives of many thousands of Muslims performing the annual Hajj pilgrimage to Egypt’s neighbour Saudi Arabia. − Climate News Network

Elephants’ diets help forests to thrive

Elephants may throw their weight around, but they pay their dues to the environment: they help the great forests store ever more carbon.

LONDON, 30 July, 2019 – Like humans, all social animals exploit, disturb and alter their natural environment. Biologists have just identified at least one species, elephants, that – in the course of bulldozing their way through the undergrowth and destroying young trees – actually make the forest more efficient at storing carbon and thus containing global heating.

The African forest elephant Loxodonta cyclotis browses upon and uproots young trees with stems smaller than 30cms and deposits the digested foliage as fertiliser, rich in seeds for the next generation of saplings.

Researchers from Italy, France, Brazil and the US report in the journal Nature Geoscience that this simple act – performed by perhaps one elephant in one square kilometre of forest – actually adds to the biomass locked in the remaining timber at the rate of by between 26 and 60 tonnes per hectare.

And if these ancient mega-herbivores were not crashing through the forest, consuming young trees, the forest would be home to 7% less biomass in the form of dense timber.

Forest elephants, the same scientists say, are rapidly declining in numbers. The researchers had been studying the species for years, and devised a mathematical model of their impact on the environment that supported them.

“Humanity is doing its best to rid the planet of elephants as quickly as it can. Forest elephants are facing extinction. All of their positive effect on carbon and their roles as forest gardeners and engineers will be lost”

Humans convert forest to farmland and increase the levels of carbon dioxide and other greenhouse gases that fuel global heating and the climate emergency. Forest elephants, on the other hand, simply alter the composition of the forest and make their environment a little cooler.

They do so by clearing away the fast-growing species to make more space for trees slower to climb towards the sunlight but with timber of higher density.

“Lo and behold, as we look at numbers of elephants in a forest and we look at the composition of forest over time, we find that the proportion of trees with high-density wood is higher in forests with elephants,” said Stephen Blake of St Louis University in the US, one of the authors.

“The simulation found that the slow-growing plant species survive better when elephants are present. These species aren’t eaten by elephants and, over time, the forest becomes dominated by these slow-growing species. Wood (lignin) has a carbon backbone, meaning it has a large number of carbon molecules in it.

“Slow-growing high wood-density species contain more carbon molecules per unit volume than fast-growing low wood-density species. As the elephants ‘thin’ the forest, they increase the number of slow-growing trees and the forest is capable of storing more carbon.”

Support for Gaia

The finding is consistent with the Gaia theory of earth system science: that life unconsciously but collectively tends to work in ways that keep the planet’s atmosphere stable and the planetary temperatures within comfortable boundaries.

So far humans are the most conspicuous exception to this rule. Biologists have wondered about the contribution of the mega-herbivores: in this one case, it seems that forest elephants are good for the forest and good for climate control.

The finding is also consistent with an argument put by conservationists, biologists and climate scientists: the healthiest and most efficient forests at absorbing atmospheric carbon are those that are home to the richest levels of biodiversity – that is, forests that remain natural wilderness.

Biologists and conservationists talk a lot about “ecosystem services” and “natural capital”: that is, the contribution of the natural world,  directly or indirectly, to human wealth. The researchers put a cash value on the carbon contribution of the African forest elephants: they perform a carbon storage service of $43 bn.

“The sad reality is that humanity is doing its best to rid the planet of elephants as quickly as it can,” said Dr Blake. “Forest elephants are rapidly declining and facing extinction. From a climate perspective, all of their positive effect on carbon and their myriad other ecological roles as forest gardeners and engineers will be lost.” – Climate News Network

Elephants may throw their weight around, but they pay their dues to the environment: they help the great forests store ever more carbon.

LONDON, 30 July, 2019 – Like humans, all social animals exploit, disturb and alter their natural environment. Biologists have just identified at least one species, elephants, that – in the course of bulldozing their way through the undergrowth and destroying young trees – actually make the forest more efficient at storing carbon and thus containing global heating.

The African forest elephant Loxodonta cyclotis browses upon and uproots young trees with stems smaller than 30cms and deposits the digested foliage as fertiliser, rich in seeds for the next generation of saplings.

Researchers from Italy, France, Brazil and the US report in the journal Nature Geoscience that this simple act – performed by perhaps one elephant in one square kilometre of forest – actually adds to the biomass locked in the remaining timber at the rate of by between 26 and 60 tonnes per hectare.

And if these ancient mega-herbivores were not crashing through the forest, consuming young trees, the forest would be home to 7% less biomass in the form of dense timber.

Forest elephants, the same scientists say, are rapidly declining in numbers. The researchers had been studying the species for years, and devised a mathematical model of their impact on the environment that supported them.

“Humanity is doing its best to rid the planet of elephants as quickly as it can. Forest elephants are facing extinction. All of their positive effect on carbon and their roles as forest gardeners and engineers will be lost”

Humans convert forest to farmland and increase the levels of carbon dioxide and other greenhouse gases that fuel global heating and the climate emergency. Forest elephants, on the other hand, simply alter the composition of the forest and make their environment a little cooler.

They do so by clearing away the fast-growing species to make more space for trees slower to climb towards the sunlight but with timber of higher density.

“Lo and behold, as we look at numbers of elephants in a forest and we look at the composition of forest over time, we find that the proportion of trees with high-density wood is higher in forests with elephants,” said Stephen Blake of St Louis University in the US, one of the authors.

“The simulation found that the slow-growing plant species survive better when elephants are present. These species aren’t eaten by elephants and, over time, the forest becomes dominated by these slow-growing species. Wood (lignin) has a carbon backbone, meaning it has a large number of carbon molecules in it.

“Slow-growing high wood-density species contain more carbon molecules per unit volume than fast-growing low wood-density species. As the elephants ‘thin’ the forest, they increase the number of slow-growing trees and the forest is capable of storing more carbon.”

Support for Gaia

The finding is consistent with the Gaia theory of earth system science: that life unconsciously but collectively tends to work in ways that keep the planet’s atmosphere stable and the planetary temperatures within comfortable boundaries.

So far humans are the most conspicuous exception to this rule. Biologists have wondered about the contribution of the mega-herbivores: in this one case, it seems that forest elephants are good for the forest and good for climate control.

The finding is also consistent with an argument put by conservationists, biologists and climate scientists: the healthiest and most efficient forests at absorbing atmospheric carbon are those that are home to the richest levels of biodiversity – that is, forests that remain natural wilderness.

Biologists and conservationists talk a lot about “ecosystem services” and “natural capital”: that is, the contribution of the natural world,  directly or indirectly, to human wealth. The researchers put a cash value on the carbon contribution of the African forest elephants: they perform a carbon storage service of $43 bn.

“The sad reality is that humanity is doing its best to rid the planet of elephants as quickly as it can,” said Dr Blake. “Forest elephants are rapidly declining and facing extinction. From a climate perspective, all of their positive effect on carbon and their myriad other ecological roles as forest gardeners and engineers will be lost.” – Climate News Network

Planting more trees could cut carbon by 25%

Scientists now know where to start restoring the forests to soak up carbon and cool the planet, by planting more trees on unused land.

LONDON, 5 July, 2019 − Swiss scientists have identified an area roughly the size of the United States that could be newly shaded by planting more trees. If the world’s nations then protected these 9 million square kilometres  of canopy over unused land, the new global forest could in theory soak up enough carbon to reduce atmospheric greenhouse gas by an estimated 25%.

That is, the extent of new tree canopy would be enough to take the main driver of global heating back to conditions on Earth a century ago.

And a second study, released in the same week, identifies 100 million hectares of degraded or destroyed tropical forest in 15 countries where restoration could start right now – and 87% of these hectares are in biodiversity hotspots that hold high concentrations of species found nowhere else.

The global study of the space available for tree canopy is published in the journal Science. Researchers looked for land not used for agriculture or developed for human settlement. They excluded wetlands and grasslands already fulfilling important ecological functions.

Huge canopy increase

They left existing forests out of their calculations. And they identified enough degraded, wasted, or simply unused land to provide another 0.9 billion hectares – that is, 9 million square kilometres – of tree canopy.

Such new or restored forest could store 205 billion tonnes of carbon. This is about two-thirds of the 300 billion tonnes of extra carbon humans have pumped into the atmosphere since the start of the Industrial Revolution 200 years ago.

“We all knew that restoring forests could play a part in tackling climate change, but we didn’t really know how big the impact would be. Our study shows clearly that forest restoration is the best climate change solution available today,” said Tom Crowther of the Swiss Federal Institute of Technology, now known as ETH Zurich.

“But we must act quickly, as new forests will take decades to mature and achieve their full potential as a source of natural carbon storage.”

“Restoring forests is a must-do – and it’s doable”

Forecasts for the future start with the data available now: the Swiss team worked from a dataset of observations of 80,000 forests, and used mapping software to predict possible tree cover worldwide under current conditions.

The big unknown is: what will global heating and climate change do for future forest growth? If nations go on burning fossil fuels at the present rates, then parts of the world could begin to experience harsher conditions and by 2050 the area available for tree cover could have dwindled by 223 million hectares, much of this in the tropics.

Forests are an integral part of the answer to the climate crisis. But forests worldwide, and particularly in the tropics, are also vulnerable to extremes of heat and drought and windstorm that are likely to come with ever higher average temperatures.

Where and when and how nations act to restore forests involves political decisions that must be based on evidence. So researchers have for years been trying to establish the extent of the global tree inventory, and its variety.

Unrecorded forest

They have confirmed the importance and value of urban forests. They have identified huge areas of woodland  hitherto not mapped or recorded. They have tried to make an estimate of the number of trees on the planet and the rate at which they are being felled, grazed, burned, or even extinguished.

They have identified threats to tropical forests, monitored the increasing damage to or degradation of what are  supposed to be protected areas, much of them forested, and they have measured changes in forests as the temperatures rise.

Right now, the world has 5.5 billion hectares of forest or woodland with at least 10% and up to 100% of tree cover: altogether this adds up to 2.8bn hectares of canopy. It also has a challenge to get on with: the Bonn Challenge to extend national forest areas by 350 million hectares by 2030 has been accepted by 48 countries so far.

The Swiss researchers calculated that there were up to 1.8 billion hectares of land of “low human activity” that could be reforested. If half of this was shaded by foliage, that would yield another 900 million hectares of canopy to soak up and store atmospheric carbon, and more than half of this potential tree space was in just six countries: Russia, the US, Canada, Australia, Brazil and China.

Best restoration options

But a second study, led by Brazilian scientists and published in the journal Science Advances, used high-resolution satellite studies to find that the most compelling opportunities for forest restoration exist in the lowland tropical rainforests of Central and South America, Africa and Southeast Asia.

Almost three-fourths of the restoration hotspots were in countries that had already made commitments under the Bonn Challenge. The five nations with the largest areas in need of restoration are Brazil, Indonesia, India, Madagascar and Colombia. Madagascar is also one of six African nations – the others are Rwanda, Uganda, Burundi, Togo and South Sudan – that, on average, offer the best immediate opportunities for forest restoration.

“Restoring tropical forests is fundamental to the planet’s health, now and for generations to come,” said Pedro Brancalion, of the University of Sao Paulo in Brazil, who led the study.

“For the first time, our study helps governments, investors and others seeking to restore global tropical moist forests to determine precise locations where restoring forests is most viable, enduring and beneficial. Restoring forests is a must-do – and it’s doable.” − Climate News Network

Scientists now know where to start restoring the forests to soak up carbon and cool the planet, by planting more trees on unused land.

LONDON, 5 July, 2019 − Swiss scientists have identified an area roughly the size of the United States that could be newly shaded by planting more trees. If the world’s nations then protected these 9 million square kilometres  of canopy over unused land, the new global forest could in theory soak up enough carbon to reduce atmospheric greenhouse gas by an estimated 25%.

That is, the extent of new tree canopy would be enough to take the main driver of global heating back to conditions on Earth a century ago.

And a second study, released in the same week, identifies 100 million hectares of degraded or destroyed tropical forest in 15 countries where restoration could start right now – and 87% of these hectares are in biodiversity hotspots that hold high concentrations of species found nowhere else.

The global study of the space available for tree canopy is published in the journal Science. Researchers looked for land not used for agriculture or developed for human settlement. They excluded wetlands and grasslands already fulfilling important ecological functions.

Huge canopy increase

They left existing forests out of their calculations. And they identified enough degraded, wasted, or simply unused land to provide another 0.9 billion hectares – that is, 9 million square kilometres – of tree canopy.

Such new or restored forest could store 205 billion tonnes of carbon. This is about two-thirds of the 300 billion tonnes of extra carbon humans have pumped into the atmosphere since the start of the Industrial Revolution 200 years ago.

“We all knew that restoring forests could play a part in tackling climate change, but we didn’t really know how big the impact would be. Our study shows clearly that forest restoration is the best climate change solution available today,” said Tom Crowther of the Swiss Federal Institute of Technology, now known as ETH Zurich.

“But we must act quickly, as new forests will take decades to mature and achieve their full potential as a source of natural carbon storage.”

“Restoring forests is a must-do – and it’s doable”

Forecasts for the future start with the data available now: the Swiss team worked from a dataset of observations of 80,000 forests, and used mapping software to predict possible tree cover worldwide under current conditions.

The big unknown is: what will global heating and climate change do for future forest growth? If nations go on burning fossil fuels at the present rates, then parts of the world could begin to experience harsher conditions and by 2050 the area available for tree cover could have dwindled by 223 million hectares, much of this in the tropics.

Forests are an integral part of the answer to the climate crisis. But forests worldwide, and particularly in the tropics, are also vulnerable to extremes of heat and drought and windstorm that are likely to come with ever higher average temperatures.

Where and when and how nations act to restore forests involves political decisions that must be based on evidence. So researchers have for years been trying to establish the extent of the global tree inventory, and its variety.

Unrecorded forest

They have confirmed the importance and value of urban forests. They have identified huge areas of woodland  hitherto not mapped or recorded. They have tried to make an estimate of the number of trees on the planet and the rate at which they are being felled, grazed, burned, or even extinguished.

They have identified threats to tropical forests, monitored the increasing damage to or degradation of what are  supposed to be protected areas, much of them forested, and they have measured changes in forests as the temperatures rise.

Right now, the world has 5.5 billion hectares of forest or woodland with at least 10% and up to 100% of tree cover: altogether this adds up to 2.8bn hectares of canopy. It also has a challenge to get on with: the Bonn Challenge to extend national forest areas by 350 million hectares by 2030 has been accepted by 48 countries so far.

The Swiss researchers calculated that there were up to 1.8 billion hectares of land of “low human activity” that could be reforested. If half of this was shaded by foliage, that would yield another 900 million hectares of canopy to soak up and store atmospheric carbon, and more than half of this potential tree space was in just six countries: Russia, the US, Canada, Australia, Brazil and China.

Best restoration options

But a second study, led by Brazilian scientists and published in the journal Science Advances, used high-resolution satellite studies to find that the most compelling opportunities for forest restoration exist in the lowland tropical rainforests of Central and South America, Africa and Southeast Asia.

Almost three-fourths of the restoration hotspots were in countries that had already made commitments under the Bonn Challenge. The five nations with the largest areas in need of restoration are Brazil, Indonesia, India, Madagascar and Colombia. Madagascar is also one of six African nations – the others are Rwanda, Uganda, Burundi, Togo and South Sudan – that, on average, offer the best immediate opportunities for forest restoration.

“Restoring tropical forests is fundamental to the planet’s health, now and for generations to come,” said Pedro Brancalion, of the University of Sao Paulo in Brazil, who led the study.

“For the first time, our study helps governments, investors and others seeking to restore global tropical moist forests to determine precise locations where restoring forests is most viable, enduring and beneficial. Restoring forests is a must-do – and it’s doable.” − Climate News Network

African city heat is set to grow intolerably

Up to a third of urban dwellers could soon face extreme African city heat and humidity. Risks could at worst multiply 50-fold.

LONDON, 11 June, 2019 – An entire continent faces lethal conditions for many of its people: by 2090, one person in three can expect African city heat in the great conurbations severe enough to expose them to potentially deadly temperatures.

That is: the number of days in which the apparent temperature – a notional balance of thermometer-measured heat and maximum humidity – could reach or surpass 40.6°C will increase dramatically, and the days when individuals could be at risk could in some scenarios multiply 50-fold.

The scientists selected this “apparent” temperature of 40.6°C because it is significantly beyond the natural temperature of the human body, which must then be kept cool by perspiration. This is possible in arid climates.

But as humidity goes up – and with each 1°C rise in temperature, the capacity of the air to hold moisture rises by 7% – cooling by perspiration becomes less efficient.

So at this notionally-defined apparent temperature, people who cannot retreat to air-conditioned or cooler, shadier places could die. Heat kills: researchers recently counted 27 ways in which extreme temperatures could claim lives.

“If we follow the Paris Agreement, we’ll halve the number of people at risk in 2090, which is encouraging”

And more, and more intense and prolonged heat waves are on the way, and with them episodes of potentially extreme humidity. By 2100, according to some studies, certain regions of the planet could become dangerous habitat.

European scientists report in the journal Earth’s Future that they considered the hazard for just one, rapidly-growing continent: Africa. They selected 173 cities of more than 300,000 people in 43 nations across a range of climates, from Algiers on the Mediterranean to the burgeoning monsoon cities of the equatorial west coast, such as Lagos and Kinshasa, the drier east African states, and the relatively mild townships of Southern Africa.

They then considered how much cities might grow, by migration or birth-rate increases, and how they might develop. Then they factored in a range of climate scenarios and looked at possible forecasts for the years 2030, 2060 and 2090.

They found that because of population growth, the numbers of days on which people could be at risk – measured in person-days (one person working for one full day) – would in any case increase.

Sharper rise

“In the best case, 20 billion person-days will be affected by 2030, compared with 4.2bn in 2010 – a jump, in other words, of 376%” said Guillaume Rohat, of the University of Geneva, who led the study. “This figure climbs to 45bn in 2060 (up 971%) and reaches 86bn in 2090 (up 1947%).

And that is the best-case scenario. When the researchers factored in the steepest population increases, the most rapid growth of the cities and the worst disturbances in climate, the figures rose more sharply. By 2030, 26 billion, a fivefold increase, could be at risk, 95bn in 2060 and 217 bn in 2090. This is an increase of 4967%, or nearly 50-fold.

The researchers assumed that not everybody in their 173 cities would be exposed to dangerous levels of heat. Were that to happen, the number of person-days could hit 647 billion. But the researchers made a conservative estimate of one in three people who would be exposed to a minimum temperature of 40.6°C.

Research of this kind makes assumptions about how the climate is going to change, and separately about how nations are going to develop, how populations are going to grow and change, and how governments are going to respond to the climate emergency, and the authors recognise the problems.

Conservative conclusions

The sample is biased towards the larger cities. Their calculations don’t include predictions for capital investment. But the researchers say their conclusions are if anything conservative. They do not, for instance, factor in the notorious urban heat island effect that tends to make cities 3°C or more hotter than the surrounding countryside, and therefore even more dangerous.

The good news to emerge from the study is that concerted action, by governments and civic authorities, can reduce the risk. Were nations to stick to an agreement made by 195 of them in Paris in 2015, and keep global temperature rise to “well below” 2°C, the final exposure hazard would be reduced by 48%.

“This proves that if we follow the Paris Agreement, we’ll halve the number of people at risk in 2090, which is encouraging,” said Rohat.

“We can see the importance of the UN Sustainable Development Goals: access to education, a drop in the number of children per woman, developments in the standard of living and so on.” – Climate News Network

Up to a third of urban dwellers could soon face extreme African city heat and humidity. Risks could at worst multiply 50-fold.

LONDON, 11 June, 2019 – An entire continent faces lethal conditions for many of its people: by 2090, one person in three can expect African city heat in the great conurbations severe enough to expose them to potentially deadly temperatures.

That is: the number of days in which the apparent temperature – a notional balance of thermometer-measured heat and maximum humidity – could reach or surpass 40.6°C will increase dramatically, and the days when individuals could be at risk could in some scenarios multiply 50-fold.

The scientists selected this “apparent” temperature of 40.6°C because it is significantly beyond the natural temperature of the human body, which must then be kept cool by perspiration. This is possible in arid climates.

But as humidity goes up – and with each 1°C rise in temperature, the capacity of the air to hold moisture rises by 7% – cooling by perspiration becomes less efficient.

So at this notionally-defined apparent temperature, people who cannot retreat to air-conditioned or cooler, shadier places could die. Heat kills: researchers recently counted 27 ways in which extreme temperatures could claim lives.

“If we follow the Paris Agreement, we’ll halve the number of people at risk in 2090, which is encouraging”

And more, and more intense and prolonged heat waves are on the way, and with them episodes of potentially extreme humidity. By 2100, according to some studies, certain regions of the planet could become dangerous habitat.

European scientists report in the journal Earth’s Future that they considered the hazard for just one, rapidly-growing continent: Africa. They selected 173 cities of more than 300,000 people in 43 nations across a range of climates, from Algiers on the Mediterranean to the burgeoning monsoon cities of the equatorial west coast, such as Lagos and Kinshasa, the drier east African states, and the relatively mild townships of Southern Africa.

They then considered how much cities might grow, by migration or birth-rate increases, and how they might develop. Then they factored in a range of climate scenarios and looked at possible forecasts for the years 2030, 2060 and 2090.

They found that because of population growth, the numbers of days on which people could be at risk – measured in person-days (one person working for one full day) – would in any case increase.

Sharper rise

“In the best case, 20 billion person-days will be affected by 2030, compared with 4.2bn in 2010 – a jump, in other words, of 376%” said Guillaume Rohat, of the University of Geneva, who led the study. “This figure climbs to 45bn in 2060 (up 971%) and reaches 86bn in 2090 (up 1947%).

And that is the best-case scenario. When the researchers factored in the steepest population increases, the most rapid growth of the cities and the worst disturbances in climate, the figures rose more sharply. By 2030, 26 billion, a fivefold increase, could be at risk, 95bn in 2060 and 217 bn in 2090. This is an increase of 4967%, or nearly 50-fold.

The researchers assumed that not everybody in their 173 cities would be exposed to dangerous levels of heat. Were that to happen, the number of person-days could hit 647 billion. But the researchers made a conservative estimate of one in three people who would be exposed to a minimum temperature of 40.6°C.

Research of this kind makes assumptions about how the climate is going to change, and separately about how nations are going to develop, how populations are going to grow and change, and how governments are going to respond to the climate emergency, and the authors recognise the problems.

Conservative conclusions

The sample is biased towards the larger cities. Their calculations don’t include predictions for capital investment. But the researchers say their conclusions are if anything conservative. They do not, for instance, factor in the notorious urban heat island effect that tends to make cities 3°C or more hotter than the surrounding countryside, and therefore even more dangerous.

The good news to emerge from the study is that concerted action, by governments and civic authorities, can reduce the risk. Were nations to stick to an agreement made by 195 of them in Paris in 2015, and keep global temperature rise to “well below” 2°C, the final exposure hazard would be reduced by 48%.

“This proves that if we follow the Paris Agreement, we’ll halve the number of people at risk in 2090, which is encouraging,” said Rohat.

“We can see the importance of the UN Sustainable Development Goals: access to education, a drop in the number of children per woman, developments in the standard of living and so on.” – Climate News Network

Changing rainfall poses dilemma on dams

A changing climate usually means changing rainfall patterns. And that means a headache for dam builders.

LONDON, 23 May, 2019 − For the builders of hydro-electric schemes – usually multi-billion dollar projects involving vast amounts of complex engineering work – changing rainfall is a serious problem.

With climate change either on the horizon or already happening in many regions of the world, rainfall patterns, on which hydro schemes ultimately depend, are becoming ever more unpredictable.

Christian Rynning-Tonnesen is CEO of Statkraft AS, Norway’s biggest power producer and a major player in the international hydro power business.

In an interview with the Bloomberg news agency, Rynning-Tonnesen says his company has had to double its spending over the last 10 years to reinforce dams in order to cope with heavier rains. He says climate change is hard to ignore when you’re in the hydro-electric business.

“Depending on water as the main source of power in future when we’ll have less of this natural resource looks like an unreliable strategy”

“The general trend all over the world is areas that are dry become more dry and areas that are wet become more wet.”

Norway has seen a 5% rise in rainfall over recent years, says Rynning-Tonnesen.

Others say planning processes behind dam building have to be revised in the face of climate change.

Emilio Moran, a visiting professor at the University of Campinas in São Paulo state in Brazil, says that in one of the world’s biggest hydro-electric building programmes, a total of 147 dams have been planned in the Amazon Basin, with 65 of them in Brazil.

Output fears

In a study published in the Proceedings of the National Academy of Sciences journal, Moran and his co-authors say many of the dams in Brazil − either completed or still in the planning stages − are likely to produce far less power than anticipated, owing to climate variability.

The Amazon Basin is predicted to receive less rainfall and to be hit with higher temperatures in future.

“Depending on water as the main source of power in future when we’ll have less of this natural resource looks like an unreliable strategy”, says Moran.

“To reduce its vulnerability with regard to energy in the context of global climate change, Brazil must diversify its energy mix. It’s still too dependent on hydro-electricity. It needs to invest more in other renewable sources, such as solar, biomass and wind.”

Rainfall drops

Deforestation is expected to create further water shortage problems for hydro plants in the Amazon region. About half the area’s rainfall is due to recycling within the forest.

“Deforestation will, therefore, lead to less precipitation in the region aside from the expected decline due to global climate change”, say the study’s authors.

They say that if the building of large dams in developing countries is to continue, full consideration has to be given to their social impact, the overall cost to the environment and to climate change.

International tensions

In many cases, this doesn’t seem to be happening. Turkey is spending billions on ambitious dam building projects on the Euphrates and Tigris rivers in the south-east of the country. Climate change is predicted to alter the amounts of water available to drive the operation of these dams.

The rivers flow onwards into Syria and Iraq: already water flows downstream are severely reduced at certain times of the year, creating regional tensions and putting in jeopardy the livelihoods of millions dependent on the rivers for drinking water and for agricultural production.

One of the world’s biggest dam projects is in East Africa − the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile, which flows into the Nile itself. Ethiopia wants to sell electricity generated by the dam to neighbouring countries.

Critics of the GERD project say climate change, including reduced rainfall in the Blue Nile’s catchment area, could seriously affect the dam’s generating capability. − Climate News Network

A changing climate usually means changing rainfall patterns. And that means a headache for dam builders.

LONDON, 23 May, 2019 − For the builders of hydro-electric schemes – usually multi-billion dollar projects involving vast amounts of complex engineering work – changing rainfall is a serious problem.

With climate change either on the horizon or already happening in many regions of the world, rainfall patterns, on which hydro schemes ultimately depend, are becoming ever more unpredictable.

Christian Rynning-Tonnesen is CEO of Statkraft AS, Norway’s biggest power producer and a major player in the international hydro power business.

In an interview with the Bloomberg news agency, Rynning-Tonnesen says his company has had to double its spending over the last 10 years to reinforce dams in order to cope with heavier rains. He says climate change is hard to ignore when you’re in the hydro-electric business.

“Depending on water as the main source of power in future when we’ll have less of this natural resource looks like an unreliable strategy”

“The general trend all over the world is areas that are dry become more dry and areas that are wet become more wet.”

Norway has seen a 5% rise in rainfall over recent years, says Rynning-Tonnesen.

Others say planning processes behind dam building have to be revised in the face of climate change.

Emilio Moran, a visiting professor at the University of Campinas in São Paulo state in Brazil, says that in one of the world’s biggest hydro-electric building programmes, a total of 147 dams have been planned in the Amazon Basin, with 65 of them in Brazil.

Output fears

In a study published in the Proceedings of the National Academy of Sciences journal, Moran and his co-authors say many of the dams in Brazil − either completed or still in the planning stages − are likely to produce far less power than anticipated, owing to climate variability.

The Amazon Basin is predicted to receive less rainfall and to be hit with higher temperatures in future.

“Depending on water as the main source of power in future when we’ll have less of this natural resource looks like an unreliable strategy”, says Moran.

“To reduce its vulnerability with regard to energy in the context of global climate change, Brazil must diversify its energy mix. It’s still too dependent on hydro-electricity. It needs to invest more in other renewable sources, such as solar, biomass and wind.”

Rainfall drops

Deforestation is expected to create further water shortage problems for hydro plants in the Amazon region. About half the area’s rainfall is due to recycling within the forest.

“Deforestation will, therefore, lead to less precipitation in the region aside from the expected decline due to global climate change”, say the study’s authors.

They say that if the building of large dams in developing countries is to continue, full consideration has to be given to their social impact, the overall cost to the environment and to climate change.

International tensions

In many cases, this doesn’t seem to be happening. Turkey is spending billions on ambitious dam building projects on the Euphrates and Tigris rivers in the south-east of the country. Climate change is predicted to alter the amounts of water available to drive the operation of these dams.

The rivers flow onwards into Syria and Iraq: already water flows downstream are severely reduced at certain times of the year, creating regional tensions and putting in jeopardy the livelihoods of millions dependent on the rivers for drinking water and for agricultural production.

One of the world’s biggest dam projects is in East Africa − the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile, which flows into the Nile itself. Ethiopia wants to sell electricity generated by the dam to neighbouring countries.

Critics of the GERD project say climate change, including reduced rainfall in the Blue Nile’s catchment area, could seriously affect the dam’s generating capability. − Climate News Network

Desert dust cools vulnerable Red Sea corals

Desert dust whipped up by strong winds and volcanic aerosols alter the climate as the world warms.

LONDON, 20 May, 2019 − Located between two of the hottest and driest places on earth, the Red Sea is being protected by the desert dust that the winds whip up in the lands that surround it.

The dust so effectively blocks out the sun that the Red Sea is kept cool, saving its coral reefs from dangerous overheating and providing nutrients that keep its waters healthy.

The sea lies between North Africa and the Arabian Peninsula, the world’s largest region for generating dust, which strong summer winds pump down a narrowing mountain-fringed passage that forces it into the air over the widest southern portion of the sea.

The research, carried out by the King Abdullah University of Science and Technology (KAUST, the first mixed-gender university in Saudi Arabia), is part of a wider programme to discover the effect of dust in the atmosphere in changing the weather and climate.

Cooling influence

Volcanic eruptions can have a significant effect by ejecting aerosol particles into the upper atmosphere where they block out some of the sun’s rays, radiating heat back into space, a process known as radiative forcing. Dust blown from deserts also has a strong regional effect.

Sergey Osipov, postdoctoral fellow and co-author with his supervisor Georgiy Stenchikov of the Red Sea study, said: “We show that summer conditions over the Red Sea produce the world’s largest aerosol radiative forcing, and yet the impact of dust on the Red Sea was never studied − it was simply unknown.”

A surprising finding relates to biological productivity. “Dust deposition adds nutrients,” he said. “However, we find that dust radiative forcing slows down the Red Sea circulation and reduces the main nutrient supply to the Red Sea through the Bab-el Mandeb strait. The net effect on overall bioproductivity remains to be established.”

Volcanoes’ impact

Large volcanic eruptions, such as the 1991 eruption of Mount Pinatubo in the Philippines, inject vast amounts of sulphur dioxide into the upper atmosphere, where it is converted into tiny sulphate aerosol droplets.

These sulphate aerosols spread around the globe, exerting a strong radiative forcing effect, and reducing global temperature for nearly two years by 0.6°C before the dust finally settled back to earth.

The university is using its supercomputer to look at the effects of dust on the whole of the region, which is extremely arid and hurls large quantities of dust into the atmosphere, potentially changing weather patterns. It is important for future climate projections to predict droughts and famines that might cause mass migrations of the region’s peoples.

Another KAUST climate modelling study reveals potential changes in the West African monsoon caused by global warming and the dust it creates.

African monsoon

Home to more than 300 million people, West Africa has an agriculture-based economy: its food security is affected by the monsoon, making it important to understand present and future variability.

A KAUST doctoral student, Jerry Raj, simulated the monsoon under present and future climates. The results show that West Africa will become generally hotter as a result of climate change – with higher areas of the Sahel and Western Sahara projected to have increased temperatures of 4°C or more by the century’s end.

The simulations also indicate precipitation increases over the equatorial Atlantic and the Guinean coast, yet the southern Sahel appears drier. At the same time, Western Sahara experiences a moderate increase of rain.

Finally, and crucially for farmers sowing crops, the onset of the monsoon occurs earlier over the eastern part of the region, but is delayed over the western part.

“Strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood”

“Climate projection is the first and the most important step toward adaptation policies aimed at avoiding damaging environmental and socio-economic consequences,” Raj said.

Another doctoral student, Evgeniya Predybaylo, is looking further afield at the impact of large volcanic eruptions on a major natural climate variation, the El Niño‐Southern Oscillation.

This periodic warm water flush in the Pacific drives extreme weather events like hurricane and tornado activity as well as coral bleaching. It also causes floods and droughts and disrupts fish populations.

Forecasting El Niño events would help people prepare for possible collapses of fish stocks and agricultural crises, says Predybaylo. However, El Niño is notoriously difficult to predict, but volcanic eruptions may play a role.

El Niño link?

“Interestingly, strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood,” says Predybaylo.

She says the response to volcanoes partly depends on the eruption’s seasonal timing: summer eruptions induce stronger El Niños than winter or spring eruptions.
Ocean conditions prevailing at the time of the eruption also play a role.

“Radiative forcing following large eruptions generally results in surface cooling,” explains Predybaylo. “However, the tropical Pacific often shows a warming response. We show that this is due to uneven equatorial ocean cooling and changes in trade winds.”

“A Pinatubo-size eruption may partially determine the phase, magnitude and duration of El Niño, but it is crucial to account for the eruption season and ocean conditions just before the eruption,” she says. − Climate News Network

Desert dust whipped up by strong winds and volcanic aerosols alter the climate as the world warms.

LONDON, 20 May, 2019 − Located between two of the hottest and driest places on earth, the Red Sea is being protected by the desert dust that the winds whip up in the lands that surround it.

The dust so effectively blocks out the sun that the Red Sea is kept cool, saving its coral reefs from dangerous overheating and providing nutrients that keep its waters healthy.

The sea lies between North Africa and the Arabian Peninsula, the world’s largest region for generating dust, which strong summer winds pump down a narrowing mountain-fringed passage that forces it into the air over the widest southern portion of the sea.

The research, carried out by the King Abdullah University of Science and Technology (KAUST, the first mixed-gender university in Saudi Arabia), is part of a wider programme to discover the effect of dust in the atmosphere in changing the weather and climate.

Cooling influence

Volcanic eruptions can have a significant effect by ejecting aerosol particles into the upper atmosphere where they block out some of the sun’s rays, radiating heat back into space, a process known as radiative forcing. Dust blown from deserts also has a strong regional effect.

Sergey Osipov, postdoctoral fellow and co-author with his supervisor Georgiy Stenchikov of the Red Sea study, said: “We show that summer conditions over the Red Sea produce the world’s largest aerosol radiative forcing, and yet the impact of dust on the Red Sea was never studied − it was simply unknown.”

A surprising finding relates to biological productivity. “Dust deposition adds nutrients,” he said. “However, we find that dust radiative forcing slows down the Red Sea circulation and reduces the main nutrient supply to the Red Sea through the Bab-el Mandeb strait. The net effect on overall bioproductivity remains to be established.”

Volcanoes’ impact

Large volcanic eruptions, such as the 1991 eruption of Mount Pinatubo in the Philippines, inject vast amounts of sulphur dioxide into the upper atmosphere, where it is converted into tiny sulphate aerosol droplets.

These sulphate aerosols spread around the globe, exerting a strong radiative forcing effect, and reducing global temperature for nearly two years by 0.6°C before the dust finally settled back to earth.

The university is using its supercomputer to look at the effects of dust on the whole of the region, which is extremely arid and hurls large quantities of dust into the atmosphere, potentially changing weather patterns. It is important for future climate projections to predict droughts and famines that might cause mass migrations of the region’s peoples.

Another KAUST climate modelling study reveals potential changes in the West African monsoon caused by global warming and the dust it creates.

African monsoon

Home to more than 300 million people, West Africa has an agriculture-based economy: its food security is affected by the monsoon, making it important to understand present and future variability.

A KAUST doctoral student, Jerry Raj, simulated the monsoon under present and future climates. The results show that West Africa will become generally hotter as a result of climate change – with higher areas of the Sahel and Western Sahara projected to have increased temperatures of 4°C or more by the century’s end.

The simulations also indicate precipitation increases over the equatorial Atlantic and the Guinean coast, yet the southern Sahel appears drier. At the same time, Western Sahara experiences a moderate increase of rain.

Finally, and crucially for farmers sowing crops, the onset of the monsoon occurs earlier over the eastern part of the region, but is delayed over the western part.

“Strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood”

“Climate projection is the first and the most important step toward adaptation policies aimed at avoiding damaging environmental and socio-economic consequences,” Raj said.

Another doctoral student, Evgeniya Predybaylo, is looking further afield at the impact of large volcanic eruptions on a major natural climate variation, the El Niño‐Southern Oscillation.

This periodic warm water flush in the Pacific drives extreme weather events like hurricane and tornado activity as well as coral bleaching. It also causes floods and droughts and disrupts fish populations.

Forecasting El Niño events would help people prepare for possible collapses of fish stocks and agricultural crises, says Predybaylo. However, El Niño is notoriously difficult to predict, but volcanic eruptions may play a role.

El Niño link?

“Interestingly, strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood,” says Predybaylo.

She says the response to volcanoes partly depends on the eruption’s seasonal timing: summer eruptions induce stronger El Niños than winter or spring eruptions.
Ocean conditions prevailing at the time of the eruption also play a role.

“Radiative forcing following large eruptions generally results in surface cooling,” explains Predybaylo. “However, the tropical Pacific often shows a warming response. We show that this is due to uneven equatorial ocean cooling and changes in trade winds.”

“A Pinatubo-size eruption may partially determine the phase, magnitude and duration of El Niño, but it is crucial to account for the eruption season and ocean conditions just before the eruption,” she says. − Climate News Network

Glaciers’ global melt may leave Alps bare

High mountain ice is vital to millions. As the world warms, the glaciers’ global melt could see the frozen peaks vanish.

LONDON, 12 April, 2019 – Many of the planet’s most scenic – and most valued – high-altitude landscapes are likely to look quite different within the next 80 years: the glaciers’ global melt will have left just bare rock.

By the century’s end, Europe’s famous Alps – the chain of snow- and ice-covered peaks that have become a playground of the wealthy and a source of income and pleasure for generations – will have lost more than nine-tenths of all its glacier ice.

And in the last 50 years, the world’s glaciers – in Asia, the Americas, Europe, Africa and the sub-Arctic mountains – have lost more than nine trillion tonnes of ice as global temperatures creep ever upwards in response to profligate combustion of fossil fuels.

And as meltwater has trickled down the mountains, the seas have risen by 27mm, thanks entirely to glacial retreat.

“Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century”

In two separate studies, Swiss scientists have tried to audit a profit and loss account for the world’s frozen high-altitude rivers, and found a steady downhill trend.

Glacial ice is a source of security and even wealth: in the poorest regions the annual summer melt of winter snow and ice banked at altitude can guarantee both energy as hydropower and water for crops in the valleys and floodplains.

In wealthy regions, the white peaks and slopes become sources of income as tourist attractions and centres for winter sport – as well as reliable sources of power and water.

Swiss focus

In the journal The Cryosphere, a team from the Swiss Federal Institute of Technology, almost always known simply as ETH Zurich, looked into the future of the nation’s own landscape, and beyond.

They made computer models of the annual flow of ice and its melting patterns and took 2017 as the reference year: a year when the Alpine glaciers bore 100 cubic kilometres of ice. And then they started simulating the future.

If humankind kept the promise made by 195 nations in Paris in 2015, to drastically reduce fossil fuel use, lower emissions of carbon dioxide, restore the forests and keep global warming to no more than 2°C above historic levels, then the stores of high ice would be reduced by more than a third over the next eight decades. If humankind went on expanding its use of fossil fuels at the present rates, then half of all the ice would be lost by 2050 and 95% by 2100.

Time lag

But there will be losses in all scenarios: warming so far has seen to that. Ice reflects radiation and keeps itself cold, so change lags behind atmospheric temperature.

“The future evolution of glaciers will strongly depend on how the climate will evolve,” said Harry Zekollari, once of ETH and now at Delft University of Technology in the Netherlands, who led the research. “In the case of a more limited warming, a far more substantial part of the glaciers could be saved.”

The Alpine glaciers were made world-famous first by Romantic painters and poets of the 19th century, among them JMW Turner and Lord Byron. But their contribution to rising sea levels is, in a global context, negligible.

When Swiss researchers and their Russian, Canadian and European partners looked at the big picture, they found that the mass loss of ice from the mountains of AlaskaCanada, parts of Asia and the Andes matched the increasing flow of water from the melting Greenland ice cap, and exceeded the flow of melting water from the Antarctic continent.

Europe’s modest melt

They report in Nature that glaciers separate from the Greenland and Antarctic sheets covered 706,000 square kilometres of the planet, with a total volume of 170,000 cubic kilometres, or 40 centimetres of potential sea level rise.

And in the five decades from 1961 to 2016, according to careful study of satellite imagery and historic observations, the seas have already risen by 27mm as a consequence of increasing rates of glacial retreat. This is already between 25% and 30% of observed sea level rise so far.

Europe did not figure much in the reckoning. “Globally, we lose three times the ice volume stored in the entirety of the European Alps – every single year,” said Michael Zemp, a glaciologist at the University of Zurich.

He and his colleagues warn: “Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierised regions will continue to contribute to sea level rise beyond 2100.” – Climate News Network

High mountain ice is vital to millions. As the world warms, the glaciers’ global melt could see the frozen peaks vanish.

LONDON, 12 April, 2019 – Many of the planet’s most scenic – and most valued – high-altitude landscapes are likely to look quite different within the next 80 years: the glaciers’ global melt will have left just bare rock.

By the century’s end, Europe’s famous Alps – the chain of snow- and ice-covered peaks that have become a playground of the wealthy and a source of income and pleasure for generations – will have lost more than nine-tenths of all its glacier ice.

And in the last 50 years, the world’s glaciers – in Asia, the Americas, Europe, Africa and the sub-Arctic mountains – have lost more than nine trillion tonnes of ice as global temperatures creep ever upwards in response to profligate combustion of fossil fuels.

And as meltwater has trickled down the mountains, the seas have risen by 27mm, thanks entirely to glacial retreat.

“Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century”

In two separate studies, Swiss scientists have tried to audit a profit and loss account for the world’s frozen high-altitude rivers, and found a steady downhill trend.

Glacial ice is a source of security and even wealth: in the poorest regions the annual summer melt of winter snow and ice banked at altitude can guarantee both energy as hydropower and water for crops in the valleys and floodplains.

In wealthy regions, the white peaks and slopes become sources of income as tourist attractions and centres for winter sport – as well as reliable sources of power and water.

Swiss focus

In the journal The Cryosphere, a team from the Swiss Federal Institute of Technology, almost always known simply as ETH Zurich, looked into the future of the nation’s own landscape, and beyond.

They made computer models of the annual flow of ice and its melting patterns and took 2017 as the reference year: a year when the Alpine glaciers bore 100 cubic kilometres of ice. And then they started simulating the future.

If humankind kept the promise made by 195 nations in Paris in 2015, to drastically reduce fossil fuel use, lower emissions of carbon dioxide, restore the forests and keep global warming to no more than 2°C above historic levels, then the stores of high ice would be reduced by more than a third over the next eight decades. If humankind went on expanding its use of fossil fuels at the present rates, then half of all the ice would be lost by 2050 and 95% by 2100.

Time lag

But there will be losses in all scenarios: warming so far has seen to that. Ice reflects radiation and keeps itself cold, so change lags behind atmospheric temperature.

“The future evolution of glaciers will strongly depend on how the climate will evolve,” said Harry Zekollari, once of ETH and now at Delft University of Technology in the Netherlands, who led the research. “In the case of a more limited warming, a far more substantial part of the glaciers could be saved.”

The Alpine glaciers were made world-famous first by Romantic painters and poets of the 19th century, among them JMW Turner and Lord Byron. But their contribution to rising sea levels is, in a global context, negligible.

When Swiss researchers and their Russian, Canadian and European partners looked at the big picture, they found that the mass loss of ice from the mountains of AlaskaCanada, parts of Asia and the Andes matched the increasing flow of water from the melting Greenland ice cap, and exceeded the flow of melting water from the Antarctic continent.

Europe’s modest melt

They report in Nature that glaciers separate from the Greenland and Antarctic sheets covered 706,000 square kilometres of the planet, with a total volume of 170,000 cubic kilometres, or 40 centimetres of potential sea level rise.

And in the five decades from 1961 to 2016, according to careful study of satellite imagery and historic observations, the seas have already risen by 27mm as a consequence of increasing rates of glacial retreat. This is already between 25% and 30% of observed sea level rise so far.

Europe did not figure much in the reckoning. “Globally, we lose three times the ice volume stored in the entirety of the European Alps – every single year,” said Michael Zemp, a glaciologist at the University of Zurich.

He and his colleagues warn: “Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierised regions will continue to contribute to sea level rise beyond 2100.” – Climate News Network

Termites show humans how to keep their cool

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

Cocoa fuel combats climate change

If you like chocolate you’ll love this: the same tree that provides your indulgent treat is helping to slow climate change, thanks to cocoa fuel.

LONDON, 14 March, 2019 – Sometimes the best solutions to energy problems – and to the fight against climate change – are the simple ones, like cocoa fuel.

Ghana is one of the world’s leading producers of cocoa – the vital ingredient in the multi-billion dollar international chocolate industry.

Cocoa beans are extracted from inside the pod husks of the cocoa tree. Husks are usually discarded during the production process.

Now, in a project led by specialists at the University of Nottingham in the UK, the plan is to use the husks as feedstock in bio-fuel energy installations.

“Ghana is the second highest producer of cocoa in the world and every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”, says Jo Darkwa, professor of energy storage technologies at Nottingham and one of the people behind the Ghanaian project.

Filling the gap

“In the past, this waste material was under-utilised. However, feasibility studies indicate that cocoa pod husks could be converted into valuable bio-fuels and become an important energy supply for rural areas that have only 15% electricity coverage at present.”

The plan is to design, build and put into operation small-scale bio-power electricity generation units that would burn cocoa pod husks in a gasification system. Each unit, which would include a gasifier, a small generator and a solar drier and pelletiser, would cost an estimated US$50,000.

Not only would the units help deal with Ghana’s chronic energy problems but it would also assist in the battle against deforestation, a serious problem for cocoa farmers.

Ghana’s population, now 30 million, is growing fast; about 80% of households in the country use wood as the main source of fuel for cooking and heating water.

As a result, Ghana’s forests are under considerable pressure, with severe consequences not only for wildlife and ecosystems but also for the climate.

“Every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”

Forests are an essential element in the fight against climate change; trees absorb or sequester considerable amounts of climate-changing greenhouse gases and help prevent global warming.

“Undoubtedly, provision of sustainable energy services through cocoa pod husks would go a long way towards improving the quality of lives and thus alleviate poverty in rural communities as well as fight against climate change”, Professor Darkwa told Climate News Network.

The aim is not only to build sources of sustainable energy; collection, treatment and processing of the pod husks would also create jobs and provide much-needed incomes in rural communities.

The specialists at Nottingham are collaborating on the project with the Ghana Cocoa Board and various other organisations in Ghana.

A prototype of the new bio-power unit is due to be installed and monitored at the Kwame Nkrumah University of Science and Technology later this year. – Climate News Network

If you like chocolate you’ll love this: the same tree that provides your indulgent treat is helping to slow climate change, thanks to cocoa fuel.

LONDON, 14 March, 2019 – Sometimes the best solutions to energy problems – and to the fight against climate change – are the simple ones, like cocoa fuel.

Ghana is one of the world’s leading producers of cocoa – the vital ingredient in the multi-billion dollar international chocolate industry.

Cocoa beans are extracted from inside the pod husks of the cocoa tree. Husks are usually discarded during the production process.

Now, in a project led by specialists at the University of Nottingham in the UK, the plan is to use the husks as feedstock in bio-fuel energy installations.

“Ghana is the second highest producer of cocoa in the world and every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”, says Jo Darkwa, professor of energy storage technologies at Nottingham and one of the people behind the Ghanaian project.

Filling the gap

“In the past, this waste material was under-utilised. However, feasibility studies indicate that cocoa pod husks could be converted into valuable bio-fuels and become an important energy supply for rural areas that have only 15% electricity coverage at present.”

The plan is to design, build and put into operation small-scale bio-power electricity generation units that would burn cocoa pod husks in a gasification system. Each unit, which would include a gasifier, a small generator and a solar drier and pelletiser, would cost an estimated US$50,000.

Not only would the units help deal with Ghana’s chronic energy problems but it would also assist in the battle against deforestation, a serious problem for cocoa farmers.

Ghana’s population, now 30 million, is growing fast; about 80% of households in the country use wood as the main source of fuel for cooking and heating water.

As a result, Ghana’s forests are under considerable pressure, with severe consequences not only for wildlife and ecosystems but also for the climate.

“Every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”

Forests are an essential element in the fight against climate change; trees absorb or sequester considerable amounts of climate-changing greenhouse gases and help prevent global warming.

“Undoubtedly, provision of sustainable energy services through cocoa pod husks would go a long way towards improving the quality of lives and thus alleviate poverty in rural communities as well as fight against climate change”, Professor Darkwa told Climate News Network.

The aim is not only to build sources of sustainable energy; collection, treatment and processing of the pod husks would also create jobs and provide much-needed incomes in rural communities.

The specialists at Nottingham are collaborating on the project with the Ghana Cocoa Board and various other organisations in Ghana.

A prototype of the new bio-power unit is due to be installed and monitored at the Kwame Nkrumah University of Science and Technology later this year. – Climate News Network

Food shocks increase as world warms

Heat extremes harm harvests. So do floods, drought and high winds. Climate change spurs food shocks that threaten the supper table.

LONDON, 1 February, 2019 − More than ever, the world’s ways of keeping hunger at bay are taking a pounding as food shocks become more frequent. Potatoes are being baked in heat waves. Corn is being parched by drought. Fruit is being bitten by frost.

And a long-term study suggests that for the world’s farmers and graziers, fishing crews and fish farmers, things will get worse as the world warms. Australian and US scientists report in the journal Nature Sustainability that they examined the incidence of what they call “food shocks” across 134 nations over a period of 53 years.

They found that some regions and some kinds of farming have suffered worse than others; that food production is vulnerable to volatile climate and weather changes; and that the dangers are increasing with time.

The researchers looked at cases of dramatic crop failure, harvest loss and fishing fleet failures between 1961 and 2013, as recorded by the UN Food and Agriculture Organisation and other sources, and then mapped shock frequency and co-occurrence.

In their database of 741 available time-series of food production, they found 226 cases of food shock: dramatic interruption of supply.

Hunger increases

Agriculture and livestock emerged as slightly more vulnerable to shock than fisheries and aquaculture. South Asia suffered most from crop damage or loss; the Caribbean for livestock, and Eastern Europe for fisheries; some of these regions were hard hit in more than one sector.

“The frequency of shocks has increased across all sectors at a global scale,” the authors report. “Increasing shock frequency is a food security concern in itself. Conflict-related shocks across sub-Saharan Africa and the Middle East since 2010, combined with adverse climate conditions, are responsible for the first uptick in global hunger in recent times.”

More than half of all shocks to food production were climate-related, and drought was the biggest factor. Extreme weather accounted for a quarter of shocks to livestock, and disease outbreaks another 10%, but the biggest single factor for pastoral farmers arose from geopolitical conflict and other crises.

Fisheries seemed better protected, and the worst shocks to fish landings could be traced to overfishing. Disruption to fish farming – a relatively new form of food production – has grown at a faster rate and to a higher level than in any other sector.

Climate scientists and agricultural researchers have been warning for years that food security is at hazard from global warming and climate change, both driven by profligate human use of fossil fuels and unthinking destruction of forests and natural grasslands and wetlands.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often”

Heat extremes can harm cereal yields almost anywhere, but Africa and South-east Asia are particularly at risk from changes in precipitation patterns.

The latest study is a reminder that, in some ways, the future has already arrived: the forewarned rise in climate extremes such as flood, heat and drought can be detected in the annual harvest tally around the globe.

And although a high percentage of the food supply damage can be linked to social conflict or political stress, climate change seems increasingly to be a factor in civil and international violence.

A new study for the UN security council – co-incidentally released on the same day – confirms the picture. Hunger and conflict are in a persistent and deadly partnership that threatens millions.

Mass famine

The number of food shocks fluctuates from year to year, the Nature Sustainability authors say. That is because factors such as social conflict and climate change can in synergy create a number of shocks across different sectors at different times. At least 22 of the 134 nations experienced shocks in many sectors over the same five-year time period.

In some cases, these shocks ended with more than just empty shelves. The collapse of the Soviet Union late in the last century removed some economic support from North Korea: subsequent floods precipitated a famine that killed 200,000 people.

Iraq’s invasion of Kuwait in 1991, and the subsequent Gulf War, devastated agricultural land and cost Kuwait’s commercial fishermen their livelihoods. Drought in Afghanistan in 2001 and 2002 decimated cereal yields, pastoralists lost fodder for their cattle and animal disease incidence soared.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often,” said Richard Cottrell of the University of Tasmania, who led the study.

“Globalised trade and the dependence of many countries on food imports mean that food shocks are a global problem, and the international community faces a significant challenge to build resilience.” − Climate News Network

Heat extremes harm harvests. So do floods, drought and high winds. Climate change spurs food shocks that threaten the supper table.

LONDON, 1 February, 2019 − More than ever, the world’s ways of keeping hunger at bay are taking a pounding as food shocks become more frequent. Potatoes are being baked in heat waves. Corn is being parched by drought. Fruit is being bitten by frost.

And a long-term study suggests that for the world’s farmers and graziers, fishing crews and fish farmers, things will get worse as the world warms. Australian and US scientists report in the journal Nature Sustainability that they examined the incidence of what they call “food shocks” across 134 nations over a period of 53 years.

They found that some regions and some kinds of farming have suffered worse than others; that food production is vulnerable to volatile climate and weather changes; and that the dangers are increasing with time.

The researchers looked at cases of dramatic crop failure, harvest loss and fishing fleet failures between 1961 and 2013, as recorded by the UN Food and Agriculture Organisation and other sources, and then mapped shock frequency and co-occurrence.

In their database of 741 available time-series of food production, they found 226 cases of food shock: dramatic interruption of supply.

Hunger increases

Agriculture and livestock emerged as slightly more vulnerable to shock than fisheries and aquaculture. South Asia suffered most from crop damage or loss; the Caribbean for livestock, and Eastern Europe for fisheries; some of these regions were hard hit in more than one sector.

“The frequency of shocks has increased across all sectors at a global scale,” the authors report. “Increasing shock frequency is a food security concern in itself. Conflict-related shocks across sub-Saharan Africa and the Middle East since 2010, combined with adverse climate conditions, are responsible for the first uptick in global hunger in recent times.”

More than half of all shocks to food production were climate-related, and drought was the biggest factor. Extreme weather accounted for a quarter of shocks to livestock, and disease outbreaks another 10%, but the biggest single factor for pastoral farmers arose from geopolitical conflict and other crises.

Fisheries seemed better protected, and the worst shocks to fish landings could be traced to overfishing. Disruption to fish farming – a relatively new form of food production – has grown at a faster rate and to a higher level than in any other sector.

Climate scientists and agricultural researchers have been warning for years that food security is at hazard from global warming and climate change, both driven by profligate human use of fossil fuels and unthinking destruction of forests and natural grasslands and wetlands.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often”

Heat extremes can harm cereal yields almost anywhere, but Africa and South-east Asia are particularly at risk from changes in precipitation patterns.

The latest study is a reminder that, in some ways, the future has already arrived: the forewarned rise in climate extremes such as flood, heat and drought can be detected in the annual harvest tally around the globe.

And although a high percentage of the food supply damage can be linked to social conflict or political stress, climate change seems increasingly to be a factor in civil and international violence.

A new study for the UN security council – co-incidentally released on the same day – confirms the picture. Hunger and conflict are in a persistent and deadly partnership that threatens millions.

Mass famine

The number of food shocks fluctuates from year to year, the Nature Sustainability authors say. That is because factors such as social conflict and climate change can in synergy create a number of shocks across different sectors at different times. At least 22 of the 134 nations experienced shocks in many sectors over the same five-year time period.

In some cases, these shocks ended with more than just empty shelves. The collapse of the Soviet Union late in the last century removed some economic support from North Korea: subsequent floods precipitated a famine that killed 200,000 people.

Iraq’s invasion of Kuwait in 1991, and the subsequent Gulf War, devastated agricultural land and cost Kuwait’s commercial fishermen their livelihoods. Drought in Afghanistan in 2001 and 2002 decimated cereal yields, pastoralists lost fodder for their cattle and animal disease incidence soared.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often,” said Richard Cottrell of the University of Tasmania, who led the study.

“Globalised trade and the dependence of many countries on food imports mean that food shocks are a global problem, and the international community faces a significant challenge to build resilience.” − Climate News Network