Tag Archives: Africa

Glaciers’ global melt may leave Alps bare

High mountain ice is vital to millions. As the world warms, the glaciers’ global melt could see the frozen peaks vanish.

LONDON, 12 April, 2019 – Many of the planet’s most scenic – and most valued – high-altitude landscapes are likely to look quite different within the next 80 years: the glaciers’ global melt will have left just bare rock.

By the century’s end, Europe’s famous Alps – the chain of snow- and ice-covered peaks that have become a playground of the wealthy and a source of income and pleasure for generations – will have lost more than nine-tenths of all its glacier ice.

And in the last 50 years, the world’s glaciers – in Asia, the Americas, Europe, Africa and the sub-Arctic mountains – have lost more than nine trillion tonnes of ice as global temperatures creep ever upwards in response to profligate combustion of fossil fuels.

And as meltwater has trickled down the mountains, the seas have risen by 27mm, thanks entirely to glacial retreat.

“Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century”

In two separate studies, Swiss scientists have tried to audit a profit and loss account for the world’s frozen high-altitude rivers, and found a steady downhill trend.

Glacial ice is a source of security and even wealth: in the poorest regions the annual summer melt of winter snow and ice banked at altitude can guarantee both energy as hydropower and water for crops in the valleys and floodplains.

In wealthy regions, the white peaks and slopes become sources of income as tourist attractions and centres for winter sport – as well as reliable sources of power and water.

Swiss focus

In the journal The Cryosphere, a team from the Swiss Federal Institute of Technology, almost always known simply as ETH Zurich, looked into the future of the nation’s own landscape, and beyond.

They made computer models of the annual flow of ice and its melting patterns and took 2017 as the reference year: a year when the Alpine glaciers bore 100 cubic kilometres of ice. And then they started simulating the future.

If humankind kept the promise made by 195 nations in Paris in 2015, to drastically reduce fossil fuel use, lower emissions of carbon dioxide, restore the forests and keep global warming to no more than 2°C above historic levels, then the stores of high ice would be reduced by more than a third over the next eight decades. If humankind went on expanding its use of fossil fuels at the present rates, then half of all the ice would be lost by 2050 and 95% by 2100.

Time lag

But there will be losses in all scenarios: warming so far has seen to that. Ice reflects radiation and keeps itself cold, so change lags behind atmospheric temperature.

“The future evolution of glaciers will strongly depend on how the climate will evolve,” said Harry Zekollari, once of ETH and now at Delft University of Technology in the Netherlands, who led the research. “In the case of a more limited warming, a far more substantial part of the glaciers could be saved.”

The Alpine glaciers were made world-famous first by Romantic painters and poets of the 19th century, among them JMW Turner and Lord Byron. But their contribution to rising sea levels is, in a global context, negligible.

When Swiss researchers and their Russian, Canadian and European partners looked at the big picture, they found that the mass loss of ice from the mountains of AlaskaCanada, parts of Asia and the Andes matched the increasing flow of water from the melting Greenland ice cap, and exceeded the flow of melting water from the Antarctic continent.

Europe’s modest melt

They report in Nature that glaciers separate from the Greenland and Antarctic sheets covered 706,000 square kilometres of the planet, with a total volume of 170,000 cubic kilometres, or 40 centimetres of potential sea level rise.

And in the five decades from 1961 to 2016, according to careful study of satellite imagery and historic observations, the seas have already risen by 27mm as a consequence of increasing rates of glacial retreat. This is already between 25% and 30% of observed sea level rise so far.

Europe did not figure much in the reckoning. “Globally, we lose three times the ice volume stored in the entirety of the European Alps – every single year,” said Michael Zemp, a glaciologist at the University of Zurich.

He and his colleagues warn: “Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierised regions will continue to contribute to sea level rise beyond 2100.” – Climate News Network

High mountain ice is vital to millions. As the world warms, the glaciers’ global melt could see the frozen peaks vanish.

LONDON, 12 April, 2019 – Many of the planet’s most scenic – and most valued – high-altitude landscapes are likely to look quite different within the next 80 years: the glaciers’ global melt will have left just bare rock.

By the century’s end, Europe’s famous Alps – the chain of snow- and ice-covered peaks that have become a playground of the wealthy and a source of income and pleasure for generations – will have lost more than nine-tenths of all its glacier ice.

And in the last 50 years, the world’s glaciers – in Asia, the Americas, Europe, Africa and the sub-Arctic mountains – have lost more than nine trillion tonnes of ice as global temperatures creep ever upwards in response to profligate combustion of fossil fuels.

And as meltwater has trickled down the mountains, the seas have risen by 27mm, thanks entirely to glacial retreat.

“Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century”

In two separate studies, Swiss scientists have tried to audit a profit and loss account for the world’s frozen high-altitude rivers, and found a steady downhill trend.

Glacial ice is a source of security and even wealth: in the poorest regions the annual summer melt of winter snow and ice banked at altitude can guarantee both energy as hydropower and water for crops in the valleys and floodplains.

In wealthy regions, the white peaks and slopes become sources of income as tourist attractions and centres for winter sport – as well as reliable sources of power and water.

Swiss focus

In the journal The Cryosphere, a team from the Swiss Federal Institute of Technology, almost always known simply as ETH Zurich, looked into the future of the nation’s own landscape, and beyond.

They made computer models of the annual flow of ice and its melting patterns and took 2017 as the reference year: a year when the Alpine glaciers bore 100 cubic kilometres of ice. And then they started simulating the future.

If humankind kept the promise made by 195 nations in Paris in 2015, to drastically reduce fossil fuel use, lower emissions of carbon dioxide, restore the forests and keep global warming to no more than 2°C above historic levels, then the stores of high ice would be reduced by more than a third over the next eight decades. If humankind went on expanding its use of fossil fuels at the present rates, then half of all the ice would be lost by 2050 and 95% by 2100.

Time lag

But there will be losses in all scenarios: warming so far has seen to that. Ice reflects radiation and keeps itself cold, so change lags behind atmospheric temperature.

“The future evolution of glaciers will strongly depend on how the climate will evolve,” said Harry Zekollari, once of ETH and now at Delft University of Technology in the Netherlands, who led the research. “In the case of a more limited warming, a far more substantial part of the glaciers could be saved.”

The Alpine glaciers were made world-famous first by Romantic painters and poets of the 19th century, among them JMW Turner and Lord Byron. But their contribution to rising sea levels is, in a global context, negligible.

When Swiss researchers and their Russian, Canadian and European partners looked at the big picture, they found that the mass loss of ice from the mountains of AlaskaCanada, parts of Asia and the Andes matched the increasing flow of water from the melting Greenland ice cap, and exceeded the flow of melting water from the Antarctic continent.

Europe’s modest melt

They report in Nature that glaciers separate from the Greenland and Antarctic sheets covered 706,000 square kilometres of the planet, with a total volume of 170,000 cubic kilometres, or 40 centimetres of potential sea level rise.

And in the five decades from 1961 to 2016, according to careful study of satellite imagery and historic observations, the seas have already risen by 27mm as a consequence of increasing rates of glacial retreat. This is already between 25% and 30% of observed sea level rise so far.

Europe did not figure much in the reckoning. “Globally, we lose three times the ice volume stored in the entirety of the European Alps – every single year,” said Michael Zemp, a glaciologist at the University of Zurich.

He and his colleagues warn: “Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierised regions will continue to contribute to sea level rise beyond 2100.” – Climate News Network

Termites show humans how to keep their cool

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

Scientists are studying the architectural skills developed by termites so we can keep cool, dry and well-ventilated in tall buildings without using fossil fuels.

LONDON, 2 April, 2019 − When humans were still living in caves termites were constructing tower blocks and tackling the difficult problems of keeping cool and dry in an adverse climate.

Now that humans, in a warming world, have the task of keeping skyscrapers comfortable and well-ventilated without the use of fossil fuels, scientists are turning to termites for advice. It appears that their architectural skills will help us solve our climate problems.

Termites live in colonies numbering thousands in inhospitable terrain in towers up to seven metres high. Inside the blocks is a complex social system of kings, queens, soldiers and worker ants living in a system of tunnels and passages, all self-ventilating, self-cooling and self-draining.

“There is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems”

Using three-dimensional X-ray images, a group of engineers, biologists, chemists and mathematicians report in the journal Science Advances that they studied the mounds, as they are known, and found the secret lay in small holes or pores in the walls of the termite nests.

A network of smaller and larger pores helped an exchange of carbon dioxide from inside the nest to the outside. The ability of the pores to do this changed depending on the wind-speed outside, with the smaller pores sometimes taking over from the larger ones to keep the ventilation efficient. They worked regardless of the weather outside.

Lead author Dr Kamaljit Singh, from Imperial College London’s department of earth science & engineering,  said: “Termite nests are a unique example of architectural perfection by insects.

No mechanical aids

“The way they’re designed offers fascinating self-sustaining temperature- and ventilation-controlling properties throughout the year without using any mechanical or electronic appliances.”

The nests are usually found in hotter regions and the ones studied came from two West African countries, Senegal and Guinea. In the climate of these countries the mounds must be kept cool for the termites to survive. The pores also played a crucial role in this, the larger ones filling with air and reducing the heat entering the nest, a bit like the air in a double-glazed window can keep heat inside.

Remarkably the pores also had a role when it rained. Instead of getting blocked by rainwater and ruining the system the smaller pores, using capillary action, drained the larger ones, enabling the ventilation system to keep functioning.

Energy-efficiency too?

Dr Singh said: “Not only do these remarkable structures self-ventilate and regulate their own temperatures – they also have inbuilt drainage systems.”

The scientists say the newly found architecture within termite nests could help us improve ventilation, temperature control, and drainage systems in buildings – and hopefully make them more energy-efficient.

One co-author, Professor Pierre Degond from Imperial’s Department of Mathematics, said: “The findings greatly improve our understanding of how architectural design can help control ventilation, heat regulation, and drainage of structures – maybe even in human dwellings.

Nature knows best

“They also provide a new direction for future research, and will eventually bring us one step closer to understanding mechanisms that could be useful in designing energy-efficient self-sustaining buildings.”

Another of those involved in the project, Dr Bagus Muljadi from the University of Nottingham, said: “We know that nature holds the secrets to survival. To unlock them, we need to encourage global, interdisciplinary research.

“This study shows that there is a lot more to learn from Mother Nature when it comes to solving even the most important 21st century problems.” − Climate News Network

Cocoa fuel combats climate change

If you like chocolate you’ll love this: the same tree that provides your indulgent treat is helping to slow climate change, thanks to cocoa fuel.

LONDON, 14 March, 2019 – Sometimes the best solutions to energy problems – and to the fight against climate change – are the simple ones, like cocoa fuel.

Ghana is one of the world’s leading producers of cocoa – the vital ingredient in the multi-billion dollar international chocolate industry.

Cocoa beans are extracted from inside the pod husks of the cocoa tree. Husks are usually discarded during the production process.

Now, in a project led by specialists at the University of Nottingham in the UK, the plan is to use the husks as feedstock in bio-fuel energy installations.

“Ghana is the second highest producer of cocoa in the world and every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”, says Jo Darkwa, professor of energy storage technologies at Nottingham and one of the people behind the Ghanaian project.

Filling the gap

“In the past, this waste material was under-utilised. However, feasibility studies indicate that cocoa pod husks could be converted into valuable bio-fuels and become an important energy supply for rural areas that have only 15% electricity coverage at present.”

The plan is to design, build and put into operation small-scale bio-power electricity generation units that would burn cocoa pod husks in a gasification system. Each unit, which would include a gasifier, a small generator and a solar drier and pelletiser, would cost an estimated US$50,000.

Not only would the units help deal with Ghana’s chronic energy problems but it would also assist in the battle against deforestation, a serious problem for cocoa farmers.

Ghana’s population, now 30 million, is growing fast; about 80% of households in the country use wood as the main source of fuel for cooking and heating water.

As a result, Ghana’s forests are under considerable pressure, with severe consequences not only for wildlife and ecosystems but also for the climate.

“Every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”

Forests are an essential element in the fight against climate change; trees absorb or sequester considerable amounts of climate-changing greenhouse gases and help prevent global warming.

“Undoubtedly, provision of sustainable energy services through cocoa pod husks would go a long way towards improving the quality of lives and thus alleviate poverty in rural communities as well as fight against climate change”, Professor Darkwa told Climate News Network.

The aim is not only to build sources of sustainable energy; collection, treatment and processing of the pod husks would also create jobs and provide much-needed incomes in rural communities.

The specialists at Nottingham are collaborating on the project with the Ghana Cocoa Board and various other organisations in Ghana.

A prototype of the new bio-power unit is due to be installed and monitored at the Kwame Nkrumah University of Science and Technology later this year. – Climate News Network

If you like chocolate you’ll love this: the same tree that provides your indulgent treat is helping to slow climate change, thanks to cocoa fuel.

LONDON, 14 March, 2019 – Sometimes the best solutions to energy problems – and to the fight against climate change – are the simple ones, like cocoa fuel.

Ghana is one of the world’s leading producers of cocoa – the vital ingredient in the multi-billion dollar international chocolate industry.

Cocoa beans are extracted from inside the pod husks of the cocoa tree. Husks are usually discarded during the production process.

Now, in a project led by specialists at the University of Nottingham in the UK, the plan is to use the husks as feedstock in bio-fuel energy installations.

“Ghana is the second highest producer of cocoa in the world and every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”, says Jo Darkwa, professor of energy storage technologies at Nottingham and one of the people behind the Ghanaian project.

Filling the gap

“In the past, this waste material was under-utilised. However, feasibility studies indicate that cocoa pod husks could be converted into valuable bio-fuels and become an important energy supply for rural areas that have only 15% electricity coverage at present.”

The plan is to design, build and put into operation small-scale bio-power electricity generation units that would burn cocoa pod husks in a gasification system. Each unit, which would include a gasifier, a small generator and a solar drier and pelletiser, would cost an estimated US$50,000.

Not only would the units help deal with Ghana’s chronic energy problems but it would also assist in the battle against deforestation, a serious problem for cocoa farmers.

Ghana’s population, now 30 million, is growing fast; about 80% of households in the country use wood as the main source of fuel for cooking and heating water.

As a result, Ghana’s forests are under considerable pressure, with severe consequences not only for wildlife and ecosystems but also for the climate.

“Every ton of cocoa beans harvested generates 10 tons of cocoa pod husks”

Forests are an essential element in the fight against climate change; trees absorb or sequester considerable amounts of climate-changing greenhouse gases and help prevent global warming.

“Undoubtedly, provision of sustainable energy services through cocoa pod husks would go a long way towards improving the quality of lives and thus alleviate poverty in rural communities as well as fight against climate change”, Professor Darkwa told Climate News Network.

The aim is not only to build sources of sustainable energy; collection, treatment and processing of the pod husks would also create jobs and provide much-needed incomes in rural communities.

The specialists at Nottingham are collaborating on the project with the Ghana Cocoa Board and various other organisations in Ghana.

A prototype of the new bio-power unit is due to be installed and monitored at the Kwame Nkrumah University of Science and Technology later this year. – Climate News Network

Food shocks increase as world warms

Heat extremes harm harvests. So do floods, drought and high winds. Climate change spurs food shocks that threaten the supper table.

LONDON, 1 February, 2019 − More than ever, the world’s ways of keeping hunger at bay are taking a pounding as food shocks become more frequent. Potatoes are being baked in heat waves. Corn is being parched by drought. Fruit is being bitten by frost.

And a long-term study suggests that for the world’s farmers and graziers, fishing crews and fish farmers, things will get worse as the world warms. Australian and US scientists report in the journal Nature Sustainability that they examined the incidence of what they call “food shocks” across 134 nations over a period of 53 years.

They found that some regions and some kinds of farming have suffered worse than others; that food production is vulnerable to volatile climate and weather changes; and that the dangers are increasing with time.

The researchers looked at cases of dramatic crop failure, harvest loss and fishing fleet failures between 1961 and 2013, as recorded by the UN Food and Agriculture Organisation and other sources, and then mapped shock frequency and co-occurrence.

In their database of 741 available time-series of food production, they found 226 cases of food shock: dramatic interruption of supply.

Hunger increases

Agriculture and livestock emerged as slightly more vulnerable to shock than fisheries and aquaculture. South Asia suffered most from crop damage or loss; the Caribbean for livestock, and Eastern Europe for fisheries; some of these regions were hard hit in more than one sector.

“The frequency of shocks has increased across all sectors at a global scale,” the authors report. “Increasing shock frequency is a food security concern in itself. Conflict-related shocks across sub-Saharan Africa and the Middle East since 2010, combined with adverse climate conditions, are responsible for the first uptick in global hunger in recent times.”

More than half of all shocks to food production were climate-related, and drought was the biggest factor. Extreme weather accounted for a quarter of shocks to livestock, and disease outbreaks another 10%, but the biggest single factor for pastoral farmers arose from geopolitical conflict and other crises.

Fisheries seemed better protected, and the worst shocks to fish landings could be traced to overfishing. Disruption to fish farming – a relatively new form of food production – has grown at a faster rate and to a higher level than in any other sector.

Climate scientists and agricultural researchers have been warning for years that food security is at hazard from global warming and climate change, both driven by profligate human use of fossil fuels and unthinking destruction of forests and natural grasslands and wetlands.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often”

Heat extremes can harm cereal yields almost anywhere, but Africa and South-east Asia are particularly at risk from changes in precipitation patterns.

The latest study is a reminder that, in some ways, the future has already arrived: the forewarned rise in climate extremes such as flood, heat and drought can be detected in the annual harvest tally around the globe.

And although a high percentage of the food supply damage can be linked to social conflict or political stress, climate change seems increasingly to be a factor in civil and international violence.

A new study for the UN security council – co-incidentally released on the same day – confirms the picture. Hunger and conflict are in a persistent and deadly partnership that threatens millions.

Mass famine

The number of food shocks fluctuates from year to year, the Nature Sustainability authors say. That is because factors such as social conflict and climate change can in synergy create a number of shocks across different sectors at different times. At least 22 of the 134 nations experienced shocks in many sectors over the same five-year time period.

In some cases, these shocks ended with more than just empty shelves. The collapse of the Soviet Union late in the last century removed some economic support from North Korea: subsequent floods precipitated a famine that killed 200,000 people.

Iraq’s invasion of Kuwait in 1991, and the subsequent Gulf War, devastated agricultural land and cost Kuwait’s commercial fishermen their livelihoods. Drought in Afghanistan in 2001 and 2002 decimated cereal yields, pastoralists lost fodder for their cattle and animal disease incidence soared.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often,” said Richard Cottrell of the University of Tasmania, who led the study.

“Globalised trade and the dependence of many countries on food imports mean that food shocks are a global problem, and the international community faces a significant challenge to build resilience.” − Climate News Network

Heat extremes harm harvests. So do floods, drought and high winds. Climate change spurs food shocks that threaten the supper table.

LONDON, 1 February, 2019 − More than ever, the world’s ways of keeping hunger at bay are taking a pounding as food shocks become more frequent. Potatoes are being baked in heat waves. Corn is being parched by drought. Fruit is being bitten by frost.

And a long-term study suggests that for the world’s farmers and graziers, fishing crews and fish farmers, things will get worse as the world warms. Australian and US scientists report in the journal Nature Sustainability that they examined the incidence of what they call “food shocks” across 134 nations over a period of 53 years.

They found that some regions and some kinds of farming have suffered worse than others; that food production is vulnerable to volatile climate and weather changes; and that the dangers are increasing with time.

The researchers looked at cases of dramatic crop failure, harvest loss and fishing fleet failures between 1961 and 2013, as recorded by the UN Food and Agriculture Organisation and other sources, and then mapped shock frequency and co-occurrence.

In their database of 741 available time-series of food production, they found 226 cases of food shock: dramatic interruption of supply.

Hunger increases

Agriculture and livestock emerged as slightly more vulnerable to shock than fisheries and aquaculture. South Asia suffered most from crop damage or loss; the Caribbean for livestock, and Eastern Europe for fisheries; some of these regions were hard hit in more than one sector.

“The frequency of shocks has increased across all sectors at a global scale,” the authors report. “Increasing shock frequency is a food security concern in itself. Conflict-related shocks across sub-Saharan Africa and the Middle East since 2010, combined with adverse climate conditions, are responsible for the first uptick in global hunger in recent times.”

More than half of all shocks to food production were climate-related, and drought was the biggest factor. Extreme weather accounted for a quarter of shocks to livestock, and disease outbreaks another 10%, but the biggest single factor for pastoral farmers arose from geopolitical conflict and other crises.

Fisheries seemed better protected, and the worst shocks to fish landings could be traced to overfishing. Disruption to fish farming – a relatively new form of food production – has grown at a faster rate and to a higher level than in any other sector.

Climate scientists and agricultural researchers have been warning for years that food security is at hazard from global warming and climate change, both driven by profligate human use of fossil fuels and unthinking destruction of forests and natural grasslands and wetlands.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often”

Heat extremes can harm cereal yields almost anywhere, but Africa and South-east Asia are particularly at risk from changes in precipitation patterns.

The latest study is a reminder that, in some ways, the future has already arrived: the forewarned rise in climate extremes such as flood, heat and drought can be detected in the annual harvest tally around the globe.

And although a high percentage of the food supply damage can be linked to social conflict or political stress, climate change seems increasingly to be a factor in civil and international violence.

A new study for the UN security council – co-incidentally released on the same day – confirms the picture. Hunger and conflict are in a persistent and deadly partnership that threatens millions.

Mass famine

The number of food shocks fluctuates from year to year, the Nature Sustainability authors say. That is because factors such as social conflict and climate change can in synergy create a number of shocks across different sectors at different times. At least 22 of the 134 nations experienced shocks in many sectors over the same five-year time period.

In some cases, these shocks ended with more than just empty shelves. The collapse of the Soviet Union late in the last century removed some economic support from North Korea: subsequent floods precipitated a famine that killed 200,000 people.

Iraq’s invasion of Kuwait in 1991, and the subsequent Gulf War, devastated agricultural land and cost Kuwait’s commercial fishermen their livelihoods. Drought in Afghanistan in 2001 and 2002 decimated cereal yields, pastoralists lost fodder for their cattle and animal disease incidence soared.

“While the number of food shocks fluctuates from year to year, the long-term trend shows they are happening more often,” said Richard Cottrell of the University of Tasmania, who led the study.

“Globalised trade and the dependence of many countries on food imports mean that food shocks are a global problem, and the international community faces a significant challenge to build resilience.” − Climate News Network

Coffee harvests face risk from rising heat

Global coffee harvests, which provide the drink of choice for millions and the livelihoods of many more, are in peril, not least from rising temperatures.

LONDON, 28 January, 2019 – Coffee drinkers, be warned. A combination of factors – including climate change – is threatening supplies of the beans on which the coffee harvests depend.

Latest analysis by a team of scientists at the Royal Botanic Gardens at Kew in London found that more than 60% of over 120 coffee species known across Africa, Asia and Australasia are threatened with extinction.

For many people, coffee is their favourite tipple. In the UK alone, more than 80 million cups of coffee are drunk every day. The experts at Kew say a total of 100 million people around the world depend on coffee for their livelihoods.

Climate change, together with fungal diseases and the impact of land clearances and deforestation, are all having negative impacts on coffee plants.

Coffee plants are fragile and often acutely sensitive to temperature changes, particularly those belonging to the Arabica species (Coffea arabica), the source of the world’s most popular coffee variety.

“Climate change will have a damaging impact on commercial coffee production worldwide”

The Coffee Research Institute says Arabica plants need year-round temperatures of between 15°C and 24°C in order to maintain high production levels and good quality.

Wild coffee plants play an essential role in building up more robust plants for cultivation; cross-bred with plantation plants, they provide the genetic resources to help withstand pests and diseases. They also encourage resilience to changes in climate and improve the flavour and quality of the coffee beans.

The Kew scientists, together with colleagues in Ethiopia,
the biggest producer of Arabica coffee in Africa, used climate change models and temperature projections to gauge the future health and survival rates of wild Arabica plants.

The results of the analysis, the first ever comprehensive survey linking climate change with Arabica coffee production, will have coffee drinkers crying into their cups.

Wide extinction threat

Dr Justin Moat, who headed up the Kew study, says more than 60% of wild Arabica plants are threatened with extinction.

“The worst case scenario, as drawn from our analyses, is that wild Arabica could be extinct by 2080.

“This should alert decision makers to the fragility of the species.”

The highlands of Ethiopia and of South Sudan are the natural home of Arabica coffee. Researchers found that deforestation over the past 70 years plus more recent changes in climate could result in wild Arabica becoming extinct in South Sudan within the next two years.

“The climate sensitivity of Arabica is confirmed, supporting the widely reported assumption that climate change will have a damaging impact on commercial coffee production worldwide”, says Dr Moat.

Pay growers more

In coffee-growing areas around the world, including Ethiopia and Brazil, temperatures have been rising while amounts of rainfall have been decreasing.

The Kew study says that while bumper coffee harvests over the last two years have led to generally low prices, this pattern is unlikely to continue as crop yields decline and demand grows.

The study says coffee growers, mostly smallholders, should be paid more for their produce in order not only to improve living standards but to encourage more sustainable and innovative cultivation methods. The Yayu Project in Ethiopia is seen as a model for this form of development.

There should also be more research into wild coffee species and investment in building up collections and seed banks. – Climate News Network

Global coffee harvests, which provide the drink of choice for millions and the livelihoods of many more, are in peril, not least from rising temperatures.

LONDON, 28 January, 2019 – Coffee drinkers, be warned. A combination of factors – including climate change – is threatening supplies of the beans on which the coffee harvests depend.

Latest analysis by a team of scientists at the Royal Botanic Gardens at Kew in London found that more than 60% of over 120 coffee species known across Africa, Asia and Australasia are threatened with extinction.

For many people, coffee is their favourite tipple. In the UK alone, more than 80 million cups of coffee are drunk every day. The experts at Kew say a total of 100 million people around the world depend on coffee for their livelihoods.

Climate change, together with fungal diseases and the impact of land clearances and deforestation, are all having negative impacts on coffee plants.

Coffee plants are fragile and often acutely sensitive to temperature changes, particularly those belonging to the Arabica species (Coffea arabica), the source of the world’s most popular coffee variety.

“Climate change will have a damaging impact on commercial coffee production worldwide”

The Coffee Research Institute says Arabica plants need year-round temperatures of between 15°C and 24°C in order to maintain high production levels and good quality.

Wild coffee plants play an essential role in building up more robust plants for cultivation; cross-bred with plantation plants, they provide the genetic resources to help withstand pests and diseases. They also encourage resilience to changes in climate and improve the flavour and quality of the coffee beans.

The Kew scientists, together with colleagues in Ethiopia,
the biggest producer of Arabica coffee in Africa, used climate change models and temperature projections to gauge the future health and survival rates of wild Arabica plants.

The results of the analysis, the first ever comprehensive survey linking climate change with Arabica coffee production, will have coffee drinkers crying into their cups.

Wide extinction threat

Dr Justin Moat, who headed up the Kew study, says more than 60% of wild Arabica plants are threatened with extinction.

“The worst case scenario, as drawn from our analyses, is that wild Arabica could be extinct by 2080.

“This should alert decision makers to the fragility of the species.”

The highlands of Ethiopia and of South Sudan are the natural home of Arabica coffee. Researchers found that deforestation over the past 70 years plus more recent changes in climate could result in wild Arabica becoming extinct in South Sudan within the next two years.

“The climate sensitivity of Arabica is confirmed, supporting the widely reported assumption that climate change will have a damaging impact on commercial coffee production worldwide”, says Dr Moat.

Pay growers more

In coffee-growing areas around the world, including Ethiopia and Brazil, temperatures have been rising while amounts of rainfall have been decreasing.

The Kew study says that while bumper coffee harvests over the last two years have led to generally low prices, this pattern is unlikely to continue as crop yields decline and demand grows.

The study says coffee growers, mostly smallholders, should be paid more for their produce in order not only to improve living standards but to encourage more sustainable and innovative cultivation methods. The Yayu Project in Ethiopia is seen as a model for this form of development.

There should also be more research into wild coffee species and investment in building up collections and seed banks. – Climate News Network

Migrant birds face risk in earlier springs

Spring in the high latitudes is arriving ever earlier. But migrant birds from the tropics may not realise that, and faulty timing could cost them their lives.

LONDON, 11 January, 2019 – Biologists have identified another tale of conflict and bloodshed as African migrant birds compete with European natives for resources in a fast-warming world.

Death rates among male pied flycatchers – African carnivores that migrate each spring to the Netherlands to breed – have risen in the 10 years between 2007 and 2016, as winters have warmed and springs have arrived earlier.

And in some years, almost one in 10 of the male migrant flycatchers has been found pecked to death by great tits that have already taken up residence in nest boxes that both species favour.

Jelmer Samplonius, then of the University of Groningen and now at the University of Edinburgh in Scotland, and a colleague report in the journal Current Biology that they became interested in the competition between the migrant Ficedula hypoleuca and the European garden bird Parus major because both compete for the same resources.

These are the spring explosion of the caterpillar population, and the nest boxes established by householders who like to encourage wildlife. Both species try to time their breeding calendar to coincide with the arrival of plentiful, nourishing food for their chicks, and both species have become accustomed to colonising available nest boxes.

“When a flycatcher enters a box with a great tit inside, it doesn’t stand a chance”

But, the scientists say, climate change driven by global warming, in turn fired by profligate combustion of fossil fuels that increase the ratios of greenhouse gases in the atmosphere, has brought new challenges.

Climate change poses a hazard for many species that are precisely adapted to their immediate environment.
They become more vulnerable as their breeding timetable goes out of synchrony with the food supply, or they become more at risk from predation in once relatively secure nesting sites in the rapidly warming Arctic.

The northern hemisphere spring now arrives much earlier. Some migrant species have been able to adapt, and the great tit in particular has shown itself to be resourceful and ready to cope with new challenges.

It now gets to the nesting sites to breed on average 16.6 days earlier than the pied flycatcher which winters in West Africa, and therefore has no way of knowing the right moment to head for a breeding site so far to the north in Europe.

Growing violence

And the late arrival of the African competitor has meant a marked increase in conflict. When the researchers checked the nest boxes, they counted 86 male flycatchers dead from injuries delivered by great tits, and two killed by the smaller species, the blue tit.

“The dead flycatchers were all found in active tit nests and had severe head wounds, and often their brains had been eaten by the tits,” they write.

“This could exhibit a significant mortality cause on male pied flycatchers in some years, with up to 8.9% of all males … known to defend a nest box being killed in a single year.”

Some years there were almost no little feathered corpses: other years were marked by conspicuous slaughter, and the researchers put the variation in the kill count down to what they define as a problem of synchrony. Tits killed more flycatchers when the competitors turned up at the peak of the tits’ breeding season.

Powerful claws

“When a flycatcher enters a box with a great tit inside, it doesn’t stand a chance”, Dr Samplonius said. “The great tit is heavier, as the flycatchers are built for a long migration from Europe to Western Africa and back. Also, great tits have very strong claws.”

The finding doesn’t seem to mean that the flycatcher is in immediate danger of local extinction: the scientists say that most of the slaughter occurred among surplus males; those who turned up late were less likely to find a breeding partner, and more likely to die from competition with great tits.

A surplus of males acts as a “buffer” to protect the overall population. But in the long run, the flycatcher could lose the race for survival.

“If buffers are diminished,” the scientists write, “population consequences of interspecific competition may become apparent, especially after warm winters that are benign to resident species.” – Climate News Network

Spring in the high latitudes is arriving ever earlier. But migrant birds from the tropics may not realise that, and faulty timing could cost them their lives.

LONDON, 11 January, 2019 – Biologists have identified another tale of conflict and bloodshed as African migrant birds compete with European natives for resources in a fast-warming world.

Death rates among male pied flycatchers – African carnivores that migrate each spring to the Netherlands to breed – have risen in the 10 years between 2007 and 2016, as winters have warmed and springs have arrived earlier.

And in some years, almost one in 10 of the male migrant flycatchers has been found pecked to death by great tits that have already taken up residence in nest boxes that both species favour.

Jelmer Samplonius, then of the University of Groningen and now at the University of Edinburgh in Scotland, and a colleague report in the journal Current Biology that they became interested in the competition between the migrant Ficedula hypoleuca and the European garden bird Parus major because both compete for the same resources.

These are the spring explosion of the caterpillar population, and the nest boxes established by householders who like to encourage wildlife. Both species try to time their breeding calendar to coincide with the arrival of plentiful, nourishing food for their chicks, and both species have become accustomed to colonising available nest boxes.

“When a flycatcher enters a box with a great tit inside, it doesn’t stand a chance”

But, the scientists say, climate change driven by global warming, in turn fired by profligate combustion of fossil fuels that increase the ratios of greenhouse gases in the atmosphere, has brought new challenges.

Climate change poses a hazard for many species that are precisely adapted to their immediate environment.
They become more vulnerable as their breeding timetable goes out of synchrony with the food supply, or they become more at risk from predation in once relatively secure nesting sites in the rapidly warming Arctic.

The northern hemisphere spring now arrives much earlier. Some migrant species have been able to adapt, and the great tit in particular has shown itself to be resourceful and ready to cope with new challenges.

It now gets to the nesting sites to breed on average 16.6 days earlier than the pied flycatcher which winters in West Africa, and therefore has no way of knowing the right moment to head for a breeding site so far to the north in Europe.

Growing violence

And the late arrival of the African competitor has meant a marked increase in conflict. When the researchers checked the nest boxes, they counted 86 male flycatchers dead from injuries delivered by great tits, and two killed by the smaller species, the blue tit.

“The dead flycatchers were all found in active tit nests and had severe head wounds, and often their brains had been eaten by the tits,” they write.

“This could exhibit a significant mortality cause on male pied flycatchers in some years, with up to 8.9% of all males … known to defend a nest box being killed in a single year.”

Some years there were almost no little feathered corpses: other years were marked by conspicuous slaughter, and the researchers put the variation in the kill count down to what they define as a problem of synchrony. Tits killed more flycatchers when the competitors turned up at the peak of the tits’ breeding season.

Powerful claws

“When a flycatcher enters a box with a great tit inside, it doesn’t stand a chance”, Dr Samplonius said. “The great tit is heavier, as the flycatchers are built for a long migration from Europe to Western Africa and back. Also, great tits have very strong claws.”

The finding doesn’t seem to mean that the flycatcher is in immediate danger of local extinction: the scientists say that most of the slaughter occurred among surplus males; those who turned up late were less likely to find a breeding partner, and more likely to die from competition with great tits.

A surplus of males acts as a “buffer” to protect the overall population. But in the long run, the flycatcher could lose the race for survival.

“If buffers are diminished,” the scientists write, “population consequences of interspecific competition may become apparent, especially after warm winters that are benign to resident species.” – Climate News Network

Global water supply shrinks in rainier world

The global water supply is dwindling, even though rainfall is heavier. Once again, climate change is to blame.

LONDON, 20 December, 2018 – Even in a world with more intense rain, communities could begin to run short of water. New research has confirmed that, in a warming world, extremes of drought have begun to diminish the world’s groundwater – and ever more intense rainstorms will do little to make up the loss in the global water supply.

And a second, separate study delivers support for this seeming paradox: worldwide, there is evidence that rainfall patterns are, increasingly, being disturbed. The number of record-dry months has increased overall. And so has the number of record-breaking rainy months.

Both studies match predictions in a world of climate change driven by ever-higher ratios of greenhouse gases in the atmosphere, from ever-increasing combustion of fossil fuels. But, unlike many climate studies, neither of these is based on computer simulation of predicted change.

Each is instead based on the meticulous analysis of huge quantities of on-the-ground data. Together they provide substance to a 40-year-old prediction of climate change research: that in a warming world, those regions already wet will get ever more rain, while the drylands will tend to become increasingly more arid.

As global temperatures creep up – and they have already risen by 1°C in the past century, and could be set to reach 3°C by 2100 – so does the capacity of the atmosphere to absorb more moisture. It follows that more rain must fall. But at the same time more groundwater evaporates, and the risk of damaging drought increases.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out”

Australian scientists report in the journal Water Resources Research that they studied readings from 43,000 rainfall stations and 5,300 river monitoring sites in 160 countries. And they confirm that even in a world of more intense rain, drought could become the new normal in those regions already at risk.

“This is something that has been missed. We expected rainfall to increase, since warmer air stores more moisture – and that is what climate models predicted too,” said Ashish Sharma, an environmental engineer at the University of New South Wales.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out. We believe the cause is the drying of soils in our catchments. Where once these were moist before a storm event – allowing excess rainfall to run off into rivers – they are now drier and soak up more rain, so less water makes it as flow.”

The study matches predictions. Just in the last few months, climate scientists have warned that catastrophic climate change could be on the way, and that the double hazard of heat waves and sustained drought could devastate harvests in more than one climatic zone in the same season; and that those landlocked rainfall catchment areas that are already dry are becoming increasingly more parched.

But over the same few months, researchers have established repeatedly that tomorrow’s storms will be worse and that more devastating flash floods can be expected even in one of the world’s driest continents, Australia itself.

Less water available

Of all rainfall, only 36% gets into aquifers, streams and lakes. The remaining two thirds seeps into the soils, grasslands and woodlands. But more soil evaporation means less water is available from river supplies for cities and farms.

US researchers have already confirmed that if soils are moist before a storm, 62% of rainfall leads to floods that fill catchments. If soils are dry, only 13% of the rain leads to flooding.

“It’s a double whammy. Less water is ending up where we can’t store it for later use. At the same time, more rain is overwhelming drainage infrastructure in towns and cities, leading to more urban flooding,” said Professor Sharma.

“Small floods are very important for water supply, because they refill dams and form the basis of our water supply. But they’re happening less often, because the soils are sucking up extra rain. Even when a major storm dumps a lot of rain, the soils are so dry they absorb more water than before, and less reaches the rivers and reservoirs”, he said. “We need to adapt to this emerging reality.”

In the second close look at change so far, researchers based in Germany report in the journal Geophysical Research Letters  that they analysed data from 50,000 weather stations worldwide to measure rainfall on a monthly basis.

Climate drives aridity

The US has seen a more than 25% increase of record wet months in the eastern and central regions between 1980 and 2013. Argentina has seen a 32% increase. In central and northern Europe the increase is between 19% and 37%; in Asian Russia, it has been about 20%.

But in Africa south of the Sahara the incidence of very dry months has increased by 50%. “This implies that approximately one out of three record dry months in this region would not have occurred without long-term climate change,” said Dim Coumou, of the Potsdam Institute for Climate Impact Research.

“Generally, land regions in the tropics and sub-tropics have seen more dry records, and the northern mid- to high-latitudes more wet records. This largely fits the patterns that scientists expect from human-caused climate change.”

His colleague and lead author Jascha Lehmann said: “Normally, record weather events occur by chance and we know how many would happen in a climate without warning. It’s like throwing a dice: on average one out of six times you get a six.

“But by injecting huge amounts of greenhouse gases into the atmosphere, humankind has loaded the dice. In many regions, we throw sixes much more often, with severe impacts for society and the environment.

“It is worrying that we see significant increases of such extremes with just one degree of global warming.” – Climate News Network

The global water supply is dwindling, even though rainfall is heavier. Once again, climate change is to blame.

LONDON, 20 December, 2018 – Even in a world with more intense rain, communities could begin to run short of water. New research has confirmed that, in a warming world, extremes of drought have begun to diminish the world’s groundwater – and ever more intense rainstorms will do little to make up the loss in the global water supply.

And a second, separate study delivers support for this seeming paradox: worldwide, there is evidence that rainfall patterns are, increasingly, being disturbed. The number of record-dry months has increased overall. And so has the number of record-breaking rainy months.

Both studies match predictions in a world of climate change driven by ever-higher ratios of greenhouse gases in the atmosphere, from ever-increasing combustion of fossil fuels. But, unlike many climate studies, neither of these is based on computer simulation of predicted change.

Each is instead based on the meticulous analysis of huge quantities of on-the-ground data. Together they provide substance to a 40-year-old prediction of climate change research: that in a warming world, those regions already wet will get ever more rain, while the drylands will tend to become increasingly more arid.

As global temperatures creep up – and they have already risen by 1°C in the past century, and could be set to reach 3°C by 2100 – so does the capacity of the atmosphere to absorb more moisture. It follows that more rain must fall. But at the same time more groundwater evaporates, and the risk of damaging drought increases.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out”

Australian scientists report in the journal Water Resources Research that they studied readings from 43,000 rainfall stations and 5,300 river monitoring sites in 160 countries. And they confirm that even in a world of more intense rain, drought could become the new normal in those regions already at risk.

“This is something that has been missed. We expected rainfall to increase, since warmer air stores more moisture – and that is what climate models predicted too,” said Ashish Sharma, an environmental engineer at the University of New South Wales.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out. We believe the cause is the drying of soils in our catchments. Where once these were moist before a storm event – allowing excess rainfall to run off into rivers – they are now drier and soak up more rain, so less water makes it as flow.”

The study matches predictions. Just in the last few months, climate scientists have warned that catastrophic climate change could be on the way, and that the double hazard of heat waves and sustained drought could devastate harvests in more than one climatic zone in the same season; and that those landlocked rainfall catchment areas that are already dry are becoming increasingly more parched.

But over the same few months, researchers have established repeatedly that tomorrow’s storms will be worse and that more devastating flash floods can be expected even in one of the world’s driest continents, Australia itself.

Less water available

Of all rainfall, only 36% gets into aquifers, streams and lakes. The remaining two thirds seeps into the soils, grasslands and woodlands. But more soil evaporation means less water is available from river supplies for cities and farms.

US researchers have already confirmed that if soils are moist before a storm, 62% of rainfall leads to floods that fill catchments. If soils are dry, only 13% of the rain leads to flooding.

“It’s a double whammy. Less water is ending up where we can’t store it for later use. At the same time, more rain is overwhelming drainage infrastructure in towns and cities, leading to more urban flooding,” said Professor Sharma.

“Small floods are very important for water supply, because they refill dams and form the basis of our water supply. But they’re happening less often, because the soils are sucking up extra rain. Even when a major storm dumps a lot of rain, the soils are so dry they absorb more water than before, and less reaches the rivers and reservoirs”, he said. “We need to adapt to this emerging reality.”

In the second close look at change so far, researchers based in Germany report in the journal Geophysical Research Letters  that they analysed data from 50,000 weather stations worldwide to measure rainfall on a monthly basis.

Climate drives aridity

The US has seen a more than 25% increase of record wet months in the eastern and central regions between 1980 and 2013. Argentina has seen a 32% increase. In central and northern Europe the increase is between 19% and 37%; in Asian Russia, it has been about 20%.

But in Africa south of the Sahara the incidence of very dry months has increased by 50%. “This implies that approximately one out of three record dry months in this region would not have occurred without long-term climate change,” said Dim Coumou, of the Potsdam Institute for Climate Impact Research.

“Generally, land regions in the tropics and sub-tropics have seen more dry records, and the northern mid- to high-latitudes more wet records. This largely fits the patterns that scientists expect from human-caused climate change.”

His colleague and lead author Jascha Lehmann said: “Normally, record weather events occur by chance and we know how many would happen in a climate without warning. It’s like throwing a dice: on average one out of six times you get a six.

“But by injecting huge amounts of greenhouse gases into the atmosphere, humankind has loaded the dice. In many regions, we throw sixes much more often, with severe impacts for society and the environment.

“It is worrying that we see significant increases of such extremes with just one degree of global warming.” – Climate News Network

Tsetse flies wilt in Africa’s growing heat

tsetse
tsetse

Parts of Africa may grow too hot for tsetse flies, farmers’ scourge and carriers of disease. But will they simply move to higher, cooler terrain?

LONDON, 2 November, 2018 – Global warming may have done one good thing for the Zambezi Valley: it may have done for  the tsetse flies, with conditions soon too hot for them to breed there any longer.

That means that a blood-sucking insect responsible for perhaps a million cattle deaths a year – and that carries the parasite behind the devastating disease of human African trypanosomiasis, commonly known as sleeping sickness – could disappear from the lowlands it has plagued for centuries.

That is the good news. The bigger concern is that the same warming in tropical Africa could turn the highlands of Zimbabwe and its neighbours into a suitable breeding zone for both the disease and the creature that carries it.

For the moment, a new study in the Public Library of Science journal PLOS Medicine claims only to have established the first clear link between disease hazard and temperature.

“Tsetse disappeared from these areas and have never established
themselves again. But if temperatures continue to increase,
there is a danger that they may re-emerge”

For 27 years, scientists have kept count of tsetse fly numbers in the c in Zimbabwe. The insect feeds on wild animals, as well as domestic cattle and humans. Millions of years of evolution mean that African pests and prey have found ways to live with each other, but humans and their introduced farm animals are still vulnerable.

The researchers report that, in the last three decades, temperatures in the region have risen by 0.9°C, and the hottest month, November, is now 2°C hotter on average than in the past. The insect can reproduce and multiply only in temperatures that lie between 16°C and 32°C.

And in those same three decades, fly numbers have fallen dramatically  Once, researchers could expect to go out in the afternoon in the Mana Pools National Park and find 50 flies per elephant or buffalo examined. Now, they write, they might find one tsetse fly every 10 catching sessions.

Since the vegetation and the wild animal population of the park have remained much the same, it seems likely that ambient temperature is the factor that limits tsetse fly numbers.

“If the effect at Mana Pools extends across the whole Zambezi Valley, then transmission of the trypanosomes is likely to have been greatly reduced in this warm, low-lying region”, says Dr Jennifer Lord, postdoctoral research associate at the Liverpool School of Tropical Medicine, who led the research and modelled the link between temperature and insect numbers.

Unwelcome reappearance?

But co-author John Hargrove, senior research fellow at the South African Centre of Excellence for Epidemiological Modelling and Analysis at Stellenbosch University, warns that, if so, other African parks could once again play host to the pest, including the world-famous Kruger National Park in South Africa.

The fly is now an annual hazard for an estimated 55 million cattle in sub-Saharan Africa, and is thought to cost African economies US$1 billion a year or more just in losses of meat and milk.

“Tsetse flies did occur in these areas in the 19th century, but they were always marginal because the winters there were rather too cold,” Professor Hargrove says.

“With the massive  rinderpest outbreak of the middle 1890s, tsetse disappeared from these areas and have never established themselves again. But if temperatures continue to increase, there is a danger that they may re-emerge.” – Climate News Network

Parts of Africa may grow too hot for tsetse flies, farmers’ scourge and carriers of disease. But will they simply move to higher, cooler terrain?

LONDON, 2 November, 2018 – Global warming may have done one good thing for the Zambezi Valley: it may have done for  the tsetse flies, with conditions soon too hot for them to breed there any longer.

That means that a blood-sucking insect responsible for perhaps a million cattle deaths a year – and that carries the parasite behind the devastating disease of human African trypanosomiasis, commonly known as sleeping sickness – could disappear from the lowlands it has plagued for centuries.

That is the good news. The bigger concern is that the same warming in tropical Africa could turn the highlands of Zimbabwe and its neighbours into a suitable breeding zone for both the disease and the creature that carries it.

For the moment, a new study in the Public Library of Science journal PLOS Medicine claims only to have established the first clear link between disease hazard and temperature.

“Tsetse disappeared from these areas and have never established
themselves again. But if temperatures continue to increase,
there is a danger that they may re-emerge”

For 27 years, scientists have kept count of tsetse fly numbers in the c in Zimbabwe. The insect feeds on wild animals, as well as domestic cattle and humans. Millions of years of evolution mean that African pests and prey have found ways to live with each other, but humans and their introduced farm animals are still vulnerable.

The researchers report that, in the last three decades, temperatures in the region have risen by 0.9°C, and the hottest month, November, is now 2°C hotter on average than in the past. The insect can reproduce and multiply only in temperatures that lie between 16°C and 32°C.

And in those same three decades, fly numbers have fallen dramatically  Once, researchers could expect to go out in the afternoon in the Mana Pools National Park and find 50 flies per elephant or buffalo examined. Now, they write, they might find one tsetse fly every 10 catching sessions.

Since the vegetation and the wild animal population of the park have remained much the same, it seems likely that ambient temperature is the factor that limits tsetse fly numbers.

“If the effect at Mana Pools extends across the whole Zambezi Valley, then transmission of the trypanosomes is likely to have been greatly reduced in this warm, low-lying region”, says Dr Jennifer Lord, postdoctoral research associate at the Liverpool School of Tropical Medicine, who led the research and modelled the link between temperature and insect numbers.

Unwelcome reappearance?

But co-author John Hargrove, senior research fellow at the South African Centre of Excellence for Epidemiological Modelling and Analysis at Stellenbosch University, warns that, if so, other African parks could once again play host to the pest, including the world-famous Kruger National Park in South Africa.

The fly is now an annual hazard for an estimated 55 million cattle in sub-Saharan Africa, and is thought to cost African economies US$1 billion a year or more just in losses of meat and milk.

“Tsetse flies did occur in these areas in the 19th century, but they were always marginal because the winters there were rather too cold,” Professor Hargrove says.

“With the massive  rinderpest outbreak of the middle 1890s, tsetse disappeared from these areas and have never established themselves again. But if temperatures continue to increase, there is a danger that they may re-emerge.” – Climate News Network

Wind and solar power can green the desert

Cover enough ground with wind turbines and solar panels, and you change the local climate, green the desert and could even boost the Sahara’s rainfall.

LONDON, 19 September, 2018 – Wind and solar energy could deliver more than just renewable, low-carbon electricity: they could green the desert, increasing the Sahara’s rainfall and helping it to bloom.

A sufficiently large network of wind turbines and solar panels arrayed across the dusty wastes of North Africa could change the local climate in ways that could double rainfall, stimulate vegetation growth and set up a feedback loop that could go on increasing moisture in the world’s greatest desert region.

The array of wind turbines and solar panels so far remains hypothetical: to green the Sahara even a little, it would have to extend over 9 million square kilometres – an area bigger than Brazil.

The combined power output from this entirely imaginary infrastructure however would be enormous, at more than 80 terawatts of electrical power. Global consumption in 2017 was only 18 terawatts.

“Large-scale wind and solar farms can produce significant climate change on continental scales”

The study is an exercise in climate modelling: were investors to exploit the Sahara desert and the Sahel, what would all that hardware do to the land on which it stood?

Researchers have already established that wind turbines actually do change the prevailing winds: they convert high winds to a mix of electrical energy and lower wind speeds.

Similarly, light-absorbing photovoltaic cells on the ground would change the reflectivity of the surface on which they stood, and there is a demonstrable link between what climate scientists call albedo, and local climate.

Researchers chose to model the impact of renewable energy infrastructure on the Sahara because it is relatively empty, sunlit and windy. They matched the results with experiment.

Benefits for Sahel

They report in the journal Science that they found that wind farms mix warmer air from above, to raise minimum temperatures and create a feedback loop that drives greater evaporation, precipitation and plant growth.

Over the Sahara proper, rainfall increased by 150%, but since the desert is very dry the increase is relatively small. In the Sahel region to the south, a dry landscape of scrub, savannah and woodland, stretching from the Atlantic to the Nile, the simulated wind farms stepped up rainfall by 1.12 millimetres a day.

This is more than double the average observed in a control experiment, and what could amount to an extra 500mm a year could have “major ecological, environmental and societal impacts,” the scientists say.

“Previous modelling studies have shown that large-scale wind and solar farms can produce significant climate change on continental scales,” said Yan Li, an environmental scientist at the University of Illinois, one of the chief authors.

Big rain boost

Solar arrays had very little effect on wind speed, but these too triggered a change in local conditions. The solar panels – and the wind turbines – together created a darker, more broken surface, a change that once again favoured around 50% more rainfall, and more vegetation growth, which in turn could promote even more rain.

Two centuries of exploitation of fossil fuels has driven economic growth everywhere, but at a cost in ever greater ratios of greenhouse gases in the atmosphere. The planet is warming, and increasing extremes of heat, drought and storm threaten to change climates with catastrophic consequences, drying up water supplies, advancing the desert regions and creating millions of climate refugees.

So the case for renewable energy is easily made, and five years ago researchers began looking to the North African countries as potential providers of renewable power. And the latest study makes the point that such investment could actually be beneficial in unexpected ways.

“The increase in rainfall and vegetation, combined with clean electricity as a result of solar and wind energy, could help agriculture, economic development and social well-being in the Sahara, Sahel, Middle East and other nearby regions,” said Safa Mottesharrei of the University of Maryland, another of the authors. – Climate News Network

Cover enough ground with wind turbines and solar panels, and you change the local climate, green the desert and could even boost the Sahara’s rainfall.

LONDON, 19 September, 2018 – Wind and solar energy could deliver more than just renewable, low-carbon electricity: they could green the desert, increasing the Sahara’s rainfall and helping it to bloom.

A sufficiently large network of wind turbines and solar panels arrayed across the dusty wastes of North Africa could change the local climate in ways that could double rainfall, stimulate vegetation growth and set up a feedback loop that could go on increasing moisture in the world’s greatest desert region.

The array of wind turbines and solar panels so far remains hypothetical: to green the Sahara even a little, it would have to extend over 9 million square kilometres – an area bigger than Brazil.

The combined power output from this entirely imaginary infrastructure however would be enormous, at more than 80 terawatts of electrical power. Global consumption in 2017 was only 18 terawatts.

“Large-scale wind and solar farms can produce significant climate change on continental scales”

The study is an exercise in climate modelling: were investors to exploit the Sahara desert and the Sahel, what would all that hardware do to the land on which it stood?

Researchers have already established that wind turbines actually do change the prevailing winds: they convert high winds to a mix of electrical energy and lower wind speeds.

Similarly, light-absorbing photovoltaic cells on the ground would change the reflectivity of the surface on which they stood, and there is a demonstrable link between what climate scientists call albedo, and local climate.

Researchers chose to model the impact of renewable energy infrastructure on the Sahara because it is relatively empty, sunlit and windy. They matched the results with experiment.

Benefits for Sahel

They report in the journal Science that they found that wind farms mix warmer air from above, to raise minimum temperatures and create a feedback loop that drives greater evaporation, precipitation and plant growth.

Over the Sahara proper, rainfall increased by 150%, but since the desert is very dry the increase is relatively small. In the Sahel region to the south, a dry landscape of scrub, savannah and woodland, stretching from the Atlantic to the Nile, the simulated wind farms stepped up rainfall by 1.12 millimetres a day.

This is more than double the average observed in a control experiment, and what could amount to an extra 500mm a year could have “major ecological, environmental and societal impacts,” the scientists say.

“Previous modelling studies have shown that large-scale wind and solar farms can produce significant climate change on continental scales,” said Yan Li, an environmental scientist at the University of Illinois, one of the chief authors.

Big rain boost

Solar arrays had very little effect on wind speed, but these too triggered a change in local conditions. The solar panels – and the wind turbines – together created a darker, more broken surface, a change that once again favoured around 50% more rainfall, and more vegetation growth, which in turn could promote even more rain.

Two centuries of exploitation of fossil fuels has driven economic growth everywhere, but at a cost in ever greater ratios of greenhouse gases in the atmosphere. The planet is warming, and increasing extremes of heat, drought and storm threaten to change climates with catastrophic consequences, drying up water supplies, advancing the desert regions and creating millions of climate refugees.

So the case for renewable energy is easily made, and five years ago researchers began looking to the North African countries as potential providers of renewable power. And the latest study makes the point that such investment could actually be beneficial in unexpected ways.

“The increase in rainfall and vegetation, combined with clean electricity as a result of solar and wind energy, could help agriculture, economic development and social well-being in the Sahara, Sahel, Middle East and other nearby regions,” said Safa Mottesharrei of the University of Maryland, another of the authors. – Climate News Network

Airborne potable water can banish thirst

Airborne potable water straight from the atmosphere could provide a lifeline for arid regions, with the use of commonly available chemicals.

LONDON, 6 September, 2018 – A new technology, harvesting airborne potable water from the air using salts and sunlight, is set to offer new hope to many communities desperate for water to drink and to grow their crops.

An existing technology, which collects water from mist and clouds in mountain or coastal regions, is now established as a useful source of water in many countries. But where there is no fog it can achieve little. The new technology, harvesting water vapour from the air with the use of abundant salts and virtually unlimited sunlight, has now become a possibility, meaning even places without fog are not condemned to continued thirst.

Using sheets of various materials that harvest vapour from fog and allow the water to drip into collectors for later use already sustains many dry region communities, and a Canadian charity, Fogquest, works to help people in countries able to benefit. Countries using these established fog collectors include Chile, Peru, Guatemala, Namibia, Eritrea, Oman and Nepal.

In California, where coastal fog is normal even in the driest seasons because of the closeness of the sea to the dry coast, much of the vegetation could not survive without harvesting fog. A large number of water-collecting devices is being tried in a quest to improve efficiency.

“These salts not only work when the sunlight is strongest, at noon or early afternoon, but also … during other times of the day”

But in some desert regions, particularly in sub-Saharan Africa, there is no fog, so the existing technology is no help. What there is, though, even in the driest regions, is water vapour in the atmosphere. And that offers hope.

Until now extracting water from this vapour so people and animals could make use of it has defeated human ingenuity. But Renyuan Li, a Ph.D student from KAUST, the King Abdullah University of Science and Technology, Saudi Arabia, has shown that using commonly available salts which absorb water from the atmosphere at night makes it possible to obtain fresh water during the day – by exposing the salts to sunlight.

With his tutor Peng Wang he experimented with a range of common salts and came up with three that readily absorb water from the atmosphere and release it again in drinkable form when daylight arrives.

Nothing but water

The three salts are copper chloride, copper sulphate and magnesium sulphate. They are effective in capturing water from the air with relative humidity as low as 15%. Still better, when exposed to even weakened sunlight, they release all the water they hold: just fresh, clean water.

“We found that these salts not only work when the sunlight is strongest, at noon or early afternoon, but that they also perform well during other times of the day, such as morning and late afternoon,” Li says. “This is important, because the extended operating hours could broaden the range of conditions in which the process can be used.”

With the problem of water shortages growing ever more acute in parts of Africa badly affected by climate change, many human settlements face extinction if they cannot find a reliable water source. The discovery at KAUST could provide a solution, because even in the most arid regions there is plenty of water in the atmosphere. It has been calculated that at any given moment the atmosphere contains as much as six times the water in all the rivers on Earth..

Professor Wang says their work could be useful in many poor, dry regions. “We are now working on salt-based composite materials with significantly enhanced water-uptake capacity, which we consider to be the second generation of our atmospheric water generator,” he said. – Climate News Network

Airborne potable water straight from the atmosphere could provide a lifeline for arid regions, with the use of commonly available chemicals.

LONDON, 6 September, 2018 – A new technology, harvesting airborne potable water from the air using salts and sunlight, is set to offer new hope to many communities desperate for water to drink and to grow their crops.

An existing technology, which collects water from mist and clouds in mountain or coastal regions, is now established as a useful source of water in many countries. But where there is no fog it can achieve little. The new technology, harvesting water vapour from the air with the use of abundant salts and virtually unlimited sunlight, has now become a possibility, meaning even places without fog are not condemned to continued thirst.

Using sheets of various materials that harvest vapour from fog and allow the water to drip into collectors for later use already sustains many dry region communities, and a Canadian charity, Fogquest, works to help people in countries able to benefit. Countries using these established fog collectors include Chile, Peru, Guatemala, Namibia, Eritrea, Oman and Nepal.

In California, where coastal fog is normal even in the driest seasons because of the closeness of the sea to the dry coast, much of the vegetation could not survive without harvesting fog. A large number of water-collecting devices is being tried in a quest to improve efficiency.

“These salts not only work when the sunlight is strongest, at noon or early afternoon, but also … during other times of the day”

But in some desert regions, particularly in sub-Saharan Africa, there is no fog, so the existing technology is no help. What there is, though, even in the driest regions, is water vapour in the atmosphere. And that offers hope.

Until now extracting water from this vapour so people and animals could make use of it has defeated human ingenuity. But Renyuan Li, a Ph.D student from KAUST, the King Abdullah University of Science and Technology, Saudi Arabia, has shown that using commonly available salts which absorb water from the atmosphere at night makes it possible to obtain fresh water during the day – by exposing the salts to sunlight.

With his tutor Peng Wang he experimented with a range of common salts and came up with three that readily absorb water from the atmosphere and release it again in drinkable form when daylight arrives.

Nothing but water

The three salts are copper chloride, copper sulphate and magnesium sulphate. They are effective in capturing water from the air with relative humidity as low as 15%. Still better, when exposed to even weakened sunlight, they release all the water they hold: just fresh, clean water.

“We found that these salts not only work when the sunlight is strongest, at noon or early afternoon, but that they also perform well during other times of the day, such as morning and late afternoon,” Li says. “This is important, because the extended operating hours could broaden the range of conditions in which the process can be used.”

With the problem of water shortages growing ever more acute in parts of Africa badly affected by climate change, many human settlements face extinction if they cannot find a reliable water source. The discovery at KAUST could provide a solution, because even in the most arid regions there is plenty of water in the atmosphere. It has been calculated that at any given moment the atmosphere contains as much as six times the water in all the rivers on Earth..

Professor Wang says their work could be useful in many poor, dry regions. “We are now working on salt-based composite materials with significantly enhanced water-uptake capacity, which we consider to be the second generation of our atmospheric water generator,” he said. – Climate News Network