Tag Archives: Africa

Africa’s resistance grows as climate crisis worsens

Battered by storms and droughts during a tough 2019, Africa’s resistance to the climate crisis left no room for passivity.

LONDON, 29 October, 2020 – Attempting to come to any general conclusions on the state of a vast, varied and complex continent may be a tricky business, but Africa’s resistance to the climate crisis shows it rejects any idea of settling for victimhood.

A new report, State of the Climate in Africa 2019, published by the World Meteorological Organization (WMO), makes that clear.

It reaches some grim conclusions. Increased temperatures, changing rainfall patterns, rising sea levels and more extreme weather are threatening human health and safety across the continent, says the report.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest and contributing to food insecurity, population displacement and stress on water resources”, says Petteri Taalas, the WMO secretary-general.

“In recent months we have seen devastating floods, an invasion of desert locusts and now face the looming spectre of drought because of a La Niña event”, he says. “The human and economic toll has been aggravated by the Covid-19 pandemic.”

Killer cyclone

Drought caused considerable damage in 2019, particularly across southern Africa. Much of East Africa also suffered drought but then, late in the year, there was torrential rain and serious flooding and landslides in the region.

The trend, says the report, is for continuing increases in temperature: 2019 was among the three warmest years ever recorded in Africa. The WMO predicts that rainfall is likely to decrease over northern and southern regions but increase over the Sahel.

There are also likely to be more weather-related extreme events. In March 2019 Cyclone Idai hit the coast of Mozambique and went on to devastate large areas of Malawi, Zimbabwe and surrounding countries.

Described as the most destructive cyclone ever recorded in the southern hemisphere, Idai killed hundreds of people and displaced several hundred thousand.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest”

Sea levels are rising well above the global average in many parts of Africa, the report says. Coastal degradation and erosion is a major challenge, particularly in West Africa. More than 50% of the coastlines in Benin, Côte d’Ivoire, Senegal and Togo are eroding – a trend likely to continue in future years.

The knock-on effects of these changes in climate are considerable. Approximately 60% of the total population of Africa is dependent on agriculture for a living.

Heat and drought, plus flood damage in some areas, are likely to reduce crop productivity. Changes in climate are also leading to pest outbreaks.

In what it describes as the worst case climate change scenario, the report says crop yields could drop by 13% by mid-century across West and Central Africa, 11% in North Africa and 8% in the eastern and southern regions of the continent. Rice and wheat crops would be particularly badly affected.

Combatting the crisis

Increased heat and continually changing rainfall patterns are also likely to lead to the spread of disease – and a fall-off in economic production in many countries.

But the report does point to some positive changes, showing Africa’s resistance to the crisis. Though the continent is responsible for only a small percentage of the world’s greenhouse gas emissions, many countries in Africa are taking measures aimed at tackling climate change.

Solar power is becoming more widespread, with several large-scale projects planned. Early warning systems monitoring the approach of such cataclysmic events as Cyclone Idai are being installed across the continent.
Farm incomes in many areas are increasing, due to the application of more efficient cultivation methods, such as micro-irrigation. But good planning, based on reliable data, is essential, the report says.

“The limited uptake and use of climate information services in development planning and practice in Africa is due in part to the paucity of reliable and timely climate information”, says Vera Songwe, the executive secretary of the United Nations Economic Commission for Africa. – Climate News Network

Battered by storms and droughts during a tough 2019, Africa’s resistance to the climate crisis left no room for passivity.

LONDON, 29 October, 2020 – Attempting to come to any general conclusions on the state of a vast, varied and complex continent may be a tricky business, but Africa’s resistance to the climate crisis shows it rejects any idea of settling for victimhood.

A new report, State of the Climate in Africa 2019, published by the World Meteorological Organization (WMO), makes that clear.

It reaches some grim conclusions. Increased temperatures, changing rainfall patterns, rising sea levels and more extreme weather are threatening human health and safety across the continent, says the report.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest and contributing to food insecurity, population displacement and stress on water resources”, says Petteri Taalas, the WMO secretary-general.

“In recent months we have seen devastating floods, an invasion of desert locusts and now face the looming spectre of drought because of a La Niña event”, he says. “The human and economic toll has been aggravated by the Covid-19 pandemic.”

Killer cyclone

Drought caused considerable damage in 2019, particularly across southern Africa. Much of East Africa also suffered drought but then, late in the year, there was torrential rain and serious flooding and landslides in the region.

The trend, says the report, is for continuing increases in temperature: 2019 was among the three warmest years ever recorded in Africa. The WMO predicts that rainfall is likely to decrease over northern and southern regions but increase over the Sahel.

There are also likely to be more weather-related extreme events. In March 2019 Cyclone Idai hit the coast of Mozambique and went on to devastate large areas of Malawi, Zimbabwe and surrounding countries.

Described as the most destructive cyclone ever recorded in the southern hemisphere, Idai killed hundreds of people and displaced several hundred thousand.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest”

Sea levels are rising well above the global average in many parts of Africa, the report says. Coastal degradation and erosion is a major challenge, particularly in West Africa. More than 50% of the coastlines in Benin, Côte d’Ivoire, Senegal and Togo are eroding – a trend likely to continue in future years.

The knock-on effects of these changes in climate are considerable. Approximately 60% of the total population of Africa is dependent on agriculture for a living.

Heat and drought, plus flood damage in some areas, are likely to reduce crop productivity. Changes in climate are also leading to pest outbreaks.

In what it describes as the worst case climate change scenario, the report says crop yields could drop by 13% by mid-century across West and Central Africa, 11% in North Africa and 8% in the eastern and southern regions of the continent. Rice and wheat crops would be particularly badly affected.

Combatting the crisis

Increased heat and continually changing rainfall patterns are also likely to lead to the spread of disease – and a fall-off in economic production in many countries.

But the report does point to some positive changes, showing Africa’s resistance to the crisis. Though the continent is responsible for only a small percentage of the world’s greenhouse gas emissions, many countries in Africa are taking measures aimed at tackling climate change.

Solar power is becoming more widespread, with several large-scale projects planned. Early warning systems monitoring the approach of such cataclysmic events as Cyclone Idai are being installed across the continent.
Farm incomes in many areas are increasing, due to the application of more efficient cultivation methods, such as micro-irrigation. But good planning, based on reliable data, is essential, the report says.

“The limited uptake and use of climate information services in development planning and practice in Africa is due in part to the paucity of reliable and timely climate information”, says Vera Songwe, the executive secretary of the United Nations Economic Commission for Africa. – Climate News Network

African desert is home to abundant forest growth

Researchers have found an unknown wealth of trees in an African desert zone supposedly too arid for green growth.

LONDON, 27 October, 2020 − With help from high resolution satellite imagery and some advanced artificial intelligence techniques, European scientists have been counting the trees in a parched African desert.

They pored over 1.3 million square kilometres of the waterless western Sahara and the arid lands of the Sahel to the south, to identify what is in effect an unknown forest. This region − a stretch of dunes and dryland larger than Angola, or Peru, or Niger − proved to be home to 1.8 billion trees and shrubs with crowns larger than three square metres.

“We were very surprised to see that quite a few trees actually grow in the Sahara Desert because up till now, most people thought that virtually none existed. We counted hundreds of millions of trees in the desert alone,” said Martin Brandt, a geographer at the University of Copenhagen in Denmark, who led the research.

He and colleagues from Germany, France, Senegal, Belgium and Nasa in the US report in the journal Nature that they used an artificial intelligence technique called “deep learning” and satellite imagery so advanced that − from space − a camera could resolve an object half a metre or more in diameter, to see if they could answer unresolved questions about all those trees beyond the world’s forests.

“Trees outside of forested areas are not usually included in climate models, and we know very little about their carbon stocks. They are  an unknown component in the global carbon cycle”

Trees matter, wherever they are. In cities, they enhance urban life and sustain property values. In forests, they conserve and recycle water, shelter millions of animals and smaller plants, and absorb atmospheric carbon. In grasslands they conserve soils, offer habitat for species and provide subsistence fuel, food and fodder for humans and animals.
But trees beyond the forests are an unknown factor when it comes to the puzzle of the global carbon budget and the great challenge of containing runaway climate change.

“Trees outside of forested areas are not usually included in climate models, and we know very little about their carbon stocks,” Dr Brandt said. “They are basically a white spot on maps and an unknown component in the global carbon cycle.”

The total identified in the target zone of the Sahara and the Sahel is almost certainly an under-estimate: the technology did not and could not pinpoint trees with a crown or shade area smaller than 3 square metres.

The study adds to the chronicle of surprises delivered by tree and forest research. In the last few years scientists have essayed a global census of woody growths wider than 5cms at breast height − that’s the botanist’s definition of a tree − and arrived at a total of more than 3 trillion.

New map possible

They have also counted the different kinds of tree: more than 60,000 species. They have already made attempts to measure the extent of tree cover in dryland and savannah regions and identified a kind of hidden forest.

They have calculated that a determined global tree planting campaign could absorb enough carbon to make a formidable difference to the challenge of global heating, and they have confirmed that conserved natural forests are, even on the simple basis of human economics, a bargain: forests are worth more to the world when they flourish than when they are cleared.

The new approach − the match of artificial intelligence with high resolution imagery − could one day help identify not just trees, but different tree species. It could, researchers hope, eventually even provide a reliable count of trees in a forest, although where canopies overlap it will always be difficult to number the trunks that support them. It offers the world’s forest scientists a new starting point for a map of all the planet’s trees.

“Doing so wouldn’t have been possible without this technology,” Dr Brandt said. “Indeed, I think it marks the beginning of a new scientific era.” − Climate News Network

Researchers have found an unknown wealth of trees in an African desert zone supposedly too arid for green growth.

LONDON, 27 October, 2020 − With help from high resolution satellite imagery and some advanced artificial intelligence techniques, European scientists have been counting the trees in a parched African desert.

They pored over 1.3 million square kilometres of the waterless western Sahara and the arid lands of the Sahel to the south, to identify what is in effect an unknown forest. This region − a stretch of dunes and dryland larger than Angola, or Peru, or Niger − proved to be home to 1.8 billion trees and shrubs with crowns larger than three square metres.

“We were very surprised to see that quite a few trees actually grow in the Sahara Desert because up till now, most people thought that virtually none existed. We counted hundreds of millions of trees in the desert alone,” said Martin Brandt, a geographer at the University of Copenhagen in Denmark, who led the research.

He and colleagues from Germany, France, Senegal, Belgium and Nasa in the US report in the journal Nature that they used an artificial intelligence technique called “deep learning” and satellite imagery so advanced that − from space − a camera could resolve an object half a metre or more in diameter, to see if they could answer unresolved questions about all those trees beyond the world’s forests.

“Trees outside of forested areas are not usually included in climate models, and we know very little about their carbon stocks. They are  an unknown component in the global carbon cycle”

Trees matter, wherever they are. In cities, they enhance urban life and sustain property values. In forests, they conserve and recycle water, shelter millions of animals and smaller plants, and absorb atmospheric carbon. In grasslands they conserve soils, offer habitat for species and provide subsistence fuel, food and fodder for humans and animals.
But trees beyond the forests are an unknown factor when it comes to the puzzle of the global carbon budget and the great challenge of containing runaway climate change.

“Trees outside of forested areas are not usually included in climate models, and we know very little about their carbon stocks,” Dr Brandt said. “They are basically a white spot on maps and an unknown component in the global carbon cycle.”

The total identified in the target zone of the Sahara and the Sahel is almost certainly an under-estimate: the technology did not and could not pinpoint trees with a crown or shade area smaller than 3 square metres.

The study adds to the chronicle of surprises delivered by tree and forest research. In the last few years scientists have essayed a global census of woody growths wider than 5cms at breast height − that’s the botanist’s definition of a tree − and arrived at a total of more than 3 trillion.

New map possible

They have also counted the different kinds of tree: more than 60,000 species. They have already made attempts to measure the extent of tree cover in dryland and savannah regions and identified a kind of hidden forest.

They have calculated that a determined global tree planting campaign could absorb enough carbon to make a formidable difference to the challenge of global heating, and they have confirmed that conserved natural forests are, even on the simple basis of human economics, a bargain: forests are worth more to the world when they flourish than when they are cleared.

The new approach − the match of artificial intelligence with high resolution imagery − could one day help identify not just trees, but different tree species. It could, researchers hope, eventually even provide a reliable count of trees in a forest, although where canopies overlap it will always be difficult to number the trunks that support them. It offers the world’s forest scientists a new starting point for a map of all the planet’s trees.

“Doing so wouldn’t have been possible without this technology,” Dr Brandt said. “Indeed, I think it marks the beginning of a new scientific era.” − Climate News Network

Western US and Southeast Asia face rising dust risk

It obscures the skies and darkens the snows. Wind-borne dust risk is increasingly ominous in a warming world.

LONDON, 26 October, 2020 − Half a planet apart, one low-lying and the other on the roof of the world, two huge regions confront an increasing dust risk − a menace to jobs, to food and to lives.

The Great Plains of North America are getting dustier every year because more soil is now being exposed to erosion. And high in the Himalayas on the continent of Asia, the peaks too are becoming dustier, in ways that threaten to increase the melting of high-altitude snows.

Both findings are in essence bad news. In the western US, higher levels of wind erosion as a consequence of changing farm practices combined with ever-greater probabilities of drought mean ever-higher probabilities of a return of the Dust Bowl that devastated the US Midwest 90 years ago.

And 700 million people in Southeast Asia, China and India depend on the slow melting of the Himalayan glaciers to irrigate their crops in the hot dry season: earlier melting threatens not just livelihoods but lives.

Taken for farming

In the 1930s, the Great Plains region was hit by drought that extended from Canada to Mexico. By then, vast tracts of prairie had been converted from wild grassland to ploughed field.

“The result was massive dust storms we associate with the Dust Bowl. These dust storms removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur,” said Andrew Lambert of the University of Utah.

He and colleagues from Colorado report in the journal Geophysical Research Letters that they measured atmospheric dust levels by studying evidence from both space and from the ground, and collected data from 1988 to 2018.

They found that atmospheric dust over the Great Plains was increasing at 5% a year. That would mean a doubling in just two decades.

“The massive dust storms we associate with the Dust Bowl removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur”

They also found that levels of dust matched the planting and harvest months of soybean in the north, and corn in the southern states. How the land was farmed could be connected directly to the haze in the air.

Dust plays a powerful role in planetary management: researchers established years ago that the rich biodiversity of the Amazon rainforest was nourished and supplemented almost annually by deposits of fertile dust blown across the Atlantic from the African Sahara. And dust falling into the ocean on the journey also helped nourish marine life far below the surface of the Atlantic.

Now it seems that wind-blown dust from two continents also settles on the biggest and highest tracts of the Himalayas, to darken the snow, change its reflectivity and absorb the sun’s warmth.

Scientists from the US Pacific Northwest National Laboratory report in Nature Climate Change that they used detailed satellite imagery of the Himalayas to measure aerosols, elevation and snow surfaces to identify dust and other pollutants.

Constant release

They found that, at up to 4500 metres altitude, black carbon or soot played an important role in influencing the melt timetable of the high snows. Above that altitude, dust was the most important factor: dust from the Thar desert in India, from Saudi Arabia and even from the African Sahara.

Although this was part of a natural cycle, humankind may be accelerating the traffic and adding to the dust risk: ever-higher planetary temperatures have begun to affect atmospheric circulation. And as humans turn natural ecosystems into farmland, they release even more dust.

“The snow in the western Himalayas is receding rapidly. We need to understand why this is happening and we need to understand the implications,” said Chandan Sarangi, then at Pacific Northwest but now at the Madras Institute of Technology in Chennai, and one of the authors.

“We’ve shown that dust can be a big contributor to the accelerated snowmelt. Hundreds of millions of people in the region rely on snow for their drinking water − we need to consider factors like dust seriously to understand what’s happening.” − Climate News Network

It obscures the skies and darkens the snows. Wind-borne dust risk is increasingly ominous in a warming world.

LONDON, 26 October, 2020 − Half a planet apart, one low-lying and the other on the roof of the world, two huge regions confront an increasing dust risk − a menace to jobs, to food and to lives.

The Great Plains of North America are getting dustier every year because more soil is now being exposed to erosion. And high in the Himalayas on the continent of Asia, the peaks too are becoming dustier, in ways that threaten to increase the melting of high-altitude snows.

Both findings are in essence bad news. In the western US, higher levels of wind erosion as a consequence of changing farm practices combined with ever-greater probabilities of drought mean ever-higher probabilities of a return of the Dust Bowl that devastated the US Midwest 90 years ago.

And 700 million people in Southeast Asia, China and India depend on the slow melting of the Himalayan glaciers to irrigate their crops in the hot dry season: earlier melting threatens not just livelihoods but lives.

Taken for farming

In the 1930s, the Great Plains region was hit by drought that extended from Canada to Mexico. By then, vast tracts of prairie had been converted from wild grassland to ploughed field.

“The result was massive dust storms we associate with the Dust Bowl. These dust storms removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur,” said Andrew Lambert of the University of Utah.

He and colleagues from Colorado report in the journal Geophysical Research Letters that they measured atmospheric dust levels by studying evidence from both space and from the ground, and collected data from 1988 to 2018.

They found that atmospheric dust over the Great Plains was increasing at 5% a year. That would mean a doubling in just two decades.

“The massive dust storms we associate with the Dust Bowl removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur”

They also found that levels of dust matched the planting and harvest months of soybean in the north, and corn in the southern states. How the land was farmed could be connected directly to the haze in the air.

Dust plays a powerful role in planetary management: researchers established years ago that the rich biodiversity of the Amazon rainforest was nourished and supplemented almost annually by deposits of fertile dust blown across the Atlantic from the African Sahara. And dust falling into the ocean on the journey also helped nourish marine life far below the surface of the Atlantic.

Now it seems that wind-blown dust from two continents also settles on the biggest and highest tracts of the Himalayas, to darken the snow, change its reflectivity and absorb the sun’s warmth.

Scientists from the US Pacific Northwest National Laboratory report in Nature Climate Change that they used detailed satellite imagery of the Himalayas to measure aerosols, elevation and snow surfaces to identify dust and other pollutants.

Constant release

They found that, at up to 4500 metres altitude, black carbon or soot played an important role in influencing the melt timetable of the high snows. Above that altitude, dust was the most important factor: dust from the Thar desert in India, from Saudi Arabia and even from the African Sahara.

Although this was part of a natural cycle, humankind may be accelerating the traffic and adding to the dust risk: ever-higher planetary temperatures have begun to affect atmospheric circulation. And as humans turn natural ecosystems into farmland, they release even more dust.

“The snow in the western Himalayas is receding rapidly. We need to understand why this is happening and we need to understand the implications,” said Chandan Sarangi, then at Pacific Northwest but now at the Madras Institute of Technology in Chennai, and one of the authors.

“We’ve shown that dust can be a big contributor to the accelerated snowmelt. Hundreds of millions of people in the region rely on snow for their drinking water − we need to consider factors like dust seriously to understand what’s happening.” − Climate News Network

Abnormal heat spreads floods and wildfires globally

From the Arctic Circle to tropical Africa, abnormal heat is bringing mayhem and destruction and costing lives.

LONDON, 17 September, 2020 – Across the planet, abnormal heat is exacting a lethal toll. The west coast of the US is up in flames. Over recent months unprecedented high temperatures have been melting permafrost in Siberia, within the Arctic Circle. Fires have spread; many thousands of acres of taiga have been laid waste.

Across many parts of Africa unseasonable torrential rains are causing loss of life and crops.

Climate scientists are careful about attributing any one severe weather event to climate change until all data is gathered and a proper analysis is made.

But looking at various weather patterns around the world, fundamental changes in climate are happening – most related to big increases in temperature.

Along the western seaboard of the US people are having to cope not only with a prolonged drought but with temperatures which are way above normal.

As the ground and brush at the base of trees dries out, the ideal conditions for wildfires are set.

Over recent days more than 40,000 people in the state of Oregon have been told to evacuate their homes: dozens of people are believed to be missing in the mayhem caused by the fires.

“The debate is over.This is a climate damn emergency. This is real and it’s happening”

Kate Brown, Oregon’s governor, says that over three days recently more than 1,400 square miles of land was destroyed by fire – nearly double the amount burned over a typical year in the state.

“We have never seen this amount of uncontained fire”, said Brown.

“While our state reels from this horrific fire storm of hot weather, high winds and drought conditions, this will not be a one-time event.

“Unfortunately it is the bellwether of the future. We are feeling the acute impacts of climate change.”

Last month a group of Oregon’s leading industrialists launched a court action against Governor Brown, saying she overstepped her authority by introducing measures aimed at cutting carbon emissions in the state.

Further south in California, wildfires continue to burn. The skies of San Francisco and other cities have turned red in recent days. Smoke from the fires is causing severe air quality problems.

Gavin Newsom, California’s governor, launched an angry attack on President Trump and others who are sceptical about climate change, while visiting an area of the state destroyed by fire.

Africa inundated

“The debate is over” said Newsom. “This is a climate damn emergency. This is real and it’s happening.”

Studies say that since the early 1970s California has registered a more than fivefold increase in the annual incidence of forest fires.

A similar growing trend in abnormal heat and wildfires is being recorded in many parts of Siberia: soaring temperatures have been a big factor. In one Siberian town temperatures reached 38°C in mid-June – 18°C above the usual daytime temperature for the time of year.

Less reported on but a cause of death and hardship to some of the world’s poorest countries are floods that have been destroying homes and crops across large areas of the African continent.

In Somalia, still trying to establish itself as a functioning fully independent state in the face of terrorist attacks, nearly a million people have been affected by severe flooding in recent months.

Sudan and Ethiopia have also been subject to widespread flooding.

According to data from the US National Oceanic and Atmospheric Administration (NOAA), torrential rains and floods are affecting both east and west Africa. In Nigeria, Africa’s most populous state, thousands of homes have been destroyed and crops ruined. – Climate News Network

From the Arctic Circle to tropical Africa, abnormal heat is bringing mayhem and destruction and costing lives.

LONDON, 17 September, 2020 – Across the planet, abnormal heat is exacting a lethal toll. The west coast of the US is up in flames. Over recent months unprecedented high temperatures have been melting permafrost in Siberia, within the Arctic Circle. Fires have spread; many thousands of acres of taiga have been laid waste.

Across many parts of Africa unseasonable torrential rains are causing loss of life and crops.

Climate scientists are careful about attributing any one severe weather event to climate change until all data is gathered and a proper analysis is made.

But looking at various weather patterns around the world, fundamental changes in climate are happening – most related to big increases in temperature.

Along the western seaboard of the US people are having to cope not only with a prolonged drought but with temperatures which are way above normal.

As the ground and brush at the base of trees dries out, the ideal conditions for wildfires are set.

Over recent days more than 40,000 people in the state of Oregon have been told to evacuate their homes: dozens of people are believed to be missing in the mayhem caused by the fires.

“The debate is over.This is a climate damn emergency. This is real and it’s happening”

Kate Brown, Oregon’s governor, says that over three days recently more than 1,400 square miles of land was destroyed by fire – nearly double the amount burned over a typical year in the state.

“We have never seen this amount of uncontained fire”, said Brown.

“While our state reels from this horrific fire storm of hot weather, high winds and drought conditions, this will not be a one-time event.

“Unfortunately it is the bellwether of the future. We are feeling the acute impacts of climate change.”

Last month a group of Oregon’s leading industrialists launched a court action against Governor Brown, saying she overstepped her authority by introducing measures aimed at cutting carbon emissions in the state.

Further south in California, wildfires continue to burn. The skies of San Francisco and other cities have turned red in recent days. Smoke from the fires is causing severe air quality problems.

Gavin Newsom, California’s governor, launched an angry attack on President Trump and others who are sceptical about climate change, while visiting an area of the state destroyed by fire.

Africa inundated

“The debate is over” said Newsom. “This is a climate damn emergency. This is real and it’s happening.”

Studies say that since the early 1970s California has registered a more than fivefold increase in the annual incidence of forest fires.

A similar growing trend in abnormal heat and wildfires is being recorded in many parts of Siberia: soaring temperatures have been a big factor. In one Siberian town temperatures reached 38°C in mid-June – 18°C above the usual daytime temperature for the time of year.

Less reported on but a cause of death and hardship to some of the world’s poorest countries are floods that have been destroying homes and crops across large areas of the African continent.

In Somalia, still trying to establish itself as a functioning fully independent state in the face of terrorist attacks, nearly a million people have been affected by severe flooding in recent months.

Sudan and Ethiopia have also been subject to widespread flooding.

According to data from the US National Oceanic and Atmospheric Administration (NOAA), torrential rains and floods are affecting both east and west Africa. In Nigeria, Africa’s most populous state, thousands of homes have been destroyed and crops ruined. – Climate News Network

Less rain will fall during Mediterranean winters

Mediterranean winters could bring 40% less rain, hurting farmers in what’s called the cradle of agriculture – and not only farmers.

LONDON, 2 July, 2020 – A warmer world should also be a wetter one, but not for the cockpit of much of human history: Mediterranean winters will become increasingly parched. Winter rainfall – and winter is the rainy season – could see a 40% fall in precipitation.

Agriculture and human civilisation began in the Fertile Crescent that runs from eastern Turkey to Iraq: cattle, sheep and goats were domesticated there; the first figs, almonds, grapes and pulses were planted there; the progenitors of wheat were sown there.

Cities were built, irrigation schemes devised, empires rose and fell. Greece colonised the Mediterranean, Rome later controlled it and set the pattern of law and civic government for the next 2000 years in Northern Europe.

Islamic forces brought a different civilisation to the Balkans, North Africa and almost all of Spain. The grain fields of the Nile Valley underwrote the expansion of the Roman Empire.

“What’s really different about the Mediterranean is the geography. You have a big sea enclosed by continents, which doesn’t really occur anywhere else in the world”

But the pressure of history is likely to be affected by the high pressure of summers to come. In a world of rapid climate change, the already dry and sunny enclosed sea will become sunnier and drier, according to two scientists from the Massachusetts Institute of Technology.

They report in the American Meteorological Society’s Journal of Climate that the winter rains that are normally expected to fill the reservoirs and nourish the rich annual harvest from the orchards, vineyards and wheat fields can be expected to diminish significantly, as atmospheric pressures rise, to reduce rainfall by somewhere between 10% and 60%.

Ordinarily, a warmer world should be a wetter one. More water evaporates, and with each degree-rise in temperature the capacity of the air to hold water vapour increases by 7%, to fall inevitably as rain, somewhere.

But episodes of low pressure associated with rain clouds over the Mediterranean become less likely, according to climate simulations. The topography of the landscape and sea determines the probable pattern of the winds.

High pressure grows

“It just happened that the geography of where the Mediterranean is, and where the mountains are, impacts the pattern of air flow high in the atmosphere in a way that creates a high-pressure area over the Mediterranean,” said Alexandre Tuel, one of the authors.

“What’s really different about the Mediterranean compared to other regions is the geography. Basically, you have a big sea enclosed by continents, which doesn’t really occur anywhere else in the world.”

Another factor is the rate of warming: land warms faster than sea. The North African seaboard and the southern fringe of Europe will become 3 to 4°C hotter over the next hundred years. The sea will warm by only 2°C. The difference between land and sea will become smaller, to add to the pattern of high pressure circulation.

“Basically, the difference between the water and the land becomes smaller with time,” Tuel says.

Frequent warnings

Once again, the finding is no surprise: Europe has a long history of drought and flood, but drought tends to leave the more permanent mark. The eastern Mediterranean has already experienced its harshest drought for 900 years and this has been linked to the bitter conflict in Syria.

Researchers have repeatedly warned that the pattern of drought on the continent is likely to intensify, and at considerable economic and human cost.

What is different is that the latest research offers detailed predictions of the nature of change, and identifies the regions likeliest to be worst hit. These include Morocco in north-west Africa, and the eastern Mediterranean of Turkey and the Levant.

“These are areas where we already detect declines in precipitation,” said Elfatih Eltahir, the senior author. “We document from the observed record of precipitation that this eastern part has already experienced a significant decline of precipitation.” – Climate News Network

Mediterranean winters could bring 40% less rain, hurting farmers in what’s called the cradle of agriculture – and not only farmers.

LONDON, 2 July, 2020 – A warmer world should also be a wetter one, but not for the cockpit of much of human history: Mediterranean winters will become increasingly parched. Winter rainfall – and winter is the rainy season – could see a 40% fall in precipitation.

Agriculture and human civilisation began in the Fertile Crescent that runs from eastern Turkey to Iraq: cattle, sheep and goats were domesticated there; the first figs, almonds, grapes and pulses were planted there; the progenitors of wheat were sown there.

Cities were built, irrigation schemes devised, empires rose and fell. Greece colonised the Mediterranean, Rome later controlled it and set the pattern of law and civic government for the next 2000 years in Northern Europe.

Islamic forces brought a different civilisation to the Balkans, North Africa and almost all of Spain. The grain fields of the Nile Valley underwrote the expansion of the Roman Empire.

“What’s really different about the Mediterranean is the geography. You have a big sea enclosed by continents, which doesn’t really occur anywhere else in the world”

But the pressure of history is likely to be affected by the high pressure of summers to come. In a world of rapid climate change, the already dry and sunny enclosed sea will become sunnier and drier, according to two scientists from the Massachusetts Institute of Technology.

They report in the American Meteorological Society’s Journal of Climate that the winter rains that are normally expected to fill the reservoirs and nourish the rich annual harvest from the orchards, vineyards and wheat fields can be expected to diminish significantly, as atmospheric pressures rise, to reduce rainfall by somewhere between 10% and 60%.

Ordinarily, a warmer world should be a wetter one. More water evaporates, and with each degree-rise in temperature the capacity of the air to hold water vapour increases by 7%, to fall inevitably as rain, somewhere.

But episodes of low pressure associated with rain clouds over the Mediterranean become less likely, according to climate simulations. The topography of the landscape and sea determines the probable pattern of the winds.

High pressure grows

“It just happened that the geography of where the Mediterranean is, and where the mountains are, impacts the pattern of air flow high in the atmosphere in a way that creates a high-pressure area over the Mediterranean,” said Alexandre Tuel, one of the authors.

“What’s really different about the Mediterranean compared to other regions is the geography. Basically, you have a big sea enclosed by continents, which doesn’t really occur anywhere else in the world.”

Another factor is the rate of warming: land warms faster than sea. The North African seaboard and the southern fringe of Europe will become 3 to 4°C hotter over the next hundred years. The sea will warm by only 2°C. The difference between land and sea will become smaller, to add to the pattern of high pressure circulation.

“Basically, the difference between the water and the land becomes smaller with time,” Tuel says.

Frequent warnings

Once again, the finding is no surprise: Europe has a long history of drought and flood, but drought tends to leave the more permanent mark. The eastern Mediterranean has already experienced its harshest drought for 900 years and this has been linked to the bitter conflict in Syria.

Researchers have repeatedly warned that the pattern of drought on the continent is likely to intensify, and at considerable economic and human cost.

What is different is that the latest research offers detailed predictions of the nature of change, and identifies the regions likeliest to be worst hit. These include Morocco in north-west Africa, and the eastern Mediterranean of Turkey and the Levant.

“These are areas where we already detect declines in precipitation,” said Elfatih Eltahir, the senior author. “We document from the observed record of precipitation that this eastern part has already experienced a significant decline of precipitation.” – Climate News Network

3 bn people may face Saharan heat levels by 2070

For three billion people or more, heat levels could prove almost impossible for human civilisation – in half a century.

LONDON, 3 June, 2020 – If humans go on burning ever more fossil fuels to put ever higher concentrations of greenhouse gases into the atmosphere, then one third of the world’s population may face – within 50 years – heat levels that could be all but intolerable.

By 2070, 19% of the land area of the planet, home to 3.5 billion people, could be faced with a mean annual temperature of 29°C. That is, although there would be seasons in which temperatures fell well below this average, these would be followed by summers in which the thermometer went much higher.

Right now, only 0.8% of the land surface of the planet experiences such a mean annual temperature, and most of this space is located in the Saharan desert region of North Africa. But population growth – already highest in the poorest and hottest parts of the globe – and the projected increases in planetary average temperatures will expand this danger zone to almost one fifth of the planet’s land area, to embrace a third of the world’s people.

The conclusion – published in the Proceedings of the National Academy of Sciences – sounds like a dramatic advance on repeated warnings that planetary average temperatures could be 3°C above the long-term average for almost all of human history. But it may not be.

One important difference is that climate science forecasts tend to describe the entire planet. But almost three fourths of the planet is ocean, which is warming much more slowly than the land surfaces. Another is that climate forecasts predict average change for a sphere with a circumference of 40,000 kms. And the third factor is that such predictions do not specifically address where humans choose to live.

“Our computations show that each degree of warming above present levels corresponds to roughly one billion people falling outside of the climate niche”

Xu Chi of Nanjing University in China and his European co-authors started from the premise that humans – like all animal species – have a preferred climate niche. They looked back through 6000 years of the history of civilisation and concluded that most of humankind flourished within a climate space between annual averages of 11°C and 15°C. A much smaller number of people lived in places where the average temperature was between 20°C and 25°C.

And they found that – although civilisations rose and fell, whole peoples disappeared, wars, plagues and famines struck, and entire populations migrated to or invaded other homes – nearly all of humankind continued to prefer to live in land zones at between 11°C and 15°C.

“This strikingly constant climate niche likely represents fundamental constraints on what humans need to survive and thrive,” said Marten Scheffer of Wageningen University in the Netherlands.

But in the next 50 years, the average temperature experienced by an average human is expected to rise by 7.5°C. And because population growth is highest in the already hottest regions, these temperature rises will affect more and more people.

Warnings mount

By 2070 this total could reach 3.5bn people, across 19% of the planet’s land surface, many of them exposed to temperatures and climate conditions that right now would be considered difficult to survive.

In just the last six or seven weeks, climate scientists have warned that rising temperatures present a direct threat to the natural ecosystems on which human civilisation depends; that the number of days that US farmworkers will find dangerously hot will almost double; that potentially lethal combinations of heat and humidity trailed as a future hazard may already have arrived, in limited locations for brief periods; that some will find more heat brings more extremes of rainfall, while other regions will become increasingly arid; and that South Asia, in particular, is at increasing hazard from ever more extreme temperatures and choking pollution, thanks to global climate change.

But the latest attempt to look at the big picture trumps all of these already bleak findings. As usual, other climate researchers will question their assumptions and challenge their conclusions, but the authors are fairly sure of their ground.

“We were frankly blown away by our initial results,” said Dr Xu. “As our findings were striking, we took an extra year to carefully check all assumptions and computations. We also decided to publish all data and computer codes for transparency and to facilitate follow-up work by others.

“The results are as important to China as they are to any other nation. Clearly we will need a global approach to safeguard our children against the potentially enormous social tensions the projected change could invoke.”

Range of pressures

This also raises issues already repeatedly raised by climate forecasters: the people most threatened by climate change are already among the world’s poorest. So there will be pressure to migrate. And there will be potential for conflict.

What will happen in the next 50 years under circumstances in which governments go on authorising fossil fuel consumption is difficult to predict with any certainty. Communities will to a certain extent adapt. Economic development could help contain some of the challenges. And governments could decide to act.

“The good news is that these impacts can be greatly reduced if humanity succeeds in curbing global warming,” said Tim Lenton, of Exeter University in the UK.

“Our computations show that each degree of warming above present levels corresponds to roughly one billion people falling outside of the climate niche.” – Climate News Network

For three billion people or more, heat levels could prove almost impossible for human civilisation – in half a century.

LONDON, 3 June, 2020 – If humans go on burning ever more fossil fuels to put ever higher concentrations of greenhouse gases into the atmosphere, then one third of the world’s population may face – within 50 years – heat levels that could be all but intolerable.

By 2070, 19% of the land area of the planet, home to 3.5 billion people, could be faced with a mean annual temperature of 29°C. That is, although there would be seasons in which temperatures fell well below this average, these would be followed by summers in which the thermometer went much higher.

Right now, only 0.8% of the land surface of the planet experiences such a mean annual temperature, and most of this space is located in the Saharan desert region of North Africa. But population growth – already highest in the poorest and hottest parts of the globe – and the projected increases in planetary average temperatures will expand this danger zone to almost one fifth of the planet’s land area, to embrace a third of the world’s people.

The conclusion – published in the Proceedings of the National Academy of Sciences – sounds like a dramatic advance on repeated warnings that planetary average temperatures could be 3°C above the long-term average for almost all of human history. But it may not be.

One important difference is that climate science forecasts tend to describe the entire planet. But almost three fourths of the planet is ocean, which is warming much more slowly than the land surfaces. Another is that climate forecasts predict average change for a sphere with a circumference of 40,000 kms. And the third factor is that such predictions do not specifically address where humans choose to live.

“Our computations show that each degree of warming above present levels corresponds to roughly one billion people falling outside of the climate niche”

Xu Chi of Nanjing University in China and his European co-authors started from the premise that humans – like all animal species – have a preferred climate niche. They looked back through 6000 years of the history of civilisation and concluded that most of humankind flourished within a climate space between annual averages of 11°C and 15°C. A much smaller number of people lived in places where the average temperature was between 20°C and 25°C.

And they found that – although civilisations rose and fell, whole peoples disappeared, wars, plagues and famines struck, and entire populations migrated to or invaded other homes – nearly all of humankind continued to prefer to live in land zones at between 11°C and 15°C.

“This strikingly constant climate niche likely represents fundamental constraints on what humans need to survive and thrive,” said Marten Scheffer of Wageningen University in the Netherlands.

But in the next 50 years, the average temperature experienced by an average human is expected to rise by 7.5°C. And because population growth is highest in the already hottest regions, these temperature rises will affect more and more people.

Warnings mount

By 2070 this total could reach 3.5bn people, across 19% of the planet’s land surface, many of them exposed to temperatures and climate conditions that right now would be considered difficult to survive.

In just the last six or seven weeks, climate scientists have warned that rising temperatures present a direct threat to the natural ecosystems on which human civilisation depends; that the number of days that US farmworkers will find dangerously hot will almost double; that potentially lethal combinations of heat and humidity trailed as a future hazard may already have arrived, in limited locations for brief periods; that some will find more heat brings more extremes of rainfall, while other regions will become increasingly arid; and that South Asia, in particular, is at increasing hazard from ever more extreme temperatures and choking pollution, thanks to global climate change.

But the latest attempt to look at the big picture trumps all of these already bleak findings. As usual, other climate researchers will question their assumptions and challenge their conclusions, but the authors are fairly sure of their ground.

“We were frankly blown away by our initial results,” said Dr Xu. “As our findings were striking, we took an extra year to carefully check all assumptions and computations. We also decided to publish all data and computer codes for transparency and to facilitate follow-up work by others.

“The results are as important to China as they are to any other nation. Clearly we will need a global approach to safeguard our children against the potentially enormous social tensions the projected change could invoke.”

Range of pressures

This also raises issues already repeatedly raised by climate forecasters: the people most threatened by climate change are already among the world’s poorest. So there will be pressure to migrate. And there will be potential for conflict.

What will happen in the next 50 years under circumstances in which governments go on authorising fossil fuel consumption is difficult to predict with any certainty. Communities will to a certain extent adapt. Economic development could help contain some of the challenges. And governments could decide to act.

“The good news is that these impacts can be greatly reduced if humanity succeeds in curbing global warming,” said Tim Lenton, of Exeter University in the UK.

“Our computations show that each degree of warming above present levels corresponds to roughly one billion people falling outside of the climate niche.” – Climate News Network

Tropical forests’ damage spreads catastrophically

Human inroads into tropical forests stretch far beyond oil plantations or the edge of cattle ranches and are a wider threat to conservation.

LONDON, 7 April, 2020 – Tropical forests are vital in the campaign to limit global heating. Here’s how to blunt them as a force – just put a clearing, or a plantation, a road or a ranch in the pristine wilderness. And then, as absorbers of atmospheric carbon, the trees up to 100 metres deep into the jungle will lose their edge.

Along that 100 metre width, the canopy height, leaf mass and phosphorus levels per square metre will begin to change. All three are measures of a tree’s capacity to grow vigorously and store carbon.

Researchers call this the edge effect. It matters. The world now has 1.2bn hectares of remaining tropical forest. This is an area far bigger than Canada.

But invasion of what, just one lifetime ago, were still unmapped wildernesses is now so aggressive that almost one fifth of the area of the world’s tropical forest is within 100 metres of a non-forest edge.

And about half of all the forest is within 500 metres of a ranch, road, settlement or plantation.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion”

Scientists from the US report in the Proceedings of the National Academy of Sciences that they mapped change in the forests of Malaysian Borneo, looking closely at the sites where forest and commercial palm oil plantation co-exist.

They report that the levels of carbon stored “above ground” – that is, in the trunk and canopy – fell by an average of 22% along the forest edges, to a depth of 100 metres. The older this forest edge, the greater the fall in stored carbon.

There are already reports that degradation of the rainforest in the Amazon and Congo, amplified by the impact of climate change in the form of extreme heat and drought, is so advanced that within a decade or two these forests could cease to be “sinks” for atmospheric carbon, and instead start adding to the world’s burden of greenhouse gases that threaten to accelerate climate change, with potentially catastrophic consequences.

The world’s forests are vital in the global plans to contain or limit climate change driven by profligate combustion of fossil fuels that release carbon dioxide and other greenhouse gases.

Research has repeatedly confirmed that undisturbed forest is an efficient absorber and permanent store of atmospheric carbon and that almost any human transgression could damage the capacity of the rainforest to absorb carbon.

Road web spreads

And yet all the signs are ominous: humans will go on making inroads into natural wilderness, in the most literal sense: by 2050, there could be 25 million km new road lanes, most of them in the developing world, to carry timber trucks, livestock and minerals through the world’s forests.

There is an argument that “smart” roads can limit the damage to the environment and society caused by indiscriminate engineering: one group advocating this approach is the Centre for Tropical Environmental and Sustainability Science (TESS), based at James Cook University in Australia.

But the threat to the remaining forests is now so pronounced that many researchers simply point out, in the kind of understatement that comes naturally to scientists, that such changes have “far-reaching implications” for the conservation of forest biodiversity and carbon stocks.

They see their research as a potential guide to government and local authorities on the management of the remaining wild woodland.

“Not all forest-agriculture boundaries are created equal, and most remaining forests change for many years following the original land conversion that takes place nearby,” said Greg Asner of Arizona State University, one of the researchers.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion.” – Climate News Network

Human inroads into tropical forests stretch far beyond oil plantations or the edge of cattle ranches and are a wider threat to conservation.

LONDON, 7 April, 2020 – Tropical forests are vital in the campaign to limit global heating. Here’s how to blunt them as a force – just put a clearing, or a plantation, a road or a ranch in the pristine wilderness. And then, as absorbers of atmospheric carbon, the trees up to 100 metres deep into the jungle will lose their edge.

Along that 100 metre width, the canopy height, leaf mass and phosphorus levels per square metre will begin to change. All three are measures of a tree’s capacity to grow vigorously and store carbon.

Researchers call this the edge effect. It matters. The world now has 1.2bn hectares of remaining tropical forest. This is an area far bigger than Canada.

But invasion of what, just one lifetime ago, were still unmapped wildernesses is now so aggressive that almost one fifth of the area of the world’s tropical forest is within 100 metres of a non-forest edge.

And about half of all the forest is within 500 metres of a ranch, road, settlement or plantation.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion”

Scientists from the US report in the Proceedings of the National Academy of Sciences that they mapped change in the forests of Malaysian Borneo, looking closely at the sites where forest and commercial palm oil plantation co-exist.

They report that the levels of carbon stored “above ground” – that is, in the trunk and canopy – fell by an average of 22% along the forest edges, to a depth of 100 metres. The older this forest edge, the greater the fall in stored carbon.

There are already reports that degradation of the rainforest in the Amazon and Congo, amplified by the impact of climate change in the form of extreme heat and drought, is so advanced that within a decade or two these forests could cease to be “sinks” for atmospheric carbon, and instead start adding to the world’s burden of greenhouse gases that threaten to accelerate climate change, with potentially catastrophic consequences.

The world’s forests are vital in the global plans to contain or limit climate change driven by profligate combustion of fossil fuels that release carbon dioxide and other greenhouse gases.

Research has repeatedly confirmed that undisturbed forest is an efficient absorber and permanent store of atmospheric carbon and that almost any human transgression could damage the capacity of the rainforest to absorb carbon.

Road web spreads

And yet all the signs are ominous: humans will go on making inroads into natural wilderness, in the most literal sense: by 2050, there could be 25 million km new road lanes, most of them in the developing world, to carry timber trucks, livestock and minerals through the world’s forests.

There is an argument that “smart” roads can limit the damage to the environment and society caused by indiscriminate engineering: one group advocating this approach is the Centre for Tropical Environmental and Sustainability Science (TESS), based at James Cook University in Australia.

But the threat to the remaining forests is now so pronounced that many researchers simply point out, in the kind of understatement that comes naturally to scientists, that such changes have “far-reaching implications” for the conservation of forest biodiversity and carbon stocks.

They see their research as a potential guide to government and local authorities on the management of the remaining wild woodland.

“Not all forest-agriculture boundaries are created equal, and most remaining forests change for many years following the original land conversion that takes place nearby,” said Greg Asner of Arizona State University, one of the researchers.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion.” – Climate News Network

Tropical forests may be heating Earth by 2035

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Egyptian theatre aids climate change fight

To help to alert people to the hotter future ahead, an Egyptian theatre troupe is taking the climate message to villages to enlist farmers.

LONDON, 4 September, 2019 − Ever been to an Egyptian theatre? Go to one if you get the chance. You might have an enlightening time.

How to get the message about a warming world and the challenges ahead across to people in a straightforward, simple way is a problem as old as climate change itself:

In a project funded by the World Food Programme, a group of local actors is touring villages in Egypt, putting on performances on the theme of climate change. The aim is to persuade farmers to pool their efforts in order to adapt to the changing weather patterns already evident in many areas.

Egypt is considered a country acutely vulnerable to changes in climate. The Nile Delta, densely populated and the centre of Egypt’s vast agricultural sector, is already threatened by sea level rise, its lands eaten away by salt intrusion from the Mediterranean.

Several settlements along Egypt’s north coast, including Alexandria, the country’s second most populated city, are regularly inundated by seawater.

“The plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation”

Rising temperatures mean more water is being evaporated from the Nile, Egypt’s water lifeline. Extensive dam building upstream further threatens Nile water flows.

The theatre project, though, is playing to packed houses. The crowds are flocking in to see what is a mix of entertainment and information on ways that farming methods can be adapted to changes in climate. Light-hearted banter is part of the show.

Bloomberg news agency reports that the plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation, so as to conserve precious water resources.

One recent play, according to Bloomberg, featured a farmer unwilling to co-operate with his neighbours to fight climate change and refusing to help pay for a new irrigation canal. In the end, though, the farmer realises the folly of his actions.

Almost 30% of jobs in Egypt are in agriculture, and farmers regularly have to battle the impact of increases in temperature and more sporadic rainfall patterns.

Sun power replaces diesel

A heatwave in 2010 resulted in serious losses for Egypt’s wheat crop, a staple in the diet of the country’s population of nearly 100 million people. Earlier this year temperatures reached near-record levels, particularly in the south of the country. Last year sudden rain deluges caused flooding in several cities.

Bloomberg reports that the theatre shows have had an impact; in many areas solar-powered irrigation pumps have replaced diesel pumps.

Forecasts of sudden changes in weather are broadcast from mosques and via mobile phones. As a result of more co-operation between farmers and increased efficiency in the use of water resources, wheat output has improved, especially in the south of the country.

Recent reports have indicated that the Middle East and North Africa region (MENA) will have to endure ever-higher temperatures in the years ahead. Researchers say parts of the region can expect increased social unrest. Others have warned that extreme heat and humidity may make some areas uninhabitable, with outside activities having to be severely restricted.

Last month came a warning that the rising heat could threaten the lives of many thousands of Muslims performing the annual Hajj pilgrimage to Egypt’s neighbour Saudi Arabia. − Climate News Network

To help to alert people to the hotter future ahead, an Egyptian theatre troupe is taking the climate message to villages to enlist farmers.

LONDON, 4 September, 2019 − Ever been to an Egyptian theatre? Go to one if you get the chance. You might have an enlightening time.

How to get the message about a warming world and the challenges ahead across to people in a straightforward, simple way is a problem as old as climate change itself:

In a project funded by the World Food Programme, a group of local actors is touring villages in Egypt, putting on performances on the theme of climate change. The aim is to persuade farmers to pool their efforts in order to adapt to the changing weather patterns already evident in many areas.

Egypt is considered a country acutely vulnerable to changes in climate. The Nile Delta, densely populated and the centre of Egypt’s vast agricultural sector, is already threatened by sea level rise, its lands eaten away by salt intrusion from the Mediterranean.

Several settlements along Egypt’s north coast, including Alexandria, the country’s second most populated city, are regularly inundated by seawater.

“The plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation”

Rising temperatures mean more water is being evaporated from the Nile, Egypt’s water lifeline. Extensive dam building upstream further threatens Nile water flows.

The theatre project, though, is playing to packed houses. The crowds are flocking in to see what is a mix of entertainment and information on ways that farming methods can be adapted to changes in climate. Light-hearted banter is part of the show.

Bloomberg news agency reports that the plays seek to encourage villagers to form co-operatives in order to maximise the output of wheat and other crops and use less wasteful methods of irrigation, so as to conserve precious water resources.

One recent play, according to Bloomberg, featured a farmer unwilling to co-operate with his neighbours to fight climate change and refusing to help pay for a new irrigation canal. In the end, though, the farmer realises the folly of his actions.

Almost 30% of jobs in Egypt are in agriculture, and farmers regularly have to battle the impact of increases in temperature and more sporadic rainfall patterns.

Sun power replaces diesel

A heatwave in 2010 resulted in serious losses for Egypt’s wheat crop, a staple in the diet of the country’s population of nearly 100 million people. Earlier this year temperatures reached near-record levels, particularly in the south of the country. Last year sudden rain deluges caused flooding in several cities.

Bloomberg reports that the theatre shows have had an impact; in many areas solar-powered irrigation pumps have replaced diesel pumps.

Forecasts of sudden changes in weather are broadcast from mosques and via mobile phones. As a result of more co-operation between farmers and increased efficiency in the use of water resources, wheat output has improved, especially in the south of the country.

Recent reports have indicated that the Middle East and North Africa region (MENA) will have to endure ever-higher temperatures in the years ahead. Researchers say parts of the region can expect increased social unrest. Others have warned that extreme heat and humidity may make some areas uninhabitable, with outside activities having to be severely restricted.

Last month came a warning that the rising heat could threaten the lives of many thousands of Muslims performing the annual Hajj pilgrimage to Egypt’s neighbour Saudi Arabia. − Climate News Network

Elephants’ diets help forests to thrive

Elephants may throw their weight around, but they pay their dues to the environment: they help the great forests store ever more carbon.

LONDON, 30 July, 2019 – Like humans, all social animals exploit, disturb and alter their natural environment. Biologists have just identified at least one species, elephants, that – in the course of bulldozing their way through the undergrowth and destroying young trees – actually make the forest more efficient at storing carbon and thus containing global heating.

The African forest elephant Loxodonta cyclotis browses upon and uproots young trees with stems smaller than 30cms and deposits the digested foliage as fertiliser, rich in seeds for the next generation of saplings.

Researchers from Italy, France, Brazil and the US report in the journal Nature Geoscience that this simple act – performed by perhaps one elephant in one square kilometre of forest – actually adds to the biomass locked in the remaining timber at the rate of by between 26 and 60 tonnes per hectare.

And if these ancient mega-herbivores were not crashing through the forest, consuming young trees, the forest would be home to 7% less biomass in the form of dense timber.

Forest elephants, the same scientists say, are rapidly declining in numbers. The researchers had been studying the species for years, and devised a mathematical model of their impact on the environment that supported them.

“Humanity is doing its best to rid the planet of elephants as quickly as it can. Forest elephants are facing extinction. All of their positive effect on carbon and their roles as forest gardeners and engineers will be lost”

Humans convert forest to farmland and increase the levels of carbon dioxide and other greenhouse gases that fuel global heating and the climate emergency. Forest elephants, on the other hand, simply alter the composition of the forest and make their environment a little cooler.

They do so by clearing away the fast-growing species to make more space for trees slower to climb towards the sunlight but with timber of higher density.

“Lo and behold, as we look at numbers of elephants in a forest and we look at the composition of forest over time, we find that the proportion of trees with high-density wood is higher in forests with elephants,” said Stephen Blake of St Louis University in the US, one of the authors.

“The simulation found that the slow-growing plant species survive better when elephants are present. These species aren’t eaten by elephants and, over time, the forest becomes dominated by these slow-growing species. Wood (lignin) has a carbon backbone, meaning it has a large number of carbon molecules in it.

“Slow-growing high wood-density species contain more carbon molecules per unit volume than fast-growing low wood-density species. As the elephants ‘thin’ the forest, they increase the number of slow-growing trees and the forest is capable of storing more carbon.”

Support for Gaia

The finding is consistent with the Gaia theory of earth system science: that life unconsciously but collectively tends to work in ways that keep the planet’s atmosphere stable and the planetary temperatures within comfortable boundaries.

So far humans are the most conspicuous exception to this rule. Biologists have wondered about the contribution of the mega-herbivores: in this one case, it seems that forest elephants are good for the forest and good for climate control.

The finding is also consistent with an argument put by conservationists, biologists and climate scientists: the healthiest and most efficient forests at absorbing atmospheric carbon are those that are home to the richest levels of biodiversity – that is, forests that remain natural wilderness.

Biologists and conservationists talk a lot about “ecosystem services” and “natural capital”: that is, the contribution of the natural world,  directly or indirectly, to human wealth. The researchers put a cash value on the carbon contribution of the African forest elephants: they perform a carbon storage service of $43 bn.

“The sad reality is that humanity is doing its best to rid the planet of elephants as quickly as it can,” said Dr Blake. “Forest elephants are rapidly declining and facing extinction. From a climate perspective, all of their positive effect on carbon and their myriad other ecological roles as forest gardeners and engineers will be lost.” – Climate News Network

Elephants may throw their weight around, but they pay their dues to the environment: they help the great forests store ever more carbon.

LONDON, 30 July, 2019 – Like humans, all social animals exploit, disturb and alter their natural environment. Biologists have just identified at least one species, elephants, that – in the course of bulldozing their way through the undergrowth and destroying young trees – actually make the forest more efficient at storing carbon and thus containing global heating.

The African forest elephant Loxodonta cyclotis browses upon and uproots young trees with stems smaller than 30cms and deposits the digested foliage as fertiliser, rich in seeds for the next generation of saplings.

Researchers from Italy, France, Brazil and the US report in the journal Nature Geoscience that this simple act – performed by perhaps one elephant in one square kilometre of forest – actually adds to the biomass locked in the remaining timber at the rate of by between 26 and 60 tonnes per hectare.

And if these ancient mega-herbivores were not crashing through the forest, consuming young trees, the forest would be home to 7% less biomass in the form of dense timber.

Forest elephants, the same scientists say, are rapidly declining in numbers. The researchers had been studying the species for years, and devised a mathematical model of their impact on the environment that supported them.

“Humanity is doing its best to rid the planet of elephants as quickly as it can. Forest elephants are facing extinction. All of their positive effect on carbon and their roles as forest gardeners and engineers will be lost”

Humans convert forest to farmland and increase the levels of carbon dioxide and other greenhouse gases that fuel global heating and the climate emergency. Forest elephants, on the other hand, simply alter the composition of the forest and make their environment a little cooler.

They do so by clearing away the fast-growing species to make more space for trees slower to climb towards the sunlight but with timber of higher density.

“Lo and behold, as we look at numbers of elephants in a forest and we look at the composition of forest over time, we find that the proportion of trees with high-density wood is higher in forests with elephants,” said Stephen Blake of St Louis University in the US, one of the authors.

“The simulation found that the slow-growing plant species survive better when elephants are present. These species aren’t eaten by elephants and, over time, the forest becomes dominated by these slow-growing species. Wood (lignin) has a carbon backbone, meaning it has a large number of carbon molecules in it.

“Slow-growing high wood-density species contain more carbon molecules per unit volume than fast-growing low wood-density species. As the elephants ‘thin’ the forest, they increase the number of slow-growing trees and the forest is capable of storing more carbon.”

Support for Gaia

The finding is consistent with the Gaia theory of earth system science: that life unconsciously but collectively tends to work in ways that keep the planet’s atmosphere stable and the planetary temperatures within comfortable boundaries.

So far humans are the most conspicuous exception to this rule. Biologists have wondered about the contribution of the mega-herbivores: in this one case, it seems that forest elephants are good for the forest and good for climate control.

The finding is also consistent with an argument put by conservationists, biologists and climate scientists: the healthiest and most efficient forests at absorbing atmospheric carbon are those that are home to the richest levels of biodiversity – that is, forests that remain natural wilderness.

Biologists and conservationists talk a lot about “ecosystem services” and “natural capital”: that is, the contribution of the natural world,  directly or indirectly, to human wealth. The researchers put a cash value on the carbon contribution of the African forest elephants: they perform a carbon storage service of $43 bn.

“The sad reality is that humanity is doing its best to rid the planet of elephants as quickly as it can,” said Dr Blake. “Forest elephants are rapidly declining and facing extinction. From a climate perspective, all of their positive effect on carbon and their myriad other ecological roles as forest gardeners and engineers will be lost.” – Climate News Network