Tag Archives: Agriculture

A second US Dust Bowl would hit world food stocks

When the US Great Plains are hit again by sustained drought, the world’s food stocks will feel the heat.

LONDON, 27 March, 2020 – The next time the fertile soils of North America turn to dust, the consequences will hit food stocks worldwide.

Within four years of a climate crisis of the kind that fired John Steinbeck’s 1939 masterpiece The Grapes of Wrath, the US would have consumed almost all its grain reserves.

And the ripple effects would be felt in all those countries to which America normally exports grain. That is because America feeds much of the world: in a good year, the US exports wheat with an energy value of more than 90 trillion kilocalories. The collapse of farmland into wasteland on the scale that inspired John Steinbeck could reduce this over a four-year period to around 50 trillion kcal.

Worldwide, global wheat reserves would fall by 31% in the first year, and four years on somewhere between 36 and 52 countries would have consumed three-fourths of their own reserves. Food prices would rise around the planet.

“In today’s system of global food trade, disruptions are not bound by borders. Shocks to production are expected to affect trade partners who depend on imports for their domestic food supply,” said Alison Heslin, a climate scientist at Columbia University in the US.

“Accessing food reserves can, for a time, buffer populations from trade-induced supply shortages, but as reserves deplete, people are at risk of food shortages”

“Our results remind us that mitigating climate risks requires accounting not only for the direct effects of climate change, like local extreme weather events, but also the climate impacts which travel through our interconnected system of global trade.”

By some time in the mid-century, most of the US will be between 1.5°C to 2°C warmer. Researchers have already warned that the border between the arid western states and the more fertile mid-western plains has shifted to the east.

There have been repeated warnings that as global average temperatures rise, in response to ever greater use of fossil fuels, the US will become increasingly vulnerable to climate extremes, including megadroughts. Drought is already becoming the “new normal” for Californians, and the fertility of the Great Plains is in any case vulnerable to human changes to a natural landscape.

A succession of droughts of the kind that turned the farmland of Kansas and Oklahoma into a devastated landscape, and turned thousands of Americans into climate refugees, would not necessarily now mean the onset of regional famine.

Dr Heslin and her colleagues report in the journal Frontiers in Sustainable Food Systems that they contemplated the likelihood of a four-year drought of the kind that created the notorious 1930s Dust Bowl, and then examined the possible impact on world trade systems.

Yields and nutrition affected

Just one such climate event could hit hard those nations that rely on food imports, but even the other great grain-producing countries – among them China, India, Iran, Canada, Russia, Morocco, Australia and Egypt – would see their reserves fall.

The climate crisis is in any case a threat to the world’s supper tables. There has been repeated evidence that food output will inevitably be at risk in a warming world. With higher temperatures, yields will be reduced and with higher atmospheric levels of carbon dioxide that warm the planet, nutrition levels of many staples are expected to fall.

The researchers factored in none of these things. They supposed that a climate catastrophe that paralleled the Dust Bowl era would occur only in the US, and found that, despite strain, the world’s markets could probably cope.

But other studies have repeatedly found that the potential for climate catastrophe and massive crop failure to strike in more than one region at any one time are increasing, with ominous consequences for world food security.

“In the context of food security, we show that accessing food reserves can, for a time, buffer populations from trade-induced supply shortages,” said Dr Heslin, “but as reserves deplete, people are at risk of food shortages.” – Climate News Network

When the US Great Plains are hit again by sustained drought, the world’s food stocks will feel the heat.

LONDON, 27 March, 2020 – The next time the fertile soils of North America turn to dust, the consequences will hit food stocks worldwide.

Within four years of a climate crisis of the kind that fired John Steinbeck’s 1939 masterpiece The Grapes of Wrath, the US would have consumed almost all its grain reserves.

And the ripple effects would be felt in all those countries to which America normally exports grain. That is because America feeds much of the world: in a good year, the US exports wheat with an energy value of more than 90 trillion kilocalories. The collapse of farmland into wasteland on the scale that inspired John Steinbeck could reduce this over a four-year period to around 50 trillion kcal.

Worldwide, global wheat reserves would fall by 31% in the first year, and four years on somewhere between 36 and 52 countries would have consumed three-fourths of their own reserves. Food prices would rise around the planet.

“In today’s system of global food trade, disruptions are not bound by borders. Shocks to production are expected to affect trade partners who depend on imports for their domestic food supply,” said Alison Heslin, a climate scientist at Columbia University in the US.

“Accessing food reserves can, for a time, buffer populations from trade-induced supply shortages, but as reserves deplete, people are at risk of food shortages”

“Our results remind us that mitigating climate risks requires accounting not only for the direct effects of climate change, like local extreme weather events, but also the climate impacts which travel through our interconnected system of global trade.”

By some time in the mid-century, most of the US will be between 1.5°C to 2°C warmer. Researchers have already warned that the border between the arid western states and the more fertile mid-western plains has shifted to the east.

There have been repeated warnings that as global average temperatures rise, in response to ever greater use of fossil fuels, the US will become increasingly vulnerable to climate extremes, including megadroughts. Drought is already becoming the “new normal” for Californians, and the fertility of the Great Plains is in any case vulnerable to human changes to a natural landscape.

A succession of droughts of the kind that turned the farmland of Kansas and Oklahoma into a devastated landscape, and turned thousands of Americans into climate refugees, would not necessarily now mean the onset of regional famine.

Dr Heslin and her colleagues report in the journal Frontiers in Sustainable Food Systems that they contemplated the likelihood of a four-year drought of the kind that created the notorious 1930s Dust Bowl, and then examined the possible impact on world trade systems.

Yields and nutrition affected

Just one such climate event could hit hard those nations that rely on food imports, but even the other great grain-producing countries – among them China, India, Iran, Canada, Russia, Morocco, Australia and Egypt – would see their reserves fall.

The climate crisis is in any case a threat to the world’s supper tables. There has been repeated evidence that food output will inevitably be at risk in a warming world. With higher temperatures, yields will be reduced and with higher atmospheric levels of carbon dioxide that warm the planet, nutrition levels of many staples are expected to fall.

The researchers factored in none of these things. They supposed that a climate catastrophe that paralleled the Dust Bowl era would occur only in the US, and found that, despite strain, the world’s markets could probably cope.

But other studies have repeatedly found that the potential for climate catastrophe and massive crop failure to strike in more than one region at any one time are increasing, with ominous consequences for world food security.

“In the context of food security, we show that accessing food reserves can, for a time, buffer populations from trade-induced supply shortages,” said Dr Heslin, “but as reserves deplete, people are at risk of food shortages.” – Climate News Network

Regional nuclear war could bring global hunger

Limited nuclear war could certainly slow planetary heating. But it could also cast a lethal wider chill, unleashing global hunger.

LONDON, 25 March, 2020 – If a limited nuclear war is not already a contradiction in terms, it could still prove far wider in scope, inflicting global hunger without limit.

US and European scientists have worked out how to dramatically lower planetary temperatures and reduce rainfall. They do not recommend their latest study of explosive geo-engineering as a way of addressing the climate crisis, warning instead that even a very limited nuclear war between two nations could devastate global harvests.

Just possibly, they say, it could claim more lives in the non-combatant nations than in the incinerated cities of the warring states.

“Our results add to the reasons that nuclear weapons must be eliminated because, if they exist, they can be used with tragic consequences for the world,” said Alan Robock of Rutgers University in the US.

“As horrible as the direct effects of nuclear weapons would be, more people could die outside the target areas due to famine.”

Hypothetical studies like this can help illustrate the vulnerability of world food stocks to climate change, the scale on which climate change can and may yet happen, and the difficulties inherent in any attempts at global technofix.

No winners

They also demonstrate that – for everybody on the planet – nuclear war of any kind could be a confrontation with no winners.

It is a given among climate scientists that violent volcanic eruptions which hurl sulphate aerosols and soot particles into the stratosphere can suppress global average temperatures over a period of years.

That is why, as greenhouse gas emissions from fossil fuel use build up in the atmosphere, and annual average global temperatures continue to climb, researchers repeatedly revisit the argument for deliberately and systematically darkening the skies to blot out some of the incoming sunlight and reduce global heating.

But again and again, scientists have used their war game models of potential nuclear battle to highlight the hazards of darkening the skies precipitately in a nuclear exchange.

The latest is published in the Proceedings of the National Academy of Sciences and calculates that any encounter that uses less than even 1% of the world’s nuclear arsenal could trigger the worst global food losses in modern history, and disrupt harvests and food trade worldwide for about a decade.

“Major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global”

The impact of this would turn out to be even worse than the impact of human-made climate change by the end of the century.

“We now know that nuclear conflict would not be just a terrible tragedy in the region where it happens – it is also an underestimated risk for food security,” said Jonas Jägermeyr of Germany’s Potsdam Institute for Climate Impact Research.

“We find severe losses in agricultural production, but more importantly we evaluate trade repercussions affecting local food availability. It turns out that major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global, because we all depend on the same climate system.”

The regional crisis, in this case, would be a nuclear exchange involving perhaps 100 Hiroshima-scale warheads over the most densely populated cities of India and Pakistan, neighbouring states with both nuclear weapons and a history of hostility.

The exchange could put five million tonnes of smoke and soot into the upper atmosphere, where the jet stream winds would start to sweep it around the hemisphere. Global average temperatures would drop by 1.8°C, and rainfall would be reduced by 8% for at least five years.

Fossil fuel combustion over the last two centuries has already warmed the planet by around 1°C, to threaten world harvests. But until now, nobody has calculated the cost of a sudden plunge in temperatures.

Four years to zero

The researchers did not factor in the losses in the combatant countries, nor the worldwide damage from radioactive fallout. They just considered the impact on all the other nations that stayed neutral.

In the first year, stocks of maize, wheat, rice and soy in the world’s granaries would buffer the immediate losses. But within four years, global grain stocks would be at almost zero and international trade systems would come to a stop.

Maize and wheat supplies would shrink by at least 20% in more than 70 countries, with about 1.3bn people. By the fourth year, 132 out of 153 countries, home to 5bn people, would experience shortages higher than 10%. Corn production in the US and Canada – source of 40% of all maize – would drop by 17.5% by the fifth year of darkened skies.

The scientists based their calculations on only 5 million tonnes of soot and ash in the stratosphere. In fact, a war between the two nations could yield 16 million tonnes of soot, and be three times as devastating.

And anyone who thinks that at least global warming would have been brought to a halt can think again. After about a decade, the researchers say, global temperatures would again start to surge. – Climate News Network

Limited nuclear war could certainly slow planetary heating. But it could also cast a lethal wider chill, unleashing global hunger.

LONDON, 25 March, 2020 – If a limited nuclear war is not already a contradiction in terms, it could still prove far wider in scope, inflicting global hunger without limit.

US and European scientists have worked out how to dramatically lower planetary temperatures and reduce rainfall. They do not recommend their latest study of explosive geo-engineering as a way of addressing the climate crisis, warning instead that even a very limited nuclear war between two nations could devastate global harvests.

Just possibly, they say, it could claim more lives in the non-combatant nations than in the incinerated cities of the warring states.

“Our results add to the reasons that nuclear weapons must be eliminated because, if they exist, they can be used with tragic consequences for the world,” said Alan Robock of Rutgers University in the US.

“As horrible as the direct effects of nuclear weapons would be, more people could die outside the target areas due to famine.”

Hypothetical studies like this can help illustrate the vulnerability of world food stocks to climate change, the scale on which climate change can and may yet happen, and the difficulties inherent in any attempts at global technofix.

No winners

They also demonstrate that – for everybody on the planet – nuclear war of any kind could be a confrontation with no winners.

It is a given among climate scientists that violent volcanic eruptions which hurl sulphate aerosols and soot particles into the stratosphere can suppress global average temperatures over a period of years.

That is why, as greenhouse gas emissions from fossil fuel use build up in the atmosphere, and annual average global temperatures continue to climb, researchers repeatedly revisit the argument for deliberately and systematically darkening the skies to blot out some of the incoming sunlight and reduce global heating.

But again and again, scientists have used their war game models of potential nuclear battle to highlight the hazards of darkening the skies precipitately in a nuclear exchange.

The latest is published in the Proceedings of the National Academy of Sciences and calculates that any encounter that uses less than even 1% of the world’s nuclear arsenal could trigger the worst global food losses in modern history, and disrupt harvests and food trade worldwide for about a decade.

“Major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global”

The impact of this would turn out to be even worse than the impact of human-made climate change by the end of the century.

“We now know that nuclear conflict would not be just a terrible tragedy in the region where it happens – it is also an underestimated risk for food security,” said Jonas Jägermeyr of Germany’s Potsdam Institute for Climate Impact Research.

“We find severe losses in agricultural production, but more importantly we evaluate trade repercussions affecting local food availability. It turns out that major breadbasket regions would cut exports, leaving countries worldwide short of supplies. A regional crisis would become global, because we all depend on the same climate system.”

The regional crisis, in this case, would be a nuclear exchange involving perhaps 100 Hiroshima-scale warheads over the most densely populated cities of India and Pakistan, neighbouring states with both nuclear weapons and a history of hostility.

The exchange could put five million tonnes of smoke and soot into the upper atmosphere, where the jet stream winds would start to sweep it around the hemisphere. Global average temperatures would drop by 1.8°C, and rainfall would be reduced by 8% for at least five years.

Fossil fuel combustion over the last two centuries has already warmed the planet by around 1°C, to threaten world harvests. But until now, nobody has calculated the cost of a sudden plunge in temperatures.

Four years to zero

The researchers did not factor in the losses in the combatant countries, nor the worldwide damage from radioactive fallout. They just considered the impact on all the other nations that stayed neutral.

In the first year, stocks of maize, wheat, rice and soy in the world’s granaries would buffer the immediate losses. But within four years, global grain stocks would be at almost zero and international trade systems would come to a stop.

Maize and wheat supplies would shrink by at least 20% in more than 70 countries, with about 1.3bn people. By the fourth year, 132 out of 153 countries, home to 5bn people, would experience shortages higher than 10%. Corn production in the US and Canada – source of 40% of all maize – would drop by 17.5% by the fifth year of darkened skies.

The scientists based their calculations on only 5 million tonnes of soot and ash in the stratosphere. In fact, a war between the two nations could yield 16 million tonnes of soot, and be three times as devastating.

And anyone who thinks that at least global warming would have been brought to a halt can think again. After about a decade, the researchers say, global temperatures would again start to surge. – Climate News Network

Vegetation holds key to climate control

New studies shine a light on the intricate relationship in which climate affects vegetation, which in turn impacts on the global climate.

LONDON, 23 March, 2020 − Here’s an easy way to warm the tropics even further: just fell some rainforest, and the local temperatures will soar by at least a degree Celsius, showing the role played by vegetation.

There is also a good way to temper the summer heat of temperate Europe: just abandon some farmland, leave it to go wild and leafy, and the thermometer will drop by perhaps as much as 1°C.

And, paradoxically, there is even a leafy way to warm the Arctic: burn lots of fossil fuels, precipitate a climate crisis, advance the growth of spring foliage by three weeks or so, and check the thermometer. The region will be even warmer, just because the Arctic has become greener.

These apparently contradictory findings are, more than anything else, a reminder that the pas de deux of vegetation and atmosphere is complex, intricate and finely balanced. Nor are they inconsistent, as each study simply takes the measure of vegetation change on local or regional climate.

Reducing heating

In sum, and for the time being, the big picture remains that forests absorb carbon, and more vigorous growth absorbs more carbon to significantly reduce the average rates of global heating across the entire planet.

In effect, all three studies demonstrate that vegetation moderates extremes of temperature in three climate zones.

Brazilian scientists report in the Public Library of Science journal
PLOS One that they subdivided a tract of the Atlantic rainforest in the southeast of the nation into 120-metre squares, measured those segments that had been part-felled or clear-felled, and read the local land surface temperatures.

If even one fourth of a hectare had been cleared, the local temperature went up by 1°C. If the entire hectare had been razed, the rise could be as high as 4°C.

Risk to trees

The Atlantic rainforest is one of the world’s richest ecosystems: it covers 15% of Brazil, but 72% of the population lives there. It holds seven of Brazil’s nine largest drainage basins, delivers water to 130 million people and its dams provide 60% of the nation’s hydroelectric power.

Between 2017 and 2018, around 113 square kilometres of this forest was cleared. As temperatures continue to rise, some tree species could be at risk.

“We don’t have enough data to predict how long it will take, but in the long run, rising temperatures in Atlantic rainforest fragments could certainly influence the survival of tree species in the forest, albeit some species more than others,” says one of the report’s authors, Carlos Joly, professor of plant biology at the University of Campinas in Brazil.

“The forest is extremely important to maintaining milder temperatures on the local and regional scale. Changes in its function could disrupt this type of ecosystem service.

“Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change”

“The Atlantic rainforest doesn’t produce water but it protects the springs and permits the storage of water in reservoirs for consumption, power generation, agricultural irrigation and fishing, among other activities.”

By contrast, Europeans have achieved a local 1°C cooling simply by abandoning farmland that was no longer sufficiently productive.

Between 1992 and 2014, the European Space Agency satellites compiled detailed maps of the continents, measuring the extents of evergreen needle-leaf forest, deciduous broadleaf woodland, open shrubland, crop fields, urban and built-up areas, wetlands, peatlands, grassland and mosaic areas of crops and wilderness.

In those 24 years – partly because of dramatic political changes that followed the collapse of the Soviet Union – around 25 million hectares of farmland was abandoned.

Drying wetlands

Although farmland was colonised elsewhere, the continent was left with 5 million hectares – an area the size of Switzerland – to be colonised by trees and other natural foliage, European scientists report in the journal Nature Communications.

Overall, the loss of cropland in Western Europe was associated with a drop of 1° in spring and summer. In eastern and northeastern Europe, however, temperatures rose by as much as 1°C, partly because what had once been wetlands began to dry.

“We are already at a mean warming of about 1.8°C on the land, and we will be about 3°C on the land even if we are successful at stabilising the average global temperature at 1.5°C,” says one of the report’s authors, Francesco Cherubini, director of the Industrial Ecology Programme at the Norwegian University of Science and Technology.

“That means we take action to adapt to a warming climate, and land use planning is one action that can bring local cooling benefits.”

The Arctic greens

“The message is quite clear. Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change. And by improving agricultural systems, we can free up land for multiple uses.”

But while Europe is changing, and forest in the tropics is being lost, the Arctic is becoming greener: as temperatures rise, vegetation has moved northwards and spring has arrived ever earlier, and growing seasons have lasted longer.

The science of measurement of seasonal change in plant and animal behaviour is called phenology. Chinese and US scientists report in Nature Climate Change that they looked at computer models of vegetation change and factored in the numbers: on average, in the last four decades, leaf-out has advanced by an average of more than four days a decade, and in some cases up to 12 days a decade.

That means snow-covered ground has retreated, and green leaves have moved northwards, and become denser.

Climate feedback

Snow reflects solar radiation, and darker colours absorb it. That means that local landscapes in the north have tended to become even warmer with each decade.

In the Canadian archipelago, the air has been measured at 0.7°C warmer, and parts of Siberia and the Tibetan plateau − far from any leafy canopy − have warmed by 0.4°C and 0.3°C respectively because advanced leaf-out further south means more water vapour, which moves north to change patterns of cloud cover and snowfall.

Climate scientists see this as positive feedback: climate change begets even faster climate change. Global heating tends to accelerate. Climate change affects vegetation, which in turn affects climate yet further.

“Positive feedback loops between climate and spring leaf phenology is likely to amplify in the northern high latitudes,” says Gensuo Jia, one of the researchers from the Chinese Academy of Sciences. “The impact of vegetation change on climate is profound in spring.” − Climate News Network

New studies shine a light on the intricate relationship in which climate affects vegetation, which in turn impacts on the global climate.

LONDON, 23 March, 2020 − Here’s an easy way to warm the tropics even further: just fell some rainforest, and the local temperatures will soar by at least a degree Celsius, showing the role played by vegetation.

There is also a good way to temper the summer heat of temperate Europe: just abandon some farmland, leave it to go wild and leafy, and the thermometer will drop by perhaps as much as 1°C.

And, paradoxically, there is even a leafy way to warm the Arctic: burn lots of fossil fuels, precipitate a climate crisis, advance the growth of spring foliage by three weeks or so, and check the thermometer. The region will be even warmer, just because the Arctic has become greener.

These apparently contradictory findings are, more than anything else, a reminder that the pas de deux of vegetation and atmosphere is complex, intricate and finely balanced. Nor are they inconsistent, as each study simply takes the measure of vegetation change on local or regional climate.

Reducing heating

In sum, and for the time being, the big picture remains that forests absorb carbon, and more vigorous growth absorbs more carbon to significantly reduce the average rates of global heating across the entire planet.

In effect, all three studies demonstrate that vegetation moderates extremes of temperature in three climate zones.

Brazilian scientists report in the Public Library of Science journal
PLOS One that they subdivided a tract of the Atlantic rainforest in the southeast of the nation into 120-metre squares, measured those segments that had been part-felled or clear-felled, and read the local land surface temperatures.

If even one fourth of a hectare had been cleared, the local temperature went up by 1°C. If the entire hectare had been razed, the rise could be as high as 4°C.

Risk to trees

The Atlantic rainforest is one of the world’s richest ecosystems: it covers 15% of Brazil, but 72% of the population lives there. It holds seven of Brazil’s nine largest drainage basins, delivers water to 130 million people and its dams provide 60% of the nation’s hydroelectric power.

Between 2017 and 2018, around 113 square kilometres of this forest was cleared. As temperatures continue to rise, some tree species could be at risk.

“We don’t have enough data to predict how long it will take, but in the long run, rising temperatures in Atlantic rainforest fragments could certainly influence the survival of tree species in the forest, albeit some species more than others,” says one of the report’s authors, Carlos Joly, professor of plant biology at the University of Campinas in Brazil.

“The forest is extremely important to maintaining milder temperatures on the local and regional scale. Changes in its function could disrupt this type of ecosystem service.

“Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change”

“The Atlantic rainforest doesn’t produce water but it protects the springs and permits the storage of water in reservoirs for consumption, power generation, agricultural irrigation and fishing, among other activities.”

By contrast, Europeans have achieved a local 1°C cooling simply by abandoning farmland that was no longer sufficiently productive.

Between 1992 and 2014, the European Space Agency satellites compiled detailed maps of the continents, measuring the extents of evergreen needle-leaf forest, deciduous broadleaf woodland, open shrubland, crop fields, urban and built-up areas, wetlands, peatlands, grassland and mosaic areas of crops and wilderness.

In those 24 years – partly because of dramatic political changes that followed the collapse of the Soviet Union – around 25 million hectares of farmland was abandoned.

Drying wetlands

Although farmland was colonised elsewhere, the continent was left with 5 million hectares – an area the size of Switzerland – to be colonised by trees and other natural foliage, European scientists report in the journal Nature Communications.

Overall, the loss of cropland in Western Europe was associated with a drop of 1° in spring and summer. In eastern and northeastern Europe, however, temperatures rose by as much as 1°C, partly because what had once been wetlands began to dry.

“We are already at a mean warming of about 1.8°C on the land, and we will be about 3°C on the land even if we are successful at stabilising the average global temperature at 1.5°C,” says one of the report’s authors, Francesco Cherubini, director of the Industrial Ecology Programme at the Norwegian University of Science and Technology.

“That means we take action to adapt to a warming climate, and land use planning is one action that can bring local cooling benefits.”

The Arctic greens

“The message is quite clear. Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change. And by improving agricultural systems, we can free up land for multiple uses.”

But while Europe is changing, and forest in the tropics is being lost, the Arctic is becoming greener: as temperatures rise, vegetation has moved northwards and spring has arrived ever earlier, and growing seasons have lasted longer.

The science of measurement of seasonal change in plant and animal behaviour is called phenology. Chinese and US scientists report in Nature Climate Change that they looked at computer models of vegetation change and factored in the numbers: on average, in the last four decades, leaf-out has advanced by an average of more than four days a decade, and in some cases up to 12 days a decade.

That means snow-covered ground has retreated, and green leaves have moved northwards, and become denser.

Climate feedback

Snow reflects solar radiation, and darker colours absorb it. That means that local landscapes in the north have tended to become even warmer with each decade.

In the Canadian archipelago, the air has been measured at 0.7°C warmer, and parts of Siberia and the Tibetan plateau − far from any leafy canopy − have warmed by 0.4°C and 0.3°C respectively because advanced leaf-out further south means more water vapour, which moves north to change patterns of cloud cover and snowfall.

Climate scientists see this as positive feedback: climate change begets even faster climate change. Global heating tends to accelerate. Climate change affects vegetation, which in turn affects climate yet further.

“Positive feedback loops between climate and spring leaf phenology is likely to amplify in the northern high latitudes,” says Gensuo Jia, one of the researchers from the Chinese Academy of Sciences. “The impact of vegetation change on climate is profound in spring.” − Climate News Network

India finally takes climate crisis seriously

India

With financial losses and a heavy death toll from climate-related disasters constantly rising, India is at last focusing on the dangers of global warming.

NEW DELHI, 18 March, 2020 – After decades of concentrating on economic development and insisting that global warming was mainly a problem for the more industrially-developed countries to solve, Indian industry is at last facing up to dangers posed to its own future by climate change.

More than 40 organisations – including major industrial corporations such as Tata, Godrej, Mahindra and Wipro through their various philanthropic organisations, plus academic thinktanks, business schools, aid agencies, and the government’s scientific advisers – have come together to co-operate on climate solutions.

The umbrella organisation, called the India Climate Collaborative (ICC), also includes international institutions such as Bloomberg Philanthropies and the MacArthur Foundation.

Climate disasters

Although there have been many individual initiatives in India on climate change, and there has been government support for renewables, particularly solar power, efforts so far have been fragmented.

State and national governments, individual departments, businesses, non-governmental organisations, and academics have all worked separately, and sometimes in opposition to each other.

The scale of the task facing India is underlined by the fact it has taken two years to get the ICC up and running. However, with India ranked fifth in the Global Climate Risk Index 2019 and facing one climate disaster after another – sometimes simultaneous extreme weather events – these organisations have agreed that the issue can no longer be ignored.

“It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own.”

Commenting on the launch, Anand Mahindra, chairman of the Mahindra Group, said: “It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own. Business, government and philanthropy must collaborate within and among themselves themselves to drive results quickly and at scale. The India Climate Collaborative can make this happen.”

The ICC has identified three critical risk factors for India:

The first is that an astonishing 700 million people are still dependent on agriculture and they are the most vulnerable to an erratic climate.

The second is that around the country’s approximately 7,500 km coastline are several major cities. Many of these important economic hubs, which include all the country’s main ports, are a metre or less above current sea level.

Third, even with the increasingly rigorous focus on renewable energy, there is continued heavy reliance on fossil fuels for producing electricity, which is still in short supply.

According to the India Philanthropy Report 2019, private funds in India, mostly raised through non-government philanthropy, provided about Rs 70,000 crore ($9.5 billion) in 2018 for the social sector, mostly focusing on key aspects such as health, education and agriculture.

However, only a small proportion was spent on climate change, and so the ICC aims to raise the current spending of about 7 % to at least 20 %.

Another hindrance to India’s many plans for adaptation or mitigation is the lack of capacity among government departments. Something as basic as preparing workable proposals for funding action is a tough task for many state governments.

The ICC plans to conduct technical training as “there are gaps to be filled to take care of the talent shortfall, and there is overall lack of capacity.”

One of the first training exercises is planned for state-level bureaucrats from Rajasthan, Madhya Pradesh, Chhattisgarh, Maharashtra, and in the western state of Rajasthan.

Cross-purposes

There is some concern that while the India government is represented on the ICC by Prof K. VijayRaghavan, its Principal Scientific Adviser, there is no representation from the Ministry of Environment, Forests & Climate Change (MoEFCC), which represents the country at the climate talks.

Critics claim that this is particularly worrying because the various government departments are already seen as not working together, or often working at cross-purposes.

There are also fears that there is lack of community involvement, particularly the farmers, who are the largest single group most affected by adverse weather conditions caused by climate change.

However, Shloka Nath, executive director of the ICC and head of Sustainability and Special Projects at the Tata Trust, says the ICC plans to work with the MoEFCC to reach representatives of civil society and bring them into the process.

“It is through them [the ministry] that we plan to reach out to the community,” she says. “The people will be very much involved.”

Despite these shortcomings, Chandra Bhushan, President and CEO of the International Forum for Environment, Sustainability and Technology (iFOREST), welcomes the idea. He says: “It is for the first time that Indian companies are understanding climate change and willing to invest in it.” – Climate News Network

With financial losses and a heavy death toll from climate-related disasters constantly rising, India is at last focusing on the dangers of global warming.

NEW DELHI, 18 March, 2020 – After decades of concentrating on economic development and insisting that global warming was mainly a problem for the more industrially-developed countries to solve, Indian industry is at last facing up to dangers posed to its own future by climate change.

More than 40 organisations – including major industrial corporations such as Tata, Godrej, Mahindra and Wipro through their various philanthropic organisations, plus academic thinktanks, business schools, aid agencies, and the government’s scientific advisers – have come together to co-operate on climate solutions.

The umbrella organisation, called the India Climate Collaborative (ICC), also includes international institutions such as Bloomberg Philanthropies and the MacArthur Foundation.

Climate disasters

Although there have been many individual initiatives in India on climate change, and there has been government support for renewables, particularly solar power, efforts so far have been fragmented.

State and national governments, individual departments, businesses, non-governmental organisations, and academics have all worked separately, and sometimes in opposition to each other.

The scale of the task facing India is underlined by the fact it has taken two years to get the ICC up and running. However, with India ranked fifth in the Global Climate Risk Index 2019 and facing one climate disaster after another – sometimes simultaneous extreme weather events – these organisations have agreed that the issue can no longer be ignored.

“It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own.”

Commenting on the launch, Anand Mahindra, chairman of the Mahindra Group, said: “It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own. Business, government and philanthropy must collaborate within and among themselves themselves to drive results quickly and at scale. The India Climate Collaborative can make this happen.”

The ICC has identified three critical risk factors for India:

The first is that an astonishing 700 million people are still dependent on agriculture and they are the most vulnerable to an erratic climate.

The second is that around the country’s approximately 7,500 km coastline are several major cities. Many of these important economic hubs, which include all the country’s main ports, are a metre or less above current sea level.

Third, even with the increasingly rigorous focus on renewable energy, there is continued heavy reliance on fossil fuels for producing electricity, which is still in short supply.

According to the India Philanthropy Report 2019, private funds in India, mostly raised through non-government philanthropy, provided about Rs 70,000 crore ($9.5 billion) in 2018 for the social sector, mostly focusing on key aspects such as health, education and agriculture.

However, only a small proportion was spent on climate change, and so the ICC aims to raise the current spending of about 7 % to at least 20 %.

Another hindrance to India’s many plans for adaptation or mitigation is the lack of capacity among government departments. Something as basic as preparing workable proposals for funding action is a tough task for many state governments.

The ICC plans to conduct technical training as “there are gaps to be filled to take care of the talent shortfall, and there is overall lack of capacity.”

One of the first training exercises is planned for state-level bureaucrats from Rajasthan, Madhya Pradesh, Chhattisgarh, Maharashtra, and in the western state of Rajasthan.

Cross-purposes

There is some concern that while the India government is represented on the ICC by Prof K. VijayRaghavan, its Principal Scientific Adviser, there is no representation from the Ministry of Environment, Forests & Climate Change (MoEFCC), which represents the country at the climate talks.

Critics claim that this is particularly worrying because the various government departments are already seen as not working together, or often working at cross-purposes.

There are also fears that there is lack of community involvement, particularly the farmers, who are the largest single group most affected by adverse weather conditions caused by climate change.

However, Shloka Nath, executive director of the ICC and head of Sustainability and Special Projects at the Tata Trust, says the ICC plans to work with the MoEFCC to reach representatives of civil society and bring them into the process.

“It is through them [the ministry] that we plan to reach out to the community,” she says. “The people will be very much involved.”

Despite these shortcomings, Chandra Bhushan, President and CEO of the International Forum for Environment, Sustainability and Technology (iFOREST), welcomes the idea. He says: “It is for the first time that Indian companies are understanding climate change and willing to invest in it.” – Climate News Network

Schools for girls can help to answer climate crisis

Educating both halves of humankind seems a no-brainer. Schools for girls could transform climate protection and so much else.

LONDON, 28 February, 2020 − If you really want to tackle the climate emergency, there’s one simple but often forgotten essential: throw your weight behind schools for girls, and ensure adult women can rely on the chance of an education.

Obviously, in a world of differences, some people can do more to tackle the climate crisis than others. So it’s essential to recognise how much neglected potential exists among nearly half the human race.

But there’s a snag, and it’s a massive one: the women and girls who can do so much to avert global heating reaching disastrous levels need to be able to exercise their right to education.

Bold claims?  Project Drawdown is a group of researchers who believe that stopping global heating is possible, with solutions that exist today. To do this, they say, we must work together to achieve drawdown, the point when greenhouse gas levels in the atmosphere start to decline.

Educating girls has multiple benefits that go far beyond the individual and any particular society. It can also result in rapid and transformative change that affects the planet itself”

The project’s conclusions are startling − and positive. One is that educating girls works better to protect the climate than many technological solutions, vital though they are, and including several variants of renewable energy.

Yet, the group finds, girls and women suffer disproportionately from climate breakdown, and failures in access to education worsen this problem. After the horrendous 2004 tsunami, for example, an Oxfam report found that male survivors outnumbered women by almost 3:1 in Sri Lanka, Indonesia and India. Men were more likely to be able to swim, and women lost precious evacuation time trying to look after children and other relatives.

But given more power and say in how we adapt to and try to prevent global heating, the female half of humankind could make disproportionally positive contributions, the project says.

Using UN data, it suggests that educating girls could result in a reduction in greenhouse gas emissions of 51.48 gigatonnes by 2050. The UN Environment Programme says that total greenhouse gas emissions had reached a record high of 55.3 gigatonnes in 2018.

Multiple barriers

The Rapid Transition Alliance (RTA) is a UK-based organisation which argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C”.

It says that although access to education is a basic human right, across the world. girls continue to face multiple barriers based on their gender and its links to other factors such as age, ethnicity, poverty and disability.

But the RTA adds: “Research shows that for each intake of students, educating girls has multiple benefits that go far beyond the individual and any particular society. It can also result in rapid and transformative change that affects the planet itself.”

One example it cites is from Mali, in West Africa, where women with secondary education or higher have an average of 3 children, while those with no education have an average of 7 children.

Environmentalists’ failure

It says that while the UN currently thinks the world’s population will grow from 7.3 billion today to 9.7 bn by 2050, with most of the growth happening in developing countries, recent research shows that if girls’ education continues to expand, that number would total 2 billion fewer people by 2045.

It argues that it is not just politicians and the media who fail to focus on this grossly slewed access to education. The RTA says the environmental movement itself rarely makes connections between the education of girls and success in tackling climate change.

One example of conservation work being tied successfully to educating and empowering women it cites is the Andavadoaka clinic in Madagascar, which is funded by a British charity, Blue Ventures Conservation (BVC).

The link between population growth, the lack of family planning facilities and the increasing pressure on fragile natural resources prompted BVC to establish the clinic, which has been running for over a decade and is part of a wider programme serving 45,000 people. As well as the original clinic other projects have grown up that concentrate on specific economic and participation opportunities for women and girls.

Making a difference

In the least developed countries women make up almost half of the agricultural labour force, giving them a huge role in feeding the future population. But there is a massive gap between men and women in their control over land, their ability to obtain inputs and the pay they can expect.

Individual girls and women continue to make a massive difference, whether Greta Thunberg spurring action on climate change or Malala Yousafzai, shot for trying to attend school in Afghanistan, who was awarded the Nobel Peace Prize for her campaign for girls’ education.

Women who have climbed high up the political ladder have sometimes used their success to ensure that girls are taken seriously. Ellen Johnson Sirleaf, the first female president of an African country − Liberia − used her power to expand the quality of provision in pre-school and primary education by joining the Global Partnership for Education, and the former US First Lady, Michele Obama, spearheaded the Let Girls Learn organisation.

The Rapid Transition Alliance’s conclusion is short and simple: “Educating girls brings broad benefits to wider society as well improving efforts to tackle the climate emergency.” − Climate News Network

* * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

Educating both halves of humankind seems a no-brainer. Schools for girls could transform climate protection and so much else.

LONDON, 28 February, 2020 − If you really want to tackle the climate emergency, there’s one simple but often forgotten essential: throw your weight behind schools for girls, and ensure adult women can rely on the chance of an education.

Obviously, in a world of differences, some people can do more to tackle the climate crisis than others. So it’s essential to recognise how much neglected potential exists among nearly half the human race.

But there’s a snag, and it’s a massive one: the women and girls who can do so much to avert global heating reaching disastrous levels need to be able to exercise their right to education.

Bold claims?  Project Drawdown is a group of researchers who believe that stopping global heating is possible, with solutions that exist today. To do this, they say, we must work together to achieve drawdown, the point when greenhouse gas levels in the atmosphere start to decline.

Educating girls has multiple benefits that go far beyond the individual and any particular society. It can also result in rapid and transformative change that affects the planet itself”

The project’s conclusions are startling − and positive. One is that educating girls works better to protect the climate than many technological solutions, vital though they are, and including several variants of renewable energy.

Yet, the group finds, girls and women suffer disproportionately from climate breakdown, and failures in access to education worsen this problem. After the horrendous 2004 tsunami, for example, an Oxfam report found that male survivors outnumbered women by almost 3:1 in Sri Lanka, Indonesia and India. Men were more likely to be able to swim, and women lost precious evacuation time trying to look after children and other relatives.

But given more power and say in how we adapt to and try to prevent global heating, the female half of humankind could make disproportionally positive contributions, the project says.

Using UN data, it suggests that educating girls could result in a reduction in greenhouse gas emissions of 51.48 gigatonnes by 2050. The UN Environment Programme says that total greenhouse gas emissions had reached a record high of 55.3 gigatonnes in 2018.

Multiple barriers

The Rapid Transition Alliance (RTA) is a UK-based organisation which argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C”.

It says that although access to education is a basic human right, across the world. girls continue to face multiple barriers based on their gender and its links to other factors such as age, ethnicity, poverty and disability.

But the RTA adds: “Research shows that for each intake of students, educating girls has multiple benefits that go far beyond the individual and any particular society. It can also result in rapid and transformative change that affects the planet itself.”

One example it cites is from Mali, in West Africa, where women with secondary education or higher have an average of 3 children, while those with no education have an average of 7 children.

Environmentalists’ failure

It says that while the UN currently thinks the world’s population will grow from 7.3 billion today to 9.7 bn by 2050, with most of the growth happening in developing countries, recent research shows that if girls’ education continues to expand, that number would total 2 billion fewer people by 2045.

It argues that it is not just politicians and the media who fail to focus on this grossly slewed access to education. The RTA says the environmental movement itself rarely makes connections between the education of girls and success in tackling climate change.

One example of conservation work being tied successfully to educating and empowering women it cites is the Andavadoaka clinic in Madagascar, which is funded by a British charity, Blue Ventures Conservation (BVC).

The link between population growth, the lack of family planning facilities and the increasing pressure on fragile natural resources prompted BVC to establish the clinic, which has been running for over a decade and is part of a wider programme serving 45,000 people. As well as the original clinic other projects have grown up that concentrate on specific economic and participation opportunities for women and girls.

Making a difference

In the least developed countries women make up almost half of the agricultural labour force, giving them a huge role in feeding the future population. But there is a massive gap between men and women in their control over land, their ability to obtain inputs and the pay they can expect.

Individual girls and women continue to make a massive difference, whether Greta Thunberg spurring action on climate change or Malala Yousafzai, shot for trying to attend school in Afghanistan, who was awarded the Nobel Peace Prize for her campaign for girls’ education.

Women who have climbed high up the political ladder have sometimes used their success to ensure that girls are taken seriously. Ellen Johnson Sirleaf, the first female president of an African country − Liberia − used her power to expand the quality of provision in pre-school and primary education by joining the Global Partnership for Education, and the former US First Lady, Michele Obama, spearheaded the Let Girls Learn organisation.

The Rapid Transition Alliance’s conclusion is short and simple: “Educating girls brings broad benefits to wider society as well improving efforts to tackle the climate emergency.” − Climate News Network

* * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

A third of plants and animals risk mass extinction

As planetary temperatures rise, the chances of species survival lessen. Mass extinction is coming. The challenge is to measure the loss.

LONDON, 25 February, 2020 – Within 50 years, a third of all plant and animal species could be caught up in a mass extinction, as a consequence of climate change driven by ever-rising temperatures. What is new about this warning is the method, the precision, the timetable and the identification of a cause.

And – entirely felicitously – support for the prediction is backed by a series of separate studies of individual species survival in a world rapidly warming because of human commitment to fossil fuels.

Tiny marsupial insect-hunters in Australia could, on the evidence of direct experiment, fail to adapt to ever-higher thermometer readings, and quietly disappear.

As frogs and other amphibians in Central America are wiped out by invasive fungal pathogens – perhaps assisted by climate change – a set of snake species that prey upon them have also become increasingly at risk.

And directly because the Arctic is warming faster than anywhere else on the planet, the polar bears of Baffin Bay in Canada are thinner than they were 30 years ago, and have fewer cubs. That’s because Ursus maritimus hunts its seal prey on the sea ice. And as the winter ice forms later and melts earlier each decade, the bears have begun to go hungry.

Biologists, ecologists and conservationists have been warning for four decades that planet Earth could be on the edge of a sixth Great Extinction, as a simple consequence of the growth of human numbers and human economies, and the parallel destruction of natural habitat.

They have also repeatedly warned that climate change driven by human-triggered planetary heating would inevitably accelerate the losses.

Repeated surveys

But researchers from the University of Arizona have now confirmed the climate connection by using another approach: they decided to look directly at the numbers. They report in the Proceedings of the National Academy of Sciences that they selected data from 538 species and 581 places around the globe: they chose these numbers and sites because they could be sure that specific animal and plant species had been repeatedly surveyed over intervals of at least a decade.

They also factored in the changes in local climate conditions at each site, and isolated 19 different variables in the climate machine to work out what it could be about global heating that would directly pose the most significant threats. They also considered the options open to their chosen species: could these, for instance, migrate easily, or tolerate longer periods of extreme heat?

And then they did the calculations. They found that 50% of the chosen species went extinct locally if temperatures rose by more than 0.5°C, and 95% if the mercury reached an additional 2.9°C.

In the last century, the planet has warmed by 1°C above the average for most of human history and prehistory. Right now, thanks to ever-increasing fossil fuel use and continued forest destruction, the planet could be more than 3°C warmer by 2100.

But the researchers also found that the climate factor most closely linked to the extinction of any population was simply the maximum annual count the hottest daily highs in summer.

This also implies that extinction could be two or even four times as frequent in the tropics as in the temperate zones: it is in the tropics – the reefs, the rainforests, the wetlands and savannahs – that the world’s species are concentrated.

Antechinis flavipes, or yellow-footed antechinus, is a native Australian: it is not exactly a mole, or a mouse, or a shrew. It is a little marsupial carnivore with an unhappy love life: males mate in a frenzy and then tend to die from stress-related immune system breakdown.

“If we stick to the Paris Agreement to combat climate change, we may lose fewer than two out of every 10 plant and animal species by 2070. But if humans cause larger temperature increases, we could lose more than a third or even half”

It is also sensitive to temperature. When the mercury drops, the creature can go into a torpor and once comatose can even sleep through a bushfire.

Norwegian scientists report in the journal Frontiers in Physiology that they exposed 19 captive juveniles to spells of cold (17°C) and hot (25°C) temperatures, measured their growth and metabolic rate, and observed changes in behaviour. They conclude that, while individuals of the species can cope with short periods of high temperature, they may not have any way of surviving extended heat extremes.

Which is a problem for antechinus, because all the predictions for Australia – and indeed most of the planet – is that as the century proceeds and ever more greenhouse gases build up in the atmosphere, the hottest spells will become hotter, more frequent and more extended.

North American researchers have been tracking the polar bears who hunt seals and mate in Baffin Bay, between north-eastern Canada and Greenland, for almost three decades. They report in the journal Ecological Applications that when sea ice retreats, the bears wait on Baffin Island and live on their accumulated fat.

In the 1990s, the average stay on land – and away from the bears’ preferred prey – was 60 days. In the last decade, this rose to 90 days. Sampled females proved to be thinner than they had been, and were more likely to have one cub rather than two, all because unseasonally high temperatures in the Arctic mean that the hunting season on the ice is becoming ever shorter.

In 2004, the population of amphibians in a national park in Panama started to perish on a huge scale, and an estimated 30 species of frog and other creatures all but vanished in the wake of a pathogen fungus outbreak.

US scientists report in the journal Science that they set out to look at their wildlife observational data before and after the outbreak to measure the effect on the region’s snake species that prey on amphibians.

Rarely observed snakes

Even though the scientists logged 594 surveys in the seven years before the outbreak and 513 in the six years that followed, they had to use mathematical techniques to come up with probabilities of local snake extinction, because snakes are hard to observe at any time. Of the 36 snake species recorded there, 12 have been observed only once, and five only twice.

The bad news is there is an 85% probability that there are now fewer snake species than there had been, simply because of the disappearance of amphibian prey.

The study also highlights another worry for conservationists and ecologists: extinction of species is happening at an accelerating rate, but biologists still cannot put a number to the total of species at risk. Most of them have never been described or named. Like some of the snakes of Panama, they will have gone before scientists even knew they were there.

The climate connection with the worldwide loss of amphibian species is still uncertain. The certainty is that climate change will make life too hot for many species that – because what was once wilderness has now been cleared for cities, quarries, farms and commercial plantations – can no longer shift to cooler terrain.

John Wiens of the University of Arizona, one of the authors behind the research that predicts massive extinctions by 2070, thinks there is something that can be done.

In 2015 in Paris more than 190 nations vowed to act to contain global warming to “well below” 2°C. “In a way, it’s a ‘choose your own adventure,’” he said.

“If we stick to the Paris Agreement to combat climate change, we may lose fewer than two out of every 10 plant and animal species on Earth by 2070. But if humans cause larger temperature increases, we could lose more than a third or even half of all animal and plant species, based on our results.” – Climate News Network

As planetary temperatures rise, the chances of species survival lessen. Mass extinction is coming. The challenge is to measure the loss.

LONDON, 25 February, 2020 – Within 50 years, a third of all plant and animal species could be caught up in a mass extinction, as a consequence of climate change driven by ever-rising temperatures. What is new about this warning is the method, the precision, the timetable and the identification of a cause.

And – entirely felicitously – support for the prediction is backed by a series of separate studies of individual species survival in a world rapidly warming because of human commitment to fossil fuels.

Tiny marsupial insect-hunters in Australia could, on the evidence of direct experiment, fail to adapt to ever-higher thermometer readings, and quietly disappear.

As frogs and other amphibians in Central America are wiped out by invasive fungal pathogens – perhaps assisted by climate change – a set of snake species that prey upon them have also become increasingly at risk.

And directly because the Arctic is warming faster than anywhere else on the planet, the polar bears of Baffin Bay in Canada are thinner than they were 30 years ago, and have fewer cubs. That’s because Ursus maritimus hunts its seal prey on the sea ice. And as the winter ice forms later and melts earlier each decade, the bears have begun to go hungry.

Biologists, ecologists and conservationists have been warning for four decades that planet Earth could be on the edge of a sixth Great Extinction, as a simple consequence of the growth of human numbers and human economies, and the parallel destruction of natural habitat.

They have also repeatedly warned that climate change driven by human-triggered planetary heating would inevitably accelerate the losses.

Repeated surveys

But researchers from the University of Arizona have now confirmed the climate connection by using another approach: they decided to look directly at the numbers. They report in the Proceedings of the National Academy of Sciences that they selected data from 538 species and 581 places around the globe: they chose these numbers and sites because they could be sure that specific animal and plant species had been repeatedly surveyed over intervals of at least a decade.

They also factored in the changes in local climate conditions at each site, and isolated 19 different variables in the climate machine to work out what it could be about global heating that would directly pose the most significant threats. They also considered the options open to their chosen species: could these, for instance, migrate easily, or tolerate longer periods of extreme heat?

And then they did the calculations. They found that 50% of the chosen species went extinct locally if temperatures rose by more than 0.5°C, and 95% if the mercury reached an additional 2.9°C.

In the last century, the planet has warmed by 1°C above the average for most of human history and prehistory. Right now, thanks to ever-increasing fossil fuel use and continued forest destruction, the planet could be more than 3°C warmer by 2100.

But the researchers also found that the climate factor most closely linked to the extinction of any population was simply the maximum annual count the hottest daily highs in summer.

This also implies that extinction could be two or even four times as frequent in the tropics as in the temperate zones: it is in the tropics – the reefs, the rainforests, the wetlands and savannahs – that the world’s species are concentrated.

Antechinis flavipes, or yellow-footed antechinus, is a native Australian: it is not exactly a mole, or a mouse, or a shrew. It is a little marsupial carnivore with an unhappy love life: males mate in a frenzy and then tend to die from stress-related immune system breakdown.

“If we stick to the Paris Agreement to combat climate change, we may lose fewer than two out of every 10 plant and animal species by 2070. But if humans cause larger temperature increases, we could lose more than a third or even half”

It is also sensitive to temperature. When the mercury drops, the creature can go into a torpor and once comatose can even sleep through a bushfire.

Norwegian scientists report in the journal Frontiers in Physiology that they exposed 19 captive juveniles to spells of cold (17°C) and hot (25°C) temperatures, measured their growth and metabolic rate, and observed changes in behaviour. They conclude that, while individuals of the species can cope with short periods of high temperature, they may not have any way of surviving extended heat extremes.

Which is a problem for antechinus, because all the predictions for Australia – and indeed most of the planet – is that as the century proceeds and ever more greenhouse gases build up in the atmosphere, the hottest spells will become hotter, more frequent and more extended.

North American researchers have been tracking the polar bears who hunt seals and mate in Baffin Bay, between north-eastern Canada and Greenland, for almost three decades. They report in the journal Ecological Applications that when sea ice retreats, the bears wait on Baffin Island and live on their accumulated fat.

In the 1990s, the average stay on land – and away from the bears’ preferred prey – was 60 days. In the last decade, this rose to 90 days. Sampled females proved to be thinner than they had been, and were more likely to have one cub rather than two, all because unseasonally high temperatures in the Arctic mean that the hunting season on the ice is becoming ever shorter.

In 2004, the population of amphibians in a national park in Panama started to perish on a huge scale, and an estimated 30 species of frog and other creatures all but vanished in the wake of a pathogen fungus outbreak.

US scientists report in the journal Science that they set out to look at their wildlife observational data before and after the outbreak to measure the effect on the region’s snake species that prey on amphibians.

Rarely observed snakes

Even though the scientists logged 594 surveys in the seven years before the outbreak and 513 in the six years that followed, they had to use mathematical techniques to come up with probabilities of local snake extinction, because snakes are hard to observe at any time. Of the 36 snake species recorded there, 12 have been observed only once, and five only twice.

The bad news is there is an 85% probability that there are now fewer snake species than there had been, simply because of the disappearance of amphibian prey.

The study also highlights another worry for conservationists and ecologists: extinction of species is happening at an accelerating rate, but biologists still cannot put a number to the total of species at risk. Most of them have never been described or named. Like some of the snakes of Panama, they will have gone before scientists even knew they were there.

The climate connection with the worldwide loss of amphibian species is still uncertain. The certainty is that climate change will make life too hot for many species that – because what was once wilderness has now been cleared for cities, quarries, farms and commercial plantations – can no longer shift to cooler terrain.

John Wiens of the University of Arizona, one of the authors behind the research that predicts massive extinctions by 2070, thinks there is something that can be done.

In 2015 in Paris more than 190 nations vowed to act to contain global warming to “well below” 2°C. “In a way, it’s a ‘choose your own adventure,’” he said.

“If we stick to the Paris Agreement to combat climate change, we may lose fewer than two out of every 10 plant and animal species on Earth by 2070. But if humans cause larger temperature increases, we could lose more than a third or even half of all animal and plant species, based on our results.” – Climate News Network

Greenhouse gases have a puzzling double effect

Lustier plant growth as greenhouse gases climb should counter global heating and atmospheric carbon build-up. But it’s not quite so simple.

LONDON, 21 February, 2020 – The Arctic is getting greener as greenhouse gases abound and the global thermometer rises. The vegetation of the high latitudes is moving further north, growing taller, becoming more substantial, more abundant and budding earlier, according to new studies by 40 scientists from 36 European and US institutions.

And the whole planet is getting greener too, according to a separate study in a second journal, as more carbon dioxide in the atmosphere – the chief cause of global heating – also acts as a fertiliser to stimulate plant growth.

It is as if researchers have finally identified a genuine negative feedback effect: as the world warms because of higher levels of greenhouse gases, the plant world responds by absorbing more of the carbon in the atmosphere and modifying the overall impact.

But both studies identify problems with what might be a comforting conclusion: it isn’t clear why in some Arctic regions the green things are getting greener, while in others the vegetation cover is becoming poorer.

And worldwide, it might be that much of the global greening can be attributed to human action – the advance of industrial-scale agriculture and commercial forest plantation – in which case most of the absorbed carbon dioxide will be returned to the atmosphere sooner or later.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming”

Both studies confirm the value of a closer look at the evidence so far – and the need for further study.

In the journal Nature Climate Change, scientists report that they checked the big picture of polar greening based on four decades of data from large-scale satellite observation against more detailed evidence over smaller sample regions collected by sensors mounted on drones and on aircraft, as well as direct examination on the once-frozen ground.

The Arctic is the fastest-warming region of the planet: it is warming twice as fast as the globe as a whole. Snow melts earlier, plants leaf sooner. Shrubs that once stayed close to the slushy snow surface are now taller, and new species are colonising once hostile terrain.

This is expected to destabilise the Arctic tundra, the region of year-round permafrost that masks a vast reservoir of carbon buried in the frozen soils.

Natural response

So botanists and climate scientists in the high latitudes now have to begin some tricky calculations in their pursuit of reliable estimates of the global carbon budget. How much carbon will the new green growth absorb and store? And how much carbon buried for the last 100,000 years or so will escape into the atmosphere with the advance of the northern greenery and the thawing of the soils?

But at least, according to a paper in the journal Nature Reviews Earth and Environment, the observed greening of the Arctic is a natural response to rising average temperatures and greater carbon dioxide fertilisation as a consequence of ever-higher levels of greenhouse gas emissions and consequent climate change.

Svalbard in the high Arctic is almost 2°C warmer in summer than it was in 1986, and at least 30% greener. But the Arctic is a region with limited human settlement and low industrial investment.

A team of researchers from China, the US, France and Norway combed through 250 earlier studies, and revisited satellite data, climate models and field observations, to make sense of the evidence of a planet that has grown a lot greener: half of all the world’s vegetated lands are leafier than they once were.

And they concluded that it was possible that the growth of global greening in the last 40 years may have slowed the rate of global heating by as much as 0.25°C.

Human footprint

But the same greening can be seen as evidence of rapid human impact on the planet as a whole: much of it can be explained by more intensive use of farmland and forest plantation, especially in the world’s most populous countries, India and China.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming,” said one author, Jarle Bjerke of the Norwegian Institute for Nature Research.

And his co-author Phillipe Ciais, of France’s Laboratory of Climate and Environmental Sciences, said: “Plants are actively defending against the dangers of carbon pollution by not only sequestering carbon on land but also by wetting the atmosphere through transpiration of ground water and evaporation of precipitation intercepted by their bodies.

“Stopping deforestation and promoting sustainable, ecologically sensible afforestation could be one of the simplest and most cost-effective, though not sufficient, defences against climate change.” – Climate News Network

Lustier plant growth as greenhouse gases climb should counter global heating and atmospheric carbon build-up. But it’s not quite so simple.

LONDON, 21 February, 2020 – The Arctic is getting greener as greenhouse gases abound and the global thermometer rises. The vegetation of the high latitudes is moving further north, growing taller, becoming more substantial, more abundant and budding earlier, according to new studies by 40 scientists from 36 European and US institutions.

And the whole planet is getting greener too, according to a separate study in a second journal, as more carbon dioxide in the atmosphere – the chief cause of global heating – also acts as a fertiliser to stimulate plant growth.

It is as if researchers have finally identified a genuine negative feedback effect: as the world warms because of higher levels of greenhouse gases, the plant world responds by absorbing more of the carbon in the atmosphere and modifying the overall impact.

But both studies identify problems with what might be a comforting conclusion: it isn’t clear why in some Arctic regions the green things are getting greener, while in others the vegetation cover is becoming poorer.

And worldwide, it might be that much of the global greening can be attributed to human action – the advance of industrial-scale agriculture and commercial forest plantation – in which case most of the absorbed carbon dioxide will be returned to the atmosphere sooner or later.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming”

Both studies confirm the value of a closer look at the evidence so far – and the need for further study.

In the journal Nature Climate Change, scientists report that they checked the big picture of polar greening based on four decades of data from large-scale satellite observation against more detailed evidence over smaller sample regions collected by sensors mounted on drones and on aircraft, as well as direct examination on the once-frozen ground.

The Arctic is the fastest-warming region of the planet: it is warming twice as fast as the globe as a whole. Snow melts earlier, plants leaf sooner. Shrubs that once stayed close to the slushy snow surface are now taller, and new species are colonising once hostile terrain.

This is expected to destabilise the Arctic tundra, the region of year-round permafrost that masks a vast reservoir of carbon buried in the frozen soils.

Natural response

So botanists and climate scientists in the high latitudes now have to begin some tricky calculations in their pursuit of reliable estimates of the global carbon budget. How much carbon will the new green growth absorb and store? And how much carbon buried for the last 100,000 years or so will escape into the atmosphere with the advance of the northern greenery and the thawing of the soils?

But at least, according to a paper in the journal Nature Reviews Earth and Environment, the observed greening of the Arctic is a natural response to rising average temperatures and greater carbon dioxide fertilisation as a consequence of ever-higher levels of greenhouse gas emissions and consequent climate change.

Svalbard in the high Arctic is almost 2°C warmer in summer than it was in 1986, and at least 30% greener. But the Arctic is a region with limited human settlement and low industrial investment.

A team of researchers from China, the US, France and Norway combed through 250 earlier studies, and revisited satellite data, climate models and field observations, to make sense of the evidence of a planet that has grown a lot greener: half of all the world’s vegetated lands are leafier than they once were.

And they concluded that it was possible that the growth of global greening in the last 40 years may have slowed the rate of global heating by as much as 0.25°C.

Human footprint

But the same greening can be seen as evidence of rapid human impact on the planet as a whole: much of it can be explained by more intensive use of farmland and forest plantation, especially in the world’s most populous countries, India and China.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming,” said one author, Jarle Bjerke of the Norwegian Institute for Nature Research.

And his co-author Phillipe Ciais, of France’s Laboratory of Climate and Environmental Sciences, said: “Plants are actively defending against the dangers of carbon pollution by not only sequestering carbon on land but also by wetting the atmosphere through transpiration of ground water and evaporation of precipitation intercepted by their bodies.

“Stopping deforestation and promoting sustainable, ecologically sensible afforestation could be one of the simplest and most cost-effective, though not sufficient, defences against climate change.” – Climate News Network

Jet stream changes may hit global breadbaskets

Food shortages and civil disturbances may result from changes in the jet stream winds which circle the Earth, scientists say.

LONDON, 10 December, 2019 − Patterns in the winds of the jet stream that circles the Earth can bring simultaneous heatwaves to breadbasket regions which provide up to a quarter of global crops, scientists have found.

Extreme weather on this scale can significantly harm food production, making prices soar and fuelling social unrest. Western North America, western Europe, western Russia, Ukraine and the Caspian Sea region are especially susceptible.

In a study published in the journal Nature Climate Change the researchers, from Germany, Australia and the US, explain how specific wave patterns in the jet stream strongly increase the chance of heatwaves occurring at the same time in different parts of the globe.

The jet stream is a fast-moving river of air that continuously circles the northern hemisphere from west to east. It generally confines itself to a relatively narrow band, but can meander north or south, due to a feature scientists call Rossby waves.

Among other effects, these atmospheric wobbles may pull frigid air masses from the polar regions, or hot ones from the subtropics, into the populous mid-latitudes.

“We will see more and more heatwaves striking different areas at the same time, and they will become even more severe”

The wobbles strongly influence daily weather. When they grow particularly large they can bring prolonged heatwaves, droughts or floods in summer, or in colder seasons abnormal cold spells.

The waves have hit in 1983, 2003, 2006, 2012 and 2018, when many temperature records fell across the US, Canada, Scandinavia and Siberia. As well as killing crops, the waves have killed thousands of people, especially in Europe and Russia, where air conditioning is far less common than in North America.

The research shows that there has been a significant increase in the probability of multiple global breadbasket failures, particularly for wheat, maize, and soybeans. For soybeans the implications of crop failure in all major breadbaskets associated with climate risk would be at least 12.55 million tons of crop losses, far more than the 7.2 million tons lost in 1988–1989, one of the largest soybean production shocks.

Kai Kornhuber, a doctoral candidate from the Potsdam Institute for Climate Impact Research (PIK) in Germany and the Lamont-Doherty Earth Institute, US, and colleagues found that it is these simultaneous heatwaves that can significantly reduce crop production and create the risk of multiple harvest failures and other far-reaching consequences.

Twentyfold increase

“We found an under-explored vulnerability in the food system: when these global-scale wind patterns are in place, we see a twenty-fold increase in the risk of simultaneous heatwaves in major crop-producing regions ”, said Kornhuber. “During these events there actually is a global structure in the otherwise quite chaotic circulation.”

The atmospheric patterns the team researched mean that heat and drought become locked into one place simultaneously, where they then affect crops’ production yields.

“What makes this particularly relevant: the bell can ring in multiple regions at once, and the impacts of those specific interconnections were not quantified previously,” Kornhuber said.

“Normally low harvests in one region are expected to be balanced out by good harvests elsewhere. But these waves can cause reduced harvests in several important breadbaskets simultaneously, creating risks for global food production”, said co-author Dr Dim Coumou from the Institute for Environmental Studies at VU Amsterdam and PIK.

Remote effects

“We will see more and more heatwaves striking different areas at the same time, and they will become even more severe”, added Dr Jonathan Donges, another co-author at PIK. “This can impact food availability not only in the regions directly affected. Even remoter regions may see scarcities and price spikes as a result.”

“During years in which two or more summer weeks featured the amplified wave pattern, cereal crop production was reduced by more than 10% in individual regions, and by 4% when averaged across all crop regions affected by the pattern”, said Elisabeth Vogel, from Melbourne University.

Ted Shepherd, professor of climate science at the University of Reading, UK, who was not involved in the study, said: “We have strong observational evidence of this wave pattern. What is open for discussion is how it might respond to climate change.”

Professor Shepherd said many consensus scientific statements, including those from the Intergovernmental Panel on Climate Change, had proved to be under-estimates of how fast and far the effects of global warming might move. − Climate News Network

Food shortages and civil disturbances may result from changes in the jet stream winds which circle the Earth, scientists say.

LONDON, 10 December, 2019 − Patterns in the winds of the jet stream that circles the Earth can bring simultaneous heatwaves to breadbasket regions which provide up to a quarter of global crops, scientists have found.

Extreme weather on this scale can significantly harm food production, making prices soar and fuelling social unrest. Western North America, western Europe, western Russia, Ukraine and the Caspian Sea region are especially susceptible.

In a study published in the journal Nature Climate Change the researchers, from Germany, Australia and the US, explain how specific wave patterns in the jet stream strongly increase the chance of heatwaves occurring at the same time in different parts of the globe.

The jet stream is a fast-moving river of air that continuously circles the northern hemisphere from west to east. It generally confines itself to a relatively narrow band, but can meander north or south, due to a feature scientists call Rossby waves.

Among other effects, these atmospheric wobbles may pull frigid air masses from the polar regions, or hot ones from the subtropics, into the populous mid-latitudes.

“We will see more and more heatwaves striking different areas at the same time, and they will become even more severe”

The wobbles strongly influence daily weather. When they grow particularly large they can bring prolonged heatwaves, droughts or floods in summer, or in colder seasons abnormal cold spells.

The waves have hit in 1983, 2003, 2006, 2012 and 2018, when many temperature records fell across the US, Canada, Scandinavia and Siberia. As well as killing crops, the waves have killed thousands of people, especially in Europe and Russia, where air conditioning is far less common than in North America.

The research shows that there has been a significant increase in the probability of multiple global breadbasket failures, particularly for wheat, maize, and soybeans. For soybeans the implications of crop failure in all major breadbaskets associated with climate risk would be at least 12.55 million tons of crop losses, far more than the 7.2 million tons lost in 1988–1989, one of the largest soybean production shocks.

Kai Kornhuber, a doctoral candidate from the Potsdam Institute for Climate Impact Research (PIK) in Germany and the Lamont-Doherty Earth Institute, US, and colleagues found that it is these simultaneous heatwaves that can significantly reduce crop production and create the risk of multiple harvest failures and other far-reaching consequences.

Twentyfold increase

“We found an under-explored vulnerability in the food system: when these global-scale wind patterns are in place, we see a twenty-fold increase in the risk of simultaneous heatwaves in major crop-producing regions ”, said Kornhuber. “During these events there actually is a global structure in the otherwise quite chaotic circulation.”

The atmospheric patterns the team researched mean that heat and drought become locked into one place simultaneously, where they then affect crops’ production yields.

“What makes this particularly relevant: the bell can ring in multiple regions at once, and the impacts of those specific interconnections were not quantified previously,” Kornhuber said.

“Normally low harvests in one region are expected to be balanced out by good harvests elsewhere. But these waves can cause reduced harvests in several important breadbaskets simultaneously, creating risks for global food production”, said co-author Dr Dim Coumou from the Institute for Environmental Studies at VU Amsterdam and PIK.

Remote effects

“We will see more and more heatwaves striking different areas at the same time, and they will become even more severe”, added Dr Jonathan Donges, another co-author at PIK. “This can impact food availability not only in the regions directly affected. Even remoter regions may see scarcities and price spikes as a result.”

“During years in which two or more summer weeks featured the amplified wave pattern, cereal crop production was reduced by more than 10% in individual regions, and by 4% when averaged across all crop regions affected by the pattern”, said Elisabeth Vogel, from Melbourne University.

Ted Shepherd, professor of climate science at the University of Reading, UK, who was not involved in the study, said: “We have strong observational evidence of this wave pattern. What is open for discussion is how it might respond to climate change.”

Professor Shepherd said many consensus scientific statements, including those from the Intergovernmental Panel on Climate Change, had proved to be under-estimates of how fast and far the effects of global warming might move. − Climate News Network

Conservation pays its way handsomely

Money does grow on trees. The conservation of a native forest is natural capital, its cash value often reaching trillions of dollars.

LONDON, 2 December, 2019 – More than 400 scientists in Brazil have once again established that conservation pays: landscapes and people are richer for the native vegetation preserved on rural properties.

They calculate that 270 million hectares (667m acres) of natural forest, scrub, marsh and grassland contained in Brazil’s legal reserves are worth US$1.5 trillion (£1.7tn) a year to the nation.

Natural wilderness pays its way by providing a steady supply of natural crop pollinators and pest controls, by seamlessly managing rainfall and water run-off, and by maintaining soil quality, the researchers argue in a new study in the journal Perspectives in Ecology and Conservation.

“The paper is meant to show that preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil and diverges from what was done in Europe 500 years ago, when the level of environmental awareness was different”, said Jean Paul Metzger, an ecologist at the University of São Paulo, who leads the signatories.

“Brazil conserves a great deal, protecting over 60% of its vegetation cover, and has strict legislation. It’s ranked 30th by the World Bank, behind Sweden and Finland, which protect approximately 70%. However, we must call attention to the fact that conservation isn’t bad,” said Professor Metzger.

Protection maintained

Brazilian law requires rural landowners to leave forest cover untouched on a percentage of their property: in the Amazon region as much as 80%; in other regions as little as 20%. But these protected areas shelter a third of the nation’s natural vegetation.

A bill that proposed to weaken or eliminate the Legal Reserve requirement went before the Brazilian Senate in 2019. Had it passed, it could have led to the loss altogether of 270 million hectares of native vegetation.

The bill has since been withdrawn, but a small army of scientists – including 371 researchers in 79 Brazilian laboratories, universities and institutions – have responded with a study that attempts to set a cash value to simply maintaining the natural capital of the wilderness.

Brazil is home to one of the world’s great tropical rainforests, and to one of the world’s richest centres of biodiversity. The global climate crisis is already taking its toll of the forest canopy in the form of drought and fire. But under new national leadership there have been fears that even more forest could be at risk.

“Preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil”

The cash-value case for conservation has been made, and made repeatedly. Studies have confirmed that agribusiness monocultures – vast tracts devoted entirely to one crop and only one crop – are not sustainable: animal pollinators can make the best of the flowering season but then have no alternative sources of food for the rest of the year.

Other researchers have separately established that the loss of natural forest can be far more costly and economically damaging than anybody had expected; and that, conversely, conserved and undisturbed wilderness actually delivers wealth on a sustained basis for national and regional economies. But farmers concerned with immediate profits might not be so conscious of the long-term rewards of conservation.

“It’s an important paper because it presents sound information that can be used to refute the arguments of those who want to change the Brazilian Forest Code and do away with the legal reserve requirement”, said Carlos Joly of the Sao Paulo Research Foundation, and one of the signatories.

And his colleague Paulo Artaxo said: “Farmers sometimes take a short-term view that focuses on three or four years of personal profit, but the nation is left with enormous losses. This mindset should go. The paper makes that very clear.” – Climate News Network

Money does grow on trees. The conservation of a native forest is natural capital, its cash value often reaching trillions of dollars.

LONDON, 2 December, 2019 – More than 400 scientists in Brazil have once again established that conservation pays: landscapes and people are richer for the native vegetation preserved on rural properties.

They calculate that 270 million hectares (667m acres) of natural forest, scrub, marsh and grassland contained in Brazil’s legal reserves are worth US$1.5 trillion (£1.7tn) a year to the nation.

Natural wilderness pays its way by providing a steady supply of natural crop pollinators and pest controls, by seamlessly managing rainfall and water run-off, and by maintaining soil quality, the researchers argue in a new study in the journal Perspectives in Ecology and Conservation.

“The paper is meant to show that preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil and diverges from what was done in Europe 500 years ago, when the level of environmental awareness was different”, said Jean Paul Metzger, an ecologist at the University of São Paulo, who leads the signatories.

“Brazil conserves a great deal, protecting over 60% of its vegetation cover, and has strict legislation. It’s ranked 30th by the World Bank, behind Sweden and Finland, which protect approximately 70%. However, we must call attention to the fact that conservation isn’t bad,” said Professor Metzger.

Protection maintained

Brazilian law requires rural landowners to leave forest cover untouched on a percentage of their property: in the Amazon region as much as 80%; in other regions as little as 20%. But these protected areas shelter a third of the nation’s natural vegetation.

A bill that proposed to weaken or eliminate the Legal Reserve requirement went before the Brazilian Senate in 2019. Had it passed, it could have led to the loss altogether of 270 million hectares of native vegetation.

The bill has since been withdrawn, but a small army of scientists – including 371 researchers in 79 Brazilian laboratories, universities and institutions – have responded with a study that attempts to set a cash value to simply maintaining the natural capital of the wilderness.

Brazil is home to one of the world’s great tropical rainforests, and to one of the world’s richest centres of biodiversity. The global climate crisis is already taking its toll of the forest canopy in the form of drought and fire. But under new national leadership there have been fears that even more forest could be at risk.

“Preserving native vegetation isn’t an obstacle to social and economic development but part of the solution. It’s one of the drivers of sustainable development in Brazil”

The cash-value case for conservation has been made, and made repeatedly. Studies have confirmed that agribusiness monocultures – vast tracts devoted entirely to one crop and only one crop – are not sustainable: animal pollinators can make the best of the flowering season but then have no alternative sources of food for the rest of the year.

Other researchers have separately established that the loss of natural forest can be far more costly and economically damaging than anybody had expected; and that, conversely, conserved and undisturbed wilderness actually delivers wealth on a sustained basis for national and regional economies. But farmers concerned with immediate profits might not be so conscious of the long-term rewards of conservation.

“It’s an important paper because it presents sound information that can be used to refute the arguments of those who want to change the Brazilian Forest Code and do away with the legal reserve requirement”, said Carlos Joly of the Sao Paulo Research Foundation, and one of the signatories.

And his colleague Paulo Artaxo said: “Farmers sometimes take a short-term view that focuses on three or four years of personal profit, but the nation is left with enormous losses. This mindset should go. The paper makes that very clear.” – Climate News Network

Forest damage costs far more than thought

Tropical forest damage is bad enough. New thinking suggests it could prove far more ruinous in terms of the climate crisis.

LONDON, 19 November, 2019 – We know already that human activities are causing devastating forest damage. Now a new study shows the loss we face could be much worse than we think.

Here, it says, is how to multiply your country’s contribution to solving the carbon problem sixfold. It’s simple. Do not do anything to your intact tropical forest. Don’t put roads around it, hunt in it, or select prize lumps of timber from it; don’t quarry, mine or plant oil palms in it. Just protect it.

Researchers have calculated that – compared with clearing it – the benefits of benign neglect are 626% higher than all previous accounting. And that’s just the calculation for the first 13 years of this century. Instead of an estimated 340 million tonnes of carbon spilled into the atmosphere, the figure from clearing forests now becomes 2.12 billion tonnes.

And a second team of scientists has identified a way to keep those conservation promises and carefully protect those forests and other habitats already declared protected areas. That too is simple: be a rich country in the northern hemisphere. That way, you might be able to count on the resources to back up the good intentions.

The role of the world’s forests in what climate scientists like to call the carbon budget – the annual traffic of carbon dioxide into the atmosphere from all sources and back again into green plants, rocks and oceans – is a complicated one, and the play between human intrusion and the natural habitats makes it even more of a headache.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying”

Broadly, of the world’s tropical rainforests, only around 20% can be considered now intact. This by 2013 was an area of around 5.49 million square kilometres – an area much bigger than the European Union, yet smaller than Australia – but this green space concentrates 40% of all the carbon found in the trunks, branches and leaves of the world’s surviving natural tropical foliage, and gulps down carbon from the atmosphere at the rate of a billion tonnes a year.

So tropical forests play a vital role in worldwide national pledges, made in Paris in 2015, to contain global heating to “well below” a global average increase of 2°C by the end of the century. The planet has already warmed by 1°C in the last century, thanks to profligate human use of fossil fuels and the destruction of the planet’s natural forests.

And between 2000 and 2013, human growth and demand has reduced the area of intact forests by more than 7%. What the latest research has done is try to make a realistic estimate of the enduring cost to the planet.

“Usually, only ‘pulse’ emissions are considered – these are emissions released the instant intact forest is destroyed,” said Sean Maxwell of the University of Queensland in Australia.

“Our analysis considers all impacts, such as the effects of selective logging, foregone carbon sequestration, expanding effects on the edges of forests, and species extinction.

Better funding needed

“We were shocked to see that when considering all of the available factors, the net carbon impact was more than six times worse for the climate.”

Forest destruction has accelerated this century. Dr Maxwell and his co-authors report in the journal Science Advances that they considered all the carbon that was not sequestered by forest degradation between 2000 and 2013, along with the impacts of road clearance, mining, selective logging and overhunting of the animals that naturally disperse forest seeds, to arrive at their new estimate of the price in carbon emissions to be paid for destruction.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying,” said James Watson, of the University of Queensland, and a co-author.

“Humanity needs to better fund the conservation of intact forests, especially now we’ve shown their larger than realised role in stabilising the climate.”

And in the same week, British scientists confirmed that – around the globe – protected areas are not reducing human pressure on the natural wilderness. They report in the Proceedings of the National Academy of Sciences that they looked at satellite evidence, together with census and crop data, to see what humans had so far done to 12,315 protected areas between 1995 and 2010.

Threat of protection

In every global region, there had been evidence of human encroachment. Overall, northern hemisphere nations and Australia had been more effective at keeping down human pressure in the areas set aside for conservation, compared to advances into unprotected areas.

But in those parts of the world where biodiversity is richest – South America, Southeast Asia and Africa south of the Sahara – human damage was significantly higher in protected grasslands, forests, mangrove swamps and other habitats than it was in unprotected areas. In parts of South America, clearance for agriculture in protected regions was 10% higher than in unprotected zones.

“Our study shows that agriculture is the driving force behind threats to protected areas, particularly in the tropics,” said Jonas Geldmann of the University of Cambridge, who led the study.

“Our data does not reveal the causes, but we suspect factors that play a major role include rapid population growth, lack of funding, and higher levels of corruption. Additionally, most unprotected land suitable for agriculture is already farmed,” he said.

“We think that what we are seeing are the effects of establishing protected areas on paper, but not following through with the right funding, management and community engagement that is needed.” – Climate News Network

Tropical forest damage is bad enough. New thinking suggests it could prove far more ruinous in terms of the climate crisis.

LONDON, 19 November, 2019 – We know already that human activities are causing devastating forest damage. Now a new study shows the loss we face could be much worse than we think.

Here, it says, is how to multiply your country’s contribution to solving the carbon problem sixfold. It’s simple. Do not do anything to your intact tropical forest. Don’t put roads around it, hunt in it, or select prize lumps of timber from it; don’t quarry, mine or plant oil palms in it. Just protect it.

Researchers have calculated that – compared with clearing it – the benefits of benign neglect are 626% higher than all previous accounting. And that’s just the calculation for the first 13 years of this century. Instead of an estimated 340 million tonnes of carbon spilled into the atmosphere, the figure from clearing forests now becomes 2.12 billion tonnes.

And a second team of scientists has identified a way to keep those conservation promises and carefully protect those forests and other habitats already declared protected areas. That too is simple: be a rich country in the northern hemisphere. That way, you might be able to count on the resources to back up the good intentions.

The role of the world’s forests in what climate scientists like to call the carbon budget – the annual traffic of carbon dioxide into the atmosphere from all sources and back again into green plants, rocks and oceans – is a complicated one, and the play between human intrusion and the natural habitats makes it even more of a headache.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying”

Broadly, of the world’s tropical rainforests, only around 20% can be considered now intact. This by 2013 was an area of around 5.49 million square kilometres – an area much bigger than the European Union, yet smaller than Australia – but this green space concentrates 40% of all the carbon found in the trunks, branches and leaves of the world’s surviving natural tropical foliage, and gulps down carbon from the atmosphere at the rate of a billion tonnes a year.

So tropical forests play a vital role in worldwide national pledges, made in Paris in 2015, to contain global heating to “well below” a global average increase of 2°C by the end of the century. The planet has already warmed by 1°C in the last century, thanks to profligate human use of fossil fuels and the destruction of the planet’s natural forests.

And between 2000 and 2013, human growth and demand has reduced the area of intact forests by more than 7%. What the latest research has done is try to make a realistic estimate of the enduring cost to the planet.

“Usually, only ‘pulse’ emissions are considered – these are emissions released the instant intact forest is destroyed,” said Sean Maxwell of the University of Queensland in Australia.

“Our analysis considers all impacts, such as the effects of selective logging, foregone carbon sequestration, expanding effects on the edges of forests, and species extinction.

Better funding needed

“We were shocked to see that when considering all of the available factors, the net carbon impact was more than six times worse for the climate.”

Forest destruction has accelerated this century. Dr Maxwell and his co-authors report in the journal Science Advances that they considered all the carbon that was not sequestered by forest degradation between 2000 and 2013, along with the impacts of road clearance, mining, selective logging and overhunting of the animals that naturally disperse forest seeds, to arrive at their new estimate of the price in carbon emissions to be paid for destruction.

“Losing Earth’s remaining wilderness is devastating by itself, but climate impacts 626% greater than expected is terrifying,” said James Watson, of the University of Queensland, and a co-author.

“Humanity needs to better fund the conservation of intact forests, especially now we’ve shown their larger than realised role in stabilising the climate.”

And in the same week, British scientists confirmed that – around the globe – protected areas are not reducing human pressure on the natural wilderness. They report in the Proceedings of the National Academy of Sciences that they looked at satellite evidence, together with census and crop data, to see what humans had so far done to 12,315 protected areas between 1995 and 2010.

Threat of protection

In every global region, there had been evidence of human encroachment. Overall, northern hemisphere nations and Australia had been more effective at keeping down human pressure in the areas set aside for conservation, compared to advances into unprotected areas.

But in those parts of the world where biodiversity is richest – South America, Southeast Asia and Africa south of the Sahara – human damage was significantly higher in protected grasslands, forests, mangrove swamps and other habitats than it was in unprotected areas. In parts of South America, clearance for agriculture in protected regions was 10% higher than in unprotected zones.

“Our study shows that agriculture is the driving force behind threats to protected areas, particularly in the tropics,” said Jonas Geldmann of the University of Cambridge, who led the study.

“Our data does not reveal the causes, but we suspect factors that play a major role include rapid population growth, lack of funding, and higher levels of corruption. Additionally, most unprotected land suitable for agriculture is already farmed,” he said.

“We think that what we are seeing are the effects of establishing protected areas on paper, but not following through with the right funding, management and community engagement that is needed.” – Climate News Network