Tag Archives: Alaska

*

Greenland's fastest glacier picks up pace

FOR IMMEDIATE RELEASE
Research from the Arctic shows Greenland’s fastest-flowing glacier has doubled its summer flow pace in a decade, and ice cover on Alaskan lakes is declining.

LONDON, 6 February – A fast-moving Arctic glacier which has earned a place in history is now accelerating even more quickly. The Jakobshavn Isbrae (the Danish word for glacier) is a massive river of ice from the Greenland ice sheet to an Atlantic ocean fjord and is thought – there is no way of proving this – to be the source of the giant iceberg that sank the Titanic in 1912.

According to research published in the European Geosciences Union journal The Cryosphere, summer flow speeds have doubled yet again since a Nasa measurement in 2003. And that in turn represented a doubling of flow speeds since 1997.

The Jakobshavn glacier is Greenland’s fastest-flowing glacier. It now moves at 17 kilometres a year. That works out at 46 metres a day. With accelerations like this, phrases like “glacial pace” may no longer serve as clichés of lethargic movement. These speeds are recorded in the summer, when all glaciers are more likely to be a bit friskier. But even when averaged over the whole year, the glacier’s flow has accelerated threefold since the 1990s.

Icebergs “calve” from glaciers – they break off and drift out to sea. The Arctic ice sheet is thinning, and most of the planet’s glaciers are retreating as climates warm, so the Jakobshavn glacier is carrying less ice, at a faster rate, over shorter distances than ever before, and by the end of the century could have shifted 50 kilometres upstream. But right now it is also contributing to sea level rise at a faster rate.

“We know that from 2000 to 2010 this glacier alone increased sea level by about 1mm”, said Ian Joughin, of the Polar Science Centre at the University of Washington, who led the research. “With the additional speed it will likely contribute a bit more than this over the next decade.”

The scientists used satellite data to measure the rate of summer change in Greenland. But other satellite radar imagery has begun to reveal an ominous picture of change elsewhere in the Arctic, on the north slope of Alaska. Even during the winter months, ice on the lakes of Alaska has begun to decline. Warmer climate conditions means thinner cover on shallow lakes and a smaller fraction that freeze entirely during the winter months.

“We were stunned to observe such a dramatic ice decline during a period of only 20 years”

Cristina Surdu of the University of Waterloo in Canada and colleagues report in The Cryosphere that there has been a 22% fall in grounded ice – frozen from surface to lakebed – between 1991 and 2011.

They expected to find a decline in ice thickness when they embarked on a study of radar observations of 402 lakes near Barrow in Alaska from the European earth resources satellites ERS-1 and ERS-2. That was because they already had temperature and precipitation records from Barrow dating back five decades.

Freeze dates in the region are now occurring on average six days later than in the past, and the ice is breaking up on average around 18 days earlier.

“At the end of the analysis, when looking at trend analysis results, we were stunned to observe such a dramatic ice decline during a period of only 20 years”, Surdu said. – Climate News Network

FOR IMMEDIATE RELEASE
Research from the Arctic shows Greenland’s fastest-flowing glacier has doubled its summer flow pace in a decade, and ice cover on Alaskan lakes is declining.

LONDON, 6 February – A fast-moving Arctic glacier which has earned a place in history is now accelerating even more quickly. The Jakobshavn Isbrae (the Danish word for glacier) is a massive river of ice from the Greenland ice sheet to an Atlantic ocean fjord and is thought – there is no way of proving this – to be the source of the giant iceberg that sank the Titanic in 1912.

According to research published in the European Geosciences Union journal The Cryosphere, summer flow speeds have doubled yet again since a Nasa measurement in 2003. And that in turn represented a doubling of flow speeds since 1997.

The Jakobshavn glacier is Greenland’s fastest-flowing glacier. It now moves at 17 kilometres a year. That works out at 46 metres a day. With accelerations like this, phrases like “glacial pace” may no longer serve as clichés of lethargic movement. These speeds are recorded in the summer, when all glaciers are more likely to be a bit friskier. But even when averaged over the whole year, the glacier’s flow has accelerated threefold since the 1990s.

Icebergs “calve” from glaciers – they break off and drift out to sea. The Arctic ice sheet is thinning, and most of the planet’s glaciers are retreating as climates warm, so the Jakobshavn glacier is carrying less ice, at a faster rate, over shorter distances than ever before, and by the end of the century could have shifted 50 kilometres upstream. But right now it is also contributing to sea level rise at a faster rate.

“We know that from 2000 to 2010 this glacier alone increased sea level by about 1mm”, said Ian Joughin, of the Polar Science Centre at the University of Washington, who led the research. “With the additional speed it will likely contribute a bit more than this over the next decade.”

The scientists used satellite data to measure the rate of summer change in Greenland. But other satellite radar imagery has begun to reveal an ominous picture of change elsewhere in the Arctic, on the north slope of Alaska. Even during the winter months, ice on the lakes of Alaska has begun to decline. Warmer climate conditions means thinner cover on shallow lakes and a smaller fraction that freeze entirely during the winter months.

“We were stunned to observe such a dramatic ice decline during a period of only 20 years”

Cristina Surdu of the University of Waterloo in Canada and colleagues report in The Cryosphere that there has been a 22% fall in grounded ice – frozen from surface to lakebed – between 1991 and 2011.

They expected to find a decline in ice thickness when they embarked on a study of radar observations of 402 lakes near Barrow in Alaska from the European earth resources satellites ERS-1 and ERS-2. That was because they already had temperature and precipitation records from Barrow dating back five decades.

Freeze dates in the region are now occurring on average six days later than in the past, and the ice is breaking up on average around 18 days earlier.

“At the end of the analysis, when looking at trend analysis results, we were stunned to observe such a dramatic ice decline during a period of only 20 years”, Surdu said. – Climate News Network

*

Greenland’s fastest glacier picks up pace

FOR IMMEDIATE RELEASE Research from the Arctic shows Greenland’s fastest-flowing glacier has doubled its summer flow pace in a decade, and ice cover on Alaskan lakes is declining. LONDON, 6 February – A fast-moving Arctic glacier which has earned a place in history is now accelerating even more quickly. The Jakobshavn Isbrae (the Danish word for glacier) is a massive river of ice from the Greenland ice sheet to an Atlantic ocean fjord and is thought – there is no way of proving this – to be the source of the giant iceberg that sank the Titanic in 1912. According to research published in the European Geosciences Union journal The Cryosphere, summer flow speeds have doubled yet again since a Nasa measurement in 2003. And that in turn represented a doubling of flow speeds since 1997. The Jakobshavn glacier is Greenland’s fastest-flowing glacier. It now moves at 17 kilometres a year. That works out at 46 metres a day. With accelerations like this, phrases like “glacial pace” may no longer serve as clichés of lethargic movement. These speeds are recorded in the summer, when all glaciers are more likely to be a bit friskier. But even when averaged over the whole year, the glacier’s flow has accelerated threefold since the 1990s. Icebergs “calve” from glaciers – they break off and drift out to sea. The Arctic ice sheet is thinning, and most of the planet’s glaciers are retreating as climates warm, so the Jakobshavn glacier is carrying less ice, at a faster rate, over shorter distances than ever before, and by the end of the century could have shifted 50 kilometres upstream. But right now it is also contributing to sea level rise at a faster rate. “We know that from 2000 to 2010 this glacier alone increased sea level by about 1mm”, said Ian Joughin, of the Polar Science Centre at the University of Washington, who led the research. “With the additional speed it will likely contribute a bit more than this over the next decade.” The scientists used satellite data to measure the rate of summer change in Greenland. But other satellite radar imagery has begun to reveal an ominous picture of change elsewhere in the Arctic, on the north slope of Alaska. Even during the winter months, ice on the lakes of Alaska has begun to decline. Warmer climate conditions means thinner cover on shallow lakes and a smaller fraction that freeze entirely during the winter months.

“We were stunned to observe such a dramatic ice decline during a period of only 20 years”

Cristina Surdu of the University of Waterloo in Canada and colleagues report in The Cryosphere that there has been a 22% fall in grounded ice – frozen from surface to lakebed – between 1991 and 2011. They expected to find a decline in ice thickness when they embarked on a study of radar observations of 402 lakes near Barrow in Alaska from the European earth resources satellites ERS-1 and ERS-2. That was because they already had temperature and precipitation records from Barrow dating back five decades. Freeze dates in the region are now occurring on average six days later than in the past, and the ice is breaking up on average around 18 days earlier. “At the end of the analysis, when looking at trend analysis results, we were stunned to observe such a dramatic ice decline during a period of only 20 years”, Surdu said. – Climate News Network

FOR IMMEDIATE RELEASE Research from the Arctic shows Greenland’s fastest-flowing glacier has doubled its summer flow pace in a decade, and ice cover on Alaskan lakes is declining. LONDON, 6 February – A fast-moving Arctic glacier which has earned a place in history is now accelerating even more quickly. The Jakobshavn Isbrae (the Danish word for glacier) is a massive river of ice from the Greenland ice sheet to an Atlantic ocean fjord and is thought – there is no way of proving this – to be the source of the giant iceberg that sank the Titanic in 1912. According to research published in the European Geosciences Union journal The Cryosphere, summer flow speeds have doubled yet again since a Nasa measurement in 2003. And that in turn represented a doubling of flow speeds since 1997. The Jakobshavn glacier is Greenland’s fastest-flowing glacier. It now moves at 17 kilometres a year. That works out at 46 metres a day. With accelerations like this, phrases like “glacial pace” may no longer serve as clichés of lethargic movement. These speeds are recorded in the summer, when all glaciers are more likely to be a bit friskier. But even when averaged over the whole year, the glacier’s flow has accelerated threefold since the 1990s. Icebergs “calve” from glaciers – they break off and drift out to sea. The Arctic ice sheet is thinning, and most of the planet’s glaciers are retreating as climates warm, so the Jakobshavn glacier is carrying less ice, at a faster rate, over shorter distances than ever before, and by the end of the century could have shifted 50 kilometres upstream. But right now it is also contributing to sea level rise at a faster rate. “We know that from 2000 to 2010 this glacier alone increased sea level by about 1mm”, said Ian Joughin, of the Polar Science Centre at the University of Washington, who led the research. “With the additional speed it will likely contribute a bit more than this over the next decade.” The scientists used satellite data to measure the rate of summer change in Greenland. But other satellite radar imagery has begun to reveal an ominous picture of change elsewhere in the Arctic, on the north slope of Alaska. Even during the winter months, ice on the lakes of Alaska has begun to decline. Warmer climate conditions means thinner cover on shallow lakes and a smaller fraction that freeze entirely during the winter months.

“We were stunned to observe such a dramatic ice decline during a period of only 20 years”

Cristina Surdu of the University of Waterloo in Canada and colleagues report in The Cryosphere that there has been a 22% fall in grounded ice – frozen from surface to lakebed – between 1991 and 2011. They expected to find a decline in ice thickness when they embarked on a study of radar observations of 402 lakes near Barrow in Alaska from the European earth resources satellites ERS-1 and ERS-2. That was because they already had temperature and precipitation records from Barrow dating back five decades. Freeze dates in the region are now occurring on average six days later than in the past, and the ice is breaking up on average around 18 days earlier. “At the end of the analysis, when looking at trend analysis results, we were stunned to observe such a dramatic ice decline during a period of only 20 years”, Surdu said. – Climate News Network

*

Renewables 'neead huge mineral supply'

EMBARGOED until 1000 GMT on Wednesday 30 October
Renewable energy sounds like the obvious solution for a power-hungry planet. It would mean fewer greenhouse gases, certainly – but also a vastly bigger appetite for many minerals.

LONDON, 30 October – Humankind could be about to exchange one kind of energy crisis for another. The switch from the finite store of fossil fuels to renewable sources could involve a huge additional demand for the world’s equally finite store of metals and minerals.

Three French CRNS scientists – Olivier Vidal and Nicholas Arndt of the University of Grenoble and Bruno Goffé of Aix-Marseille University – issue the warning in Nature Geoscience.

They say that to match the power generated by fossil fuels or nuclear power stations, the construction of solar energy farms and wind turbines will gobble up 15 times more concrete, 90 times more aluminium and 50 times more iron, copper and glass. Right now wind and solar energy meet only about 1% of global demand; hydroelectricity meets about 7%.

The trio argue that if the contribution from wind turbines and solar energy to global energy production is to rise from the current 400 terawatt hours to 12,000 Twh in 2035, and 25,000 Twh in 2050,  that will require 3,200 million tonnes of steel, 310 million tonnes of aluminium and 40 million tonnes of copper to construct state-of-the-art generating systems.

This in turn would mean an annual increase in global production of these metals of from 5% to 18% for the next 40 years, and that would be in addition to the already accelerating demand for metals of all kinds in both the developed and the developing world.

Global approach

And, they say, right now 10% of the world’s energy budget is spent in digging up and processing mineral resources. Unless something astounding happens, this fraction will get larger as high quality ores become harder to find, and more difficult to extract.

This presents problems for Europe, for example. Europe is where the Industrial Revolution began more than 200 years ago. Europe now consumes more than 20% of the metals mined globally, but European mines produce only 1.5% of iron and aluminium, and 6% of the world’s copper.

“Humanity faces a tremendous challenge to make more rational use of the Earth’s non-renewable raw materials,” they conclude. “The energy transition to renewables can only work if all the resources are managed simultaneously, as part of a global, integral whole.”

In the same issue, Richard Herrington of the Natural History Museum in London addresses the same problem from a different perspective.

Better recycling

He argues that overall, metals and minerals are not in short supply, but their uneven distribution is likely to create political problems, and the competition for supplies already presents ethical problems, both from environmental and humanitarian points of view.

Platinum for instance is vital for catalytic converters and fuel cell technologies: 80% of the planet’s supply comes from just two mines in South Africa. More than 30% of the world’s copper comes from Chile. The world’s largest zinc mine is in the Alaskan Arctic wilderness, and shipments can only be delivered between July and October, because of the sea ice.

The political risks inherent in this uneven spread of mineral riches, he reasons, were clearly demonstrated during the oil crisis of the 1970s, when Middle East oil prices went up, and western economies went plunging down. So he too argues that there should be more attention to local mineral sources, including those in Europe.

“We must acknowledge and control the complexity of giant mining projects with their demands on infrastructure and environment. We need to work hard to understand any ethical issues with the provenance of new resources.

“Better ways of recycling valuable metals from discarded electronic equipment are required,” he argues. “And geoscientists need to undertake a thorough audit of the natural occurrences of mineral deposits that will feed our economies.” – Climate News Network

EMBARGOED until 1000 GMT on Wednesday 30 October
Renewable energy sounds like the obvious solution for a power-hungry planet. It would mean fewer greenhouse gases, certainly – but also a vastly bigger appetite for many minerals.

LONDON, 30 October – Humankind could be about to exchange one kind of energy crisis for another. The switch from the finite store of fossil fuels to renewable sources could involve a huge additional demand for the world’s equally finite store of metals and minerals.

Three French CRNS scientists – Olivier Vidal and Nicholas Arndt of the University of Grenoble and Bruno Goffé of Aix-Marseille University – issue the warning in Nature Geoscience.

They say that to match the power generated by fossil fuels or nuclear power stations, the construction of solar energy farms and wind turbines will gobble up 15 times more concrete, 90 times more aluminium and 50 times more iron, copper and glass. Right now wind and solar energy meet only about 1% of global demand; hydroelectricity meets about 7%.

The trio argue that if the contribution from wind turbines and solar energy to global energy production is to rise from the current 400 terawatt hours to 12,000 Twh in 2035, and 25,000 Twh in 2050,  that will require 3,200 million tonnes of steel, 310 million tonnes of aluminium and 40 million tonnes of copper to construct state-of-the-art generating systems.

This in turn would mean an annual increase in global production of these metals of from 5% to 18% for the next 40 years, and that would be in addition to the already accelerating demand for metals of all kinds in both the developed and the developing world.

Global approach

And, they say, right now 10% of the world’s energy budget is spent in digging up and processing mineral resources. Unless something astounding happens, this fraction will get larger as high quality ores become harder to find, and more difficult to extract.

This presents problems for Europe, for example. Europe is where the Industrial Revolution began more than 200 years ago. Europe now consumes more than 20% of the metals mined globally, but European mines produce only 1.5% of iron and aluminium, and 6% of the world’s copper.

“Humanity faces a tremendous challenge to make more rational use of the Earth’s non-renewable raw materials,” they conclude. “The energy transition to renewables can only work if all the resources are managed simultaneously, as part of a global, integral whole.”

In the same issue, Richard Herrington of the Natural History Museum in London addresses the same problem from a different perspective.

Better recycling

He argues that overall, metals and minerals are not in short supply, but their uneven distribution is likely to create political problems, and the competition for supplies already presents ethical problems, both from environmental and humanitarian points of view.

Platinum for instance is vital for catalytic converters and fuel cell technologies: 80% of the planet’s supply comes from just two mines in South Africa. More than 30% of the world’s copper comes from Chile. The world’s largest zinc mine is in the Alaskan Arctic wilderness, and shipments can only be delivered between July and October, because of the sea ice.

The political risks inherent in this uneven spread of mineral riches, he reasons, were clearly demonstrated during the oil crisis of the 1970s, when Middle East oil prices went up, and western economies went plunging down. So he too argues that there should be more attention to local mineral sources, including those in Europe.

“We must acknowledge and control the complexity of giant mining projects with their demands on infrastructure and environment. We need to work hard to understand any ethical issues with the provenance of new resources.

“Better ways of recycling valuable metals from discarded electronic equipment are required,” he argues. “And geoscientists need to undertake a thorough audit of the natural occurrences of mineral deposits that will feed our economies.” – Climate News Network

*

Renewables ‘neead huge mineral supply’

EMBARGOED until 1000 GMT on Wednesday 30 October Renewable energy sounds like the obvious solution for a power-hungry planet. It would mean fewer greenhouse gases, certainly – but also a vastly bigger appetite for many minerals. LONDON, 30 October – Humankind could be about to exchange one kind of energy crisis for another. The switch from the finite store of fossil fuels to renewable sources could involve a huge additional demand for the world’s equally finite store of metals and minerals. Three French CRNS scientists – Olivier Vidal and Nicholas Arndt of the University of Grenoble and Bruno Goffé of Aix-Marseille University – issue the warning in Nature Geoscience. They say that to match the power generated by fossil fuels or nuclear power stations, the construction of solar energy farms and wind turbines will gobble up 15 times more concrete, 90 times more aluminium and 50 times more iron, copper and glass. Right now wind and solar energy meet only about 1% of global demand; hydroelectricity meets about 7%. The trio argue that if the contribution from wind turbines and solar energy to global energy production is to rise from the current 400 terawatt hours to 12,000 Twh in 2035, and 25,000 Twh in 2050,  that will require 3,200 million tonnes of steel, 310 million tonnes of aluminium and 40 million tonnes of copper to construct state-of-the-art generating systems. This in turn would mean an annual increase in global production of these metals of from 5% to 18% for the next 40 years, and that would be in addition to the already accelerating demand for metals of all kinds in both the developed and the developing world.

Global approach

And, they say, right now 10% of the world’s energy budget is spent in digging up and processing mineral resources. Unless something astounding happens, this fraction will get larger as high quality ores become harder to find, and more difficult to extract. This presents problems for Europe, for example. Europe is where the Industrial Revolution began more than 200 years ago. Europe now consumes more than 20% of the metals mined globally, but European mines produce only 1.5% of iron and aluminium, and 6% of the world’s copper. “Humanity faces a tremendous challenge to make more rational use of the Earth’s non-renewable raw materials,” they conclude. “The energy transition to renewables can only work if all the resources are managed simultaneously, as part of a global, integral whole.” In the same issue, Richard Herrington of the Natural History Museum in London addresses the same problem from a different perspective.

Better recycling

He argues that overall, metals and minerals are not in short supply, but their uneven distribution is likely to create political problems, and the competition for supplies already presents ethical problems, both from environmental and humanitarian points of view. Platinum for instance is vital for catalytic converters and fuel cell technologies: 80% of the planet’s supply comes from just two mines in South Africa. More than 30% of the world’s copper comes from Chile. The world’s largest zinc mine is in the Alaskan Arctic wilderness, and shipments can only be delivered between July and October, because of the sea ice. The political risks inherent in this uneven spread of mineral riches, he reasons, were clearly demonstrated during the oil crisis of the 1970s, when Middle East oil prices went up, and western economies went plunging down. So he too argues that there should be more attention to local mineral sources, including those in Europe. “We must acknowledge and control the complexity of giant mining projects with their demands on infrastructure and environment. We need to work hard to understand any ethical issues with the provenance of new resources. “Better ways of recycling valuable metals from discarded electronic equipment are required,” he argues. “And geoscientists need to undertake a thorough audit of the natural occurrences of mineral deposits that will feed our economies.” – Climate News Network

EMBARGOED until 1000 GMT on Wednesday 30 October Renewable energy sounds like the obvious solution for a power-hungry planet. It would mean fewer greenhouse gases, certainly – but also a vastly bigger appetite for many minerals. LONDON, 30 October – Humankind could be about to exchange one kind of energy crisis for another. The switch from the finite store of fossil fuels to renewable sources could involve a huge additional demand for the world’s equally finite store of metals and minerals. Three French CRNS scientists – Olivier Vidal and Nicholas Arndt of the University of Grenoble and Bruno Goffé of Aix-Marseille University – issue the warning in Nature Geoscience. They say that to match the power generated by fossil fuels or nuclear power stations, the construction of solar energy farms and wind turbines will gobble up 15 times more concrete, 90 times more aluminium and 50 times more iron, copper and glass. Right now wind and solar energy meet only about 1% of global demand; hydroelectricity meets about 7%. The trio argue that if the contribution from wind turbines and solar energy to global energy production is to rise from the current 400 terawatt hours to 12,000 Twh in 2035, and 25,000 Twh in 2050,  that will require 3,200 million tonnes of steel, 310 million tonnes of aluminium and 40 million tonnes of copper to construct state-of-the-art generating systems. This in turn would mean an annual increase in global production of these metals of from 5% to 18% for the next 40 years, and that would be in addition to the already accelerating demand for metals of all kinds in both the developed and the developing world.

Global approach

And, they say, right now 10% of the world’s energy budget is spent in digging up and processing mineral resources. Unless something astounding happens, this fraction will get larger as high quality ores become harder to find, and more difficult to extract. This presents problems for Europe, for example. Europe is where the Industrial Revolution began more than 200 years ago. Europe now consumes more than 20% of the metals mined globally, but European mines produce only 1.5% of iron and aluminium, and 6% of the world’s copper. “Humanity faces a tremendous challenge to make more rational use of the Earth’s non-renewable raw materials,” they conclude. “The energy transition to renewables can only work if all the resources are managed simultaneously, as part of a global, integral whole.” In the same issue, Richard Herrington of the Natural History Museum in London addresses the same problem from a different perspective.

Better recycling

He argues that overall, metals and minerals are not in short supply, but their uneven distribution is likely to create political problems, and the competition for supplies already presents ethical problems, both from environmental and humanitarian points of view. Platinum for instance is vital for catalytic converters and fuel cell technologies: 80% of the planet’s supply comes from just two mines in South Africa. More than 30% of the world’s copper comes from Chile. The world’s largest zinc mine is in the Alaskan Arctic wilderness, and shipments can only be delivered between July and October, because of the sea ice. The political risks inherent in this uneven spread of mineral riches, he reasons, were clearly demonstrated during the oil crisis of the 1970s, when Middle East oil prices went up, and western economies went plunging down. So he too argues that there should be more attention to local mineral sources, including those in Europe. “We must acknowledge and control the complexity of giant mining projects with their demands on infrastructure and environment. We need to work hard to understand any ethical issues with the provenance of new resources. “Better ways of recycling valuable metals from discarded electronic equipment are required,” he argues. “And geoscientists need to undertake a thorough audit of the natural occurrences of mineral deposits that will feed our economies.” – Climate News Network