Tag Archives: Biodiversity

Lentils can feed the world – and save wildlife too

Wildlife could flourish if humans opted for a better diet. Think of humble, healthy lentils as the green choice.

LONDON, 24 September, 2020 – US scientists have worked out how to feed nine billion people and save wildlife from extinction, both at the same time – thanks to healthy lentils.

The answer is starkly simple: if humans got their protein from lentils, beans and nuts rather than beef, pork and chicken, they could return colossal tracts of grazing land back to the wilderness.

Nearly 40% of the planet’s land surface is now committed to agriculture. And almost 83% of this proportion is used to graze animals, or grow food for animals.

If it was returned to natural habitat, then humankind might be able to prevent the extinction of perhaps a million species now under imminent threat.

The same transition would dramatically reduce greenhouse gas emissions, help contain climate change, and perhaps even reduce the risks of new pandemics.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics. There is potential for giving large areas of land back to wildlife”

And best of all, the burden of action could sensibly fall on the better-off nations rather than the poorest.

“The greatest potential for forest regrowth, and the climate benefits it entails, exists in high and upper-middle income countries, places where scaling back on land-hungry meat and dairy would have relatively minor impacts on food security,” said Matthew Hayek of New York University.

He and colleagues report in the journal Nature Sustainability that vegetation regrowth on once-grazed land could gulp down between nine and 16 years of human carbon dioxide emissions from fossil fuel combustion, and buy time for a worldwide switch to renewable energy.

“We can think of shifting our eating habits towards land-friendly diets as a supplement to shifting energy rather than a substitute,” he argued.  “Restoring native forests could buy some much-needed time for countries to transition their energy grids to renewable, fossil-free infrastructure.”

The warning is only the latest in a long line of studies which conclude that if humans ate less meat, the world would be a safer, healthier and better place.

Russia-sized area

The switch is unlikely to happen soon, or completely – in some places, animals are the principal food source – or very effectively. It isn’t clear that in a rapidly warming world, forests would recolonise all farmed land, or that those forests would efficiently absorb the hoped-for atmospheric carbon.

But Dr Hayek and his colleagues mapped only an area over which seeds could disperse naturally, and deliver dense and diverse forest. They identified an area that added up to seven million square kilometres, in places moist enough to thrive naturally. This is an area the size of Russia.

The simple act of abandoning selected ranchland or pasture could work wonders for water quality, wildlife habitat and biodiversity. And it would work for human health as well.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics,” said his co-author Helen Harwatt of Harvard Law School.

“Our research shows that there is potential for giving large areas of land back to wildlife. Restoring native ecosystems not only helps the climate; when coupled with reduced livestock populations, restoration reduced disease transmission from wildlife to pigs, chickens and cows, and ultimately to humans.” – Climate News Network

Wildlife could flourish if humans opted for a better diet. Think of humble, healthy lentils as the green choice.

LONDON, 24 September, 2020 – US scientists have worked out how to feed nine billion people and save wildlife from extinction, both at the same time – thanks to healthy lentils.

The answer is starkly simple: if humans got their protein from lentils, beans and nuts rather than beef, pork and chicken, they could return colossal tracts of grazing land back to the wilderness.

Nearly 40% of the planet’s land surface is now committed to agriculture. And almost 83% of this proportion is used to graze animals, or grow food for animals.

If it was returned to natural habitat, then humankind might be able to prevent the extinction of perhaps a million species now under imminent threat.

The same transition would dramatically reduce greenhouse gas emissions, help contain climate change, and perhaps even reduce the risks of new pandemics.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics. There is potential for giving large areas of land back to wildlife”

And best of all, the burden of action could sensibly fall on the better-off nations rather than the poorest.

“The greatest potential for forest regrowth, and the climate benefits it entails, exists in high and upper-middle income countries, places where scaling back on land-hungry meat and dairy would have relatively minor impacts on food security,” said Matthew Hayek of New York University.

He and colleagues report in the journal Nature Sustainability that vegetation regrowth on once-grazed land could gulp down between nine and 16 years of human carbon dioxide emissions from fossil fuel combustion, and buy time for a worldwide switch to renewable energy.

“We can think of shifting our eating habits towards land-friendly diets as a supplement to shifting energy rather than a substitute,” he argued.  “Restoring native forests could buy some much-needed time for countries to transition their energy grids to renewable, fossil-free infrastructure.”

The warning is only the latest in a long line of studies which conclude that if humans ate less meat, the world would be a safer, healthier and better place.

Russia-sized area

The switch is unlikely to happen soon, or completely – in some places, animals are the principal food source – or very effectively. It isn’t clear that in a rapidly warming world, forests would recolonise all farmed land, or that those forests would efficiently absorb the hoped-for atmospheric carbon.

But Dr Hayek and his colleagues mapped only an area over which seeds could disperse naturally, and deliver dense and diverse forest. They identified an area that added up to seven million square kilometres, in places moist enough to thrive naturally. This is an area the size of Russia.

The simple act of abandoning selected ranchland or pasture could work wonders for water quality, wildlife habitat and biodiversity. And it would work for human health as well.

“We know that intact, functioning ecosystems and appropriate wildlife habitat ranges help reduce the risk of pandemics,” said his co-author Helen Harwatt of Harvard Law School.

“Our research shows that there is potential for giving large areas of land back to wildlife. Restoring native ecosystems not only helps the climate; when coupled with reduced livestock populations, restoration reduced disease transmission from wildlife to pigs, chickens and cows, and ultimately to humans.” – Climate News Network

Seas and forests are muddying the carbon budget

As climates change, forests may not absorb more carbon as expected. But a new carbon budget could appeal to the oceans.

LONDON, 18 September 2020 – Two new studies could throw long-term climate forecasts into confusion. The planetary carbon budget – the all-important traffic of life’s first element between rocks, water, atmosphere and living things – that underpins planetary temperatures and maintains a stable climate needs a rethink.

A warming climate makes trees grow faster. The awkward finding is that  faster-growing trees die younger. Therefore they must surrender their carbon back to the atmosphere quicker.

So tomorrow’s forests may not be quite such reliable long-term banks of carbon pumped into the atmosphere as a consequence of profligate fossil fuel use by human economies.

The more reassuring news is that the ocean – that’s almost three fourths of the planet’s surface – may absorb and store a lot more atmospheric carbon than previous estimates suggest.

All calculations about the future rate of global heating, and the potential consequences of climate change, rest upon the carbon budget.

Forest doubts

This is the intricate accounting of the mass of carbon in continuous circulation from air to plant to animal and then to shell, skeleton and sediment, and the expected flow of carbon emissions from the combustion of fossil fuels stored hundreds of millions of years ago, and exhumed in the last two centuries.

To make sense of the factors at work, climate scientists have to make calculations about all the carbon stored in the permafrost, in the soils, in the forests, dissolved in the oceans, free in the atmosphere and being released from power station chimneys, vehicle exhausts and ploughed or scorched land.

But for decades, one component of the equation has been automatically accepted: more forests must mean more carbon absorbed, and better protected natural forests would store the most carbon, the most efficiently.

Now a new report in the journal Nature Communications introduces some doubt into this cornerstone of the carbon budget. In an already warming world, much more of the carbon stored in tomorrow’s forests might find its way back into the atmosphere.

Researchers looked at 200,000 tree ring records from 82 tree species from sites around the planet. They found what they describe as trade-offs that are near universal: faster-growing trees have shorter lives.

“There is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality”

This was true in cool climates and warm ones, and in all species. So the hope that natural vegetation will respond to warmer temperatures by absorbing even more carbon becomes insecure, especially if it means that the more vigorous growth means simply swifter death and decay.

“Our modeling suggests that there is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality,” said Roel Brienen of the University of Leeds in the UK, who led the research. “They estimate that global increases in tree death don’t kick in until after sites show accelerated growth.”

All such research is provisional: the findings gain currency only when supported by other teams using different approaches. So it has yet to be confirmed.

But recent studies have suggested that climate change has already begun to complicate calculations. Just in recent months, research teams have found that forest trees are growing shorter and dying younger; that higher temperatures may affect plant germination; and that forests already hit by drought may start surrendering carbon more swiftly than they absorb it. Planting more trees is not an alternative to reducing greenhouse gas emissions.

On the other hand, the carbon budget may still make sense: the oceans may be responding to ever-higher concentrations of carbon dioxide by absorbing more from the atmosphere, which also makes the oceans more acidic, which is not necessarily helpful.

Oceans’ effect

All such calculations are based on sea surface temperatures. Gases such as carbon dioxide and oxygen dissolve well in colder water, not so well in warm lagoons and tropical tides.

But a British group reports in the same journal that calculations so far may have been under-estimates. This is because, on balance, researchers have tended to ignore the small difference between the temperatures at the surface, and a few metres down, where the measurements of dissolved greenhouse gas were actually made.

A team from the University of Exeter worked from a global database to make new estimates of the oceans’ appetite for carbon between 1992 and 2018.

“We used satellite data to correct for these temperature differences, and when we do that, it makes a big difference – we get a substantially larger flux going into the ocean,” said Andrew Watson, who led the study.

“The difference in ocean uptake we calculate amounts to 10% of global fossil fuel emissions.” – Climate News Network

As climates change, forests may not absorb more carbon as expected. But a new carbon budget could appeal to the oceans.

LONDON, 18 September 2020 – Two new studies could throw long-term climate forecasts into confusion. The planetary carbon budget – the all-important traffic of life’s first element between rocks, water, atmosphere and living things – that underpins planetary temperatures and maintains a stable climate needs a rethink.

A warming climate makes trees grow faster. The awkward finding is that  faster-growing trees die younger. Therefore they must surrender their carbon back to the atmosphere quicker.

So tomorrow’s forests may not be quite such reliable long-term banks of carbon pumped into the atmosphere as a consequence of profligate fossil fuel use by human economies.

The more reassuring news is that the ocean – that’s almost three fourths of the planet’s surface – may absorb and store a lot more atmospheric carbon than previous estimates suggest.

All calculations about the future rate of global heating, and the potential consequences of climate change, rest upon the carbon budget.

Forest doubts

This is the intricate accounting of the mass of carbon in continuous circulation from air to plant to animal and then to shell, skeleton and sediment, and the expected flow of carbon emissions from the combustion of fossil fuels stored hundreds of millions of years ago, and exhumed in the last two centuries.

To make sense of the factors at work, climate scientists have to make calculations about all the carbon stored in the permafrost, in the soils, in the forests, dissolved in the oceans, free in the atmosphere and being released from power station chimneys, vehicle exhausts and ploughed or scorched land.

But for decades, one component of the equation has been automatically accepted: more forests must mean more carbon absorbed, and better protected natural forests would store the most carbon, the most efficiently.

Now a new report in the journal Nature Communications introduces some doubt into this cornerstone of the carbon budget. In an already warming world, much more of the carbon stored in tomorrow’s forests might find its way back into the atmosphere.

Researchers looked at 200,000 tree ring records from 82 tree species from sites around the planet. They found what they describe as trade-offs that are near universal: faster-growing trees have shorter lives.

“There is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality”

This was true in cool climates and warm ones, and in all species. So the hope that natural vegetation will respond to warmer temperatures by absorbing even more carbon becomes insecure, especially if it means that the more vigorous growth means simply swifter death and decay.

“Our modeling suggests that there is likely to be a timelag before we see the worst of the potential loss of carbon stocks from increases in tree mortality,” said Roel Brienen of the University of Leeds in the UK, who led the research. “They estimate that global increases in tree death don’t kick in until after sites show accelerated growth.”

All such research is provisional: the findings gain currency only when supported by other teams using different approaches. So it has yet to be confirmed.

But recent studies have suggested that climate change has already begun to complicate calculations. Just in recent months, research teams have found that forest trees are growing shorter and dying younger; that higher temperatures may affect plant germination; and that forests already hit by drought may start surrendering carbon more swiftly than they absorb it. Planting more trees is not an alternative to reducing greenhouse gas emissions.

On the other hand, the carbon budget may still make sense: the oceans may be responding to ever-higher concentrations of carbon dioxide by absorbing more from the atmosphere, which also makes the oceans more acidic, which is not necessarily helpful.

Oceans’ effect

All such calculations are based on sea surface temperatures. Gases such as carbon dioxide and oxygen dissolve well in colder water, not so well in warm lagoons and tropical tides.

But a British group reports in the same journal that calculations so far may have been under-estimates. This is because, on balance, researchers have tended to ignore the small difference between the temperatures at the surface, and a few metres down, where the measurements of dissolved greenhouse gas were actually made.

A team from the University of Exeter worked from a global database to make new estimates of the oceans’ appetite for carbon between 1992 and 2018.

“We used satellite data to correct for these temperature differences, and when we do that, it makes a big difference – we get a substantially larger flux going into the ocean,” said Andrew Watson, who led the study.

“The difference in ocean uptake we calculate amounts to 10% of global fossil fuel emissions.” – Climate News Network

Hotter oceans make the tropics expand polewards

The tropical climate zones are not just warmer, they now cover more of the planet. Blame it on steadily hotter oceans.

LONDON, 27 August, 2020 – The tropics are on the march and US and German scientists think they know why: hotter oceans have taken control.

The parched, arid fringes of the hot, moist conditions that nourish the equatorial forest band around the middle of the globe are moving, unevenly, further north and south in response to climate change.

And the role of the ocean is made even more dramatic in the southern hemisphere: because the ocean south of the equator is so much bigger than in the north, the southward shift of the parched zone is even more pronounced.

Across the globe, things don’t look good for places like California, which has already suffered some of its worst droughts and fires on record, and  Australia, where drought and fire if possible have been even worse.

In the past century or so, carbon dioxide levels in the atmosphere have risen from what was once a stable average of 285 parts per million to more than 400 ppm, and global average temperatures are now at least 1°C higher than they have been for most of human history.

“We demonstrate that the enhanced subtropical ocean warming is independent from the natural climate oscillations. This is a result of global warming”

And although the fastest and most dramatic changes in the world have been in the coldest zones – and particularly the Arctic – the tropics, too, have begun to feel the heat.

Researchers have observed tropical fish moving into cooler waters; they have warned that some tropical plant species may soon find temperatures too high for germination; they have mapped tropical cyclones hitting further north and south with time, and doing more damage; and they have seen evidence that tropical diseases could soon advance even into temperate Europe.

But although satellite observations have revealed that the tropical climate zone has expanded beyond the formal limits known as the Tropics of Capricorn and Cancer, and is doing so at somewhere between a quarter and half a degree of latitude each decade, no one has been able to work out why the shift is more pronounced in the southern half of the globe.

Now a new study in the Journal of Geophysical Research: Atmospheres offers an answer. The expansion of the tropics has been driven by ocean warming.

And if that expansion is more obvious in the southern hemisphere, it is because there is more sea to have more impact.

Clear link

Researchers analysed water temperature patterns in the great ocean gyres, those giant circular currents that take warm waters to the poles and return cold water to the equatorial regions.

They matched satellite readings from 1982 – the first year in the series of measurements – with data from 2018, and compared these to measurements of tropical zone expansion.

The connection was clear: excess heat that had been building up in the subtropical oceans ever since global warming began had driven both tropical edges and ocean gyres towards the poles.

That is, the shift in the tropics wasn’t just one of those slow pulses of expansion and retraction, of cyclic change, that happen in a complex world. And more precisely, the tropics were expanding more clearly in those places where the gyres moved poleward.

“We demonstrate that the enhanced subtropical ocean warming is independent from the natural climate oscillations,” said Hu Yang of the Alfred Wegener Institute in Bremerhaven, Germany, who led the research. “This is a result of global warming.” – Climate News Network

The tropical climate zones are not just warmer, they now cover more of the planet. Blame it on steadily hotter oceans.

LONDON, 27 August, 2020 – The tropics are on the march and US and German scientists think they know why: hotter oceans have taken control.

The parched, arid fringes of the hot, moist conditions that nourish the equatorial forest band around the middle of the globe are moving, unevenly, further north and south in response to climate change.

And the role of the ocean is made even more dramatic in the southern hemisphere: because the ocean south of the equator is so much bigger than in the north, the southward shift of the parched zone is even more pronounced.

Across the globe, things don’t look good for places like California, which has already suffered some of its worst droughts and fires on record, and  Australia, where drought and fire if possible have been even worse.

In the past century or so, carbon dioxide levels in the atmosphere have risen from what was once a stable average of 285 parts per million to more than 400 ppm, and global average temperatures are now at least 1°C higher than they have been for most of human history.

“We demonstrate that the enhanced subtropical ocean warming is independent from the natural climate oscillations. This is a result of global warming”

And although the fastest and most dramatic changes in the world have been in the coldest zones – and particularly the Arctic – the tropics, too, have begun to feel the heat.

Researchers have observed tropical fish moving into cooler waters; they have warned that some tropical plant species may soon find temperatures too high for germination; they have mapped tropical cyclones hitting further north and south with time, and doing more damage; and they have seen evidence that tropical diseases could soon advance even into temperate Europe.

But although satellite observations have revealed that the tropical climate zone has expanded beyond the formal limits known as the Tropics of Capricorn and Cancer, and is doing so at somewhere between a quarter and half a degree of latitude each decade, no one has been able to work out why the shift is more pronounced in the southern half of the globe.

Now a new study in the Journal of Geophysical Research: Atmospheres offers an answer. The expansion of the tropics has been driven by ocean warming.

And if that expansion is more obvious in the southern hemisphere, it is because there is more sea to have more impact.

Clear link

Researchers analysed water temperature patterns in the great ocean gyres, those giant circular currents that take warm waters to the poles and return cold water to the equatorial regions.

They matched satellite readings from 1982 – the first year in the series of measurements – with data from 2018, and compared these to measurements of tropical zone expansion.

The connection was clear: excess heat that had been building up in the subtropical oceans ever since global warming began had driven both tropical edges and ocean gyres towards the poles.

That is, the shift in the tropics wasn’t just one of those slow pulses of expansion and retraction, of cyclic change, that happen in a complex world. And more precisely, the tropics were expanding more clearly in those places where the gyres moved poleward.

“We demonstrate that the enhanced subtropical ocean warming is independent from the natural climate oscillations,” said Hu Yang of the Alfred Wegener Institute in Bremerhaven, Germany, who led the research. “This is a result of global warming.” – Climate News Network

Restoring forests can reduce greenhouse gases

In a way, money does grow on trees. So it could pay to help nature restore forests and reduce greenhouse gases.

LONDON, 20 August, 2020 – There is one straightforward way to reduce greenhouse gases: by taking better care of the world’s natural forests.

European and US scientists think they may have settled a complex argument about how to restore a natural forest so that it absorbs more carbon. Don’t just leave nature to regenerate in the way she knows best. Get into the woodland and manage, and plant.

It will cost more money, but it will sequester more carbon: potentially enough to make economic good sense.

Researchers from 13 universities and research institutions report in the journal Science that they carefully mapped and then studied a stretch of tropical forest in Sabah, in Malaysian Borneo: a forest that had been heavily logged more than 30 years ago, and converted to plantation, and then finally protected from further damage. The mapping techniques recorded where, and how much, above-ground carbon was concentrated, across thousands of hectares.

Faster recovery

The researchers report that those reaches of forest left to regenerate without human help recovered by as much as 2.9 tonnes of above-ground carbon per hectare each year. But those areas of forest that were helped a little, by what the scientists call “active restoration”, did even better.

Humans entered the regenerating forests and cut back the lianas – the climbing plants that flourish in degraded forests and compete with saplings – to help seedlings flourish. They also weeded where appropriate and enriched the mix of new plants with native seedlings.

Where this happened, the forest recovered 50% faster and carbon storage above-ground per hectare was measured at between 2.9 tonnes per hectare and 4.4 tonnes.

The lesson to be drawn is that where a natural forest may be thought fully restored after 60 years, active restoration could make it happen in 40 years.

“Restoration helps previously over-used forests not only to recover carbon, but also to become ecologically sound and diverse again”

The research demonstrates two things. The first is that forests can and will restore themselves: opportunistic plants will colonise open space and provide cover for those species best adapted to long-term survival in that climate and habitat. Nature will decide what conservationists call “the climax vegetation” of any natural forest. The second is that nature can indeed benefit from selective human help.

“This active restoration encourages naturally diverse forest, and is therefore much more beneficial for biodiversity than monocultures or plantation forests,” said Christopher Philipson, of the Swiss Federal Technology Institute known as ETH Zurich.

“In this way restoration helps previously over-used forests not only to recover carbon, but also to become ecologically sound and diverse again.”

There will be arguments about the finding. One is that what might be a good solution in south-east Asia might not be the best answer for the Congo or parts of the Amazon: as humans degrade the forest, they may also affect the local climate in ways that favour some native species rather than others. That is, it might never be possible to restore a forest to what it had been before the forester’s axe arrived.

Restoration’s pricetag

There is a second argument: restoration work costs money. How much economic sense it makes depends on what value scientists, politicians and economists put on the carbon that is sequestered as a consequence, and what price humanity pays for that same carbon in the form of additional greenhouse gas that will raise global temperatures, alter rainfall patterns and trigger potentially catastrophic climate change.

What worth do forests have to local populations, and what is the value set on the world’s wildernesses as global natural capital?

“Not long ago we treated degraded tropical forests as lost causes,” said a co-author, Greg Asner of Arizona State University.

“Our new findings, combined with those of other researchers around the world, strongly suggest that restoring tropical forests is a viable and highly scalable solution to regaining lost carbon stocks on land.” – Climate News Network

In a way, money does grow on trees. So it could pay to help nature restore forests and reduce greenhouse gases.

LONDON, 20 August, 2020 – There is one straightforward way to reduce greenhouse gases: by taking better care of the world’s natural forests.

European and US scientists think they may have settled a complex argument about how to restore a natural forest so that it absorbs more carbon. Don’t just leave nature to regenerate in the way she knows best. Get into the woodland and manage, and plant.

It will cost more money, but it will sequester more carbon: potentially enough to make economic good sense.

Researchers from 13 universities and research institutions report in the journal Science that they carefully mapped and then studied a stretch of tropical forest in Sabah, in Malaysian Borneo: a forest that had been heavily logged more than 30 years ago, and converted to plantation, and then finally protected from further damage. The mapping techniques recorded where, and how much, above-ground carbon was concentrated, across thousands of hectares.

Faster recovery

The researchers report that those reaches of forest left to regenerate without human help recovered by as much as 2.9 tonnes of above-ground carbon per hectare each year. But those areas of forest that were helped a little, by what the scientists call “active restoration”, did even better.

Humans entered the regenerating forests and cut back the lianas – the climbing plants that flourish in degraded forests and compete with saplings – to help seedlings flourish. They also weeded where appropriate and enriched the mix of new plants with native seedlings.

Where this happened, the forest recovered 50% faster and carbon storage above-ground per hectare was measured at between 2.9 tonnes per hectare and 4.4 tonnes.

The lesson to be drawn is that where a natural forest may be thought fully restored after 60 years, active restoration could make it happen in 40 years.

“Restoration helps previously over-used forests not only to recover carbon, but also to become ecologically sound and diverse again”

The research demonstrates two things. The first is that forests can and will restore themselves: opportunistic plants will colonise open space and provide cover for those species best adapted to long-term survival in that climate and habitat. Nature will decide what conservationists call “the climax vegetation” of any natural forest. The second is that nature can indeed benefit from selective human help.

“This active restoration encourages naturally diverse forest, and is therefore much more beneficial for biodiversity than monocultures or plantation forests,” said Christopher Philipson, of the Swiss Federal Technology Institute known as ETH Zurich.

“In this way restoration helps previously over-used forests not only to recover carbon, but also to become ecologically sound and diverse again.”

There will be arguments about the finding. One is that what might be a good solution in south-east Asia might not be the best answer for the Congo or parts of the Amazon: as humans degrade the forest, they may also affect the local climate in ways that favour some native species rather than others. That is, it might never be possible to restore a forest to what it had been before the forester’s axe arrived.

Restoration’s pricetag

There is a second argument: restoration work costs money. How much economic sense it makes depends on what value scientists, politicians and economists put on the carbon that is sequestered as a consequence, and what price humanity pays for that same carbon in the form of additional greenhouse gas that will raise global temperatures, alter rainfall patterns and trigger potentially catastrophic climate change.

What worth do forests have to local populations, and what is the value set on the world’s wildernesses as global natural capital?

“Not long ago we treated degraded tropical forests as lost causes,” said a co-author, Greg Asner of Arizona State University.

“Our new findings, combined with those of other researchers around the world, strongly suggest that restoring tropical forests is a viable and highly scalable solution to regaining lost carbon stocks on land.” – Climate News Network

Save wildlife, save forests, and avoid pandemics

Covid-19 emerged from the wilderness. That alone is reason to protect the forests, control trade in wildlife – and avoid pandemics.

LONDON, 5 August, 2020 – If the world wants to avoid pandemics like Covid-19 in future, it has a lot to learn. This coronavirus outbreak is likely to cost the world somewhere between $8 trillion and $15 trillion.

It might have been 500 times cheaper, say US scientists, simply to have done what conservationists have sought for years: control trade in wildlife and stop destroying tropical forests.

The SARS-CoV-2 virus – also known as Covid-19 – is a new human infection that has been traced back to bats apparently traded as food in China. It has so far infected 15 million people around the planet and caused nearly 700,000 deaths.

But it is just one of a series of viruses that have emerged from creatures in the wilderness, to cause a series of local or global epidemics: among them HIV, Ebola, MERS, SARS and H1N1.

Researchers calculate that, for the last century, at least two new viruses each year have spilled from their natural hosts into the human population.

“Nothing seems more prudent than to give ourselves time to deal with this pandemic before the next one comes”

And this has happened, they argue in the journal Science, most often directly after people have handled live primates, bats and other mammals, or butchered them for meat, or indirectly after such viruses have infected farm animals such as chickens or pigs.

These infections are now so familiar they have acquired their own medical classification: they are zoonotic viruses.

And human exploitation of the world’s last remaining wildernesses – the tropical forests – and pursuit of exotic creatures for trophies, medicines or food can be linked to the emergence of most of them.

“All this traces back to our indifference about what has been happening at the edge of the tropical forests,” said Les Kaufman, an ecologist at Boston University.

He and 17 other experts argue that at a cost of somewhere between $22 billion and $30 billion a year, the transmission of unknown and unexpected diseases could be significantly reduced: chiefly by controlling logging and conversion of rainforest into ranch land, and limiting the trade in wild meat and exotic animals.

Clear argument

The sums are large. But the cost of the COVID-19 pandemic so far is likely to prove at least 500 times more costly.

Professor Kaufman and his colleagues did the calculations. They added up the annual costs of monitoring the world’s wildlife trade; of active programmes to prevent what they call “spillovers” from wild creatures; of efforts to detect and control outbreaks; the cost of reducing infection to human populations and farmed livestock; the cost of reducing deforestation each year by half, and the cost of ending the trade in wild meat in China. Their highest estimate was $31.2bn a year, their lowest $22bn.

They offset this with the benefits simply in the reduction of carbon dioxide emissions linked to forest destruction, and then matched the total against the global loss of gross domestic product, the cost of the estimated 590,000 dead from the virus at the end of July, and so on, to arrive at a minimum cost of $8.1 trillion, and a maximum of $15.8tn.

The researchers see this balance of costs as a clear argument for international and concerted action from governments around the world to reduce an enduring hazard.

“The pandemic gives an incentive to do something addressing concerns that are immediate and threatening to individuals, and that’s what moves people,” Professor Kaufman said. “Nothing seems more prudent than to give ourselves time to deal with this pandemic before the next one comes.” – Climate News Network

Covid-19 emerged from the wilderness. That alone is reason to protect the forests, control trade in wildlife – and avoid pandemics.

LONDON, 5 August, 2020 – If the world wants to avoid pandemics like Covid-19 in future, it has a lot to learn. This coronavirus outbreak is likely to cost the world somewhere between $8 trillion and $15 trillion.

It might have been 500 times cheaper, say US scientists, simply to have done what conservationists have sought for years: control trade in wildlife and stop destroying tropical forests.

The SARS-CoV-2 virus – also known as Covid-19 – is a new human infection that has been traced back to bats apparently traded as food in China. It has so far infected 15 million people around the planet and caused nearly 700,000 deaths.

But it is just one of a series of viruses that have emerged from creatures in the wilderness, to cause a series of local or global epidemics: among them HIV, Ebola, MERS, SARS and H1N1.

Researchers calculate that, for the last century, at least two new viruses each year have spilled from their natural hosts into the human population.

“Nothing seems more prudent than to give ourselves time to deal with this pandemic before the next one comes”

And this has happened, they argue in the journal Science, most often directly after people have handled live primates, bats and other mammals, or butchered them for meat, or indirectly after such viruses have infected farm animals such as chickens or pigs.

These infections are now so familiar they have acquired their own medical classification: they are zoonotic viruses.

And human exploitation of the world’s last remaining wildernesses – the tropical forests – and pursuit of exotic creatures for trophies, medicines or food can be linked to the emergence of most of them.

“All this traces back to our indifference about what has been happening at the edge of the tropical forests,” said Les Kaufman, an ecologist at Boston University.

He and 17 other experts argue that at a cost of somewhere between $22 billion and $30 billion a year, the transmission of unknown and unexpected diseases could be significantly reduced: chiefly by controlling logging and conversion of rainforest into ranch land, and limiting the trade in wild meat and exotic animals.

Clear argument

The sums are large. But the cost of the COVID-19 pandemic so far is likely to prove at least 500 times more costly.

Professor Kaufman and his colleagues did the calculations. They added up the annual costs of monitoring the world’s wildlife trade; of active programmes to prevent what they call “spillovers” from wild creatures; of efforts to detect and control outbreaks; the cost of reducing infection to human populations and farmed livestock; the cost of reducing deforestation each year by half, and the cost of ending the trade in wild meat in China. Their highest estimate was $31.2bn a year, their lowest $22bn.

They offset this with the benefits simply in the reduction of carbon dioxide emissions linked to forest destruction, and then matched the total against the global loss of gross domestic product, the cost of the estimated 590,000 dead from the virus at the end of July, and so on, to arrive at a minimum cost of $8.1 trillion, and a maximum of $15.8tn.

The researchers see this balance of costs as a clear argument for international and concerted action from governments around the world to reduce an enduring hazard.

“The pandemic gives an incentive to do something addressing concerns that are immediate and threatening to individuals, and that’s what moves people,” Professor Kaufman said. “Nothing seems more prudent than to give ourselves time to deal with this pandemic before the next one comes.” – Climate News Network

Rising heat affects Europe’s floods and droughts

Patterns of Europe’s floods and droughts are starting to change: each could be more extreme, and far likelier with rising heat.

LONDON, 27 July, 2020 − Climate change has begun to affect the pattern of Europe’s floods. The past three decades have seen “exceptional” flooding, say Austrian scientists who have worked their way through documentary records for the last 500 years.

At the same time, heat and drought affecting the continent are on the increase. The summer of 2018 broke all records for Germany, Austria and Switzerland, and by 2019 many trees in Europe’s forests were partly or entirely dead. And by 2085 rainfall could decline by a fifth, Swiss ecologists report, to alter the make-up of the forests dramatically.

Both findings are consistent with the big picture of climate change worldwide: wet seasons will become ever wetter; dry seasons too will become more extreme, according to US researchers in a third separate study.

All attempts to establish climate records involve careful interrogation of the past. Günter Blöschl of Vienna’s University of Technology and colleagues report in Nature that they sifted evidence from mountain lake beds, floodplains and 500 years of contemporary documents to identify decades more than usually rich in floods.

The floods of 1990 to 2016 in Western and Central Europe have been among the worst in history. To make sure of such a claim, the researchers identified periods of calamitous inundation across the whole region in the late 16th century and again in the 17th; and in the 18th and early 19th centuries.

“We should be preparing for the future by improving the technology to efficiently use water for crops”

If these episodes had anything in common, bygone floods happened when air temperatures were lower: fewer of them, too, happened in the summer.

“This finding seems to contradict the observation that, in some areas such as in the northwest of Europe, the recent warmer climate is aligned with larger floods,” Professor Blöschl said. “Our study shows for the first time that the underlying mechanisms have changed.

“While in the past floods have occurred more frequently under colder conditions, the opposite is the case now. The hydrological conditions of the present are very different from those in the past.”

Now, 55% of Central European floods happen in the summer, compared with 41% in previous centuries. It’s a message for planners, city chiefs and governments across the region: flood management is going to have to adapt.

So, too, is forest and woodland management, say scientists in Switzerland and Germany, who have been measuring changes in the canopies of their forests.

Growing vulnerability

For most of Europe, the single most extreme heatwave has been that of 2003: that is, until 2018. The sustained heat and aridity made temperatures in the growing season of 2018 on average 1.2°C higher than 2003, and 3.3°C higher than the average from 1961-1990.

Woodland foliage showed signs of drought stress. Leaves wilted, aged and dropped much earlier, and by 2019 many trees were dead, or partly dead. Those that survived were more vulnerable to beetle or fungal pests. Losses included beech, long considered the most drought-resistant.

Ten out of the 12 hottest growing seasons in the last 120 years have all happened this century. Climate forecasts already predict more of the same, with precipitation falling by a fifth by 2085. Foresters will have to think again about woodland design.

“Spruce was most heavily affected. But it was a surprise for us that beech, silver fir and pine were also damaged to this extent,” said Ansgar Kahmen of the University of Basel in Switzerland.

“We still need to study which tree species are good in which combinations, including from a forestry perspective. That will take time.”

Keeping Paris promise

And worldwide, farmers, foresters and water managers can also expect more of the same. As temperatures rise worldwide, dry seasons will tend to become drier, and wet seasons wetter.

US researchers report in the journal Nature Communications that they divided the world into nine land regions, and looked at annual rain or snowfall and how this fluctuated through the seasons in each of the nine from 1971 to 2000. They then looked at future temperature predictions for the rest of the century to see what happened to water availability.

The best outcome for relatively stable water supplies would be if nations could act to limit the planet’s average global temperature rise to no more than 2°C by 2100, in line with a promise made by 195 governments in Paris in 2015.

At higher temperatures the predicted scatter of flood and drought became more extreme. Once again, the message is: start planning. “We need to take precautions to optimally use how much water we have,” said Ashok Mishra of Clemson University in South Carolina.

“As the climate changes and population increases, we should be preparing for the future by improving the technology to efficiently use water for crops.” − Climate News Network

Patterns of Europe’s floods and droughts are starting to change: each could be more extreme, and far likelier with rising heat.

LONDON, 27 July, 2020 − Climate change has begun to affect the pattern of Europe’s floods. The past three decades have seen “exceptional” flooding, say Austrian scientists who have worked their way through documentary records for the last 500 years.

At the same time, heat and drought affecting the continent are on the increase. The summer of 2018 broke all records for Germany, Austria and Switzerland, and by 2019 many trees in Europe’s forests were partly or entirely dead. And by 2085 rainfall could decline by a fifth, Swiss ecologists report, to alter the make-up of the forests dramatically.

Both findings are consistent with the big picture of climate change worldwide: wet seasons will become ever wetter; dry seasons too will become more extreme, according to US researchers in a third separate study.

All attempts to establish climate records involve careful interrogation of the past. Günter Blöschl of Vienna’s University of Technology and colleagues report in Nature that they sifted evidence from mountain lake beds, floodplains and 500 years of contemporary documents to identify decades more than usually rich in floods.

The floods of 1990 to 2016 in Western and Central Europe have been among the worst in history. To make sure of such a claim, the researchers identified periods of calamitous inundation across the whole region in the late 16th century and again in the 17th; and in the 18th and early 19th centuries.

“We should be preparing for the future by improving the technology to efficiently use water for crops”

If these episodes had anything in common, bygone floods happened when air temperatures were lower: fewer of them, too, happened in the summer.

“This finding seems to contradict the observation that, in some areas such as in the northwest of Europe, the recent warmer climate is aligned with larger floods,” Professor Blöschl said. “Our study shows for the first time that the underlying mechanisms have changed.

“While in the past floods have occurred more frequently under colder conditions, the opposite is the case now. The hydrological conditions of the present are very different from those in the past.”

Now, 55% of Central European floods happen in the summer, compared with 41% in previous centuries. It’s a message for planners, city chiefs and governments across the region: flood management is going to have to adapt.

So, too, is forest and woodland management, say scientists in Switzerland and Germany, who have been measuring changes in the canopies of their forests.

Growing vulnerability

For most of Europe, the single most extreme heatwave has been that of 2003: that is, until 2018. The sustained heat and aridity made temperatures in the growing season of 2018 on average 1.2°C higher than 2003, and 3.3°C higher than the average from 1961-1990.

Woodland foliage showed signs of drought stress. Leaves wilted, aged and dropped much earlier, and by 2019 many trees were dead, or partly dead. Those that survived were more vulnerable to beetle or fungal pests. Losses included beech, long considered the most drought-resistant.

Ten out of the 12 hottest growing seasons in the last 120 years have all happened this century. Climate forecasts already predict more of the same, with precipitation falling by a fifth by 2085. Foresters will have to think again about woodland design.

“Spruce was most heavily affected. But it was a surprise for us that beech, silver fir and pine were also damaged to this extent,” said Ansgar Kahmen of the University of Basel in Switzerland.

“We still need to study which tree species are good in which combinations, including from a forestry perspective. That will take time.”

Keeping Paris promise

And worldwide, farmers, foresters and water managers can also expect more of the same. As temperatures rise worldwide, dry seasons will tend to become drier, and wet seasons wetter.

US researchers report in the journal Nature Communications that they divided the world into nine land regions, and looked at annual rain or snowfall and how this fluctuated through the seasons in each of the nine from 1971 to 2000. They then looked at future temperature predictions for the rest of the century to see what happened to water availability.

The best outcome for relatively stable water supplies would be if nations could act to limit the planet’s average global temperature rise to no more than 2°C by 2100, in line with a promise made by 195 governments in Paris in 2015.

At higher temperatures the predicted scatter of flood and drought became more extreme. Once again, the message is: start planning. “We need to take precautions to optimally use how much water we have,” said Ashok Mishra of Clemson University in South Carolina.

“As the climate changes and population increases, we should be preparing for the future by improving the technology to efficiently use water for crops.” − Climate News Network

Food shortage may finish polar bears by 2100

How long polar bears can survive depends on how long they can last without food. And that may be: not long enough.

LONDON, 24 July, 2020 − As the Arctic sea ice dwindles, so will hope for the region’s most dramatic predator, its polar bears. A creature fashioned by evolution to fast a whole summer and gorge through the autumn and winter may not last, as the ice melts ever earlier and forms ever later.

That is because Ursus maritimus can find the food for the next generation of its cubs only by prowling the firm sea ice for a high-calorie diet of seal flesh and blubber.

And now a team of Canadian and US scientists has begun to establish the unknown of polar bear survival: how many days the creature can survive without food and still nourish its young and sustain life.

They call this the “fasting impact threshold” and the answer, they report in the journal Nature Climate Change, is not encouraging.

“Polar bears everywhere will face longer periods without food, and this will affect their ability to reproduce, survive and persist”

If warming continues at the present rate, then by the century’s end most of the sub-populations of this charismatic animal will not survive.

“The challenge is that the Arctic ice will keep disappearing as the world continues to warm,” said Péter Molnár, of the University of Toronto Scarborough, who led the research.

“This means polar bears everywhere will face longer periods without food, and this will affect their ability to reproduce, survive and persist as healthy populations.”

The researchers had to start with one big uncertainty: how much stored energy the bear has when the fasting season begins. Because the shelf ice has been thinning and shrinking for more than 40 years, hunting seasons have become shorter and bears now spend longer and longer on land.

Natural variability

That raised a second factor: some parts of the Arctic lose ice earlier than others. The third unknown is the health of the 19 sub-populations of Ursus maritimus, spread over four distinct eco-regions within the Arctic Circle, and how these separate populations would consider a “good” hunting season and a happy period of fasting.

In the southern Beaufort Sea, fewer than 127 ice-free days could be considered “good”, but even this seemingly assured number was based on only five years of systematic demographic data.

And then the researchers had to calculate the demands placed on individual bears: an adult male might be able to last 200 days; a solitary adult female up to 255 days. But a mother bear might begin to lose what it takes to get cubs through to maturity as early as 117 days, and certainly after 228 days.

But however incomplete, the scientists had data for about 80% of the polar bear populations, collected between 1979 and 2016, and report that what they politely call “recruitment and survival impact thresholds” may have already been exceeded in some populations.

Too hopeful?

That is, there are increasing numbers of bears in the Arctic no longer sure of having cubs or keeping them alive. That includes the polar bears of Hudson Bay and the Davis Strait in northern Canada: perhaps the most photographed bears in the world.

And if the world goes on warming, only a few creatures in the very high Arctic will see the next century.

“While our projections for the future of polar bears seem dire, the unfortunate thing is they might even be too optimistic. For example, we assumed that polar bears will use their available body energy in optimal ways when fasting. If that isn’t the case, the reality could be worse than our projections,” Dr Molnár said.

“What we do know is that becoming fat before a fasting season will be more difficult for polar bears as on-ice hunting seasons become shorter, so it’s likely that fasting impact thresholds will be crossed in the early years of our projected range.” − Climate News Network

How long polar bears can survive depends on how long they can last without food. And that may be: not long enough.

LONDON, 24 July, 2020 − As the Arctic sea ice dwindles, so will hope for the region’s most dramatic predator, its polar bears. A creature fashioned by evolution to fast a whole summer and gorge through the autumn and winter may not last, as the ice melts ever earlier and forms ever later.

That is because Ursus maritimus can find the food for the next generation of its cubs only by prowling the firm sea ice for a high-calorie diet of seal flesh and blubber.

And now a team of Canadian and US scientists has begun to establish the unknown of polar bear survival: how many days the creature can survive without food and still nourish its young and sustain life.

They call this the “fasting impact threshold” and the answer, they report in the journal Nature Climate Change, is not encouraging.

“Polar bears everywhere will face longer periods without food, and this will affect their ability to reproduce, survive and persist”

If warming continues at the present rate, then by the century’s end most of the sub-populations of this charismatic animal will not survive.

“The challenge is that the Arctic ice will keep disappearing as the world continues to warm,” said Péter Molnár, of the University of Toronto Scarborough, who led the research.

“This means polar bears everywhere will face longer periods without food, and this will affect their ability to reproduce, survive and persist as healthy populations.”

The researchers had to start with one big uncertainty: how much stored energy the bear has when the fasting season begins. Because the shelf ice has been thinning and shrinking for more than 40 years, hunting seasons have become shorter and bears now spend longer and longer on land.

Natural variability

That raised a second factor: some parts of the Arctic lose ice earlier than others. The third unknown is the health of the 19 sub-populations of Ursus maritimus, spread over four distinct eco-regions within the Arctic Circle, and how these separate populations would consider a “good” hunting season and a happy period of fasting.

In the southern Beaufort Sea, fewer than 127 ice-free days could be considered “good”, but even this seemingly assured number was based on only five years of systematic demographic data.

And then the researchers had to calculate the demands placed on individual bears: an adult male might be able to last 200 days; a solitary adult female up to 255 days. But a mother bear might begin to lose what it takes to get cubs through to maturity as early as 117 days, and certainly after 228 days.

But however incomplete, the scientists had data for about 80% of the polar bear populations, collected between 1979 and 2016, and report that what they politely call “recruitment and survival impact thresholds” may have already been exceeded in some populations.

Too hopeful?

That is, there are increasing numbers of bears in the Arctic no longer sure of having cubs or keeping them alive. That includes the polar bears of Hudson Bay and the Davis Strait in northern Canada: perhaps the most photographed bears in the world.

And if the world goes on warming, only a few creatures in the very high Arctic will see the next century.

“While our projections for the future of polar bears seem dire, the unfortunate thing is they might even be too optimistic. For example, we assumed that polar bears will use their available body energy in optimal ways when fasting. If that isn’t the case, the reality could be worse than our projections,” Dr Molnár said.

“What we do know is that becoming fat before a fasting season will be more difficult for polar bears as on-ice hunting seasons become shorter, so it’s likely that fasting impact thresholds will be crossed in the early years of our projected range.” − Climate News Network

Heat may leave tropical trees unable to germinate

If a plant can’t germinate, it’s heading for extinction. For many tropical trees, conditions could soon become too hot to procreate.

LONDON, 14 July, 2020 – There could soon be real trouble for tropical trees and other plants. As global average temperatures rise, in response to ever more profligate use of fossil fuels, it may for some species become too hot to successfully germinate.

The foliage most at risk from this thermal barrier to reproduction is certain to be in the tropics, where tens of thousands of plant species have already adapted to very nearly the limits of their tolerance.

Australian researchers report in the journal Global Ecology and Biogeography that they looked at 9,737 records for 1,312 species worldwide from the Kew Gardens’ global germination database, to work out the temperature ranges that suit germination.

They report that the closer to the equator, the more the risk that by 2070 temperatures could rise high enough to exceed the ceiling below which germination is possible.

More than half of all the tropical seedlings tested – 79 out of 142 – would experience temperatures higher than the optimum for breeding. And 41 out of 190 would meet temperatures that would be higher than the maximum at which seeds would germinate.

Survival impossible

“These plants are more at risk because they are near their upper limits. So even a small increase in temperature from climate change could push them over the edge,” said Alexander Sentinella, of the University of New South Wales, who led the study.

“The figures are quite shocking because by 2070 more than 20% of tropical plant species, we predict, will face temperatures above their upper limit, which means they won’t germinate, and so can’t survive.”

The world’s tropical forests are already in trouble. Altogether there could be three trillion trees on the planet, and humans are already removing 15 billion a year. The richest habitats are in the tropics.

There could be 40,000 species of tree that flourish in the equatorial forests, and half of these have already been pronounced threatened. The hot moist forests provide cover for myriad smaller shrubs and plants under the canopy, and they flourish alongside a mosaic of wetland and grassland habitats to support some of the richest biodiversity on the planet.

The forests and the plants in them absorb a high proportion of the extra carbon dioxide emitted from power station and vehicle exhausts, they serve as a sponge to store rainy season water, and they recycle the planet’s oxygen. They are under increasing stress from human exploitation and climate change.

“These plants are more at risk because they are near their upper limits. So even a small increase in temperature from climate change could push them over the edge”

Higher temperatures mean greater extremes of windstorm that can severely damage whole forests; higher temperatures mean more intense droughts and greater fire hazard; climate change has begun to alter the mix, variety and abundance of tree species both in the tropics and worldwide; and where they can, tropical species have already begun to colonise higher ground to stay within suitable temperature boundaries.

So the realisation that plant species – like animals on land and fish in the oceans – may be most vulnerable at a key moment of the life cycle is even more bad news. Many species will still be able to reproduce, but if they have already gone beyond the optimum for germination, then the success rate will be smaller.

The news on a global scale is more encouraging: the researchers found that 95% of species at latitudes higher than 45° could actually benefit from global warming, because temperatures could shift more closely to the optimum for many temperate and cool zone plants. And some plant species may evolve as temperatures rise. But many will not adapt in time to rapidly-rising global temperatures.

“There are almost 400,000 plant species worldwide – so we would expect a number of them to fail to germinate between now and 2070,” Sentinella said.

“Humans have known about the dangers of climate change for decades, and we already have the answers to tackle it. Hopefully, our study will encourage people and policymakers to take action now.” – Climate News Network

If a plant can’t germinate, it’s heading for extinction. For many tropical trees, conditions could soon become too hot to procreate.

LONDON, 14 July, 2020 – There could soon be real trouble for tropical trees and other plants. As global average temperatures rise, in response to ever more profligate use of fossil fuels, it may for some species become too hot to successfully germinate.

The foliage most at risk from this thermal barrier to reproduction is certain to be in the tropics, where tens of thousands of plant species have already adapted to very nearly the limits of their tolerance.

Australian researchers report in the journal Global Ecology and Biogeography that they looked at 9,737 records for 1,312 species worldwide from the Kew Gardens’ global germination database, to work out the temperature ranges that suit germination.

They report that the closer to the equator, the more the risk that by 2070 temperatures could rise high enough to exceed the ceiling below which germination is possible.

More than half of all the tropical seedlings tested – 79 out of 142 – would experience temperatures higher than the optimum for breeding. And 41 out of 190 would meet temperatures that would be higher than the maximum at which seeds would germinate.

Survival impossible

“These plants are more at risk because they are near their upper limits. So even a small increase in temperature from climate change could push them over the edge,” said Alexander Sentinella, of the University of New South Wales, who led the study.

“The figures are quite shocking because by 2070 more than 20% of tropical plant species, we predict, will face temperatures above their upper limit, which means they won’t germinate, and so can’t survive.”

The world’s tropical forests are already in trouble. Altogether there could be three trillion trees on the planet, and humans are already removing 15 billion a year. The richest habitats are in the tropics.

There could be 40,000 species of tree that flourish in the equatorial forests, and half of these have already been pronounced threatened. The hot moist forests provide cover for myriad smaller shrubs and plants under the canopy, and they flourish alongside a mosaic of wetland and grassland habitats to support some of the richest biodiversity on the planet.

The forests and the plants in them absorb a high proportion of the extra carbon dioxide emitted from power station and vehicle exhausts, they serve as a sponge to store rainy season water, and they recycle the planet’s oxygen. They are under increasing stress from human exploitation and climate change.

“These plants are more at risk because they are near their upper limits. So even a small increase in temperature from climate change could push them over the edge”

Higher temperatures mean greater extremes of windstorm that can severely damage whole forests; higher temperatures mean more intense droughts and greater fire hazard; climate change has begun to alter the mix, variety and abundance of tree species both in the tropics and worldwide; and where they can, tropical species have already begun to colonise higher ground to stay within suitable temperature boundaries.

So the realisation that plant species – like animals on land and fish in the oceans – may be most vulnerable at a key moment of the life cycle is even more bad news. Many species will still be able to reproduce, but if they have already gone beyond the optimum for germination, then the success rate will be smaller.

The news on a global scale is more encouraging: the researchers found that 95% of species at latitudes higher than 45° could actually benefit from global warming, because temperatures could shift more closely to the optimum for many temperate and cool zone plants. And some plant species may evolve as temperatures rise. But many will not adapt in time to rapidly-rising global temperatures.

“There are almost 400,000 plant species worldwide – so we would expect a number of them to fail to germinate between now and 2070,” Sentinella said.

“Humans have known about the dangers of climate change for decades, and we already have the answers to tackle it. Hopefully, our study will encourage people and policymakers to take action now.” – Climate News Network

Ireland looks forward to a greener future

Often called the Emerald Isle, Ireland prides itself on its green image – but the reality has been rather different.

DUBLIN, 6 July, 2020 – A predominantly rural country with a relatively small population and little heavy industry, Ireland is, per capita, one of the European Union’s biggest emitters of climate-changing greenhouse gases.

Now there are signs of change: after an inconclusive general election and months of political negotiations, a new coalition government has been formed in which, for the first time, Ireland’s Green Party has a significant role.

As part of a deal it has done with Fianna Fail and Fine Gael – the two parties that have dominated Ireland’s politics for much of the last century – the Green Party wants a halt to any further exploration for fossil fuels in the country’s offshore waters.

It’s also calling for a stop to all imports of shale gas from the US. A new climate action law will set legally binding targets for cuts in greenhouse gas emissions – Ireland aims to reduce net emissions by more than 50% by 2030.

“We do not expect large emissions reductions as seen during the financial crisis of 2008”

Achieving that goal is a gargantuan task. Due to the Covid-19 pandemic and an economic slowdown, Ireland’s carbon emissions are set to fall by nearly 10% this year according to a report by the country’s Economic and Social Research Institute (ESRI).

The report warns that due mainly to low international energy prices, the use of fossil fuels is likely to surge after Covid.

“Though the economic impacts of the Covid crisis are severe, due to among others the decreased energy prices, we do not expect large emissions reductions as seen during the financial crisis of 2008”, says the ESRI’s Kelly de Bruin, a co-author of the study.

“Ireland would still need to put in considerable effort to reach its EU emission goals.

Methane abundance

“The results of the study underline the importance of having a well-designed government response policy package, which considers the unique economic and environmental challenges presented by the Covid crisis.”

Emissions have to be tackled mainly in two sectors – transport and agriculture – which together account for more than 50% of the country’s total greenhouse gas emissions.

With increased use of electric vehicles, higher diesel taxes and more efficient goods distribution systems, emissions in the transport sector are relatively easy to sort out. But agriculture – one of the mainstays of Ireland’s economy – is a much more difficult proposition.

Ireland has a population of five million – and a cattle herd of nearly seven million. The flatulence of cattle produces considerable amounts of methane, one of the most potent greenhouse gases.

Determined Greens

Farming organisations have traditionally wielded considerable political power. In the past politicians have been accused of indulging in plenty of rhetoric but taking little positive action to address the perils of climate change.

Ireland’s Green Party, which has four ministers in the new 16-member coalition cabinet, says it will not hesitate to bring down the government if environmental promises are not kept.

Eamon Ryan, the Green Party leader and Minister for Climate Action, Communication Networks and Transport, says the big challenge is to restore Ireland’s biodiversity and stop what he calls the madness of climate change.

“That’s our job in government. That’s what we’ve been voted in to do”, says Ryan. – Climate News Network

Often called the Emerald Isle, Ireland prides itself on its green image – but the reality has been rather different.

DUBLIN, 6 July, 2020 – A predominantly rural country with a relatively small population and little heavy industry, Ireland is, per capita, one of the European Union’s biggest emitters of climate-changing greenhouse gases.

Now there are signs of change: after an inconclusive general election and months of political negotiations, a new coalition government has been formed in which, for the first time, Ireland’s Green Party has a significant role.

As part of a deal it has done with Fianna Fail and Fine Gael – the two parties that have dominated Ireland’s politics for much of the last century – the Green Party wants a halt to any further exploration for fossil fuels in the country’s offshore waters.

It’s also calling for a stop to all imports of shale gas from the US. A new climate action law will set legally binding targets for cuts in greenhouse gas emissions – Ireland aims to reduce net emissions by more than 50% by 2030.

“We do not expect large emissions reductions as seen during the financial crisis of 2008”

Achieving that goal is a gargantuan task. Due to the Covid-19 pandemic and an economic slowdown, Ireland’s carbon emissions are set to fall by nearly 10% this year according to a report by the country’s Economic and Social Research Institute (ESRI).

The report warns that due mainly to low international energy prices, the use of fossil fuels is likely to surge after Covid.

“Though the economic impacts of the Covid crisis are severe, due to among others the decreased energy prices, we do not expect large emissions reductions as seen during the financial crisis of 2008”, says the ESRI’s Kelly de Bruin, a co-author of the study.

“Ireland would still need to put in considerable effort to reach its EU emission goals.

Methane abundance

“The results of the study underline the importance of having a well-designed government response policy package, which considers the unique economic and environmental challenges presented by the Covid crisis.”

Emissions have to be tackled mainly in two sectors – transport and agriculture – which together account for more than 50% of the country’s total greenhouse gas emissions.

With increased use of electric vehicles, higher diesel taxes and more efficient goods distribution systems, emissions in the transport sector are relatively easy to sort out. But agriculture – one of the mainstays of Ireland’s economy – is a much more difficult proposition.

Ireland has a population of five million – and a cattle herd of nearly seven million. The flatulence of cattle produces considerable amounts of methane, one of the most potent greenhouse gases.

Determined Greens

Farming organisations have traditionally wielded considerable political power. In the past politicians have been accused of indulging in plenty of rhetoric but taking little positive action to address the perils of climate change.

Ireland’s Green Party, which has four ministers in the new 16-member coalition cabinet, says it will not hesitate to bring down the government if environmental promises are not kept.

Eamon Ryan, the Green Party leader and Minister for Climate Action, Communication Networks and Transport, says the big challenge is to restore Ireland’s biodiversity and stop what he calls the madness of climate change.

“That’s our job in government. That’s what we’ve been voted in to do”, says Ryan. – Climate News Network

Nature’s accounts show what the world does for us

People go on getting richer, and the planet pays a mounting price. There’s a better way to balance nature’s accounts.

LONDON, 24 June, 2020 – It may take a while to catch on, but one day the financial pages of the daily newspaper could be quoting a new register of national wealth: called gross ecosystem product, this way of balancing nature’s accounts makes clear how much we really depend on the Earth.

And it would be a real-world indicator of prosperity you could have confidence in: a measure in cash terms of the health of the forests, rivers, lakes and wildlife of both nations and regions and – more precisely – of the benefits heedless humans take for granted.

These include the insect pollination of crops; the control of insect pests by birds and bats; the supply of fresh, safe water from mountain streams, rivers, springs and lakes; the management of waste by scavengers and microbes; the recycling of nutrients; and all the myriad services provided by plants, animals and topography. This is sometimes called “natural capital.”

The measure has already formally been tested in one province in China and matched with the more familiar indicator: Gross Domestic Product, or GDP.

Flying blind

Chinese scientists report in the Proceedings of the National Academy of Sciences that in the year 2000, the gross ecosystem product or GEP of Qinghai province was greater than its GDP.

By 2015, after phenomenal economic growth, it was still three-fourths the size of its GDP. And the form this natural wealth took? Mostly water supplies to other crowded regions: Qinghai is where the Mekong, the Yangtze and the Yellow Rivers rise.

“We’re basically flying blind when it comes to knowing where and how much nature to protect,” said Gretchen Daily, an environmental scientist at Stanford’s School of Humanities and Sciences in California, and one of the report’s authors.

“GEP tracks the vital contributions of nature to society, informs investments in securing them and helps evaluate the performance of leaders and policies.”

And her British co-author, Ian Bateman, an economist at the University of Exeter, said: “The global economy as conventionally measured by GDP more than doubled between 1990 and 2015. However, at the same time our stocks of ‘ecosystem assets’ – such as forests, grasslands, wetlands, fertile soils and biodiversity – have come under increasing pressure.”

“We were able to place a value on important ecosystem services, especially water supply, that Qinghai currently exports to other provinces but receives no credit for in the GDP calculation”

He continued: “These things are obviously valuable in many ways – including to human wellbeing. However, in this study we examine the benefits they bring us measured in a way that governments and business can understand.”

Naturalists, conservationists and economists have repeatedly argued that it makes better economic sense to conserve nature rather than to exploit it: untouched natural forest or grassland contributes more to everybody’s wealth than any clear-felling project or conversion to cattle-grazing.

Scientists and economists have again and again tried to calculate the cash value to humankind of nature’s goods and services, and to steer development in a sustainable fashion.

They have repeatedly warned that global heating driven by profligate use of fossil fuels is almost certain to hit the pockets of the poorest most cruelly.

And they have warned that uncontrolled exploitation of once untouched natural forests, mangrove estuaries, grasslands, wetlands and coral reefs that precipitates mass extinction of species is certain to impoverish billions in the long run.

Direct test

But to persuade governments that natural capital represents an investment with measurable returns, economists need a standard global measure. GEP could be it.

The measure was tested directly in what is sometimes called the “water tower” of Asia. The logic is that if the people of that region care for their natural habitat, and people downstream benefit directly from that care, then those downstream should also contribute to the costs of care.

“Qinghai is rich in natural capital but its GDP alone does not reflect that value”, said the study’s lead author, Zhiyun Ouyang, of the Chinese Academy of Sciences.

“Using this new metric we were able to place a value on important ecosystem services, especially water supply, that Qinghai currently exports to other provinces but receives no credit for in the GDP calculation.” – Climate News Network

People go on getting richer, and the planet pays a mounting price. There’s a better way to balance nature’s accounts.

LONDON, 24 June, 2020 – It may take a while to catch on, but one day the financial pages of the daily newspaper could be quoting a new register of national wealth: called gross ecosystem product, this way of balancing nature’s accounts makes clear how much we really depend on the Earth.

And it would be a real-world indicator of prosperity you could have confidence in: a measure in cash terms of the health of the forests, rivers, lakes and wildlife of both nations and regions and – more precisely – of the benefits heedless humans take for granted.

These include the insect pollination of crops; the control of insect pests by birds and bats; the supply of fresh, safe water from mountain streams, rivers, springs and lakes; the management of waste by scavengers and microbes; the recycling of nutrients; and all the myriad services provided by plants, animals and topography. This is sometimes called “natural capital.”

The measure has already formally been tested in one province in China and matched with the more familiar indicator: Gross Domestic Product, or GDP.

Flying blind

Chinese scientists report in the Proceedings of the National Academy of Sciences that in the year 2000, the gross ecosystem product or GEP of Qinghai province was greater than its GDP.

By 2015, after phenomenal economic growth, it was still three-fourths the size of its GDP. And the form this natural wealth took? Mostly water supplies to other crowded regions: Qinghai is where the Mekong, the Yangtze and the Yellow Rivers rise.

“We’re basically flying blind when it comes to knowing where and how much nature to protect,” said Gretchen Daily, an environmental scientist at Stanford’s School of Humanities and Sciences in California, and one of the report’s authors.

“GEP tracks the vital contributions of nature to society, informs investments in securing them and helps evaluate the performance of leaders and policies.”

And her British co-author, Ian Bateman, an economist at the University of Exeter, said: “The global economy as conventionally measured by GDP more than doubled between 1990 and 2015. However, at the same time our stocks of ‘ecosystem assets’ – such as forests, grasslands, wetlands, fertile soils and biodiversity – have come under increasing pressure.”

“We were able to place a value on important ecosystem services, especially water supply, that Qinghai currently exports to other provinces but receives no credit for in the GDP calculation”

He continued: “These things are obviously valuable in many ways – including to human wellbeing. However, in this study we examine the benefits they bring us measured in a way that governments and business can understand.”

Naturalists, conservationists and economists have repeatedly argued that it makes better economic sense to conserve nature rather than to exploit it: untouched natural forest or grassland contributes more to everybody’s wealth than any clear-felling project or conversion to cattle-grazing.

Scientists and economists have again and again tried to calculate the cash value to humankind of nature’s goods and services, and to steer development in a sustainable fashion.

They have repeatedly warned that global heating driven by profligate use of fossil fuels is almost certain to hit the pockets of the poorest most cruelly.

And they have warned that uncontrolled exploitation of once untouched natural forests, mangrove estuaries, grasslands, wetlands and coral reefs that precipitates mass extinction of species is certain to impoverish billions in the long run.

Direct test

But to persuade governments that natural capital represents an investment with measurable returns, economists need a standard global measure. GEP could be it.

The measure was tested directly in what is sometimes called the “water tower” of Asia. The logic is that if the people of that region care for their natural habitat, and people downstream benefit directly from that care, then those downstream should also contribute to the costs of care.

“Qinghai is rich in natural capital but its GDP alone does not reflect that value”, said the study’s lead author, Zhiyun Ouyang, of the Chinese Academy of Sciences.

“Using this new metric we were able to place a value on important ecosystem services, especially water supply, that Qinghai currently exports to other provinces but receives no credit for in the GDP calculation.” – Climate News Network