Tag Archives: Carbon Dioxide

Ocean sensitivity may lower carbon emissions cuts

Ocean sensitivity to atmospheric change is well established. But just how sensitive the oceans are remains a surprise to science.

LONDON, 30 June, 2020 – As greenhouse gas emissions soar, ocean sensitivity has quietly helped humanity to slow global heating: the seas have responded by absorbing more and more carbon dioxide from the atmosphere.

But should humans come to grips with the challenge of looming climate catastrophe and start to reduce emissions, the oceans could respond again – by absorbing less and slightly slowing the fall of the mercury in the global thermometer.

And there is even an immediate chance to test this proposal: if so, then oceans that have been each year absorbing more and more carbon from the atmosphere as greenhouse gas ratios rise will go into brief reverse, because of the global economic shutdown and fall in emissions triggered by the global pandemic of Covid-19.

For the first time in decades, the oceans could take up less carbon dioxide in 2020, according to a new study by US scientists in the American Geophysical Union journal AGU Advances.

“We didn’t realise until we did this work that these external forcings, like changes in the growth of atmospheric carbon dioxide, dominate the variability in the global ocean on year-to-year timescales. That’s a real surprise,” said Galen McKinley, of Columbia University’s Lamont-Doherty Earth Observatory.

Feedback in action

“As we reduce our emissions and the growth rate of atmospheric carbon dioxide slows down, it’s important to realise that the ocean carbon sink will respond by slowing down.”

The research should not be interpreted as an invitation to go on burning fossil fuels. It is another lesson in the intricacy of the traffic between atmosphere, rocks, oceans, and living things in an evolving world. And it is more immediately an exquisite example of what engineers call feedback.

In cases of negative feedback, the agency of change also triggers a way of slowing that change. Since 1750 – the birth of the Industrial Revolution – human economies have added 440 billion tonnes of carbon to the planetary atmosphere.

For most of human history carbon dioxide ratios in the atmosphere had hovered around 285 parts per million. They have now gone beyond 400 ppm, and global average temperatures have already risen by more than 1°C.

They’d be even higher but for the oceans, which have responded by absorbing around 39% of all that extra carbon from coal, oil and gas combustion. So the oceans are sensitive to atmospheric change, and respond.

“There will be a time when the ocean will limit the effectiveness of mitigation actions, and this should be accounted for in policymaking”

The latest study is a lesson in how sensitive: Professor McKinley and her colleagues used computer models to try to understand better why the ocean uptake of carbon varies.

In the early 1990s, the ocean absorption of carbon dioxide varied: dramatically at first, because a devastating volcanic eruption of Mt Pinatubo in the Philippines in 1991 that darkened the stratosphere also accelerated ocean uptake.

And then the ocean uptake started to slow, as the skies cleared but also as the collapse of the Soviet Union and its satellite nations changed the global pattern of fuel use. It went on declining until 2001, when fossil fuel use started to accelerate. And then the ocean sink started once again to become more absorbent.

Such research is a reminder of how much scientists still don’t know about the machinery of the planet. That greenhouse gas from fossil fuel combustion drives global heating is not now in doubt. But the precise speed, and the drivers and brakes of positive and negative feedback, remain less certain.

Many feedbacks are positive: as the Arctic warms, carbon plant remains frozen in the permafrost will start to decay, release more methane and carbon dioxide, and accelerate warming.

Forest concern

As the sea ice retreats, and the ice reflects less sunlight, the exposed blue seas will absorb ever more radiation, to turn up the planetary temperatures. A warner world will be a wetter one, which may also mean a rise in the rate of warming.

But the ocean is not the only example of negative feedback. More carbon dioxide seems to mean more vigorous plant growth, and there is clear evidence that the world’s great forests are an important carbon sink: an example of negative feedback. That is why almost all governments recognise the importance of forest conservation.

Action however is uneven, forests are still being degraded, and there is alarming evidence that at some point, as temperatures get too high, the tropical forests could start surrendering the carbon they have for millennia absorbed, and become agents of positive feedback.

Professor McKinley warns that – as global emissions are cut – there will be a phase during which ocean uptake slows. If so, then planetary temperature rise will not slow as fast as hoped: extra carbon dioxide will linger, to contribute to warming.

“We need to discuss this coming feedback. We want people to understand that there will be a time when the ocean will limit the effectiveness of mitigation actions, and this should also be accounted for in policymaking.” – Climate News Network

Ocean sensitivity to atmospheric change is well established. But just how sensitive the oceans are remains a surprise to science.

LONDON, 30 June, 2020 – As greenhouse gas emissions soar, ocean sensitivity has quietly helped humanity to slow global heating: the seas have responded by absorbing more and more carbon dioxide from the atmosphere.

But should humans come to grips with the challenge of looming climate catastrophe and start to reduce emissions, the oceans could respond again – by absorbing less and slightly slowing the fall of the mercury in the global thermometer.

And there is even an immediate chance to test this proposal: if so, then oceans that have been each year absorbing more and more carbon from the atmosphere as greenhouse gas ratios rise will go into brief reverse, because of the global economic shutdown and fall in emissions triggered by the global pandemic of Covid-19.

For the first time in decades, the oceans could take up less carbon dioxide in 2020, according to a new study by US scientists in the American Geophysical Union journal AGU Advances.

“We didn’t realise until we did this work that these external forcings, like changes in the growth of atmospheric carbon dioxide, dominate the variability in the global ocean on year-to-year timescales. That’s a real surprise,” said Galen McKinley, of Columbia University’s Lamont-Doherty Earth Observatory.

Feedback in action

“As we reduce our emissions and the growth rate of atmospheric carbon dioxide slows down, it’s important to realise that the ocean carbon sink will respond by slowing down.”

The research should not be interpreted as an invitation to go on burning fossil fuels. It is another lesson in the intricacy of the traffic between atmosphere, rocks, oceans, and living things in an evolving world. And it is more immediately an exquisite example of what engineers call feedback.

In cases of negative feedback, the agency of change also triggers a way of slowing that change. Since 1750 – the birth of the Industrial Revolution – human economies have added 440 billion tonnes of carbon to the planetary atmosphere.

For most of human history carbon dioxide ratios in the atmosphere had hovered around 285 parts per million. They have now gone beyond 400 ppm, and global average temperatures have already risen by more than 1°C.

They’d be even higher but for the oceans, which have responded by absorbing around 39% of all that extra carbon from coal, oil and gas combustion. So the oceans are sensitive to atmospheric change, and respond.

“There will be a time when the ocean will limit the effectiveness of mitigation actions, and this should be accounted for in policymaking”

The latest study is a lesson in how sensitive: Professor McKinley and her colleagues used computer models to try to understand better why the ocean uptake of carbon varies.

In the early 1990s, the ocean absorption of carbon dioxide varied: dramatically at first, because a devastating volcanic eruption of Mt Pinatubo in the Philippines in 1991 that darkened the stratosphere also accelerated ocean uptake.

And then the ocean uptake started to slow, as the skies cleared but also as the collapse of the Soviet Union and its satellite nations changed the global pattern of fuel use. It went on declining until 2001, when fossil fuel use started to accelerate. And then the ocean sink started once again to become more absorbent.

Such research is a reminder of how much scientists still don’t know about the machinery of the planet. That greenhouse gas from fossil fuel combustion drives global heating is not now in doubt. But the precise speed, and the drivers and brakes of positive and negative feedback, remain less certain.

Many feedbacks are positive: as the Arctic warms, carbon plant remains frozen in the permafrost will start to decay, release more methane and carbon dioxide, and accelerate warming.

Forest concern

As the sea ice retreats, and the ice reflects less sunlight, the exposed blue seas will absorb ever more radiation, to turn up the planetary temperatures. A warner world will be a wetter one, which may also mean a rise in the rate of warming.

But the ocean is not the only example of negative feedback. More carbon dioxide seems to mean more vigorous plant growth, and there is clear evidence that the world’s great forests are an important carbon sink: an example of negative feedback. That is why almost all governments recognise the importance of forest conservation.

Action however is uneven, forests are still being degraded, and there is alarming evidence that at some point, as temperatures get too high, the tropical forests could start surrendering the carbon they have for millennia absorbed, and become agents of positive feedback.

Professor McKinley warns that – as global emissions are cut – there will be a phase during which ocean uptake slows. If so, then planetary temperature rise will not slow as fast as hoped: extra carbon dioxide will linger, to contribute to warming.

“We need to discuss this coming feedback. We want people to understand that there will be a time when the ocean will limit the effectiveness of mitigation actions, and this should also be accounted for in policymaking.” – Climate News Network

There is space for carbon storage underground

Capturing it remains a challenge. But there should be no lack of  permanent safe carbon storage underground.

LONDON, 27 May, 2020 – There is plenty of room for more of the main greenhouse gas on this planet – as long as it’s caught and trapped in carbon storage underground. New research confirms that when it comes to storage space, there should be no problem about carbon capture and sequestration, known to climate engineers as simply CCS.

Carbon capture is written into intergovernmental plans to combat climate change: the theory is that in addition to stepping up investment in renewable energy such as solar and wind power, existing power plants that run on coal, oil and gas could trap the waste carbon dioxide and literally take it out of atmospheric circulation.

How and on what scale this could be done is still a matter for global debate. But at least there is no problem about whether there is safe storage for the compressed and liquefied greenhouse gas.

New analysis from two scientists at Imperial College London in the journal Energy & Environmental Science suggests that if capture and storage accelerates now and continues at a growing rate, along with other recommended action, then no more than about 2,700 billion tonnes of carbon dioxide would need to be pumped back down abandoned oil shafts and other reservoirs, to keep global warming to less than 2°C above pre-industrial levels by 2100. This is an international target agreed in Paris in 2015.

Differences persist

Since most calculations conclude that there could be available subterranean storage space for around 10,000 billion tonnes of the gas, this suggests that storage itself is not the problem.

CCS sounds like a good idea: the prosecution of that idea has been contentious. Some climate scientists have worried that it is a distraction from the real challenge: to stop burning coal, oil and gas.

Others have been concerned with the lack of public investment; yet others have been troubled by the bigger question of whether a potentially volatile greenhouse gas can be kept in the ground safely for many thousands of years.

So CCS is at most only part of the answer to the problem: nations still have to make the switch to renewable sources, use all energy more efficiently, adjust global dietary demand and take steps to restore the world’s great forests to prevent climate catastrophe: one in which planetary average temperatures surpass 3°C, and sea levels rise by up to a metre before the end of the century.

“Our study shows that if climate change targets are not met by 2100, it won’t be for lack of carbon capture and storage space”

The first attempts to store industrial carbon dioxide exhaust began in Norway in 1996 and although progress has been faltering, over the past 20 years capacity has grown by 8.6% to about 40 million tonnes a year: the Intergovernmental Panel on Climate Change (IPCC) now incorporates CCS as part of the mix of actions needed to contain runaway climate change.

The gap is colossal: right now the world emits 37 billion tonnes, or 37 Gt, of the greenhouse gas every year into the atmosphere to drive ever-faster planetary warning. The technology has a long way to go.

“Nearly all IPCC pathways to limit warming to 2°C require tens of gigatonnes of CO2 stored per year by mid-century. However, until now we didn’t know if these targets were achievable, given historic data, or how these targets related to subsurface storage requirements,” said Christopher Zahasky, who did the study at Imperial College but who has now moved to the University of Wisconsin-Madison.

“We found that even the most ambitious scenarios are unlikely to need more than 2700 Gt of CO2 storage resource globally, much less than the 10,000 Gt of storage resource that leading reports suggest is possible. Our study shows that if climate change targets are not met by 2100, it won’t be for lack of carbon capture and storage space.”

Who will pay?

The researchers considered not the space available but the pace of CCS advance: the faster carbon dioxide is safely stowed away, the less the overall need for subterranean hideaway space. But finally, the answer depends on all the other challenges presented by climate change.

“Our analysis shows good news for CCS if we keep up with this trajectory,” said Samuel Krevor of Imperial College, a co-author. “But there are many other factors in mitigating climate change and its catastrophic effects, like using cleaner energy and transport as well as significantly increasing the efficiency of energy use.”

Commenting on the study, Myles Allen, a geoscientist at the University of Oxford, said: “The good news, from this paper, is that there is a solution.

“The bad news is that CO2 capture and disposal is still completely dependent on public money, which will be in short supply over the coming decade. We have to work out other ways of scaling it up.” – Climate News Network

Capturing it remains a challenge. But there should be no lack of  permanent safe carbon storage underground.

LONDON, 27 May, 2020 – There is plenty of room for more of the main greenhouse gas on this planet – as long as it’s caught and trapped in carbon storage underground. New research confirms that when it comes to storage space, there should be no problem about carbon capture and sequestration, known to climate engineers as simply CCS.

Carbon capture is written into intergovernmental plans to combat climate change: the theory is that in addition to stepping up investment in renewable energy such as solar and wind power, existing power plants that run on coal, oil and gas could trap the waste carbon dioxide and literally take it out of atmospheric circulation.

How and on what scale this could be done is still a matter for global debate. But at least there is no problem about whether there is safe storage for the compressed and liquefied greenhouse gas.

New analysis from two scientists at Imperial College London in the journal Energy & Environmental Science suggests that if capture and storage accelerates now and continues at a growing rate, along with other recommended action, then no more than about 2,700 billion tonnes of carbon dioxide would need to be pumped back down abandoned oil shafts and other reservoirs, to keep global warming to less than 2°C above pre-industrial levels by 2100. This is an international target agreed in Paris in 2015.

Differences persist

Since most calculations conclude that there could be available subterranean storage space for around 10,000 billion tonnes of the gas, this suggests that storage itself is not the problem.

CCS sounds like a good idea: the prosecution of that idea has been contentious. Some climate scientists have worried that it is a distraction from the real challenge: to stop burning coal, oil and gas.

Others have been concerned with the lack of public investment; yet others have been troubled by the bigger question of whether a potentially volatile greenhouse gas can be kept in the ground safely for many thousands of years.

So CCS is at most only part of the answer to the problem: nations still have to make the switch to renewable sources, use all energy more efficiently, adjust global dietary demand and take steps to restore the world’s great forests to prevent climate catastrophe: one in which planetary average temperatures surpass 3°C, and sea levels rise by up to a metre before the end of the century.

“Our study shows that if climate change targets are not met by 2100, it won’t be for lack of carbon capture and storage space”

The first attempts to store industrial carbon dioxide exhaust began in Norway in 1996 and although progress has been faltering, over the past 20 years capacity has grown by 8.6% to about 40 million tonnes a year: the Intergovernmental Panel on Climate Change (IPCC) now incorporates CCS as part of the mix of actions needed to contain runaway climate change.

The gap is colossal: right now the world emits 37 billion tonnes, or 37 Gt, of the greenhouse gas every year into the atmosphere to drive ever-faster planetary warning. The technology has a long way to go.

“Nearly all IPCC pathways to limit warming to 2°C require tens of gigatonnes of CO2 stored per year by mid-century. However, until now we didn’t know if these targets were achievable, given historic data, or how these targets related to subsurface storage requirements,” said Christopher Zahasky, who did the study at Imperial College but who has now moved to the University of Wisconsin-Madison.

“We found that even the most ambitious scenarios are unlikely to need more than 2700 Gt of CO2 storage resource globally, much less than the 10,000 Gt of storage resource that leading reports suggest is possible. Our study shows that if climate change targets are not met by 2100, it won’t be for lack of carbon capture and storage space.”

Who will pay?

The researchers considered not the space available but the pace of CCS advance: the faster carbon dioxide is safely stowed away, the less the overall need for subterranean hideaway space. But finally, the answer depends on all the other challenges presented by climate change.

“Our analysis shows good news for CCS if we keep up with this trajectory,” said Samuel Krevor of Imperial College, a co-author. “But there are many other factors in mitigating climate change and its catastrophic effects, like using cleaner energy and transport as well as significantly increasing the efficiency of energy use.”

Commenting on the study, Myles Allen, a geoscientist at the University of Oxford, said: “The good news, from this paper, is that there is a solution.

“The bad news is that CO2 capture and disposal is still completely dependent on public money, which will be in short supply over the coming decade. We have to work out other ways of scaling it up.” – Climate News Network

Carbon dioxide emissions fall – but by accident

The good news is that carbon dioxide emissions have fallen in line with global agreement. But we have chance to thank for that.

LONDON, 25 May, 2020 – Carbon dioxide emissions in 2020 will not reach record levels. The main greenhouse gas was released into the atmosphere to fuel global warming during April at a rate 17% lower than during the same month in 2019. That means a drop of 17 million tonnes of the gas every day.

The news is unlikely to be welcomed by climate scientists, environmental campaigners and governments interested in reducing the hazard of climate catastrophe. None of the fall in emissions was because of determined policies to reduce the rate of emissions and therefore the speed of climate change.

Emission levels have fallen to a level last observed in 2006. This is explained entirely by a series of simultaneous multinational lockdowns and economic slowdown as a consequence of an unexpected, and unprecedented, pandemic of a novel coronavirus that at the time of writing had worldwide claimed more than 330,000 lives.

The sudden slowdown in car journeys as businesses closed, workers were laid off and schoolchildren stayed at home accounted for almost half the decrease, according to a team of international scientists reporting in the journal Nature Climate Change.

Foreign travel fell, airports stayed silent, to account for a 10% fall. For the extent of a northern hemisphere spring, people had a chance to experience a world in which atmospheric pollution of every kind was reduced, fossil fuel consumption dropped, and people walked or cycled or simply stayed at home.

“We need systemic change through green energy and electric cars, not temporary reductions from enforced behaviour”

It is, however, unlikely to be a rehearsal for the sustained social and economic change required to contain climate change: the slowdown is almost certainly temporary. But it does provide breathing space and an opportunity to change direction.

“The extent to which world leaders consider climate change when planning their economic responses post-Covid-19 will influence global CO2 emissions paths for decades to come,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Opportunities exist to make real, durable, changes and to be more resilient to future crises, by implementing economic stimulus packages that also help meet climate targets, especially for mobility, which accounts for half the decrease in emissions during confinement.”

The year began with high confidence that the world’s nations – almost all of which had in Paris in 2015 vowed to contain global warming to well below 2°C by 2100 – would go on burning ever more fossil fuel and clearing ever more forest, to take greenhouse gas emissions to ever higher levels.

The researchers analysed government policies for the 69 countries that account for 97% of carbon dioxide emissions. At the height of confinement, territories responsible for 89% of global emissions experienced some level of restriction.

Meagre drop

Armed with economic data that measured the slowdown, the researchers were able to make estimates of the CO2 emissions that never happened: by the end of April, these amounted to 1,048 million tonnes of the greenhouse gas, with the largest drops being in China, the US and Europe.

On present form, however, the annual total is likely to be down by only between 4% and 7% compared with 2019. The larger figure is roughly the annual drop required year on year to keep the promises made in Paris.

“The drop in emissions is substantial, but illustrates the challenge of reaching our Paris climate commitments,” said Rob Jackson, of Stanford University in California, another of the authors.

“We need systemic change through green energy and electric cars, not temporary reductions from enforced behaviour.” – Climate News Network

The good news is that carbon dioxide emissions have fallen in line with global agreement. But we have chance to thank for that.

LONDON, 25 May, 2020 – Carbon dioxide emissions in 2020 will not reach record levels. The main greenhouse gas was released into the atmosphere to fuel global warming during April at a rate 17% lower than during the same month in 2019. That means a drop of 17 million tonnes of the gas every day.

The news is unlikely to be welcomed by climate scientists, environmental campaigners and governments interested in reducing the hazard of climate catastrophe. None of the fall in emissions was because of determined policies to reduce the rate of emissions and therefore the speed of climate change.

Emission levels have fallen to a level last observed in 2006. This is explained entirely by a series of simultaneous multinational lockdowns and economic slowdown as a consequence of an unexpected, and unprecedented, pandemic of a novel coronavirus that at the time of writing had worldwide claimed more than 330,000 lives.

The sudden slowdown in car journeys as businesses closed, workers were laid off and schoolchildren stayed at home accounted for almost half the decrease, according to a team of international scientists reporting in the journal Nature Climate Change.

Foreign travel fell, airports stayed silent, to account for a 10% fall. For the extent of a northern hemisphere spring, people had a chance to experience a world in which atmospheric pollution of every kind was reduced, fossil fuel consumption dropped, and people walked or cycled or simply stayed at home.

“We need systemic change through green energy and electric cars, not temporary reductions from enforced behaviour”

It is, however, unlikely to be a rehearsal for the sustained social and economic change required to contain climate change: the slowdown is almost certainly temporary. But it does provide breathing space and an opportunity to change direction.

“The extent to which world leaders consider climate change when planning their economic responses post-Covid-19 will influence global CO2 emissions paths for decades to come,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Opportunities exist to make real, durable, changes and to be more resilient to future crises, by implementing economic stimulus packages that also help meet climate targets, especially for mobility, which accounts for half the decrease in emissions during confinement.”

The year began with high confidence that the world’s nations – almost all of which had in Paris in 2015 vowed to contain global warming to well below 2°C by 2100 – would go on burning ever more fossil fuel and clearing ever more forest, to take greenhouse gas emissions to ever higher levels.

The researchers analysed government policies for the 69 countries that account for 97% of carbon dioxide emissions. At the height of confinement, territories responsible for 89% of global emissions experienced some level of restriction.

Meagre drop

Armed with economic data that measured the slowdown, the researchers were able to make estimates of the CO2 emissions that never happened: by the end of April, these amounted to 1,048 million tonnes of the greenhouse gas, with the largest drops being in China, the US and Europe.

On present form, however, the annual total is likely to be down by only between 4% and 7% compared with 2019. The larger figure is roughly the annual drop required year on year to keep the promises made in Paris.

“The drop in emissions is substantial, but illustrates the challenge of reaching our Paris climate commitments,” said Rob Jackson, of Stanford University in California, another of the authors.

“We need systemic change through green energy and electric cars, not temporary reductions from enforced behaviour.” – Climate News Network

Global heating means a wetter and warmer world

A wetter and even warmer world will result from faster global warming. The evidence is in the sands of time.

LONDON, 14 May, 2020 – A warmer world may not be just a wetter one. It may get even warmer as well. New studies suggest the heavier rain that will accompany ever-higher global average atmospheric temperatures is in itself likely to trigger ever more carbon dioxide release from tropical soils.

This is what engineers call positive feedback. The very symptoms of a warming world become part of the fuel for accelerating global temperature change.

And the warning is derived not just from models of climate change, but once again from evidence from the past.

Scientists from the US, Canada and Switzerland report in the journal Nature that for the past 18,000 years, the “time of residence” of carbon in the soils of the Ganges-Brahmaputra river basin has been controlled by India’s summer monsoon rainfall.

The lower the rainfall, the higher the length of stored carbon. But as levels of downpour go up, so does the activity of the microbes that turn vegetable matter back into carbon dioxide, and the levels of stored soil carbon go down.

“Climate change is likely to increase rainfall in tropical regions, further accelerating respiration of soil carbon, and adding even more CO2 to the atmosphere”

Right now, global atmospheric concentrations of carbon dioxide have risen from 285 parts per million – the average for most of human history – to 416 ppm as humans clear ever more forest and burn ever more fossil fuels. This 416ppm adds up to about 750 billion tonnes of carbon. The planet’s soils are home to an estimated 3,500 bn tonnes: more than four times as much.

“Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilisation, further increasing carbon dioxide concentrations,” the scientists warn.

As temperatures rise, the atmosphere’s capacity to absorb moisture also increases. As temperatures rise, so does direct evaporation from oceans, lakes, rivers and soils. This water vapour will eventually fall as rain, but unevenly: those regions already rainy will become rainier, while drylands are likely to become increasingly arid.

The Ganges and Brahmaputra carry more than a billion tonnes of sediment – most of it eroded from the Himalayan mountain chain – into the Bay of Bengal each year, and cores of sediment taken from the sea floor provide a good record of climate conditions for the last 18,000 years, as the Ice Age began to wane, and the glaciers retreated to permit a hunter-gatherer species to cultivate cereals, domesticate animals, build permanent settlements and found human civilisation.

Radiocarbon readings mean that researchers can date the sediments, and preserved organic molecules from land plants provide an indicator of conditions at those dates.

Methane adds speed

Scientists have repeatedly warned that climate change in the Arctic – the fastest-warming zone of all – is likely to be matched by the release of soil carbon in the form of the greenhouse gas methane from the thawing permafrost, to accelerate yet more warming.

As the once-frozen ground warms up, and vegetation moves further and further north, an estimated 600 million tonnes of carbon is released into the atmosphere every year.

Now, and for different reasons, the same could be true of the tropics, and the evidence is in the sands of time, deposited by one of the world’s great river systems. As the Ice Age ended, monsoon rains began to increase and in 2,600 years soil respiration – and therefore carbon release – doubled. Since then, monsoon rainfall has increased threefold.

“We found that shifts toward a warmer and wetter climate in the drainage basin of the Ganges and Brahmaputra rivers over the last 18,000 years enhanced rates of soil respiration and decreased stocks of soil carbon,” said Christopher Hein, of the Virginia Institute of Marine Science, who led the study.

“This has direct implications for the Earth’s future, as climate change is likely to increase rainfall in tropical regions, further accelerating respiration of soil carbon, and adding even more CO2 to the atmosphere than that directly added by humans.” – Climate News Network

A wetter and even warmer world will result from faster global warming. The evidence is in the sands of time.

LONDON, 14 May, 2020 – A warmer world may not be just a wetter one. It may get even warmer as well. New studies suggest the heavier rain that will accompany ever-higher global average atmospheric temperatures is in itself likely to trigger ever more carbon dioxide release from tropical soils.

This is what engineers call positive feedback. The very symptoms of a warming world become part of the fuel for accelerating global temperature change.

And the warning is derived not just from models of climate change, but once again from evidence from the past.

Scientists from the US, Canada and Switzerland report in the journal Nature that for the past 18,000 years, the “time of residence” of carbon in the soils of the Ganges-Brahmaputra river basin has been controlled by India’s summer monsoon rainfall.

The lower the rainfall, the higher the length of stored carbon. But as levels of downpour go up, so does the activity of the microbes that turn vegetable matter back into carbon dioxide, and the levels of stored soil carbon go down.

“Climate change is likely to increase rainfall in tropical regions, further accelerating respiration of soil carbon, and adding even more CO2 to the atmosphere”

Right now, global atmospheric concentrations of carbon dioxide have risen from 285 parts per million – the average for most of human history – to 416 ppm as humans clear ever more forest and burn ever more fossil fuels. This 416ppm adds up to about 750 billion tonnes of carbon. The planet’s soils are home to an estimated 3,500 bn tonnes: more than four times as much.

“Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilisation, further increasing carbon dioxide concentrations,” the scientists warn.

As temperatures rise, the atmosphere’s capacity to absorb moisture also increases. As temperatures rise, so does direct evaporation from oceans, lakes, rivers and soils. This water vapour will eventually fall as rain, but unevenly: those regions already rainy will become rainier, while drylands are likely to become increasingly arid.

The Ganges and Brahmaputra carry more than a billion tonnes of sediment – most of it eroded from the Himalayan mountain chain – into the Bay of Bengal each year, and cores of sediment taken from the sea floor provide a good record of climate conditions for the last 18,000 years, as the Ice Age began to wane, and the glaciers retreated to permit a hunter-gatherer species to cultivate cereals, domesticate animals, build permanent settlements and found human civilisation.

Radiocarbon readings mean that researchers can date the sediments, and preserved organic molecules from land plants provide an indicator of conditions at those dates.

Methane adds speed

Scientists have repeatedly warned that climate change in the Arctic – the fastest-warming zone of all – is likely to be matched by the release of soil carbon in the form of the greenhouse gas methane from the thawing permafrost, to accelerate yet more warming.

As the once-frozen ground warms up, and vegetation moves further and further north, an estimated 600 million tonnes of carbon is released into the atmosphere every year.

Now, and for different reasons, the same could be true of the tropics, and the evidence is in the sands of time, deposited by one of the world’s great river systems. As the Ice Age ended, monsoon rains began to increase and in 2,600 years soil respiration – and therefore carbon release – doubled. Since then, monsoon rainfall has increased threefold.

“We found that shifts toward a warmer and wetter climate in the drainage basin of the Ganges and Brahmaputra rivers over the last 18,000 years enhanced rates of soil respiration and decreased stocks of soil carbon,” said Christopher Hein, of the Virginia Institute of Marine Science, who led the study.

“This has direct implications for the Earth’s future, as climate change is likely to increase rainfall in tropical regions, further accelerating respiration of soil carbon, and adding even more CO2 to the atmosphere than that directly added by humans.” – Climate News Network

Carbon dioxide pollution dulls the brain

Carbon dioxide pollution slows our thinking. It could get bad enough to stop some of us thinking our way out of danger.

LONDON, 27 April, 2020 – If humans go on burning ever-greater quantities of fossil fuels, then tomorrow’s children in badly-ventilated classrooms or workers in crowded offices could find their wits dulled: the predicted concentrations of carbon dioxide pollution by 2100 could reduce the ability to make decisions by 25%, and cut the capacity for complex strategic thinking by as much as half.

That is, global warming driven by greenhouse gas emissions wouldn’t just be bad for the planet and its oceans: it would also make Homo sapiens measurably less sapient.

Although outdoor CO2 levels could more than triple – and at 930 parts per million (ppm), this would be far higher than humans have ever experienced – concentrations in enclosed spaces could rise much higher.

Research on seamen aboard submarines and in astronaut tests have confirmed that CO2 builds up in confined spaces, to limit the supply of oxygen to the brain. As this happens, people in such conditions have problems responding to any stimulus or even recognising a threat.

City atmospheres normally have higher carbon dioxide concentrations than in the countryside. And in poorly-ventilated city buildings, higher carbon dioxide levels could begin to limit human potential.

Direct effect

“It’s amazing how high CO2 levels get in enclosed spaces,” said Kris Karnauskas, of the University of Colorado, Boulder and the author of a new study in the journal Geohealth.

“It affects everybody – from little kids packed into classrooms to scientists, business people and decision makers, to regular folks in their houses and apartments.”

Other researchers have repeatedly warned that any steps to reduce emissions would more than pay off in terms of advancing human health and wealth, and that conversely expanding fossil fuel emissions could only increase damaging atmospheric pollution, along with potentially life-threatening extremes of summer heat.

But these are indirect effects of carbon dioxide concentration: Dr Karnauskas and his colleagues were more interested in a direct effect.

They report that they looked simply at climate scenarios, including the notorious business-as-usual prediction in which humans go on destroying forests, burning coal and oil, and making cement to build ever-expanding cities.

“It’s amazing how high CO2 levels get in enclosed spaces. It affects everybody – from little kids to scientists, business people and decision makers, to regular folks in their houses and apartments”

In this scenario, carbon dioxide concentrations – at around 280 ppm for most of human history, but already past the 400ppm mark – will rise to 930ppm by the end of the century.

If that happens, then indoor concentrations could quickly reach 1400ppm. And this could, on some research findings, begin to compromise what psychologists call high-level cognitive domains. So basic decision-making ability could falter by a quarter, and concentration on complex problems by 50%.

Quite literally, carbon dioxide build-up could reduce the capacity to think clearly. Such an outcome is far from certain, and the Geohealth researchers recognise this.

“This is a complex problem, and our study is at the beginning,” said Dr Karnauskas. “It’s not just a matter of predicting global outdoor CO2 levels. It’s going from global background emissions, to concentrations in the urban environment, to the indoor concentrations and finally the resulting human impact.

“We need even broader, interdisciplinary teams of researchers to explore this.” – Climate News Network

Carbon dioxide pollution slows our thinking. It could get bad enough to stop some of us thinking our way out of danger.

LONDON, 27 April, 2020 – If humans go on burning ever-greater quantities of fossil fuels, then tomorrow’s children in badly-ventilated classrooms or workers in crowded offices could find their wits dulled: the predicted concentrations of carbon dioxide pollution by 2100 could reduce the ability to make decisions by 25%, and cut the capacity for complex strategic thinking by as much as half.

That is, global warming driven by greenhouse gas emissions wouldn’t just be bad for the planet and its oceans: it would also make Homo sapiens measurably less sapient.

Although outdoor CO2 levels could more than triple – and at 930 parts per million (ppm), this would be far higher than humans have ever experienced – concentrations in enclosed spaces could rise much higher.

Research on seamen aboard submarines and in astronaut tests have confirmed that CO2 builds up in confined spaces, to limit the supply of oxygen to the brain. As this happens, people in such conditions have problems responding to any stimulus or even recognising a threat.

City atmospheres normally have higher carbon dioxide concentrations than in the countryside. And in poorly-ventilated city buildings, higher carbon dioxide levels could begin to limit human potential.

Direct effect

“It’s amazing how high CO2 levels get in enclosed spaces,” said Kris Karnauskas, of the University of Colorado, Boulder and the author of a new study in the journal Geohealth.

“It affects everybody – from little kids packed into classrooms to scientists, business people and decision makers, to regular folks in their houses and apartments.”

Other researchers have repeatedly warned that any steps to reduce emissions would more than pay off in terms of advancing human health and wealth, and that conversely expanding fossil fuel emissions could only increase damaging atmospheric pollution, along with potentially life-threatening extremes of summer heat.

But these are indirect effects of carbon dioxide concentration: Dr Karnauskas and his colleagues were more interested in a direct effect.

They report that they looked simply at climate scenarios, including the notorious business-as-usual prediction in which humans go on destroying forests, burning coal and oil, and making cement to build ever-expanding cities.

“It’s amazing how high CO2 levels get in enclosed spaces. It affects everybody – from little kids to scientists, business people and decision makers, to regular folks in their houses and apartments”

In this scenario, carbon dioxide concentrations – at around 280 ppm for most of human history, but already past the 400ppm mark – will rise to 930ppm by the end of the century.

If that happens, then indoor concentrations could quickly reach 1400ppm. And this could, on some research findings, begin to compromise what psychologists call high-level cognitive domains. So basic decision-making ability could falter by a quarter, and concentration on complex problems by 50%.

Quite literally, carbon dioxide build-up could reduce the capacity to think clearly. Such an outcome is far from certain, and the Geohealth researchers recognise this.

“This is a complex problem, and our study is at the beginning,” said Dr Karnauskas. “It’s not just a matter of predicting global outdoor CO2 levels. It’s going from global background emissions, to concentrations in the urban environment, to the indoor concentrations and finally the resulting human impact.

“We need even broader, interdisciplinary teams of researchers to explore this.” – Climate News Network

Efficient energy cuts UK electricity’s carbon output

The United Kingdom leads the way in cutting carbon output from electricity production, to the surprise of its political leaders.

LONDON, 24 March, 2020 – Carbon output from the power sector has been falling faster in the UK than anywhere else in the world – despite the British government’s belief that electricity consumption would rise.

Part of the explanation is the closing of coal-fired power stations and their replacement by renewable energy technologies such as wind turbines and solar panels.

But the main savings have been in energy efficiency from the wholesale introduction of LED lighting to improved industrial processes.

This remarkable transformation has been repeated across many advanced countries in Europe and beyond. Even with many economies growing, communities have managed to reduce electricity use.

Emissions exported

Environmentalists and some academics would argue that part of the reason for the reduction is that Europe has exported some of its dirty energy-intensive industries, like steel-making, to China – so that China’s emissions have gone up while Europe’s have gone down.

This is partly true, but the UK’s Department of Environment says that even taking into account imported goods the UK’s overall carbon footprint has shrunk, not simply the energy sector’s contribution. The total of the three main greenhouse gases, carbon dioxide, methane and nitrous oxide, peaked in 2007 and had dropped 21% by 2017.

Andrew Warren, chairman of the British Energy Efficiency Federation, is highly critical of the way this energy revolution is being reported, saying the emphasis on the adoption of solar and wind technologies is misleading:

“The biggest decarbonising driver of the lot has not been the switching of supply sources (from coal to renewables). It has happened entirely as a result of investments in more energy-efficient technology.”

Constant drop

Writing on the Energyzine website, Warren says that from the beginning of this century energy consumption in the UK has been “falling. And falling. And falling. It is now over 20% lower than it was in 2000.

“In the case of the main heating fuel, natural gas, the impact has been even more pronounced. Sales have dropped by approaching one-third, largely due to better insulation and more efficient boilers and heating systems.”

He says this is totally contrary to British government predictions. As recently as 2010 the incoming Conservative government was officially planning on the doubling or even tripling of electricity consumption by 2050. But by 2010 sales were already falling, and they have continued to do so.

The 2005 White Paper, which set out the government’s proposals for future legislation, reckoned that by 2020 electricity consumption would have risen by 15%. In fact it has fallen by 16%; an error of more than 30% in forecasting.

“That old ‘Real Men Build Power Stations’ mentality still survives”

The same White Paper was used to justify the building of a series of nuclear power stations to satisfy the new demand – a policy that remains in place even though it is clear there is no need for the stations.

One station is under construction in the UK, but plans for up to five more are currently in limbo awaiting a government decision on whether to underwrite their cost with an electricity tax on consumers.

Despite figures showing that electricity consumption is continuing to fall, the government is still predicting that the demand for electricity will increase from 2025, particularly because of the switch to electric cars.

But Warren points out that many experts in the field, including the people who run the UK’s National Grid, doubt that this will happen.

Critical but neglected

Given how critical energy efficiency is in reducing demand when adopted across housing and industry, Warren says it is remarkable how little political attention is devoted to it. Very little is published about how and where critical savings are being made, and how much unfulfilled potential for improving efficiency there still is.

While some other western European nations have finally understood the importance of energy efficiency, sometimes called “the first fuel”, Warren says, many of the former Communist countries, even if they have now joined the European Union, still see building large new power stations as the way forward.

He told the Climate News Network: “The broad picture is that, over the past decade, most western European countries are seeing energy consumption stabilise, in many cases fall (even as GDP grows).

“But sadly too many of the old Comecon countries still can’t get their collective minds around demand-side management as a concept. That old ‘Real Men Build Power Stations’ mentality still survives.” – Climate News Network

The United Kingdom leads the way in cutting carbon output from electricity production, to the surprise of its political leaders.

LONDON, 24 March, 2020 – Carbon output from the power sector has been falling faster in the UK than anywhere else in the world – despite the British government’s belief that electricity consumption would rise.

Part of the explanation is the closing of coal-fired power stations and their replacement by renewable energy technologies such as wind turbines and solar panels.

But the main savings have been in energy efficiency from the wholesale introduction of LED lighting to improved industrial processes.

This remarkable transformation has been repeated across many advanced countries in Europe and beyond. Even with many economies growing, communities have managed to reduce electricity use.

Emissions exported

Environmentalists and some academics would argue that part of the reason for the reduction is that Europe has exported some of its dirty energy-intensive industries, like steel-making, to China – so that China’s emissions have gone up while Europe’s have gone down.

This is partly true, but the UK’s Department of Environment says that even taking into account imported goods the UK’s overall carbon footprint has shrunk, not simply the energy sector’s contribution. The total of the three main greenhouse gases, carbon dioxide, methane and nitrous oxide, peaked in 2007 and had dropped 21% by 2017.

Andrew Warren, chairman of the British Energy Efficiency Federation, is highly critical of the way this energy revolution is being reported, saying the emphasis on the adoption of solar and wind technologies is misleading:

“The biggest decarbonising driver of the lot has not been the switching of supply sources (from coal to renewables). It has happened entirely as a result of investments in more energy-efficient technology.”

Constant drop

Writing on the Energyzine website, Warren says that from the beginning of this century energy consumption in the UK has been “falling. And falling. And falling. It is now over 20% lower than it was in 2000.

“In the case of the main heating fuel, natural gas, the impact has been even more pronounced. Sales have dropped by approaching one-third, largely due to better insulation and more efficient boilers and heating systems.”

He says this is totally contrary to British government predictions. As recently as 2010 the incoming Conservative government was officially planning on the doubling or even tripling of electricity consumption by 2050. But by 2010 sales were already falling, and they have continued to do so.

The 2005 White Paper, which set out the government’s proposals for future legislation, reckoned that by 2020 electricity consumption would have risen by 15%. In fact it has fallen by 16%; an error of more than 30% in forecasting.

“That old ‘Real Men Build Power Stations’ mentality still survives”

The same White Paper was used to justify the building of a series of nuclear power stations to satisfy the new demand – a policy that remains in place even though it is clear there is no need for the stations.

One station is under construction in the UK, but plans for up to five more are currently in limbo awaiting a government decision on whether to underwrite their cost with an electricity tax on consumers.

Despite figures showing that electricity consumption is continuing to fall, the government is still predicting that the demand for electricity will increase from 2025, particularly because of the switch to electric cars.

But Warren points out that many experts in the field, including the people who run the UK’s National Grid, doubt that this will happen.

Critical but neglected

Given how critical energy efficiency is in reducing demand when adopted across housing and industry, Warren says it is remarkable how little political attention is devoted to it. Very little is published about how and where critical savings are being made, and how much unfulfilled potential for improving efficiency there still is.

While some other western European nations have finally understood the importance of energy efficiency, sometimes called “the first fuel”, Warren says, many of the former Communist countries, even if they have now joined the European Union, still see building large new power stations as the way forward.

He told the Climate News Network: “The broad picture is that, over the past decade, most western European countries are seeing energy consumption stabilise, in many cases fall (even as GDP grows).

“But sadly too many of the old Comecon countries still can’t get their collective minds around demand-side management as a concept. That old ‘Real Men Build Power Stations’ mentality still survives.” – Climate News Network

Tropical forests may be heating Earth by 2035

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Paris climate goals may be beyond reach

Scientists find carbon dioxide is more potent than thought, meaning the Paris climate goals on cutting greenhouse gases may be unattainable.

LONDON, 23 January, 2020 − The fevered arguments about how the world can reach the Paris climate goals on cutting the greenhouse gases which are driving global heating may be a waste of time. An international team of scientists has learned more about the main greenhouse gas, carbon dioxide (CO2) − and it’s not good news.

Teams in six countries, using new climate models, say the warming potential of CO2 has been underestimated for years. The new models will be used in revised UN temperature projections next year. If they are accurate, the Paris targets of keeping temperature rise below 2°C − or preferably 1.5°C − will belong to a fantasy world.

Vastly more data and computing power has become available since the current Intergovernmental Panel on Climate Change (IPCC) projections were finalised in 2013. “We have better models now,” Olivier Boucher, head of the Institut Pierre Simon Laplace Climate Modelling Centre in Paris, told the French news agency AFP, and they “represent current climate trends more accurately”.

Projections from government-backed teams using the models in the US, UK, France and Canada suggest a much warmer future unless the world acts fast: CO2 concentrations which have till now been expected to produce a world only 3°C warmer than pre-industrial levels would more probably heat the Earth’s surface by four or five degrees Celsius.

“If you think the new models give a more realistic picture, then it will, of course, be harder to achieve the Paris targets, whether it is 1.5°C or two degrees Celsius,” Mark Zelinka told AFP. Dr Zelinka, from the Lawrence Livermore National Laboratory in California, is the lead author of the first peer-reviewed assessment of the new generation of models, published earlier this month in the journal Geophysical Research Letters.

“Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous”

Scientists want to establish how much the Earth’s surface will warm over time if the amount of CO2 in the atmosphere doubles. The resulting temperature increase, known as Earth’s climate sensitivity, is a key indicator of the probable future climate. The part played in it by clouds is crucial.

“How clouds evolve in a warmer climate and whether they will exert a tempering or amplifying effect has long been a major source of uncertainty,” said Imperial College London researcher Joeri Rogelj, the lead author for the Intergovernmental Panel on Climate Change (IPCC) on the global carbon budget − the amount of greenhouse gases that can be emitted without exceeding a given temperature cap. The new models reflect a better understanding of cloud dynamics that reinforce the warming impact of CO2.

For most of the last 10,000 years the concentration of CO2 in the atmosphere was a nearly constant 280 parts per million (ppm). But at the start of the 19th century and of the industrial revolution, fuelled by oil, gas and coal, the number of CO2 molecules in the air rose sharply. Today the concentration stands at 412 ppm, a 45% rise − half of it in the last three decades.

Last year alone, human activity injected more than 41 billion tonnes of CO2 into the atmosphere, about five million tonnes every hour.

Impacts already evident

With only one degree Celsius of warming above historic levels so far, the world is already having to cope with increasingly deadly heatwaves, droughts, floods and tropical cyclones made more destructive by rising seas.

By the late 1970s scientists had settled on a probable climate sensitivity of 3°C (plus-or-minus 1.5°C), corresponding to about 560 ppm of CO2 in the atmosphere. That assessment remained largely unchanged − until now.

“Right now, there is an enormously heated debate within the climate modelling community,” said Earth system scientist Johan Rockström, director of Germany’s Potsdam Institute for Climate Impact Research.

“You have 12 or 13 models showing sensitivity which is no longer 3°C, but rather 5°C or 6°C with a doubling of CO2,” he told AFP. “What is particularly worrying is that these are not the outliers.”

Serious science

Models from France, the US Department of Energy, Britain’s Met Office and Canada show climate sensitivity of 4.9°C, 5.3°C, 5.5°C and 5.6°C respectively, Dr Zelinka said. “You have to take these models seriously − they are highly developed, state-of-the-art.”

Among the 27 new models examined in his study, these were also among those that best matched climate change over the last 75 years, suggesting a further validation of their accuracy.

But other models that will feed into the IPCC’s next major Assessment Report found significantly smaller increases, though almost all were higher than earlier estimates. Scientists will test and challenge the new models rigorously.

“The jury is still out, but it is worrying,” said Rockstrom. “Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous.” − Climate News Network

Scientists find carbon dioxide is more potent than thought, meaning the Paris climate goals on cutting greenhouse gases may be unattainable.

LONDON, 23 January, 2020 − The fevered arguments about how the world can reach the Paris climate goals on cutting the greenhouse gases which are driving global heating may be a waste of time. An international team of scientists has learned more about the main greenhouse gas, carbon dioxide (CO2) − and it’s not good news.

Teams in six countries, using new climate models, say the warming potential of CO2 has been underestimated for years. The new models will be used in revised UN temperature projections next year. If they are accurate, the Paris targets of keeping temperature rise below 2°C − or preferably 1.5°C − will belong to a fantasy world.

Vastly more data and computing power has become available since the current Intergovernmental Panel on Climate Change (IPCC) projections were finalised in 2013. “We have better models now,” Olivier Boucher, head of the Institut Pierre Simon Laplace Climate Modelling Centre in Paris, told the French news agency AFP, and they “represent current climate trends more accurately”.

Projections from government-backed teams using the models in the US, UK, France and Canada suggest a much warmer future unless the world acts fast: CO2 concentrations which have till now been expected to produce a world only 3°C warmer than pre-industrial levels would more probably heat the Earth’s surface by four or five degrees Celsius.

“If you think the new models give a more realistic picture, then it will, of course, be harder to achieve the Paris targets, whether it is 1.5°C or two degrees Celsius,” Mark Zelinka told AFP. Dr Zelinka, from the Lawrence Livermore National Laboratory in California, is the lead author of the first peer-reviewed assessment of the new generation of models, published earlier this month in the journal Geophysical Research Letters.

“Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous”

Scientists want to establish how much the Earth’s surface will warm over time if the amount of CO2 in the atmosphere doubles. The resulting temperature increase, known as Earth’s climate sensitivity, is a key indicator of the probable future climate. The part played in it by clouds is crucial.

“How clouds evolve in a warmer climate and whether they will exert a tempering or amplifying effect has long been a major source of uncertainty,” said Imperial College London researcher Joeri Rogelj, the lead author for the Intergovernmental Panel on Climate Change (IPCC) on the global carbon budget − the amount of greenhouse gases that can be emitted without exceeding a given temperature cap. The new models reflect a better understanding of cloud dynamics that reinforce the warming impact of CO2.

For most of the last 10,000 years the concentration of CO2 in the atmosphere was a nearly constant 280 parts per million (ppm). But at the start of the 19th century and of the industrial revolution, fuelled by oil, gas and coal, the number of CO2 molecules in the air rose sharply. Today the concentration stands at 412 ppm, a 45% rise − half of it in the last three decades.

Last year alone, human activity injected more than 41 billion tonnes of CO2 into the atmosphere, about five million tonnes every hour.

Impacts already evident

With only one degree Celsius of warming above historic levels so far, the world is already having to cope with increasingly deadly heatwaves, droughts, floods and tropical cyclones made more destructive by rising seas.

By the late 1970s scientists had settled on a probable climate sensitivity of 3°C (plus-or-minus 1.5°C), corresponding to about 560 ppm of CO2 in the atmosphere. That assessment remained largely unchanged − until now.

“Right now, there is an enormously heated debate within the climate modelling community,” said Earth system scientist Johan Rockström, director of Germany’s Potsdam Institute for Climate Impact Research.

“You have 12 or 13 models showing sensitivity which is no longer 3°C, but rather 5°C or 6°C with a doubling of CO2,” he told AFP. “What is particularly worrying is that these are not the outliers.”

Serious science

Models from France, the US Department of Energy, Britain’s Met Office and Canada show climate sensitivity of 4.9°C, 5.3°C, 5.5°C and 5.6°C respectively, Dr Zelinka said. “You have to take these models seriously − they are highly developed, state-of-the-art.”

Among the 27 new models examined in his study, these were also among those that best matched climate change over the last 75 years, suggesting a further validation of their accuracy.

But other models that will feed into the IPCC’s next major Assessment Report found significantly smaller increases, though almost all were higher than earlier estimates. Scientists will test and challenge the new models rigorously.

“The jury is still out, but it is worrying,” said Rockstrom. “Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous.” − Climate News Network

Greenhouse gases drive Australia’s bushfires

Australia’s bushfires are feeding on heat from the climate change happening in the tropics, but its government doesn’t want to know.

NEW SOUTH WALES, 14 November, 2019 − Australia has earned a formidable reputation for being the driest and most agriculturally disappointing continent on Earth. Droughts and floods have followed each other like day and night, spawning a laconic and resilient breed of agriculturalists known for taking climatic adversity and variability in their stride.

Everyone in the industry believes both good and bad times are cyclical, each replacing the other. The continent is surrounded by three oceans which, depending on their temperature fluxes, deliver or deny precious rainfall, as moisture-bearing ocean winds blow either toward the continent or away.

A knowledge of the state of each ocean can help farmers to understand how long it will be before the situation changes. Preparation for the next drought in good times is a no-brainer and is supported with Government policy. Water supply augmentation systems, fodder storage and stockpiling money are modern tricks used by graziers to abate the ravages of drought.

That’s been the traditional pattern. This year, though, after three consecutive failed springs in eastern Australia, there’s a level of despair which is taking an enormous toll on families, businesses and ecosystems. Farming communities are suffering mental anguish as they run out of options.

We haven’t seen the usual cyclical return to wetter seasons. No-one has ever seen the likes of this drought and no-one knows when it will end. We are out of tricks, out of water and out of feed.

Livestock breeding herds  and flocks that have taken generations to build are now depleted because the only option is to send them to slaughter. It’s unclear anyway whether there’ll be sufficient fodder-grade grain to keep them alive.

Breadbasket on fire

Modern cropping systems are designed to store soil moisture until the next crop can be planted. But in the bread basket of the nation, soil moisture is now at record lows, and severe bush fires ravage the landscape.

As I write this in the second week of November, we’re in the third day of gale-force winds, high temperatures and low humidity. The sky is full of dust, smoke and fire-fighting aircraft, when we should be planning what to do with excess stock feed.

Yesterday the government announced further assistance to farmers, in the billions. But the problem is that the federal government will not acknowledge there is a climate problem at all, let alone a catastrophe.

Deputy prime minister Michael McCormack aroused anger when he dismissed the possibility of climate change causing the crisis as the ravings of “pure, enlightened and woke capital city greenies” who were ignoring the needs of rural Australians. “We’ve had fires in Australia since time began”, he said.

Our understanding of the climatic drivers of this drought has been severely challenged. The Pacific Ocean is in a neutral phase, so ENSO is not a major issue. The Southern Ocean is in a negative mode, which should bring rain-bearing westerlies at least to southern Australia. But the Indian Ocean is in a phase which prevents tropical moisture inflow.

“The only way the climate models can simulate the depleted rainfall observations is to include the effects of greenhouse gases”

None of these by itself is enough to produce a drought as long and intense as this. In some places it is in its eighth year, and mostly at least the third. On our farm less than half of the annual rainfall of the previous worst year so far has been recorded. Apart from an intense La Niña in 2010-2011 there have been no significantly wet or average years this century.

In 2010 a report was released by a government agency, the Centre for Australian Weather and Climate Research, which showed conclusively that there has been a serious and persistent decline in rainfall in southwestern and more recently southeastern Australia. It is clearly visible, it is anthropogenic in nature, and its mechanism can be easily understood by non-scientists. The Australian Bureau of Meteorology published an update on this year’s drought in September.

Superimposed on the oceans’ tableau is a natural phenomenon known as the Sub-Tropical Ridge (STR). This is a belt of high atmospheric pressure which encircles the planet at about 35 degrees of latitude in both hemispheres, where many of the world’s deserts occur. This high pressure is caused by the descent of cool dry air at these latitudes.

This air originated in the tropics, rose, rained out and then descended, depleted of moisture. Meteorologists call this cycle the Hadley Circulation.

The trouble is that the dry high pressure cells are becoming more frequent and more intense because of growing heating in the sub-tropics, which are increasing in aridity.

Heat blocks rains

Until now, though, it was happening slowly enough for no-one to notice. However, recent analysis can now detect the signature as far back as the World War Two drought.

The STR is like a string of pearls under high pressure, with the gaps allowing rain-bearing systems to penetrate from either the tropics or the poles. But now the extra heat caused by climate change in the tropics is making the highs more frequent and more intense.

It is now a regular feature of Australian weather that rain-bearing fronts are pushed to the south and rarely penetrate the persistent highs. Similar changes have been seen in the northern hemisphere in southern Europe and California.

There is a direct linear relationship between these changes and the level of carbon dioxide in the atmosphere. The only way the climate models can simulate the depleted rainfall observations is to include the effects of greenhouse gases.

This should have been front-page news at least in the agricultural press, but instead the news is about government handouts to needy farmers.

Worse in store

So it looks as if the plight of Australian agriculture is set to worsen because of the tropical oceanic heating. The strengthening STR is not an oceanic phenomenon, but an atmospheric one, so its effects are not as apparent to the casual observer. Nevertheless, it seems to be putting the already nasty changes of the oceans on steroids.

Somehow we need to persuade the government that as well as providing welfare, and mitigation strategies, we have to stop venting novel carbon dioxide and avoid exposing Australian agriculture to the ravages of an angry atmosphere.

Yet there are now two strong reasons why governments in Australia will not acknowledge that the drought is attributable to climate change. Firstly, at the last election, there was an enormous voter backlash against proponents of the closure of coal mining.

Secondly, there is political mileage to be grafted out of massive welfare payments to the agricultural community. There is no doubt that there is enormous hardship in the sector, but you need to wonder whether they can see a connection between budgetary pain and carbon policy, or whether any government has sought briefing on the matter.

Clearly courage and leadership matching that required in warfare is needed to address this dreadful situation. Instead we have cowardice and schizophrenia. − Climate News Network

* * * * *

Andrew Burgess is a sheep farmer in New South Wales whose family has raised animals in the same area for more than a century. He has now sold his farm because he finds the drought has made his work and survival there impossible.

Australia’s bushfires are feeding on heat from the climate change happening in the tropics, but its government doesn’t want to know.

NEW SOUTH WALES, 14 November, 2019 − Australia has earned a formidable reputation for being the driest and most agriculturally disappointing continent on Earth. Droughts and floods have followed each other like day and night, spawning a laconic and resilient breed of agriculturalists known for taking climatic adversity and variability in their stride.

Everyone in the industry believes both good and bad times are cyclical, each replacing the other. The continent is surrounded by three oceans which, depending on their temperature fluxes, deliver or deny precious rainfall, as moisture-bearing ocean winds blow either toward the continent or away.

A knowledge of the state of each ocean can help farmers to understand how long it will be before the situation changes. Preparation for the next drought in good times is a no-brainer and is supported with Government policy. Water supply augmentation systems, fodder storage and stockpiling money are modern tricks used by graziers to abate the ravages of drought.

That’s been the traditional pattern. This year, though, after three consecutive failed springs in eastern Australia, there’s a level of despair which is taking an enormous toll on families, businesses and ecosystems. Farming communities are suffering mental anguish as they run out of options.

We haven’t seen the usual cyclical return to wetter seasons. No-one has ever seen the likes of this drought and no-one knows when it will end. We are out of tricks, out of water and out of feed.

Livestock breeding herds  and flocks that have taken generations to build are now depleted because the only option is to send them to slaughter. It’s unclear anyway whether there’ll be sufficient fodder-grade grain to keep them alive.

Breadbasket on fire

Modern cropping systems are designed to store soil moisture until the next crop can be planted. But in the bread basket of the nation, soil moisture is now at record lows, and severe bush fires ravage the landscape.

As I write this in the second week of November, we’re in the third day of gale-force winds, high temperatures and low humidity. The sky is full of dust, smoke and fire-fighting aircraft, when we should be planning what to do with excess stock feed.

Yesterday the government announced further assistance to farmers, in the billions. But the problem is that the federal government will not acknowledge there is a climate problem at all, let alone a catastrophe.

Deputy prime minister Michael McCormack aroused anger when he dismissed the possibility of climate change causing the crisis as the ravings of “pure, enlightened and woke capital city greenies” who were ignoring the needs of rural Australians. “We’ve had fires in Australia since time began”, he said.

Our understanding of the climatic drivers of this drought has been severely challenged. The Pacific Ocean is in a neutral phase, so ENSO is not a major issue. The Southern Ocean is in a negative mode, which should bring rain-bearing westerlies at least to southern Australia. But the Indian Ocean is in a phase which prevents tropical moisture inflow.

“The only way the climate models can simulate the depleted rainfall observations is to include the effects of greenhouse gases”

None of these by itself is enough to produce a drought as long and intense as this. In some places it is in its eighth year, and mostly at least the third. On our farm less than half of the annual rainfall of the previous worst year so far has been recorded. Apart from an intense La Niña in 2010-2011 there have been no significantly wet or average years this century.

In 2010 a report was released by a government agency, the Centre for Australian Weather and Climate Research, which showed conclusively that there has been a serious and persistent decline in rainfall in southwestern and more recently southeastern Australia. It is clearly visible, it is anthropogenic in nature, and its mechanism can be easily understood by non-scientists. The Australian Bureau of Meteorology published an update on this year’s drought in September.

Superimposed on the oceans’ tableau is a natural phenomenon known as the Sub-Tropical Ridge (STR). This is a belt of high atmospheric pressure which encircles the planet at about 35 degrees of latitude in both hemispheres, where many of the world’s deserts occur. This high pressure is caused by the descent of cool dry air at these latitudes.

This air originated in the tropics, rose, rained out and then descended, depleted of moisture. Meteorologists call this cycle the Hadley Circulation.

The trouble is that the dry high pressure cells are becoming more frequent and more intense because of growing heating in the sub-tropics, which are increasing in aridity.

Heat blocks rains

Until now, though, it was happening slowly enough for no-one to notice. However, recent analysis can now detect the signature as far back as the World War Two drought.

The STR is like a string of pearls under high pressure, with the gaps allowing rain-bearing systems to penetrate from either the tropics or the poles. But now the extra heat caused by climate change in the tropics is making the highs more frequent and more intense.

It is now a regular feature of Australian weather that rain-bearing fronts are pushed to the south and rarely penetrate the persistent highs. Similar changes have been seen in the northern hemisphere in southern Europe and California.

There is a direct linear relationship between these changes and the level of carbon dioxide in the atmosphere. The only way the climate models can simulate the depleted rainfall observations is to include the effects of greenhouse gases.

This should have been front-page news at least in the agricultural press, but instead the news is about government handouts to needy farmers.

Worse in store

So it looks as if the plight of Australian agriculture is set to worsen because of the tropical oceanic heating. The strengthening STR is not an oceanic phenomenon, but an atmospheric one, so its effects are not as apparent to the casual observer. Nevertheless, it seems to be putting the already nasty changes of the oceans on steroids.

Somehow we need to persuade the government that as well as providing welfare, and mitigation strategies, we have to stop venting novel carbon dioxide and avoid exposing Australian agriculture to the ravages of an angry atmosphere.

Yet there are now two strong reasons why governments in Australia will not acknowledge that the drought is attributable to climate change. Firstly, at the last election, there was an enormous voter backlash against proponents of the closure of coal mining.

Secondly, there is political mileage to be grafted out of massive welfare payments to the agricultural community. There is no doubt that there is enormous hardship in the sector, but you need to wonder whether they can see a connection between budgetary pain and carbon policy, or whether any government has sought briefing on the matter.

Clearly courage and leadership matching that required in warfare is needed to address this dreadful situation. Instead we have cowardice and schizophrenia. − Climate News Network

* * * * *

Andrew Burgess is a sheep farmer in New South Wales whose family has raised animals in the same area for more than a century. He has now sold his farm because he finds the drought has made his work and survival there impossible.

Global climate treaty is not working

Three out of four nations have yet to start to honour the global climate treaty. The world waits, the seas go on rising – and greenhouse gases too.

LONDON, 13 November, 2019 – Three nations in every four that vowed in the global climate treaty, the Paris Agreement, to contain global heating to “well below” 2°C by the century’s end have failed to deliver pledges that will reduce emissions by even 40% by 2030.

In Paris in 2015, a total of 195 nations agreed that action was vital. Since then only 36 countries have taken steps to meet the targets they agreed, according to a new study by the Universal Ecological Fund. And one nation has announced that it will withdraw altogether from the agreement.

“The comprehensive examination found that with few exceptions, the pledges of the rich, middle income and poor countries are insufficient to address climate change,” said Sir Robert Watson, once chair of the Intergovernmental Panel on Climate Change, which was present at the Paris meeting, and co-author of the study. “Simply, the pledges are far too little, too late.

“Even if all climate pledges, which are voluntary, are fully implemented, they will cover less than half of what is needed to limit the acceleration of climate change in the next decade.”

“The more carbon we release now the more sea level rise we are locking in for the future”

What happens now will affect the planetary climate and its ocean systems for much longer than that for at least the next two centuries. Researchers report in the Proceedings of the National Academy of Sciences that they looked at the impact to come even if all nations were to honour all the pledges made in Paris.

They agree that the global emissions of greenhouse gases since Paris and by 2030 would alone be enough to raise global sea levels by 20 cms: half of that from China, the US, the EU, India and Russia, the top five emitters. But they add a much more ominous long-term warning

“Our results show that what we do today will have a huge effect in 2300. 20 cms is very significant; it is basically as much sea-level rise as we’ve observed over the entire 20th century. To cause that with only 15 years of emissions is quite staggering”, said Alexander Nauels, of Climate Analytics, who led the study.

“The true consequences of our emissions on sea level rise unfold over centuries, due to the slow pace at which the ocean, polar ice sheets and glaciers respond to global warming. The more carbon we release now the more sea level rise we are locking in for the future.”

And as if to add force to the need for drastic action, a new US and German study has warned that even if nations honour their pledges by 2030, sea levels around the world will go on rising, and stay at higher levels for thousands of years.

Leaking permafrost

As the polar ice retreats, and rising tides batter the shores of the Arctic Ocean, vast volumes of carbon dioxide so far imprisoned  in the permafrost of the polar coasts – 34% of all the world’s coastlines  – could escape to accelerate further warming and of course yet greater sea level rise.

Climate scientists have been wrestling for decades with what they call the carbon budget – the accounting of all the ways in which carbon dioxide gets into the atmosphere and out of it again – and missed another potentially dangerous source of the greenhouse gas.

As glaciers retreat and the frozen coasts and soils thaw, this could begin to seep into the atmosphere. Laboratory experiments suggest it will seep even faster as sea levels rise and waves grow more powerful. For every gram, dry weight, of eroded permafrost, more than 4 grams of carbon dioxide would escape into the atmosphere.

“Carbon budgets and climate simulations have so far missed coastal erosion in their equations even though it might be a substantial source of carbon dioxide,” says George Tanski of Vrije Universiteit Amsterdam, the lead author.

“Our research found that the erosion of permafrost coastlines can lead to the rapid release of significant quantities of CO2, which can be expected to increase as coastal erosion accelerates, temperatures increase, sea ice diminishes and stronger storms batter Arctic coasts.”

Early warning

That the Paris Agreement was backed up by pledges that might fail to contain global warning to an ideal target of 1.5°C was clear from the start, and scientists who looked at the promises made at the time warned that unless they were increased, they committed the world to a warming of at least 3°C above the long term average for most of human history.

The latest study from the Universal Ecological Fund now finds that not only are the pledges not enough; some are not being honoured. China and India pledged to reduce the intensity of their emissions relative to gross domestic product, but since their economies continue to grow, so will their emissions.

China already contributes more than 26% of all global emissions, India 7%. The US, which contributes 13% of all greenhouse emissions, is to quit the Paris Agreement in 2020, and has in any case reversed much of its climate legislation. Russia, which contributes 4.6% of all atmospheric carbon dioxide, has submitted no pledges.

Europe’s 28 nations, and seven others, have promised to reduce emissions by 40% by 2040. Of the remaining 152 nations, responsible for more than 36% of all emissions, 127 have submitted conditional plans, but rely upon technical assistance and funding from the wealthy nations to execute these. But the US and Australia have stopped making contributions to such funding.

Almost 70% of emissions are from fossil fuels: successful action would require the closure of 2,400 coal-fired power stations. In fact, 250 new coal-fired power stations are now under construction. The message is that governments are doing too little, too slowly, leaving horrendous future consequences. – Climate News Network

Three out of four nations have yet to start to honour the global climate treaty. The world waits, the seas go on rising – and greenhouse gases too.

LONDON, 13 November, 2019 – Three nations in every four that vowed in the global climate treaty, the Paris Agreement, to contain global heating to “well below” 2°C by the century’s end have failed to deliver pledges that will reduce emissions by even 40% by 2030.

In Paris in 2015, a total of 195 nations agreed that action was vital. Since then only 36 countries have taken steps to meet the targets they agreed, according to a new study by the Universal Ecological Fund. And one nation has announced that it will withdraw altogether from the agreement.

“The comprehensive examination found that with few exceptions, the pledges of the rich, middle income and poor countries are insufficient to address climate change,” said Sir Robert Watson, once chair of the Intergovernmental Panel on Climate Change, which was present at the Paris meeting, and co-author of the study. “Simply, the pledges are far too little, too late.

“Even if all climate pledges, which are voluntary, are fully implemented, they will cover less than half of what is needed to limit the acceleration of climate change in the next decade.”

“The more carbon we release now the more sea level rise we are locking in for the future”

What happens now will affect the planetary climate and its ocean systems for much longer than that for at least the next two centuries. Researchers report in the Proceedings of the National Academy of Sciences that they looked at the impact to come even if all nations were to honour all the pledges made in Paris.

They agree that the global emissions of greenhouse gases since Paris and by 2030 would alone be enough to raise global sea levels by 20 cms: half of that from China, the US, the EU, India and Russia, the top five emitters. But they add a much more ominous long-term warning

“Our results show that what we do today will have a huge effect in 2300. 20 cms is very significant; it is basically as much sea-level rise as we’ve observed over the entire 20th century. To cause that with only 15 years of emissions is quite staggering”, said Alexander Nauels, of Climate Analytics, who led the study.

“The true consequences of our emissions on sea level rise unfold over centuries, due to the slow pace at which the ocean, polar ice sheets and glaciers respond to global warming. The more carbon we release now the more sea level rise we are locking in for the future.”

And as if to add force to the need for drastic action, a new US and German study has warned that even if nations honour their pledges by 2030, sea levels around the world will go on rising, and stay at higher levels for thousands of years.

Leaking permafrost

As the polar ice retreats, and rising tides batter the shores of the Arctic Ocean, vast volumes of carbon dioxide so far imprisoned  in the permafrost of the polar coasts – 34% of all the world’s coastlines  – could escape to accelerate further warming and of course yet greater sea level rise.

Climate scientists have been wrestling for decades with what they call the carbon budget – the accounting of all the ways in which carbon dioxide gets into the atmosphere and out of it again – and missed another potentially dangerous source of the greenhouse gas.

As glaciers retreat and the frozen coasts and soils thaw, this could begin to seep into the atmosphere. Laboratory experiments suggest it will seep even faster as sea levels rise and waves grow more powerful. For every gram, dry weight, of eroded permafrost, more than 4 grams of carbon dioxide would escape into the atmosphere.

“Carbon budgets and climate simulations have so far missed coastal erosion in their equations even though it might be a substantial source of carbon dioxide,” says George Tanski of Vrije Universiteit Amsterdam, the lead author.

“Our research found that the erosion of permafrost coastlines can lead to the rapid release of significant quantities of CO2, which can be expected to increase as coastal erosion accelerates, temperatures increase, sea ice diminishes and stronger storms batter Arctic coasts.”

Early warning

That the Paris Agreement was backed up by pledges that might fail to contain global warning to an ideal target of 1.5°C was clear from the start, and scientists who looked at the promises made at the time warned that unless they were increased, they committed the world to a warming of at least 3°C above the long term average for most of human history.

The latest study from the Universal Ecological Fund now finds that not only are the pledges not enough; some are not being honoured. China and India pledged to reduce the intensity of their emissions relative to gross domestic product, but since their economies continue to grow, so will their emissions.

China already contributes more than 26% of all global emissions, India 7%. The US, which contributes 13% of all greenhouse emissions, is to quit the Paris Agreement in 2020, and has in any case reversed much of its climate legislation. Russia, which contributes 4.6% of all atmospheric carbon dioxide, has submitted no pledges.

Europe’s 28 nations, and seven others, have promised to reduce emissions by 40% by 2040. Of the remaining 152 nations, responsible for more than 36% of all emissions, 127 have submitted conditional plans, but rely upon technical assistance and funding from the wealthy nations to execute these. But the US and Australia have stopped making contributions to such funding.

Almost 70% of emissions are from fossil fuels: successful action would require the closure of 2,400 coal-fired power stations. In fact, 250 new coal-fired power stations are now under construction. The message is that governments are doing too little, too slowly, leaving horrendous future consequences. – Climate News Network