Tag Archives: Carbon Dioxide

Nuclear industry’s unfounded claims let it survive

The nuclear industry’s unfounded claims let it rely on “dark arts”, ignoring much better ways to cut carbon emissions.

LONDON, 28 April, 2021 – It is the global nuclear industry’s unfounded claims – not least that it is part of the solution to climate change because it is a low-carbon source of electricity – that allow it to survive, says a devastating demolition job by one of the world’s leading environmental experts, Jonathan Porritt.

In a report, Net Zero Without Nuclear, he says the industry is in fact hindering the fight against climate change. Its claim that new types of reactor are part of the solution is, he says, like its previous promises, over-hyped and illusionary.

Porritt, a former director of Friends of the Earth UK, who was appointed chairman of the UK government’s Sustainable Development Commission after years of campaigning on green issues, has written the report in a personal capacity, but it is endorsed by an impressive group of academics and environmental campaigners.

His analysis is timely, because the nuclear industry is currently sinking billions of dollars into supporting environmental think tanks and energy “experts” who bombard politicians and news outlets with pro-nuclear propaganda.

Porritt provides a figure of 46 front groups in 18 countries practising these “dark arts”, and says it is only this “army of lobbyists and PR specialists” that is keeping the industry alive.

First he discusses the so-called levelized cost of energy (LCOE), a measure of the average net present cost of electricity generation for a generating plant over its lifetime.

“The case against nuclear power is stronger than it has ever been before”

In 2020, the LCOE of producing one megawatt of electricity in the UK showed huge variations:

  • large scale solar came out cheapest at £27 (US$38)
  • onshore wind was £30
  • the cheapest gas: £44
  • offshore wind: £63
  • coal was £83
  • nuclear – a massive £121 ($168).

Porritt argues that even if you dispute some of the methods of reaching these figures, it is important to look at trends. Over time wind and solar are constantly getting cheaper, while nuclear costs on the other hand are rising – by 26% in ten years.

His second issue is the time it takes to build a nuclear station. He concludes that the pace of building them is so slow that if western countries started building new ones now, the amount of carbon dioxide produced in manufacturing the concrete and steel needed to complete them would far outweigh any contribution the stations might make by 2050 to low carbon electricity production. New build nuclear power stations would in fact make existing net zero targets harder to reach.

“It is very misleading to make out that renewables and nuclear are equivalently low-carbon – and even more misleading to describe nuclear as zero-carbon, as a regrettably significant number of politicians and industry representatives continue to do – many of them in the full knowledge that they are lying”, he writes.

He says that the British government and all the main opposition political parties in England and Wales are pro-nuclear, effectively stifling public debate, and that the government neglects the most important way of reducing carbon emissions: energy efficiency.

Also, with the UK particularly well-endowed with wind, solar and tidal resources, it would be far quicker and cheaper to reach 100% renewable energy without harbouring any new nuclear ambitions.

The report discusses as well issues the industry would rather not examine – the unresolved problem of nuclear waste, and the immense time it takes to decommission nuclear stations. This leads on to the issue of safety, not just the difficult question of potential terrorist and cyber attacks, but also the dangers of sea level rise and other effects of climate change.

Failed expectations

These include the possibility of sea water, particularly in the Middle East, becoming too warm to cool the reactors and so rendering them difficult to operate, and rivers running low during droughts, for example in France and the US, forcing the stations to close when power is most needed.

Porritt insists he has kept an open mind on nuclear power since the 1970s and still does so, but that they have never lived up to their promises. He makes the point that he does not want existing nuclear stations to close early if they are safe, since they are producing low carbon electricity. However, he is baffled by the continuing enthusiasm among politicians for nuclear power: “The case against nuclear power is stronger than it has ever been before.”

But it is not just the politicians and industry chiefs that come in for criticism. Trade unions which advocate new nuclear power because it is a heavily unionised industry when there are far more jobs in the renewable sector are “especially repugnant.”

He also rehearses the fact that without a healthy civil nuclear industry countries would struggle to afford nuclear weapons, as it is electricity consumers that provide support for the weapons programme.

The newest argument employed by nuclear enthusiasts, the idea that green hydrogen could be produced in large quantities, is one he also debunks. It would simply be too expensive and inefficient, he says, except perhaps for the steel and concrete industries.

Porritt’s report is principally directed at the UK’s nuclear programme, where he says the government very much stands alone in Europe in its “unbridled enthusiasm for new nuclear power stations.”

This is despite the fact that the nuclear case has continued to fade for 15 years. Instead, he argues, British governments should go for what the report concentrates on: Net Zero Without Nuclear. – Climate News Network

The nuclear industry’s unfounded claims let it rely on “dark arts”, ignoring much better ways to cut carbon emissions.

LONDON, 28 April, 2021 – It is the global nuclear industry’s unfounded claims – not least that it is part of the solution to climate change because it is a low-carbon source of electricity – that allow it to survive, says a devastating demolition job by one of the world’s leading environmental experts, Jonathan Porritt.

In a report, Net Zero Without Nuclear, he says the industry is in fact hindering the fight against climate change. Its claim that new types of reactor are part of the solution is, he says, like its previous promises, over-hyped and illusionary.

Porritt, a former director of Friends of the Earth UK, who was appointed chairman of the UK government’s Sustainable Development Commission after years of campaigning on green issues, has written the report in a personal capacity, but it is endorsed by an impressive group of academics and environmental campaigners.

His analysis is timely, because the nuclear industry is currently sinking billions of dollars into supporting environmental think tanks and energy “experts” who bombard politicians and news outlets with pro-nuclear propaganda.

Porritt provides a figure of 46 front groups in 18 countries practising these “dark arts”, and says it is only this “army of lobbyists and PR specialists” that is keeping the industry alive.

First he discusses the so-called levelized cost of energy (LCOE), a measure of the average net present cost of electricity generation for a generating plant over its lifetime.

“The case against nuclear power is stronger than it has ever been before”

In 2020, the LCOE of producing one megawatt of electricity in the UK showed huge variations:

  • large scale solar came out cheapest at £27 (US$38)
  • onshore wind was £30
  • the cheapest gas: £44
  • offshore wind: £63
  • coal was £83
  • nuclear – a massive £121 ($168).

Porritt argues that even if you dispute some of the methods of reaching these figures, it is important to look at trends. Over time wind and solar are constantly getting cheaper, while nuclear costs on the other hand are rising – by 26% in ten years.

His second issue is the time it takes to build a nuclear station. He concludes that the pace of building them is so slow that if western countries started building new ones now, the amount of carbon dioxide produced in manufacturing the concrete and steel needed to complete them would far outweigh any contribution the stations might make by 2050 to low carbon electricity production. New build nuclear power stations would in fact make existing net zero targets harder to reach.

“It is very misleading to make out that renewables and nuclear are equivalently low-carbon – and even more misleading to describe nuclear as zero-carbon, as a regrettably significant number of politicians and industry representatives continue to do – many of them in the full knowledge that they are lying”, he writes.

He says that the British government and all the main opposition political parties in England and Wales are pro-nuclear, effectively stifling public debate, and that the government neglects the most important way of reducing carbon emissions: energy efficiency.

Also, with the UK particularly well-endowed with wind, solar and tidal resources, it would be far quicker and cheaper to reach 100% renewable energy without harbouring any new nuclear ambitions.

The report discusses as well issues the industry would rather not examine – the unresolved problem of nuclear waste, and the immense time it takes to decommission nuclear stations. This leads on to the issue of safety, not just the difficult question of potential terrorist and cyber attacks, but also the dangers of sea level rise and other effects of climate change.

Failed expectations

These include the possibility of sea water, particularly in the Middle East, becoming too warm to cool the reactors and so rendering them difficult to operate, and rivers running low during droughts, for example in France and the US, forcing the stations to close when power is most needed.

Porritt insists he has kept an open mind on nuclear power since the 1970s and still does so, but that they have never lived up to their promises. He makes the point that he does not want existing nuclear stations to close early if they are safe, since they are producing low carbon electricity. However, he is baffled by the continuing enthusiasm among politicians for nuclear power: “The case against nuclear power is stronger than it has ever been before.”

But it is not just the politicians and industry chiefs that come in for criticism. Trade unions which advocate new nuclear power because it is a heavily unionised industry when there are far more jobs in the renewable sector are “especially repugnant.”

He also rehearses the fact that without a healthy civil nuclear industry countries would struggle to afford nuclear weapons, as it is electricity consumers that provide support for the weapons programme.

The newest argument employed by nuclear enthusiasts, the idea that green hydrogen could be produced in large quantities, is one he also debunks. It would simply be too expensive and inefficient, he says, except perhaps for the steel and concrete industries.

Porritt’s report is principally directed at the UK’s nuclear programme, where he says the government very much stands alone in Europe in its “unbridled enthusiasm for new nuclear power stations.”

This is despite the fact that the nuclear case has continued to fade for 15 years. Instead, he argues, British governments should go for what the report concentrates on: Net Zero Without Nuclear. – Climate News Network

Greenhouse gas levels surge despite slow economy

The global economy has been hard hit by the Covid pandemic. But greenhouse gas levels have worryingly shot upwards.

LONDON, 13 April, 2021 – It’s a set of statistics likely to send shivers down the spine of any climate scientist – or everyone concerned about the future of the planet. Despite a slowing world economy due to pandemic shutdowns and other Covid-related factors, climate-changing greenhouse gas levels in the atmosphere surged last year.

The US government’s National Oceanic and Atmospheric Administration (NOAA), one of the world’s leading scientific institutions, says the global rate of increase in CO2 (carbon dioxide) levels in 2020 was the fifth highest on record. If there had been no economic slowdown, NOAA says, the increase in CO2 levels last year would have been the highest since records began.

“Human activity is driving climate change”, says Colm Sweeney, assistant deputy director of NOAA’s global monitoring laboratory. “If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero – and even then we’ll need to look for ways to further remove greenhouse gases from the atmosphere.”

Levels of CO2 in the atmosphere are measured on a parts per million (ppm) basis. Based on measurements gathered at various monitoring stations around the world, NOAA calculates that CO2 levels increased by 2.6 ppm in 2020 to 412.5 ppm, an increase of 12% since 2000 and a concentration level believed to have last been present during the mid-Pliocene Warm Period around 3.6 million years ago.

Methane prompts concern

At that time global sea levels were more than 20 metres higher than they are today, and vast forests are believed to have covered many Arctic regions.

Of even more concern than the surge in CO2 is a jump in levels of methane (CH4) in the atmosphere last year.

Methane is generated from various sources besides fossil fuels, including decaying organic matter, rice paddies, livestock farming and landfill sites.

The worldwide fracking industry is also a significant source of methane emissions. The gas is not as longlived in the atmosphere as CO2, but it is more than 30 times as potent.

“Human activity is driving climate change. If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero”

NOAA says atmospheric concentrations of methane increased last year by the largest level since records began nearly 40 years ago. Scientists have described this jump as surprising – and disturbing.

“It is very scary indeed”, Euan Nisbet, professor of earth sciences at Royal Holloway University in the UK told the Financial Times.

NOAA says the recent increase in methane levels is likely to have more to do with biological sources such as wetlands and livestock than with emissions from fossil fuels.

One theory is that, as temperatures rise and rainfall increases in many tropical regions, more methane is released from wetlands, crops and vegetation: a climate change “tipping point” is reached, as one warming event encourages and reinforces another.

Gas plumes detected

A new generation of highly sophisticated satellites is able to target with ever-increasing accuracy separate incidents of methane escape around the world.

In recent days unusually large releases of methane – known as plumes – have been recorded over Bangladesh, a densely populated low-lying country among those most at risk from changes in climate. The Bangladesh government says the plumes are likely sourced from rice paddies, rubbish dumps and landfill sites.

Earlier this year satellites monitored large amounts of methane escaping from gas pipelines in Turkmenistan in central Asia. Similar plumes were detected over the country last year.

In May 2020 a massive methane plume was detected by satellite over Florida. Investigations are ongoing, but it is thought to have come from the state’s gas pipeline system. – Climate News Network

The global economy has been hard hit by the Covid pandemic. But greenhouse gas levels have worryingly shot upwards.

LONDON, 13 April, 2021 – It’s a set of statistics likely to send shivers down the spine of any climate scientist – or everyone concerned about the future of the planet. Despite a slowing world economy due to pandemic shutdowns and other Covid-related factors, climate-changing greenhouse gas levels in the atmosphere surged last year.

The US government’s National Oceanic and Atmospheric Administration (NOAA), one of the world’s leading scientific institutions, says the global rate of increase in CO2 (carbon dioxide) levels in 2020 was the fifth highest on record. If there had been no economic slowdown, NOAA says, the increase in CO2 levels last year would have been the highest since records began.

“Human activity is driving climate change”, says Colm Sweeney, assistant deputy director of NOAA’s global monitoring laboratory. “If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero – and even then we’ll need to look for ways to further remove greenhouse gases from the atmosphere.”

Levels of CO2 in the atmosphere are measured on a parts per million (ppm) basis. Based on measurements gathered at various monitoring stations around the world, NOAA calculates that CO2 levels increased by 2.6 ppm in 2020 to 412.5 ppm, an increase of 12% since 2000 and a concentration level believed to have last been present during the mid-Pliocene Warm Period around 3.6 million years ago.

Methane prompts concern

At that time global sea levels were more than 20 metres higher than they are today, and vast forests are believed to have covered many Arctic regions.

Of even more concern than the surge in CO2 is a jump in levels of methane (CH4) in the atmosphere last year.

Methane is generated from various sources besides fossil fuels, including decaying organic matter, rice paddies, livestock farming and landfill sites.

The worldwide fracking industry is also a significant source of methane emissions. The gas is not as longlived in the atmosphere as CO2, but it is more than 30 times as potent.

“Human activity is driving climate change. If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero”

NOAA says atmospheric concentrations of methane increased last year by the largest level since records began nearly 40 years ago. Scientists have described this jump as surprising – and disturbing.

“It is very scary indeed”, Euan Nisbet, professor of earth sciences at Royal Holloway University in the UK told the Financial Times.

NOAA says the recent increase in methane levels is likely to have more to do with biological sources such as wetlands and livestock than with emissions from fossil fuels.

One theory is that, as temperatures rise and rainfall increases in many tropical regions, more methane is released from wetlands, crops and vegetation: a climate change “tipping point” is reached, as one warming event encourages and reinforces another.

Gas plumes detected

A new generation of highly sophisticated satellites is able to target with ever-increasing accuracy separate incidents of methane escape around the world.

In recent days unusually large releases of methane – known as plumes – have been recorded over Bangladesh, a densely populated low-lying country among those most at risk from changes in climate. The Bangladesh government says the plumes are likely sourced from rice paddies, rubbish dumps and landfill sites.

Earlier this year satellites monitored large amounts of methane escaping from gas pipelines in Turkmenistan in central Asia. Similar plumes were detected over the country last year.

In May 2020 a massive methane plume was detected by satellite over Florida. Investigations are ongoing, but it is thought to have come from the state’s gas pipeline system. – Climate News Network

UK court urged to respect 1.5°C climate limit

The UK faces growing pressure not to expand Heathrow airport but to respect the 1.5°C limit agreed on global heating.

LONDON, 1 April, 2021 − In a significant challenge to the United Kingdom’s Supreme Court, several leading climate scientists have said a recent ruling it made on the expansion of London’s main airport, Heathrow, will cause serious damage to the global environment, urging it to rule that the government must respect the 1.5°C limit internationally agreed to rein in  global heating.

Almost 150 lawyers, academics and policy-makers from around the world have written to the court, urging it “to mitigate the profound harm” which they say will be caused by its judgement allowing the government to go ahead with its plans to expand Heathrow.

They add: “Recklessly ignoring the spirit and letter of the law of the Paris Agreement sends a message to the world that the UK has joined the ranks of the climate wreckers, betraying the world’s vulnerable countries and communities.”

Signatories include the government’s own former chief scientist, Sir David King; Dr James Hansen, the former NASA scientist once hailed as one of the “true giants” of climate science; and Dr Jeffrey Sachs, the economist and former advisor to three United Nations Secretaries-General.

“The Heathrow case was about much more than the third  runway. Fundamentally it was about the obligation of the government to tell the truth”

The Paris Agreement on climate change, reached in 2015, “aims to substantially reduce global greenhouse gas emissions and to limit the global temperature increase in this century to 2°C while pursuing means to limit the increase even further to 1.5°C.”

Although the UK is a signatory to the Agreement, and was a keen supporter of it six years ago, the present government appears unwilling to give it effect. At several points it has faced challenges from the charity Plan B, set up to support strategic legal action against climate change.

In February 2020 the Court of Appeal considered a case brought by Plan B, appealing against a previous High Court decision to allow the building of a third runway at Heathrow, an argument advanced by the then Transport Minister, Chris Grayling. The Court of Appeal heard evidence from a range of witnesses and ended the hearing by finding unanimously in favour of Plan B’s challenge to the government’s plans, setting a precedent with global implications.

It has emerged subsequently that Mr Grayling’s argument to the High Court had hinged on reliance (which Plan B says was not disclosed to the court at the time) on the higher tolerable temperature increase agreed in Paris, 2°C, which the charity says would condemn many millions of people to an intolerable future,  rather than the less disastrous 1.5°C figure.

Prime ministerial assurance

There appeared at this point to be solid government backing for Plan B. The Prime Minister, Boris Johnson, said he accepted the court’s ruling, telling Parliament on 4 March: “We will ensure that we abide by the judgment and take account of the Paris convention on climate change.”

But the government told Plan B in August 2020 that the Paris Agreement does not apply to the domestic law of the UK and is therefore irrelevant to government policy on how to rebuild the country’s economy after the chaos caused by the Covid-19 pandemic. So it argued that it was entitled to rely on the 2°C figure which Plan B insisted would mean global disaster.

The government’s critics argue that this argument is a strange one to use when the UK is poised to host the annual UN climate conference, COP-26, being held this year in Glasgow in November.

In December 2020 the Supreme Court ruled that the government’s plans to expand Heathrow were lawful, upholding the government’s assertion  that the Paris Agreement was irrelevant, and despite uncontested evidence that the expansion would result in emissions of 40 million tonnes of carbon dioxide, the main greenhouse gas, by 2050 from UK aviation alone. This would be clearly inconsistent with the more stringent and safer 1.5°C Paris temperature limit.

Facing prison

The director of Plan B, Tim Crosland, a professional lawyer, already faces court action and a possible two-year prison sentence for revealing the decision of the Supreme Court while it was still under embargo in other words, not yet authorised for publication.

In a personal statement published on 15 December 2020 he said he had decided to break the embargo “as an act of civil disobedience. This will be treated as a ‘contempt of court’ and I am ready to face the consequences.

“I have no choice but to protest the deep immorality of the Court’s ruling … The Supreme Court’s judgment, which has legitimised Mr Grayling’s use of the deadly 2˚C threshold, has betrayed us all.”

Mr Crosland said: “The Heathrow case … was about much more than the third runway. Fundamentally it was about the obligation of the government to tell the truth. It can’t keep telling us it’s committed to the Paris Agreement temperature limit, if its actions say the opposite.” Climate News Network

The UK faces growing pressure not to expand Heathrow airport but to respect the 1.5°C limit agreed on global heating.

LONDON, 1 April, 2021 − In a significant challenge to the United Kingdom’s Supreme Court, several leading climate scientists have said a recent ruling it made on the expansion of London’s main airport, Heathrow, will cause serious damage to the global environment, urging it to rule that the government must respect the 1.5°C limit internationally agreed to rein in  global heating.

Almost 150 lawyers, academics and policy-makers from around the world have written to the court, urging it “to mitigate the profound harm” which they say will be caused by its judgement allowing the government to go ahead with its plans to expand Heathrow.

They add: “Recklessly ignoring the spirit and letter of the law of the Paris Agreement sends a message to the world that the UK has joined the ranks of the climate wreckers, betraying the world’s vulnerable countries and communities.”

Signatories include the government’s own former chief scientist, Sir David King; Dr James Hansen, the former NASA scientist once hailed as one of the “true giants” of climate science; and Dr Jeffrey Sachs, the economist and former advisor to three United Nations Secretaries-General.

“The Heathrow case was about much more than the third  runway. Fundamentally it was about the obligation of the government to tell the truth”

The Paris Agreement on climate change, reached in 2015, “aims to substantially reduce global greenhouse gas emissions and to limit the global temperature increase in this century to 2°C while pursuing means to limit the increase even further to 1.5°C.”

Although the UK is a signatory to the Agreement, and was a keen supporter of it six years ago, the present government appears unwilling to give it effect. At several points it has faced challenges from the charity Plan B, set up to support strategic legal action against climate change.

In February 2020 the Court of Appeal considered a case brought by Plan B, appealing against a previous High Court decision to allow the building of a third runway at Heathrow, an argument advanced by the then Transport Minister, Chris Grayling. The Court of Appeal heard evidence from a range of witnesses and ended the hearing by finding unanimously in favour of Plan B’s challenge to the government’s plans, setting a precedent with global implications.

It has emerged subsequently that Mr Grayling’s argument to the High Court had hinged on reliance (which Plan B says was not disclosed to the court at the time) on the higher tolerable temperature increase agreed in Paris, 2°C, which the charity says would condemn many millions of people to an intolerable future,  rather than the less disastrous 1.5°C figure.

Prime ministerial assurance

There appeared at this point to be solid government backing for Plan B. The Prime Minister, Boris Johnson, said he accepted the court’s ruling, telling Parliament on 4 March: “We will ensure that we abide by the judgment and take account of the Paris convention on climate change.”

But the government told Plan B in August 2020 that the Paris Agreement does not apply to the domestic law of the UK and is therefore irrelevant to government policy on how to rebuild the country’s economy after the chaos caused by the Covid-19 pandemic. So it argued that it was entitled to rely on the 2°C figure which Plan B insisted would mean global disaster.

The government’s critics argue that this argument is a strange one to use when the UK is poised to host the annual UN climate conference, COP-26, being held this year in Glasgow in November.

In December 2020 the Supreme Court ruled that the government’s plans to expand Heathrow were lawful, upholding the government’s assertion  that the Paris Agreement was irrelevant, and despite uncontested evidence that the expansion would result in emissions of 40 million tonnes of carbon dioxide, the main greenhouse gas, by 2050 from UK aviation alone. This would be clearly inconsistent with the more stringent and safer 1.5°C Paris temperature limit.

Facing prison

The director of Plan B, Tim Crosland, a professional lawyer, already faces court action and a possible two-year prison sentence for revealing the decision of the Supreme Court while it was still under embargo in other words, not yet authorised for publication.

In a personal statement published on 15 December 2020 he said he had decided to break the embargo “as an act of civil disobedience. This will be treated as a ‘contempt of court’ and I am ready to face the consequences.

“I have no choice but to protest the deep immorality of the Court’s ruling … The Supreme Court’s judgment, which has legitimised Mr Grayling’s use of the deadly 2˚C threshold, has betrayed us all.”

Mr Crosland said: “The Heathrow case … was about much more than the third runway. Fundamentally it was about the obligation of the government to tell the truth. It can’t keep telling us it’s committed to the Paris Agreement temperature limit, if its actions say the opposite.” Climate News Network

Carbon emissions slow, but not nearly fast enough

Global shutdown during Covid-19 has forced down carbon emissions. But no inadvertent pause can replace global resolve.

LONDON, 8 March, 2021 − Five years after a planet-wide vow to reduce carbon emissions, it happened. In 2020, the world’s nations pumped only 34 billion tonnes of carbon dioxide into the atmosphere, a drop of 2.6bn tonnes on the previous year.

For that, thank the coronavirus that triggered a global pandemic and international lockdown, rather than the determination of the planet’s leaders, businesses, energy producers, consumers and citizens.

In fact, only 64 countries have cut their carbon emissions in the years since 195 nations delivered the Paris Climate Agreement of 2015: these achieved annual cuts of 0.16bn tonnes in the years since. But emissions actually rose in 150 nations, which means that overall from 2016 to 2019 emissions grew by 0.21bn tonnes, compared with the preceding five years, 2011-2015.

And, say British, European, Australian and US scientists in the journal Nature Climate Change, the global pause during the pandemic in 2020 is not likely to continue. To make the kind of carbon emissions cuts that will fulfill the promise made in Paris to contain global heating to “well below” 2°C by 2100, the world must reduce carbon dioxide emissions each year by one to two billion tonnes.

That is an annual increase of ten times the cuts achieved so far by only 64 out of 214 countries.

“It is in everyone’s best interests to build back better to speed the urgent transition to clean energy”

Researchers have, since 2015, repeatedly made the case − in economic terms, in terms of human safety and justice, in terms of human health and nutrition − for drastic reductions in the use of the fossil fuels that, ultimately, power all economic growth.

They have also repeatedly warned that almost no nation, anywhere, is doing nearly enough to help meet the proposed goal of no more than 1.5°C warming by the end of the century. The world has already warmed by more than 1°C in the last century, thanks to human choices. Soon planetary temperatures could cross a dangerous threshold.

And although the dramatic pause in economic activity triggered by yet another zoonotic virus, the emergence of which may be yet another consequence of human disturbance of the planet’s natural ecosystems, is an indicator of new possibilities, the planet is still addicted to fossil fuels.

“The drop in CO2 emissions in response to Covid-19 highlights the scale of actions and international adherence needed to tackle climate change,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Now we need large-scale actions that are good for human health and good for the planet. It is in everyone’s best interests to build back better to speed the urgent transition to clean energy.”

Inching towards cuts

The latest accounting suggests that there has been some movement, though simply not enough. Between 2016 and 2019, carbon emissions decreased in 25 out of 36 high income countries. The USA’s fell by 0.7%, the European Union’s by 0.9% and the UK’s by 3.6%, and those emissions fell even after accounting for the carbon costs of goods imported from other nations.

Of the middle income nations, Mexico’s carbon emissions dropped by 1.3% and China’s by 0.4%, a dramatic contrast with 2011-2015, when China’s emissions had grown by 6.2% a year. But altogether, 99 upper-middle income economies accounted for 51% of global emissions in 2019, and China accounted for 28% of the global total.

Even in the US and China, money is still going into fossil fuels. The European Union, Denmark, France, the UK, Germany and Switzerland are among the few countries that have tried to limit fossil fuel power and implement some kind of economic “green” stimulus.

The message is that, after a series of years in which temperature records have been repeatedly broken, years marked by devastating fire, drought, flood and windstorm, nations need to act, and at speed, to honour the Paris promise to cut their carbon emissions.

“This pressing timeline is constantly underscored by the rapid unfolding of extreme climate impacts worldwide,” said Professor Le Quéré. − Climate News Network

Global shutdown during Covid-19 has forced down carbon emissions. But no inadvertent pause can replace global resolve.

LONDON, 8 March, 2021 − Five years after a planet-wide vow to reduce carbon emissions, it happened. In 2020, the world’s nations pumped only 34 billion tonnes of carbon dioxide into the atmosphere, a drop of 2.6bn tonnes on the previous year.

For that, thank the coronavirus that triggered a global pandemic and international lockdown, rather than the determination of the planet’s leaders, businesses, energy producers, consumers and citizens.

In fact, only 64 countries have cut their carbon emissions in the years since 195 nations delivered the Paris Climate Agreement of 2015: these achieved annual cuts of 0.16bn tonnes in the years since. But emissions actually rose in 150 nations, which means that overall from 2016 to 2019 emissions grew by 0.21bn tonnes, compared with the preceding five years, 2011-2015.

And, say British, European, Australian and US scientists in the journal Nature Climate Change, the global pause during the pandemic in 2020 is not likely to continue. To make the kind of carbon emissions cuts that will fulfill the promise made in Paris to contain global heating to “well below” 2°C by 2100, the world must reduce carbon dioxide emissions each year by one to two billion tonnes.

That is an annual increase of ten times the cuts achieved so far by only 64 out of 214 countries.

“It is in everyone’s best interests to build back better to speed the urgent transition to clean energy”

Researchers have, since 2015, repeatedly made the case − in economic terms, in terms of human safety and justice, in terms of human health and nutrition − for drastic reductions in the use of the fossil fuels that, ultimately, power all economic growth.

They have also repeatedly warned that almost no nation, anywhere, is doing nearly enough to help meet the proposed goal of no more than 1.5°C warming by the end of the century. The world has already warmed by more than 1°C in the last century, thanks to human choices. Soon planetary temperatures could cross a dangerous threshold.

And although the dramatic pause in economic activity triggered by yet another zoonotic virus, the emergence of which may be yet another consequence of human disturbance of the planet’s natural ecosystems, is an indicator of new possibilities, the planet is still addicted to fossil fuels.

“The drop in CO2 emissions in response to Covid-19 highlights the scale of actions and international adherence needed to tackle climate change,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Now we need large-scale actions that are good for human health and good for the planet. It is in everyone’s best interests to build back better to speed the urgent transition to clean energy.”

Inching towards cuts

The latest accounting suggests that there has been some movement, though simply not enough. Between 2016 and 2019, carbon emissions decreased in 25 out of 36 high income countries. The USA’s fell by 0.7%, the European Union’s by 0.9% and the UK’s by 3.6%, and those emissions fell even after accounting for the carbon costs of goods imported from other nations.

Of the middle income nations, Mexico’s carbon emissions dropped by 1.3% and China’s by 0.4%, a dramatic contrast with 2011-2015, when China’s emissions had grown by 6.2% a year. But altogether, 99 upper-middle income economies accounted for 51% of global emissions in 2019, and China accounted for 28% of the global total.

Even in the US and China, money is still going into fossil fuels. The European Union, Denmark, France, the UK, Germany and Switzerland are among the few countries that have tried to limit fossil fuel power and implement some kind of economic “green” stimulus.

The message is that, after a series of years in which temperature records have been repeatedly broken, years marked by devastating fire, drought, flood and windstorm, nations need to act, and at speed, to honour the Paris promise to cut their carbon emissions.

“This pressing timeline is constantly underscored by the rapid unfolding of extreme climate impacts worldwide,” said Professor Le Quéré. − Climate News Network

Corporate climate polluters must pay for damage

Who should pay the huge costs of climate change’s damage? There’s a case for corporate climate polluters to contribute.

LONDON, 25 February, 2021 − The world’s big oil and mining companies emit vast amounts of climate-changing greenhouse gases into the atmosphere.

By extension, the actions of these corporate giants stand accused of contributing to floods and droughts and other climate-related disasters around the globe, extremely costly in both human and financial terms.

Our suggestion, which we describe as “a hypothetical climate liability regime”, is for the companies to become at least partially liable to pay for their destructive, climate-changing activities.

Investors should also be made aware of the risks involved in putting money into such enterprises. Only then will a realistic market valuation of these companies be calculated.

We examined nine top-emitting publicly-owned companies – all fossil fuel giants: Chevron, ExxonMobil, BP, Royal Dutch Shell, ConocoPhillips and Total are all primarily involved in oil.

Whilst Peabody Energy is one of the world’s biggest coal conglomerates, BHP Billiton is a mining behemoth and CNX Resources is a large gas company.

Cumulative emissions

In mid-2018 these nine companies had a combined market capitalisation  of US$1,358bn on the world’s stock markets. In total we estimate that the cumulative emissions of the companies concerned over an extended period of time have added up to 14.5% of total global emissions.

Analysing the occurrence of floods and droughts around the globe over a recent five-year period, it was calculated the costs totaled US$265bn.

If a liability regime was introduced, the nine companies above would stand to pay up to a 14.5% share of those costs – amounting to US$38.4bn, a figure representing 2.8% of their combined market worth.

Floods and droughts occurred before global warming, so only the additional intensity or frequency of flood and drought damages from company emissions matter – an active area of research.

How much should fossil fuel users pay as a share of responsibility? We explore this too. Not all is down to the users, but neither is all of it the responsibility of the producers. Even after allowing for both, we still suggest that 2.0% of their combined market worth might be a “fair” share.

Further impacts

If other impacts of global warming, such as hurricanes and sea-level rise, were taken into account, these companies would have to contribute much larger sums to pay for the damage caused.

Our calculations are based only on historical emissions: we do not take into account the damage, both in human and financial terms, likely to be caused by the activities of the companies concerned as global warming intensifies.

More than 50 years ago it became clear that emissions of CO2 and other greenhouse gases were damaging the climate.

The leading carbon producers could see their activities were harmful and that they had a responsibility to reduce the damage caused by capturing emissions or developing safe substitutes, such as carbon-free energy.

Instead, fossil fuel firms ignored their responsibilities, and promoted climate denial.

Public pressure grows

If these and other companies became liable for the damage caused by their emissions, investors could well think again before putting their money into such enterprises.

The City of New York is taking steps to remove fossil fuel companies from its US$189bn pension fund portfolio. Other investment funds – both big and small – are following the New York pension fund lead in the face of mounting public pressure aimed at supporting more sustainable enterprises.

Investors are also becoming increasingly aware of the growing financial risks of investing in companies founded on the exploitation of fossil fuels.

The value of these conglomerates could rapidly decline if they became liable for their past emissions: new regulations aimed at tackling the climate crisis could result in corporate fossil fuel reserves being left in the ground as so-called stranded assets. − Climate News Network

* * * * * * *

Dr Quintin Rayer, the lead author of this article, founded P1 Investment Management’s ethical and sustainable investment proposition in January 2017. He is a Fellow of the Institute of Physics, and a Chartered Fellow of the CISI, the Chartered Institute for Securities & Investment.

Dr Karsten Haustein, PhD (Barcelona), one of his co-authors, is a Research Associate, Climate Systems and Policy, at the School of Geography and the Environment, University of Oxford.

Dr Pete Walton, also a co-author, is a Knowledge Exchange Research Fellow at UKCIP, University of Oxford, where he works with a range of stakeholders in the UK and abroad in understanding how to build resilience to climate change.

The project of which this article is a summary is due to be published as a chapter in Water Risk and Its Impact on the Financial Markets and Our Society: New Developments in Risk Assessment and Management, forthcoming from Palgrave Macmillan. Current title: Global Warming: Flood and Drought Investment Risks

Dr Rayer and Dr Haustein contributed to Global Warming and Extreme Weather Investment Risks (Palgrave Macmillan, 2020).

Who should pay the huge costs of climate change’s damage? There’s a case for corporate climate polluters to contribute.

LONDON, 25 February, 2021 − The world’s big oil and mining companies emit vast amounts of climate-changing greenhouse gases into the atmosphere.

By extension, the actions of these corporate giants stand accused of contributing to floods and droughts and other climate-related disasters around the globe, extremely costly in both human and financial terms.

Our suggestion, which we describe as “a hypothetical climate liability regime”, is for the companies to become at least partially liable to pay for their destructive, climate-changing activities.

Investors should also be made aware of the risks involved in putting money into such enterprises. Only then will a realistic market valuation of these companies be calculated.

We examined nine top-emitting publicly-owned companies – all fossil fuel giants: Chevron, ExxonMobil, BP, Royal Dutch Shell, ConocoPhillips and Total are all primarily involved in oil.

Whilst Peabody Energy is one of the world’s biggest coal conglomerates, BHP Billiton is a mining behemoth and CNX Resources is a large gas company.

Cumulative emissions

In mid-2018 these nine companies had a combined market capitalisation  of US$1,358bn on the world’s stock markets. In total we estimate that the cumulative emissions of the companies concerned over an extended period of time have added up to 14.5% of total global emissions.

Analysing the occurrence of floods and droughts around the globe over a recent five-year period, it was calculated the costs totaled US$265bn.

If a liability regime was introduced, the nine companies above would stand to pay up to a 14.5% share of those costs – amounting to US$38.4bn, a figure representing 2.8% of their combined market worth.

Floods and droughts occurred before global warming, so only the additional intensity or frequency of flood and drought damages from company emissions matter – an active area of research.

How much should fossil fuel users pay as a share of responsibility? We explore this too. Not all is down to the users, but neither is all of it the responsibility of the producers. Even after allowing for both, we still suggest that 2.0% of their combined market worth might be a “fair” share.

Further impacts

If other impacts of global warming, such as hurricanes and sea-level rise, were taken into account, these companies would have to contribute much larger sums to pay for the damage caused.

Our calculations are based only on historical emissions: we do not take into account the damage, both in human and financial terms, likely to be caused by the activities of the companies concerned as global warming intensifies.

More than 50 years ago it became clear that emissions of CO2 and other greenhouse gases were damaging the climate.

The leading carbon producers could see their activities were harmful and that they had a responsibility to reduce the damage caused by capturing emissions or developing safe substitutes, such as carbon-free energy.

Instead, fossil fuel firms ignored their responsibilities, and promoted climate denial.

Public pressure grows

If these and other companies became liable for the damage caused by their emissions, investors could well think again before putting their money into such enterprises.

The City of New York is taking steps to remove fossil fuel companies from its US$189bn pension fund portfolio. Other investment funds – both big and small – are following the New York pension fund lead in the face of mounting public pressure aimed at supporting more sustainable enterprises.

Investors are also becoming increasingly aware of the growing financial risks of investing in companies founded on the exploitation of fossil fuels.

The value of these conglomerates could rapidly decline if they became liable for their past emissions: new regulations aimed at tackling the climate crisis could result in corporate fossil fuel reserves being left in the ground as so-called stranded assets. − Climate News Network

* * * * * * *

Dr Quintin Rayer, the lead author of this article, founded P1 Investment Management’s ethical and sustainable investment proposition in January 2017. He is a Fellow of the Institute of Physics, and a Chartered Fellow of the CISI, the Chartered Institute for Securities & Investment.

Dr Karsten Haustein, PhD (Barcelona), one of his co-authors, is a Research Associate, Climate Systems and Policy, at the School of Geography and the Environment, University of Oxford.

Dr Pete Walton, also a co-author, is a Knowledge Exchange Research Fellow at UKCIP, University of Oxford, where he works with a range of stakeholders in the UK and abroad in understanding how to build resilience to climate change.

The project of which this article is a summary is due to be published as a chapter in Water Risk and Its Impact on the Financial Markets and Our Society: New Developments in Risk Assessment and Management, forthcoming from Palgrave Macmillan. Current title: Global Warming: Flood and Drought Investment Risks

Dr Rayer and Dr Haustein contributed to Global Warming and Extreme Weather Investment Risks (Palgrave Macmillan, 2020).

Carbon-free future is in reach for the US by 2050

America could have a carbon-free future by 2050 with a big switch to wind and solar power, say US government scientists.

LONDON, 11 February, 2021 − The US − per head of population perhaps the world’s most prodigal emitter of greenhouse gases − can reverse that and have a carbon-free future within three decades, at a cost of no more than $1 per person per day.

That would mean renewable energy to power all 50 states: giant wind power farms, solar power stations, electric cars, heat pumps and a range of other technological solutions.

The argument has been made before: made repeatedly; and contested too. But this time the reasoning comes not from individual scientists in a handful of US universities, but from an American government research base: the Department of Energy’s Lawrence Berkeley National Laboratory, with help from the University of San Francisco.

To make the switch more politically feasible, the authors argue, existing power plant could be allowed to live out its economic life; nobody need be asked to scrap a brand new gasoline-driven car for an electric vehicle.

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries”

Their study − in the journal AGU Advances − looked at a range of ways to get to net zero carbon emissions, at costs as low as 0.2% of gross domestic product (GDP, the economist’s favourite measure of national wealth), or as high as 1.2%, with about 90% of power generated by wind or solar energy.

“The decarbonisation of the US energy system is fundamentally an infrastructure transformation,” said Margaret Torn, of the Berkeley Lab, one of the authors.

“It means that by 2050 we need to build many gigawatts of wind and solar plants, new transmission lines, a fleet of electric cars and light trucks, millions of heat pumps to replace conventional furnaces and water heaters, and more energy-efficient buildings, while continuing to research and innovate new technologies.”

The economic costs would be almost exclusively capital costs necessitated by the new infrastructure. That is both bad and good.

Jobs aplenty

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries.

“There’s no question that there will need to be a well thought-out economic transition strategy for fossil fuel-based industries and communities, but there’s also no question that there are a lot of jobs in building a low carbon economy.”

The study also suggests the US could even become a source of what the scientists call “net negative” emissions by mid-century, taking more carbon dioxide out of the atmosphere than is added.

This would mean systematic carbon capture, investment in biofuels, and a lot more electric power; which in turn would cost inland and interstate transmission lines. But, the authors argue, this would be affordable to society just on energy grounds alone. − Climate News Network

America could have a carbon-free future by 2050 with a big switch to wind and solar power, say US government scientists.

LONDON, 11 February, 2021 − The US − per head of population perhaps the world’s most prodigal emitter of greenhouse gases − can reverse that and have a carbon-free future within three decades, at a cost of no more than $1 per person per day.

That would mean renewable energy to power all 50 states: giant wind power farms, solar power stations, electric cars, heat pumps and a range of other technological solutions.

The argument has been made before: made repeatedly; and contested too. But this time the reasoning comes not from individual scientists in a handful of US universities, but from an American government research base: the Department of Energy’s Lawrence Berkeley National Laboratory, with help from the University of San Francisco.

To make the switch more politically feasible, the authors argue, existing power plant could be allowed to live out its economic life; nobody need be asked to scrap a brand new gasoline-driven car for an electric vehicle.

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries”

Their study − in the journal AGU Advances − looked at a range of ways to get to net zero carbon emissions, at costs as low as 0.2% of gross domestic product (GDP, the economist’s favourite measure of national wealth), or as high as 1.2%, with about 90% of power generated by wind or solar energy.

“The decarbonisation of the US energy system is fundamentally an infrastructure transformation,” said Margaret Torn, of the Berkeley Lab, one of the authors.

“It means that by 2050 we need to build many gigawatts of wind and solar plants, new transmission lines, a fleet of electric cars and light trucks, millions of heat pumps to replace conventional furnaces and water heaters, and more energy-efficient buildings, while continuing to research and innovate new technologies.”

The economic costs would be almost exclusively capital costs necessitated by the new infrastructure. That is both bad and good.

Jobs aplenty

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries.

“There’s no question that there will need to be a well thought-out economic transition strategy for fossil fuel-based industries and communities, but there’s also no question that there are a lot of jobs in building a low carbon economy.”

The study also suggests the US could even become a source of what the scientists call “net negative” emissions by mid-century, taking more carbon dioxide out of the atmosphere than is added.

This would mean systematic carbon capture, investment in biofuels, and a lot more electric power; which in turn would cost inland and interstate transmission lines. But, the authors argue, this would be affordable to society just on energy grounds alone. − Climate News Network

Recovering atmospheric carbon can make new fuel

Taking atmospheric carbon dioxide from the air to make fuel could tackle two threats: greenhouse gases and oil shortage.

LONDON, 4 February, 2021 − British scientists have worked out a way of recovering atmospheric carbon, meaning they can conjure aviation jet fuel from thin air, using an inexpensive catalyst to turn carbon dioxide into a range of hydrocarbons so far produced from crude oil.

More than 6,000 miles to the east, chemists have produced an aerogel, one kilogramme of which is capable of producing − again just from the ambient air − 17 litres of fresh water in a day.

Both these solutions to a growing demand for fuel and water are only at the demonstration stage. Commercial production is a long way off.

Both are yet more evidence of the enormous ingenuity and invention at work in the world’s laboratories and universities as they address the energy dilemma: how to power human society without generating the greenhouse gases that could also − through climate change driven by global heating − ultimately destroy it.

“[This is] a vision for the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector”

For years researchers have addressed one power paradox: that the world is driven by fossil fuels which in combustion emit the greenhouse gas carbon dioxide. But fossil fuels are already fashioned − over millions of years − from organic material composed ultimately of carbon dioxide.

That is: all hydrocarbons must have once just been the greenhouse gas. So there might just be a clever way to shorten the process, and turn atmospheric carbon directly into butane or ethylene or kerosene.

Researchers from Oxford University report in the journal Nature Communications that with help from an organic compound − they used citric acid − they have fashioned a catalyst from iron, manganese and potassium that could directly convert atmospheric carbon dioxide into hydrocarbons very like jet fuel, with a bonus of ethylene and other products important to the petrochemical industry as well.

The researchers call their work “a significant advance” and a vision for “the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector.”

Renewable water supply

The air we breathe is not just oxygen, nitrogen, argon and carbon dioxide: it also contains colossal amounts of water vapour, enough to fill 500 thousand billion Olympic-sized swimming pools.

Researchers at the National University of Singapore report in the journal Science Advances that they have fashioned an aerogel − think of a jelly made from air rather than water − that of itself collects water molecules from the air, condenses them into a liquid and releases the water: 95% of the vapour that goes in is released as water.

It needs no power source, the water meets World Health Organisation standards for drinking water, and in laboratory tests one aerogel sample went on for months.

Since vapour is constantly renewed by sun-driven evaporation, once again, the water supply becomes renewable. The next step is to find an industrial partner and a market where clean water is scarce. − Climate News Network

Taking atmospheric carbon dioxide from the air to make fuel could tackle two threats: greenhouse gases and oil shortage.

LONDON, 4 February, 2021 − British scientists have worked out a way of recovering atmospheric carbon, meaning they can conjure aviation jet fuel from thin air, using an inexpensive catalyst to turn carbon dioxide into a range of hydrocarbons so far produced from crude oil.

More than 6,000 miles to the east, chemists have produced an aerogel, one kilogramme of which is capable of producing − again just from the ambient air − 17 litres of fresh water in a day.

Both these solutions to a growing demand for fuel and water are only at the demonstration stage. Commercial production is a long way off.

Both are yet more evidence of the enormous ingenuity and invention at work in the world’s laboratories and universities as they address the energy dilemma: how to power human society without generating the greenhouse gases that could also − through climate change driven by global heating − ultimately destroy it.

“[This is] a vision for the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector”

For years researchers have addressed one power paradox: that the world is driven by fossil fuels which in combustion emit the greenhouse gas carbon dioxide. But fossil fuels are already fashioned − over millions of years − from organic material composed ultimately of carbon dioxide.

That is: all hydrocarbons must have once just been the greenhouse gas. So there might just be a clever way to shorten the process, and turn atmospheric carbon directly into butane or ethylene or kerosene.

Researchers from Oxford University report in the journal Nature Communications that with help from an organic compound − they used citric acid − they have fashioned a catalyst from iron, manganese and potassium that could directly convert atmospheric carbon dioxide into hydrocarbons very like jet fuel, with a bonus of ethylene and other products important to the petrochemical industry as well.

The researchers call their work “a significant advance” and a vision for “the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector.”

Renewable water supply

The air we breathe is not just oxygen, nitrogen, argon and carbon dioxide: it also contains colossal amounts of water vapour, enough to fill 500 thousand billion Olympic-sized swimming pools.

Researchers at the National University of Singapore report in the journal Science Advances that they have fashioned an aerogel − think of a jelly made from air rather than water − that of itself collects water molecules from the air, condenses them into a liquid and releases the water: 95% of the vapour that goes in is released as water.

It needs no power source, the water meets World Health Organisation standards for drinking water, and in laboratory tests one aerogel sample went on for months.

Since vapour is constantly renewed by sun-driven evaporation, once again, the water supply becomes renewable. The next step is to find an industrial partner and a market where clean water is scarce. − Climate News Network

Overheated Earth can slow plants’ carbon storage

For vast tracts of forest and savannah, the heat could rise too far for plants’ carbon storage abilities to go on working.

LONDON, 15 January, 2020 − Climate change could be about to slowly shut down the planet’s most vital life-support ability: the functioning of plants’ carbon storage system, which protects the Earth by absorbing the greenhouse gas before it can enter the atmosphere.

Green things driven by photosynthesis right now soak up around one-third of all the greenhouse gas emitted from vehicle exhausts and power station chimneys. But in the next two or three decades, their capacity to do this could be halved, because rapidly rising atmospheric temperatures will set a limit.

At that limiting point, the ability of forests, grasslands and even crops to capture and hold atmospheric carbon, the nourishment for all life on Earth, will start to diminish.

For one important group of plants − these include rice, soy, pulses, grasses, oaks, pines and so on − photosynthesis happens at a peak rate at 18°C. At higher temperatures, the process becomes less efficient and the plant begins to respire: that is, gulp oxygen and breathe out carbon dioxide.

For a second, smaller group − one that includes maize and sugar cane and just one group of trees − that temperature tipping point is 28°C. And researchers report in the journal Science Advances that, by 2050, temperatures will have risen in ways that will limit the efficiency of photosynthesis by around 45%.

“The temperature tipping point of the terrestrial biosphere lies not at the end of the century or beyond, but within the next 20 to 30 years”

The finding is based not just on computer simulation and theoretical models, but on direct observation. Researchers used directly measured data of sunlight, water and carbon dioxide action from 1991 to 2015 at a network of scientific instruments placed in every major ecosystem around the globe to identify these temperature tipping points.

And they warn that the mean or average temperature for the warmest three months of the year had already passed the thermal maximum for photosynthesis “some time in the last decade.”

Right now, only about a tenth of the forests and grasslands are exposed to temperatures beyond such thresholds, and then only for a short period. But greenhouse gas emissions continue to rise and global temperatures continue to soar. In time, half the planet could start to experience such temperatures.

The scientists warn that if humans go on clearing natural forests and burning fossil fuels at the present rates − climate scientists call this the “business-as-usual scenario” − then the capacity of the vegetable world to absorb atmospheric carbon could be almost halved as early as 2040.

Researchers have repeatedly warned that climate change in one way or another was likely to compromise the capacity of some natural ecosystems to go on doing what they have done for the last 10,000 years. But this study is one of the first to consider the green world as a whole.

Capacity halved

“The Earth has a steadily growing fever and, much like the human body, we know every biological process has a range of temperatures at which it performs optimally, and ones above which function deteriorates,” said Katharyn Duffy, of Northern Arizona University, who led the study. “So, we wanted to ask, how much can plants withstand?”

The US scientists and colleagues from New Zealand give their answer to the conundrum of plants’ carbon storage with a clarity and simplicity rare in scientific papers. “The temperature tipping point of the terrestrial biosphere lies not at the end of the century or beyond, but within the next 20 to 30 years,” they warn.

“Without mitigating warming, we will cross the temperature threshold of the most productive biomes by mid-century, after which the land sink will degrade.”

And if the plant world does not adapt, the capacity of the land to absorb surplus atmospheric carbon will drop to around 50% of its present range. And, the scientists warn, the process may not be a smooth, barely-perceptible decline: disturbance in a lot of landscapes could be rapid and precipitous.

They conclude: “Failure to implement agreements that meet or exceed limits in the Paris Accord could quantitatively alter the large and persistent terrestrial carbon sink, on which we currently depend to mitigate anthropogenic emissions of CO2 and therefore global environmental change.” − Climate News Network

For vast tracts of forest and savannah, the heat could rise too far for plants’ carbon storage abilities to go on working.

LONDON, 15 January, 2020 − Climate change could be about to slowly shut down the planet’s most vital life-support ability: the functioning of plants’ carbon storage system, which protects the Earth by absorbing the greenhouse gas before it can enter the atmosphere.

Green things driven by photosynthesis right now soak up around one-third of all the greenhouse gas emitted from vehicle exhausts and power station chimneys. But in the next two or three decades, their capacity to do this could be halved, because rapidly rising atmospheric temperatures will set a limit.

At that limiting point, the ability of forests, grasslands and even crops to capture and hold atmospheric carbon, the nourishment for all life on Earth, will start to diminish.

For one important group of plants − these include rice, soy, pulses, grasses, oaks, pines and so on − photosynthesis happens at a peak rate at 18°C. At higher temperatures, the process becomes less efficient and the plant begins to respire: that is, gulp oxygen and breathe out carbon dioxide.

For a second, smaller group − one that includes maize and sugar cane and just one group of trees − that temperature tipping point is 28°C. And researchers report in the journal Science Advances that, by 2050, temperatures will have risen in ways that will limit the efficiency of photosynthesis by around 45%.

“The temperature tipping point of the terrestrial biosphere lies not at the end of the century or beyond, but within the next 20 to 30 years”

The finding is based not just on computer simulation and theoretical models, but on direct observation. Researchers used directly measured data of sunlight, water and carbon dioxide action from 1991 to 2015 at a network of scientific instruments placed in every major ecosystem around the globe to identify these temperature tipping points.

And they warn that the mean or average temperature for the warmest three months of the year had already passed the thermal maximum for photosynthesis “some time in the last decade.”

Right now, only about a tenth of the forests and grasslands are exposed to temperatures beyond such thresholds, and then only for a short period. But greenhouse gas emissions continue to rise and global temperatures continue to soar. In time, half the planet could start to experience such temperatures.

The scientists warn that if humans go on clearing natural forests and burning fossil fuels at the present rates − climate scientists call this the “business-as-usual scenario” − then the capacity of the vegetable world to absorb atmospheric carbon could be almost halved as early as 2040.

Researchers have repeatedly warned that climate change in one way or another was likely to compromise the capacity of some natural ecosystems to go on doing what they have done for the last 10,000 years. But this study is one of the first to consider the green world as a whole.

Capacity halved

“The Earth has a steadily growing fever and, much like the human body, we know every biological process has a range of temperatures at which it performs optimally, and ones above which function deteriorates,” said Katharyn Duffy, of Northern Arizona University, who led the study. “So, we wanted to ask, how much can plants withstand?”

The US scientists and colleagues from New Zealand give their answer to the conundrum of plants’ carbon storage with a clarity and simplicity rare in scientific papers. “The temperature tipping point of the terrestrial biosphere lies not at the end of the century or beyond, but within the next 20 to 30 years,” they warn.

“Without mitigating warming, we will cross the temperature threshold of the most productive biomes by mid-century, after which the land sink will degrade.”

And if the plant world does not adapt, the capacity of the land to absorb surplus atmospheric carbon will drop to around 50% of its present range. And, the scientists warn, the process may not be a smooth, barely-perceptible decline: disturbance in a lot of landscapes could be rapid and precipitous.

They conclude: “Failure to implement agreements that meet or exceed limits in the Paris Accord could quantitatively alter the large and persistent terrestrial carbon sink, on which we currently depend to mitigate anthropogenic emissions of CO2 and therefore global environmental change.” − Climate News Network

Carbon capture and storage won’t work, critics say

Carbon capture and storage, trapping carbon before it enters the atmosphere, sounds neat. But many doubt it can ever work.

LONDON, 14 January, 2021 − One of the key technologies that governments hope will help save the planet from dangerous heating, carbon capture and storage, will not work as planned and is a dangerous distraction, a new report says.

Instead of financing a technology they can neither develop in time nor make to work as claimed, governments should concentrate on scaling up proven technologies like renewable energies and energy efficiency, it says.

The report, from Friends of the Earth Scotland and Global Witness, was commissioned by the two groups from researchers at the UK’s Tyndall Centre for Climate Change Research.

CCS, as the technology is known, is designed to strip out carbon dioxide from the exhaust gases of industrial processes. These include gas- and coal-fired electricity generating plants, steel-making, and industries including the conversion of natural gas to hydrogen, so that the gas can then be re-classified as a clean fuel.

The CO2 that is removed is converted into a liquid and pumped underground into geological formations that can be sealed for generations to prevent the carbon escaping back into the atmosphere.

Attempts abandoned

It is a complex and expensive process, and many of the schemes proposed in the 1990s have been abandoned as too expensive or too technically difficult.

An overview of the report says: “The technology still faces many barriers, would only start to deliver too late, would have to be deployed on a massive scale at a scarcely credible rate and has a history of over-promising and under-delivering.”

Currently there are only 26 CCS plants operating globally, capturing about 0.1% of the annual global emissions from fossil fuels.

Ironically, 81% of the carbon captured to date has been used to extract more oil from existing wells by pumping the captured carbon into the ground to force more oil out. This means that captured carbon is being used to extract oil that would otherwise have had to be left in the ground.

“The technology would only start to deliver too late, would have to be deployed on a massive scale and has a history of over-promising and under-delivering”

The report also makes clear that the technology has not lived up to expectations. Instead of capturing up to 95% of the carbon from any industrial process, rates have been as low as 65% when they begin and have only gradually improved.

Despite these drawbacks and a number of failed CCS developments in the UK, the British government has just ploughed another £1 billion (US$1.36bn) into more research and development of the technology, and to provide infrastructure. The report says this reliance by government on CCS means it is unlikely to reach its target of zero emissions by 2050.

The report says that CCS features prominently in many energy and climate change scenarios, and in strategies for meeting climate change mitigation targets. These include the approaches backed by the Intergovernmental Panel on Climate Change, the European Commission, the International Energy Agency and the UK Committee on Climate Change.

But it is apparent that the current trend of CCS deployment worldwide has yet to reach the pace of development necessary for these scenarios to be realised.

If CCS is to have a meaningful role in mitigation, deployment would need to accelerate markedly, the report says.

Policy change needed

Friends of the Earth and Global Witness say that because of the clear failure of the technology to live up to expectations there should be a change of emphasis by governments. Policy should be directed towards renewables, particularly solar, onshore and offshore wind, because they have by contrast exceeded all targets in both cost and deployment and provide real hope of solving the carbon dioxide problem.

These now proven renewable technologies, plus battery and other storage ideas and a much-needed energy efficiency drive, will deliver carbon reductions far more quickly and cheaply, the writers say.

The two organisations add: “It is the cumulative emissions from each year between now and 2030 that will determine whether we are to achieve the Paris 1.5°C goal. With carbon budgets increasingly constrained, the report shows that we cannot expect carbon capture and storage to make a meaningful contribution to 2030 climate targets.

“In this context, fossil fuel CCS is a distraction from the growth of renewable energy, storage and energy efficiency that will be critical to rapidly reducing emissions over the next decade.” − Climate News Network

Carbon capture and storage, trapping carbon before it enters the atmosphere, sounds neat. But many doubt it can ever work.

LONDON, 14 January, 2021 − One of the key technologies that governments hope will help save the planet from dangerous heating, carbon capture and storage, will not work as planned and is a dangerous distraction, a new report says.

Instead of financing a technology they can neither develop in time nor make to work as claimed, governments should concentrate on scaling up proven technologies like renewable energies and energy efficiency, it says.

The report, from Friends of the Earth Scotland and Global Witness, was commissioned by the two groups from researchers at the UK’s Tyndall Centre for Climate Change Research.

CCS, as the technology is known, is designed to strip out carbon dioxide from the exhaust gases of industrial processes. These include gas- and coal-fired electricity generating plants, steel-making, and industries including the conversion of natural gas to hydrogen, so that the gas can then be re-classified as a clean fuel.

The CO2 that is removed is converted into a liquid and pumped underground into geological formations that can be sealed for generations to prevent the carbon escaping back into the atmosphere.

Attempts abandoned

It is a complex and expensive process, and many of the schemes proposed in the 1990s have been abandoned as too expensive or too technically difficult.

An overview of the report says: “The technology still faces many barriers, would only start to deliver too late, would have to be deployed on a massive scale at a scarcely credible rate and has a history of over-promising and under-delivering.”

Currently there are only 26 CCS plants operating globally, capturing about 0.1% of the annual global emissions from fossil fuels.

Ironically, 81% of the carbon captured to date has been used to extract more oil from existing wells by pumping the captured carbon into the ground to force more oil out. This means that captured carbon is being used to extract oil that would otherwise have had to be left in the ground.

“The technology would only start to deliver too late, would have to be deployed on a massive scale and has a history of over-promising and under-delivering”

The report also makes clear that the technology has not lived up to expectations. Instead of capturing up to 95% of the carbon from any industrial process, rates have been as low as 65% when they begin and have only gradually improved.

Despite these drawbacks and a number of failed CCS developments in the UK, the British government has just ploughed another £1 billion (US$1.36bn) into more research and development of the technology, and to provide infrastructure. The report says this reliance by government on CCS means it is unlikely to reach its target of zero emissions by 2050.

The report says that CCS features prominently in many energy and climate change scenarios, and in strategies for meeting climate change mitigation targets. These include the approaches backed by the Intergovernmental Panel on Climate Change, the European Commission, the International Energy Agency and the UK Committee on Climate Change.

But it is apparent that the current trend of CCS deployment worldwide has yet to reach the pace of development necessary for these scenarios to be realised.

If CCS is to have a meaningful role in mitigation, deployment would need to accelerate markedly, the report says.

Policy change needed

Friends of the Earth and Global Witness say that because of the clear failure of the technology to live up to expectations there should be a change of emphasis by governments. Policy should be directed towards renewables, particularly solar, onshore and offshore wind, because they have by contrast exceeded all targets in both cost and deployment and provide real hope of solving the carbon dioxide problem.

These now proven renewable technologies, plus battery and other storage ideas and a much-needed energy efficiency drive, will deliver carbon reductions far more quickly and cheaply, the writers say.

The two organisations add: “It is the cumulative emissions from each year between now and 2030 that will determine whether we are to achieve the Paris 1.5°C goal. With carbon budgets increasingly constrained, the report shows that we cannot expect carbon capture and storage to make a meaningful contribution to 2030 climate targets.

“In this context, fossil fuel CCS is a distraction from the growth of renewable energy, storage and energy efficiency that will be critical to rapidly reducing emissions over the next decade.” − Climate News Network

Earth is now committed to a 2°C hotter future

2020 matched all global heating records. In 2021 carbon releases will reach a milestone. Soon we face a 2°C hotter future.

LONDON, 12 January, 2021 − We Earthlings are now unmistakably on our way to the global climate we promised barely six years ago we’d never reach − a 2°C hotter future.

Some time this year, thanks to fossil fuel combustion and the destruction of natural ecosystems, the levels of carbon dioxide in the planetary atmosphere will be half as high again as the average for most of human history. That is, they will be more than half-way to doubling.

And the warming already driven by this extra charge of greenhouse gas has reached new heights: 2020, according to one calculation, shares with 2016 the grim accolade of the hottest year in history, at the end of the hottest decade since systematic records began.

A third study warns that yet more warming is now inevitable: the greenhouse gases already released must take average planetary temperatures from the present rise of more than 1°C to beyond 2°C − the limit that 195 nations vowed not to exceed when they met in Paris in 2015.

All three studies are simply progress reports on climate change itself. It is more than a century since scientists began to link carbon dioxide levels in the atmosphere with planetary temperatures, and more than 50 years since researchers began systematically monitoring atmospheric CO2 at an observatory in Hawaii, and since the first warnings that rising greenhouse gas levels could precipitate potentially catastrophic climate change.

“Our results suggest we have most likely already emitted enough carbon to exceed 2°C”

And this year, says the British Met Office, the ratio will creep up by more than 2 parts per million on last year. That will take the average to beyond 417 ppm for a number of weeks this northern hemisphere spring. And that will be 50% higher than the 278 ppm that was the norm at the close of the 18th century, when humans began to exploit coal, oil and gas as global sources of energy.

“The human-caused build-up of CO2 in the atmosphere is accelerating,” said Richard Betts, of the Met Office. “It took over 200 years for levels to increase by 25%, but now, just 30 years later, we are approaching a 50% increase.”

The last six years have all been in the hottest six years ever recorded, European scientists say in their calculations of the planetary pecking order of annual temperatures. It was 0.6°C warmer than the average for the years 1981-2010. And it is fully 1.25°C above the average for 1850 to 1900.

Europe in particular felt the heat: an average of 1.6° higher than the average for 1981 to 2010. And in the Arctic and in Siberia, temperatures were up to 6°C above the average for the same period.

“It is no surprise that the last decade was the warmest on record, and is yet another reminder of the urgency of ambitious emissions reductions to prevent adverse climate impacts in the future,” said Carlo Buontempo, who directs Europe’s Copernicus Climate Change Service.

Delay possible

Carbon dioxide is durable: it stays in the air, and each year’s emissions are added to those of the previous year. To keep the planet’s average temperature to a rise of no more than 1.5°C the ideal of the Paris Accord in 2015 − then nations must bring global emissions to zero within the next 30 years. In fact the limit of 2°C explicit in the Accord must now, and inevitably, be exceeded at some point: there is already enough greenhouse gas in the mix to guarantee that. The big question is: when.

Chinese and US researchers report in Nature Climate Change that they looked more closely at the pattern of changes in the planet’s surface temperatures, and the impact of low-level clouds that normally reflect heat back into space. And they see regions that have yet to warm, but must do so sooner or later to raise average global temperatures to levels so far not accounted for.

“The important thing to realise is that this has not happened − it is not in the historical record,” said Chen Zhou of Nanjing University, the lead author. “After accounting for this effect, the estimated future warming based on the historical record would be much higher than previous estimates.”

And his co-author Andrew Dessler, of Texas A&M University, said: “The bad news is that our results suggest we have most likely already emitted enough carbon to exceed 2C.”

But this could be delayed by urgent action. “If we can get emissions to net zero soon, it may take centuries to exceed 2°C.” − Climate News Network

2020 matched all global heating records. In 2021 carbon releases will reach a milestone. Soon we face a 2°C hotter future.

LONDON, 12 January, 2021 − We Earthlings are now unmistakably on our way to the global climate we promised barely six years ago we’d never reach − a 2°C hotter future.

Some time this year, thanks to fossil fuel combustion and the destruction of natural ecosystems, the levels of carbon dioxide in the planetary atmosphere will be half as high again as the average for most of human history. That is, they will be more than half-way to doubling.

And the warming already driven by this extra charge of greenhouse gas has reached new heights: 2020, according to one calculation, shares with 2016 the grim accolade of the hottest year in history, at the end of the hottest decade since systematic records began.

A third study warns that yet more warming is now inevitable: the greenhouse gases already released must take average planetary temperatures from the present rise of more than 1°C to beyond 2°C − the limit that 195 nations vowed not to exceed when they met in Paris in 2015.

All three studies are simply progress reports on climate change itself. It is more than a century since scientists began to link carbon dioxide levels in the atmosphere with planetary temperatures, and more than 50 years since researchers began systematically monitoring atmospheric CO2 at an observatory in Hawaii, and since the first warnings that rising greenhouse gas levels could precipitate potentially catastrophic climate change.

“Our results suggest we have most likely already emitted enough carbon to exceed 2°C”

And this year, says the British Met Office, the ratio will creep up by more than 2 parts per million on last year. That will take the average to beyond 417 ppm for a number of weeks this northern hemisphere spring. And that will be 50% higher than the 278 ppm that was the norm at the close of the 18th century, when humans began to exploit coal, oil and gas as global sources of energy.

“The human-caused build-up of CO2 in the atmosphere is accelerating,” said Richard Betts, of the Met Office. “It took over 200 years for levels to increase by 25%, but now, just 30 years later, we are approaching a 50% increase.”

The last six years have all been in the hottest six years ever recorded, European scientists say in their calculations of the planetary pecking order of annual temperatures. It was 0.6°C warmer than the average for the years 1981-2010. And it is fully 1.25°C above the average for 1850 to 1900.

Europe in particular felt the heat: an average of 1.6° higher than the average for 1981 to 2010. And in the Arctic and in Siberia, temperatures were up to 6°C above the average for the same period.

“It is no surprise that the last decade was the warmest on record, and is yet another reminder of the urgency of ambitious emissions reductions to prevent adverse climate impacts in the future,” said Carlo Buontempo, who directs Europe’s Copernicus Climate Change Service.

Delay possible

Carbon dioxide is durable: it stays in the air, and each year’s emissions are added to those of the previous year. To keep the planet’s average temperature to a rise of no more than 1.5°C the ideal of the Paris Accord in 2015 − then nations must bring global emissions to zero within the next 30 years. In fact the limit of 2°C explicit in the Accord must now, and inevitably, be exceeded at some point: there is already enough greenhouse gas in the mix to guarantee that. The big question is: when.

Chinese and US researchers report in Nature Climate Change that they looked more closely at the pattern of changes in the planet’s surface temperatures, and the impact of low-level clouds that normally reflect heat back into space. And they see regions that have yet to warm, but must do so sooner or later to raise average global temperatures to levels so far not accounted for.

“The important thing to realise is that this has not happened − it is not in the historical record,” said Chen Zhou of Nanjing University, the lead author. “After accounting for this effect, the estimated future warming based on the historical record would be much higher than previous estimates.”

And his co-author Andrew Dessler, of Texas A&M University, said: “The bad news is that our results suggest we have most likely already emitted enough carbon to exceed 2C.”

But this could be delayed by urgent action. “If we can get emissions to net zero soon, it may take centuries to exceed 2°C.” − Climate News Network