Tag Archives: China

China and Australia face a climate tipping point

Once again, scientists warn that at least part of the world could be facing a climate tipping point. Two parts, in fact.

LONDON, 8 December 2020 − The grasslands of northern China and Mongolia could be about to lurch into a climate tipping point, an irreversible sequence of heat and drought.

This is a landscape that helped shape world history. The Hun forces that humbled the western Roman Empire 16 centuries ago, and the conquering hordes led by Genghis Khan that commanded most of the Asian continent and threatened Europe eight centuries later, both emerged from tribes of nomad herdsmen from its grasslands. Now it could itself be about to be reconfigured by human-driven climate change.

And that same anthropogenic climate tipping point poses the same threat to great tracts of south-east Australia: water could become more scarce, bush fires could become more frequent, and winds could begin to blow away the parched soils in droughts that could last decades, or even centuries.

Both studies are based on evidence from the past, and both on the story told by preserved annual growth rings. The warning from inner East Asia is based on the testimony of tree stumps and timbers from the last 260 years, say researchers in the journal Science.

“They’re alarming findings, in a long list of alarming findings…if humans continue to warm the planet, this is the future we may all be looking at”

The patterns of tree growth suggest that the recent consecutive summers marked by both heat and drought are new events, and could increase in frequency.

The high plains of central Asia can be very cold in winter, very hot in summer. But soil moisture normally evaporates to cool the air at the surface. In a sustained drought, the air becomes hotter. In recent years, the region’s lakes have been shrinking in extent − and in number.

“The result is more heatwaves, which means more soil water losses, which means more heatwaves − and where this might end, we cannot say,” said Deliang Chen of the University of Gothenburg in Sweden, one of the research team.

He and his co-authors warn bluntly that the double impact of sustained heat and prolonged drought “is potentially irreversible beyond a tipping point in the East Asian climate system.”

Mega-drought link

The evidence from Australia is based on a much more distant past, and preserved in stalagmites deep in a cave in New South Wales. Researchers write in the journal Scientific Reports that during a warm interval in the last Ice Age, from 129,000 to 116,000 years ago, global temperatures rose to levels much as they are today, and perhaps slightly warmer.

And the record of lower falls of snow, higher temperatures and ever-scarcer water, preserved in the ancient annual growths of underground calcium carbonate, provided the scientists with a hint of what to expect in a world of global heating driven by ever-increasing use of fossil fuels, and ever-greater destruction of natural ecosystems.

“We found that, in the past, a similar amount of warming has been associated with mega-drought conditions all over south-eastern Australia. These drier conditions prevailed for centuries, sometimes for more than 1000 years,” said Hamish McGowan of the University of Queensland, who led the study.

“They’re alarming findings, in a long list of alarming findings that climate scientists have released over the last few decades. We hope that this new research allows for new insights to our future climate and the risks it may bring, such as drought and associated bushfires. But importantly, if humans continue to warm the planet, this is the future we may all be looking at.” − Climate News Network

Once again, scientists warn that at least part of the world could be facing a climate tipping point. Two parts, in fact.

LONDON, 8 December 2020 − The grasslands of northern China and Mongolia could be about to lurch into a climate tipping point, an irreversible sequence of heat and drought.

This is a landscape that helped shape world history. The Hun forces that humbled the western Roman Empire 16 centuries ago, and the conquering hordes led by Genghis Khan that commanded most of the Asian continent and threatened Europe eight centuries later, both emerged from tribes of nomad herdsmen from its grasslands. Now it could itself be about to be reconfigured by human-driven climate change.

And that same anthropogenic climate tipping point poses the same threat to great tracts of south-east Australia: water could become more scarce, bush fires could become more frequent, and winds could begin to blow away the parched soils in droughts that could last decades, or even centuries.

Both studies are based on evidence from the past, and both on the story told by preserved annual growth rings. The warning from inner East Asia is based on the testimony of tree stumps and timbers from the last 260 years, say researchers in the journal Science.

“They’re alarming findings, in a long list of alarming findings…if humans continue to warm the planet, this is the future we may all be looking at”

The patterns of tree growth suggest that the recent consecutive summers marked by both heat and drought are new events, and could increase in frequency.

The high plains of central Asia can be very cold in winter, very hot in summer. But soil moisture normally evaporates to cool the air at the surface. In a sustained drought, the air becomes hotter. In recent years, the region’s lakes have been shrinking in extent − and in number.

“The result is more heatwaves, which means more soil water losses, which means more heatwaves − and where this might end, we cannot say,” said Deliang Chen of the University of Gothenburg in Sweden, one of the research team.

He and his co-authors warn bluntly that the double impact of sustained heat and prolonged drought “is potentially irreversible beyond a tipping point in the East Asian climate system.”

Mega-drought link

The evidence from Australia is based on a much more distant past, and preserved in stalagmites deep in a cave in New South Wales. Researchers write in the journal Scientific Reports that during a warm interval in the last Ice Age, from 129,000 to 116,000 years ago, global temperatures rose to levels much as they are today, and perhaps slightly warmer.

And the record of lower falls of snow, higher temperatures and ever-scarcer water, preserved in the ancient annual growths of underground calcium carbonate, provided the scientists with a hint of what to expect in a world of global heating driven by ever-increasing use of fossil fuels, and ever-greater destruction of natural ecosystems.

“We found that, in the past, a similar amount of warming has been associated with mega-drought conditions all over south-eastern Australia. These drier conditions prevailed for centuries, sometimes for more than 1000 years,” said Hamish McGowan of the University of Queensland, who led the study.

“They’re alarming findings, in a long list of alarming findings that climate scientists have released over the last few decades. We hope that this new research allows for new insights to our future climate and the risks it may bring, such as drought and associated bushfires. But importantly, if humans continue to warm the planet, this is the future we may all be looking at.” − Climate News Network

Dubai heads backwards to its clean energy future

A clean energy future is what Dubai says it’s aiming for. So why has it built a huge new coal-burning power station?

LONDON, 3 November, 2020 − Dubai, surrounded by desert but with its skyscrapers, luxury hotels, beach resorts and kilometres of shopping malls, promotes itself as a city with a clean energy future.

Yet when it comes to meeting the challenges posed by climate change, the Gulf state is going smartly backwards.

Within the next few months, what will be the Gulf’s first coal-fired power plant will start operations in the desert south of Dubai city.

The 2,400 MW Hassyan coal plant, when fully operational in 2023, aims to supply up to 20% of Dubai’s electricity, a big step towards a clean energy future.

The state-controlled Dubai Electricity and Water Authority (DEWA) describes the project as a clean coal facility fitted with the latest technology, including facilities for carbon capture and storage – the aim being to bury harmful greenhouse gas emissions from the plant deep underground.

“Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. Carbon capture and storage is still a relatively untried way of coping with carbon emissions”

But a number of questions surround the plant’s operations. Under the Dubai clean energy strategy 2050, unveiled five years ago, the emirate aims to turn itself into what it calls a global clean energy centre by mid-century, with Dubai city having the smallest carbon footprint of any urban centre in the world.

As part of its clean energy future strategy, Dubai aims to produce 75% of its energy from what it calls clean sources by 2050.

Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. No matter what equipment and technology is installed at the Hassyan plant, substantial carbon emissions will be produced.

Carbon capture and storage is still a relatively untried and disputed way of coping with carbon emissions: many power firms have shied away from implementing projects due to their complexity and great expense.

Cheaper solar

Then there is the question of the cost of the Dubai coal project. The Hassyan plant has a price tag of US$3.4bn (£2.5bn). Under prices agreed four years ago, DEWA agreed to buy electricity from Hassyan for about 5 US cents (£0.04) per kilowatt hour (kWh).

Since then solar power has expanded considerably in the emirate – with prices dropping to less that 2 US cents per kWh.

At present the bulk of Dubai’s electricity is sourced from gas-powered plants. Part of the reasoning behind the Hassyan project was worries over dependence on imports of gas from Qatar – now at loggerheads with the Emirates and Saudi Arabia. Though it awaits development, one of the world’s biggest gas fields was recently discovered in Dubai and neighbouring Abu Dhabi.

While many global financial institutions have turned their backs on funding for coal plants, China continues to be one of the biggest sponsors of coal projects around the world. China’s banks, including the state-owned Bank of China, have given loans to the Hassyan plant.

Much of the construction work there will be carried out by Chinese companies, including the giant Harbin Electrical International group.

Gulf penguins

Per capita emissions of climate-changing CO2 gases in Dubai and its fellow United Arab Emirates (UAE) states are among the highest in the world.

In order to meet ever-growing power needs, the first nuclear plant in the Arab world began operations in the UAE emirate of Abu Dhabi in August this year. The Barakah nuclear plant came on stream three years behind schedule and millions of dollars over budget.

And despite the talk of reducing emissions and clean energy targets, Dubai is still one of the most energy-wasteful territories on the planet: its desalination plants, air-conditioned shopping malls, skyscraper office blocks and luxury hotels use enormous amounts of energy, making a clean energy future a very ambitious goal.

The desert city even has an enclosed snow and ski complex, complete with a 1.5km ski slope – and penguins. − Climate News Network

A clean energy future is what Dubai says it’s aiming for. So why has it built a huge new coal-burning power station?

LONDON, 3 November, 2020 − Dubai, surrounded by desert but with its skyscrapers, luxury hotels, beach resorts and kilometres of shopping malls, promotes itself as a city with a clean energy future.

Yet when it comes to meeting the challenges posed by climate change, the Gulf state is going smartly backwards.

Within the next few months, what will be the Gulf’s first coal-fired power plant will start operations in the desert south of Dubai city.

The 2,400 MW Hassyan coal plant, when fully operational in 2023, aims to supply up to 20% of Dubai’s electricity, a big step towards a clean energy future.

The state-controlled Dubai Electricity and Water Authority (DEWA) describes the project as a clean coal facility fitted with the latest technology, including facilities for carbon capture and storage – the aim being to bury harmful greenhouse gas emissions from the plant deep underground.

“Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. Carbon capture and storage is still a relatively untried way of coping with carbon emissions”

But a number of questions surround the plant’s operations. Under the Dubai clean energy strategy 2050, unveiled five years ago, the emirate aims to turn itself into what it calls a global clean energy centre by mid-century, with Dubai city having the smallest carbon footprint of any urban centre in the world.

As part of its clean energy future strategy, Dubai aims to produce 75% of its energy from what it calls clean sources by 2050.

Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. No matter what equipment and technology is installed at the Hassyan plant, substantial carbon emissions will be produced.

Carbon capture and storage is still a relatively untried and disputed way of coping with carbon emissions: many power firms have shied away from implementing projects due to their complexity and great expense.

Cheaper solar

Then there is the question of the cost of the Dubai coal project. The Hassyan plant has a price tag of US$3.4bn (£2.5bn). Under prices agreed four years ago, DEWA agreed to buy electricity from Hassyan for about 5 US cents (£0.04) per kilowatt hour (kWh).

Since then solar power has expanded considerably in the emirate – with prices dropping to less that 2 US cents per kWh.

At present the bulk of Dubai’s electricity is sourced from gas-powered plants. Part of the reasoning behind the Hassyan project was worries over dependence on imports of gas from Qatar – now at loggerheads with the Emirates and Saudi Arabia. Though it awaits development, one of the world’s biggest gas fields was recently discovered in Dubai and neighbouring Abu Dhabi.

While many global financial institutions have turned their backs on funding for coal plants, China continues to be one of the biggest sponsors of coal projects around the world. China’s banks, including the state-owned Bank of China, have given loans to the Hassyan plant.

Much of the construction work there will be carried out by Chinese companies, including the giant Harbin Electrical International group.

Gulf penguins

Per capita emissions of climate-changing CO2 gases in Dubai and its fellow United Arab Emirates (UAE) states are among the highest in the world.

In order to meet ever-growing power needs, the first nuclear plant in the Arab world began operations in the UAE emirate of Abu Dhabi in August this year. The Barakah nuclear plant came on stream three years behind schedule and millions of dollars over budget.

And despite the talk of reducing emissions and clean energy targets, Dubai is still one of the most energy-wasteful territories on the planet: its desalination plants, air-conditioned shopping malls, skyscraper office blocks and luxury hotels use enormous amounts of energy, making a clean energy future a very ambitious goal.

The desert city even has an enclosed snow and ski complex, complete with a 1.5km ski slope – and penguins. − Climate News Network

Western Europe cools on plans for nuclear power

As more reactors face closure, governments in Europe may prefer renewable energy to replace nuclear power.

LONDON, 25 November, 2020 – News that two more reactors in the United Kingdom are to shut down on safety grounds earlier than planned has capped a depressing month for nuclear power in Europe.

The news came after weeks of unfounded speculation, based on “leaks”, that the British government was about to take a stake in a giant new French-designed nuclear power station planned at Sizewell in Suffolk on the east coast of England as part of a “Green New Deal.” Taxpayers’ backing would have enabled the heavily-indebted French company EDF to finance the project.

In the event Boris Johnson, the prime minister, in his 10-point “green” plan  for the UK, boosted a far more speculative alternative scheme from a Rolls-Royce consortium which was helping to pay for research and development into a full-blown proposal to construct 16 small modular reactors (SMRs).

He failed to mention the Sizewell scheme at all, and instead of singing the praises of nuclear power extolled the virtues of offshore wind power, in which the UK is currently the world leader.

Johnson hopes that offshore wind will produce enough electricity to power every home in Britain, leaving little room for a nuclear industry. He has referred to the UK as “becoming the Saudi Arabia of wind power.”

Meanwhile across the English Channel in Belgium the Electrabel company – the Belgian subsidiary of French utility Engie – has cancelled any further planned investment in its seven-strong nuclear reactor fleet because of the government’s intention to phase out nuclear power by 2025.

“The cause of this damage [at Hunterston] is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive”

Plans will only be re-instated if a Belgian government review fails to find enough alternative electricity supply to replace the reactors’ output. The seven Belgian reactors currently produce half the country’s electricity supply.

These reversals come seven years after British governments promised a nuclear renaissance by encouraging French, Japanese, American and finally Chinese companies to build ten nuclear power stations in the UK. Only one station has been begun, a £22 billion (US$29 bn) joint venture between EDF and Chinese backers.

The French, with a 70% stake and the Chinese with 30%, began work on the twin reactors, to be known as Hinkley Point C, in Somerset in the West of England more than two years ago. The station was due to be completed in 2025, but is behind schedule and has cost overruns.

The two partners wanted to replicate these reactors at the planned Suffolk plant, Sizewell C, but EDF has not found the necessary capital to finance it, hoping that the London government would either take a stake or impose a nuclear tax on British consumers to help pay for it.

The idea was for Hinkley Point C and Sizewell C to replace the 14 smaller reactors that EDF owns in Britain, thus keeping the nuclear industry’s 20% share of the UK’s electricity production. Johnson appears to have dashed these hopes. At best Hinkley Point C will produce 7% of the nation’s needs.

Meanwhile there is a question mark over the future of EDF’s remaining reactor fleet in Britain. Two of the 14, also at the Sizewell site, are French-designed pressurised water reactors opened in 1991, and have plenty of life left in them, but the other 12 are all older British-designed advanced gas-cooled reactors (AGRs) that use graphite blocks to control nuclear reactions.

Premature closure

A serious safety flaw has emerged in this design, involving hundreds of cracks in the graphite, causing doubts over whether the reactors could be turned off quickly in an emergency.

After a long stand-off with the UK’s nuclear safety watchdog, the Office for Nuclear Regulation, EDF decided earlier this year to prematurely close two of the worst affected reactors – both in a station known as Hunterston B in Scotland. Now, for the same reason, two further reactors at Hinkley Point B in Somerset will also close. All four reactors will be defuelled in 2022.

Currently six of these 12 AGR reactors are turned off – out of service for maintenance or safety checks. Two of them, at Dungeness B on the south-east coast of England, have been undergoing repairs since 2018 – this time because of corrosion of vital pipework – although cracks in the graphite blocks are also a safety issue here too.

While EDF remains upbeat about its prospects in developing nuclear power and is keeping its remaining ageing AGR reactors going until they can be replaced, it is hard to see where the company will get the money to build a new generation of reactors or attract government subsidies to do so.

The UK’s decision to back the British company Rolls-Royce to develop SMRs means it is unlikely the government has the money or the political inclination to back the French as well.

Rolls-Royce has been badly hit by the Covid-19 pandemic because a large part of its business relies on the struggling aviation business, while it needs support because it makes mini-reactors to power British nuclear submarines. The proposed SMR research programme will allow nuclear-trained personnel to switch between military and civilian programmes.

Long out of office

The Rolls-Royce SMRs are a long shot from the commercial point of view, since they are unproven and likely to be wildly expensive compared with renewable energy. However, they have the political advantage of being British, and their development lies so far into the future that the current government will be out of office before anyone knows whether they actually work or are economic.

As far as the current crop of reactors is concerned, it is clear that at least those with graphite cores are nearing the end of their lives. Nuclear power has some way to go before it can expect a renaissance in the UK.

Paul Dorfman is a research fellow at University College London. He told the Climate News Network: “It is apparent that the graphite cores of Hunterston B, Hinkley B, and possibly all UK AGR reactors have developed and continue to develop significant structural damage to graphite bricks, including keyway cracks in the fuelled section of the reactor.

“It is also clear that the cause of this damage is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive.

“Given that weight loss in graphite blocks and subsequent graphite cracking occurs in all UK AGRs, what’s happening with Hunterston B has significant implications for the entire UK AGR fleet.

Dr Dorfman concluded: “Given the parlous finances of EDF, who are already struggling with their own reactor up-grade bills in France, it is entirely likely that UK nuclear generation will be reduced to  just Sizewell B, with electricity generation relying almost entirely on renewables by the time Hinkley C comes online, very late and over-cost as usual.” – Climate News Network

As more reactors face closure, governments in Europe may prefer renewable energy to replace nuclear power.

LONDON, 25 November, 2020 – News that two more reactors in the United Kingdom are to shut down on safety grounds earlier than planned has capped a depressing month for nuclear power in Europe.

The news came after weeks of unfounded speculation, based on “leaks”, that the British government was about to take a stake in a giant new French-designed nuclear power station planned at Sizewell in Suffolk on the east coast of England as part of a “Green New Deal.” Taxpayers’ backing would have enabled the heavily-indebted French company EDF to finance the project.

In the event Boris Johnson, the prime minister, in his 10-point “green” plan  for the UK, boosted a far more speculative alternative scheme from a Rolls-Royce consortium which was helping to pay for research and development into a full-blown proposal to construct 16 small modular reactors (SMRs).

He failed to mention the Sizewell scheme at all, and instead of singing the praises of nuclear power extolled the virtues of offshore wind power, in which the UK is currently the world leader.

Johnson hopes that offshore wind will produce enough electricity to power every home in Britain, leaving little room for a nuclear industry. He has referred to the UK as “becoming the Saudi Arabia of wind power.”

Meanwhile across the English Channel in Belgium the Electrabel company – the Belgian subsidiary of French utility Engie – has cancelled any further planned investment in its seven-strong nuclear reactor fleet because of the government’s intention to phase out nuclear power by 2025.

“The cause of this damage [at Hunterston] is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive”

Plans will only be re-instated if a Belgian government review fails to find enough alternative electricity supply to replace the reactors’ output. The seven Belgian reactors currently produce half the country’s electricity supply.

These reversals come seven years after British governments promised a nuclear renaissance by encouraging French, Japanese, American and finally Chinese companies to build ten nuclear power stations in the UK. Only one station has been begun, a £22 billion (US$29 bn) joint venture between EDF and Chinese backers.

The French, with a 70% stake and the Chinese with 30%, began work on the twin reactors, to be known as Hinkley Point C, in Somerset in the West of England more than two years ago. The station was due to be completed in 2025, but is behind schedule and has cost overruns.

The two partners wanted to replicate these reactors at the planned Suffolk plant, Sizewell C, but EDF has not found the necessary capital to finance it, hoping that the London government would either take a stake or impose a nuclear tax on British consumers to help pay for it.

The idea was for Hinkley Point C and Sizewell C to replace the 14 smaller reactors that EDF owns in Britain, thus keeping the nuclear industry’s 20% share of the UK’s electricity production. Johnson appears to have dashed these hopes. At best Hinkley Point C will produce 7% of the nation’s needs.

Meanwhile there is a question mark over the future of EDF’s remaining reactor fleet in Britain. Two of the 14, also at the Sizewell site, are French-designed pressurised water reactors opened in 1991, and have plenty of life left in them, but the other 12 are all older British-designed advanced gas-cooled reactors (AGRs) that use graphite blocks to control nuclear reactions.

Premature closure

A serious safety flaw has emerged in this design, involving hundreds of cracks in the graphite, causing doubts over whether the reactors could be turned off quickly in an emergency.

After a long stand-off with the UK’s nuclear safety watchdog, the Office for Nuclear Regulation, EDF decided earlier this year to prematurely close two of the worst affected reactors – both in a station known as Hunterston B in Scotland. Now, for the same reason, two further reactors at Hinkley Point B in Somerset will also close. All four reactors will be defuelled in 2022.

Currently six of these 12 AGR reactors are turned off – out of service for maintenance or safety checks. Two of them, at Dungeness B on the south-east coast of England, have been undergoing repairs since 2018 – this time because of corrosion of vital pipework – although cracks in the graphite blocks are also a safety issue here too.

While EDF remains upbeat about its prospects in developing nuclear power and is keeping its remaining ageing AGR reactors going until they can be replaced, it is hard to see where the company will get the money to build a new generation of reactors or attract government subsidies to do so.

The UK’s decision to back the British company Rolls-Royce to develop SMRs means it is unlikely the government has the money or the political inclination to back the French as well.

Rolls-Royce has been badly hit by the Covid-19 pandemic because a large part of its business relies on the struggling aviation business, while it needs support because it makes mini-reactors to power British nuclear submarines. The proposed SMR research programme will allow nuclear-trained personnel to switch between military and civilian programmes.

Long out of office

The Rolls-Royce SMRs are a long shot from the commercial point of view, since they are unproven and likely to be wildly expensive compared with renewable energy. However, they have the political advantage of being British, and their development lies so far into the future that the current government will be out of office before anyone knows whether they actually work or are economic.

As far as the current crop of reactors is concerned, it is clear that at least those with graphite cores are nearing the end of their lives. Nuclear power has some way to go before it can expect a renaissance in the UK.

Paul Dorfman is a research fellow at University College London. He told the Climate News Network: “It is apparent that the graphite cores of Hunterston B, Hinkley B, and possibly all UK AGR reactors have developed and continue to develop significant structural damage to graphite bricks, including keyway cracks in the fuelled section of the reactor.

“It is also clear that the cause of this damage is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive.

“Given that weight loss in graphite blocks and subsequent graphite cracking occurs in all UK AGRs, what’s happening with Hunterston B has significant implications for the entire UK AGR fleet.

Dr Dorfman concluded: “Given the parlous finances of EDF, who are already struggling with their own reactor up-grade bills in France, it is entirely likely that UK nuclear generation will be reduced to  just Sizewell B, with electricity generation relying almost entirely on renewables by the time Hinkley C comes online, very late and over-cost as usual.” – Climate News Network

Western US and Southeast Asia face rising dust risk

It obscures the skies and darkens the snows. Wind-borne dust risk is increasingly ominous in a warming world.

LONDON, 26 October, 2020 − Half a planet apart, one low-lying and the other on the roof of the world, two huge regions confront an increasing dust risk − a menace to jobs, to food and to lives.

The Great Plains of North America are getting dustier every year because more soil is now being exposed to erosion. And high in the Himalayas on the continent of Asia, the peaks too are becoming dustier, in ways that threaten to increase the melting of high-altitude snows.

Both findings are in essence bad news. In the western US, higher levels of wind erosion as a consequence of changing farm practices combined with ever-greater probabilities of drought mean ever-higher probabilities of a return of the Dust Bowl that devastated the US Midwest 90 years ago.

And 700 million people in Southeast Asia, China and India depend on the slow melting of the Himalayan glaciers to irrigate their crops in the hot dry season: earlier melting threatens not just livelihoods but lives.

Taken for farming

In the 1930s, the Great Plains region was hit by drought that extended from Canada to Mexico. By then, vast tracts of prairie had been converted from wild grassland to ploughed field.

“The result was massive dust storms we associate with the Dust Bowl. These dust storms removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur,” said Andrew Lambert of the University of Utah.

He and colleagues from Colorado report in the journal Geophysical Research Letters that they measured atmospheric dust levels by studying evidence from both space and from the ground, and collected data from 1988 to 2018.

They found that atmospheric dust over the Great Plains was increasing at 5% a year. That would mean a doubling in just two decades.

“The massive dust storms we associate with the Dust Bowl removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur”

They also found that levels of dust matched the planting and harvest months of soybean in the north, and corn in the southern states. How the land was farmed could be connected directly to the haze in the air.

Dust plays a powerful role in planetary management: researchers established years ago that the rich biodiversity of the Amazon rainforest was nourished and supplemented almost annually by deposits of fertile dust blown across the Atlantic from the African Sahara. And dust falling into the ocean on the journey also helped nourish marine life far below the surface of the Atlantic.

Now it seems that wind-blown dust from two continents also settles on the biggest and highest tracts of the Himalayas, to darken the snow, change its reflectivity and absorb the sun’s warmth.

Scientists from the US Pacific Northwest National Laboratory report in Nature Climate Change that they used detailed satellite imagery of the Himalayas to measure aerosols, elevation and snow surfaces to identify dust and other pollutants.

Constant release

They found that, at up to 4500 metres altitude, black carbon or soot played an important role in influencing the melt timetable of the high snows. Above that altitude, dust was the most important factor: dust from the Thar desert in India, from Saudi Arabia and even from the African Sahara.

Although this was part of a natural cycle, humankind may be accelerating the traffic and adding to the dust risk: ever-higher planetary temperatures have begun to affect atmospheric circulation. And as humans turn natural ecosystems into farmland, they release even more dust.

“The snow in the western Himalayas is receding rapidly. We need to understand why this is happening and we need to understand the implications,” said Chandan Sarangi, then at Pacific Northwest but now at the Madras Institute of Technology in Chennai, and one of the authors.

“We’ve shown that dust can be a big contributor to the accelerated snowmelt. Hundreds of millions of people in the region rely on snow for their drinking water − we need to consider factors like dust seriously to understand what’s happening.” − Climate News Network

It obscures the skies and darkens the snows. Wind-borne dust risk is increasingly ominous in a warming world.

LONDON, 26 October, 2020 − Half a planet apart, one low-lying and the other on the roof of the world, two huge regions confront an increasing dust risk − a menace to jobs, to food and to lives.

The Great Plains of North America are getting dustier every year because more soil is now being exposed to erosion. And high in the Himalayas on the continent of Asia, the peaks too are becoming dustier, in ways that threaten to increase the melting of high-altitude snows.

Both findings are in essence bad news. In the western US, higher levels of wind erosion as a consequence of changing farm practices combined with ever-greater probabilities of drought mean ever-higher probabilities of a return of the Dust Bowl that devastated the US Midwest 90 years ago.

And 700 million people in Southeast Asia, China and India depend on the slow melting of the Himalayan glaciers to irrigate their crops in the hot dry season: earlier melting threatens not just livelihoods but lives.

Taken for farming

In the 1930s, the Great Plains region was hit by drought that extended from Canada to Mexico. By then, vast tracts of prairie had been converted from wild grassland to ploughed field.

“The result was massive dust storms we associate with the Dust Bowl. These dust storms removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur,” said Andrew Lambert of the University of Utah.

He and colleagues from Colorado report in the journal Geophysical Research Letters that they measured atmospheric dust levels by studying evidence from both space and from the ground, and collected data from 1988 to 2018.

They found that atmospheric dust over the Great Plains was increasing at 5% a year. That would mean a doubling in just two decades.

“The massive dust storms we associate with the Dust Bowl removed nutrients from the soil, making it difficult for crops to grow and more likely for wind erosion to occur”

They also found that levels of dust matched the planting and harvest months of soybean in the north, and corn in the southern states. How the land was farmed could be connected directly to the haze in the air.

Dust plays a powerful role in planetary management: researchers established years ago that the rich biodiversity of the Amazon rainforest was nourished and supplemented almost annually by deposits of fertile dust blown across the Atlantic from the African Sahara. And dust falling into the ocean on the journey also helped nourish marine life far below the surface of the Atlantic.

Now it seems that wind-blown dust from two continents also settles on the biggest and highest tracts of the Himalayas, to darken the snow, change its reflectivity and absorb the sun’s warmth.

Scientists from the US Pacific Northwest National Laboratory report in Nature Climate Change that they used detailed satellite imagery of the Himalayas to measure aerosols, elevation and snow surfaces to identify dust and other pollutants.

Constant release

They found that, at up to 4500 metres altitude, black carbon or soot played an important role in influencing the melt timetable of the high snows. Above that altitude, dust was the most important factor: dust from the Thar desert in India, from Saudi Arabia and even from the African Sahara.

Although this was part of a natural cycle, humankind may be accelerating the traffic and adding to the dust risk: ever-higher planetary temperatures have begun to affect atmospheric circulation. And as humans turn natural ecosystems into farmland, they release even more dust.

“The snow in the western Himalayas is receding rapidly. We need to understand why this is happening and we need to understand the implications,” said Chandan Sarangi, then at Pacific Northwest but now at the Madras Institute of Technology in Chennai, and one of the authors.

“We’ve shown that dust can be a big contributor to the accelerated snowmelt. Hundreds of millions of people in the region rely on snow for their drinking water − we need to consider factors like dust seriously to understand what’s happening.” − Climate News Network

Poor air inflicts billions of premature deaths in Asia

Air pollution by tiny particles is among the world’s worst health risks. In South Asia, poor air is as bad as it gets.

NEW DELHI, 22 October, 2020 − Poor air costs lives, but finding out just how many of them will come as a shock to many residents of South Asia’s big cities.

In India’s capital, New Delhi, just going outside and breathing the air can shorten your life by more than nine years, according to a new report into the region’s air quality that measures the effects of pollution on life expectancy.

For millions of people across across north-west India, Pakistan and Bangladesh, it will be bad news − despite the Covid crisis − because of the current surge in air pollution in the region.

But none of the people of four countries, India, Pakistan, Bangladesh and Nepal, will be happy with the prediction that their lives will be shortened unless their governments take air pollution seriously.

New Delhi is the worst single example in the four, but few of their citizens − a quarter of the world’s population − will escape.

Bangladesh worst hit

Averaged across the whole population, the people of Bangladesh suffer most from air pollution in any country, with their average life span cut short by 6.2 years.

An air quality index (AQI) provides daily air quality assessments, but not the actual health risk. An air quality life index (AQLI) goes further: it converts particulate air pollution into perhaps the most important air pollution metric that exists: its impact on life expectancy.

The report is the work of the Energy Policy Institute at the University of Chicago (EPIC), which has recently updated its AQLI, based on research by its director Michael Greenstone that quantified the causal relationship between human exposure to air pollution and reduced life expectancy.

While the report makes grim reading for nations south of the Himalayas, it does offer some hope, saying that the people of China can see marked improvements since their government began clamping down on polluting industries in 2013.

The report uses two measures to calculate lower expectations of life expectancy: the more stringent World Heath Organisation guidelines (WHO) and the limits imposed by the governments concerned.

“The threat of coronavirus is grave and deserves every bit of the attention it is receiving [but] embracing the seriousness of air pollution with a similar vigour would allow billions of people around the world to lead longer and healthier lives”

It says air pollution shortens Indian average life expectancy by 5.2 years, relative to what it would be if the WHO guidelines were met, but by 2.3 years relative to the rate if pollution were reduced to meet the country’s own national standard.

Some areas of India fare much worse than the average, with air pollution shortening lives by 9.4 years in Delhi and 8.6 years in the northern state of Uttar Pradesh, the report’s India fact sheet 2020 says.

Similarly, the Pakistan sheet says the average Pakistani’s life expectancy has been shortened by 2.7 years, while air pollution cuts lives by more than 4 years in the most polluted areas.

Naming Bangladesh as the world’s most polluted country, EPIC’s report says air pollution shortens the average citizen’s life expectancy by 6.2 years, compared to what it would be if the WHO guidelines were met.

Again, some areas suffer far more, with lives cut by about 7 years in the most polluted district. In every one of the country’s 64 districts, particulate pollution levels are at least four times the WHO guidelines.

Possible underestimate

Surprisingly Nepal, which unlike its southern neighbours is not normally associated with air pollution, also had serious problems with its crowded and polluted cities. As a result, life expectancy there is cut by 4.7 years across the whole population.

“Though the threat of coronavirus is grave and deserves every bit of the attention it is receiving − perhaps more in some places − embracing the seriousness of air pollution with a similar vigour would allow billions of people around the world to lead longer and healthier lives,” says Professor Greenstone.

The science of air pollution, and the impact of poor air on the human body, is evolving rapidly, and some Asian scientists have expressed reservations about the accuracy of some of the calculations. However, none of them disputes the fact that millions are dying early because of the pollution.

The report concentrates on the effect of the smaller particulates that are known to do the most damage to lungs, and to enter the bloodstream, and it may in fact be underestimating the overall effects of poor air quality. − Climate News Network

* * * * * *

Nivedita Khandekar is an independent journalist based in New Delhi, covering development and the environment: nivedita_him@rediffmail.com and on twitter at @nivedita_Him

Air pollution by tiny particles is among the world’s worst health risks. In South Asia, poor air is as bad as it gets.

NEW DELHI, 22 October, 2020 − Poor air costs lives, but finding out just how many of them will come as a shock to many residents of South Asia’s big cities.

In India’s capital, New Delhi, just going outside and breathing the air can shorten your life by more than nine years, according to a new report into the region’s air quality that measures the effects of pollution on life expectancy.

For millions of people across across north-west India, Pakistan and Bangladesh, it will be bad news − despite the Covid crisis − because of the current surge in air pollution in the region.

But none of the people of four countries, India, Pakistan, Bangladesh and Nepal, will be happy with the prediction that their lives will be shortened unless their governments take air pollution seriously.

New Delhi is the worst single example in the four, but few of their citizens − a quarter of the world’s population − will escape.

Bangladesh worst hit

Averaged across the whole population, the people of Bangladesh suffer most from air pollution in any country, with their average life span cut short by 6.2 years.

An air quality index (AQI) provides daily air quality assessments, but not the actual health risk. An air quality life index (AQLI) goes further: it converts particulate air pollution into perhaps the most important air pollution metric that exists: its impact on life expectancy.

The report is the work of the Energy Policy Institute at the University of Chicago (EPIC), which has recently updated its AQLI, based on research by its director Michael Greenstone that quantified the causal relationship between human exposure to air pollution and reduced life expectancy.

While the report makes grim reading for nations south of the Himalayas, it does offer some hope, saying that the people of China can see marked improvements since their government began clamping down on polluting industries in 2013.

The report uses two measures to calculate lower expectations of life expectancy: the more stringent World Heath Organisation guidelines (WHO) and the limits imposed by the governments concerned.

“The threat of coronavirus is grave and deserves every bit of the attention it is receiving [but] embracing the seriousness of air pollution with a similar vigour would allow billions of people around the world to lead longer and healthier lives”

It says air pollution shortens Indian average life expectancy by 5.2 years, relative to what it would be if the WHO guidelines were met, but by 2.3 years relative to the rate if pollution were reduced to meet the country’s own national standard.

Some areas of India fare much worse than the average, with air pollution shortening lives by 9.4 years in Delhi and 8.6 years in the northern state of Uttar Pradesh, the report’s India fact sheet 2020 says.

Similarly, the Pakistan sheet says the average Pakistani’s life expectancy has been shortened by 2.7 years, while air pollution cuts lives by more than 4 years in the most polluted areas.

Naming Bangladesh as the world’s most polluted country, EPIC’s report says air pollution shortens the average citizen’s life expectancy by 6.2 years, compared to what it would be if the WHO guidelines were met.

Again, some areas suffer far more, with lives cut by about 7 years in the most polluted district. In every one of the country’s 64 districts, particulate pollution levels are at least four times the WHO guidelines.

Possible underestimate

Surprisingly Nepal, which unlike its southern neighbours is not normally associated with air pollution, also had serious problems with its crowded and polluted cities. As a result, life expectancy there is cut by 4.7 years across the whole population.

“Though the threat of coronavirus is grave and deserves every bit of the attention it is receiving − perhaps more in some places − embracing the seriousness of air pollution with a similar vigour would allow billions of people around the world to lead longer and healthier lives,” says Professor Greenstone.

The science of air pollution, and the impact of poor air on the human body, is evolving rapidly, and some Asian scientists have expressed reservations about the accuracy of some of the calculations. However, none of them disputes the fact that millions are dying early because of the pollution.

The report concentrates on the effect of the smaller particulates that are known to do the most damage to lungs, and to enter the bloodstream, and it may in fact be underestimating the overall effects of poor air quality. − Climate News Network

* * * * * *

Nivedita Khandekar is an independent journalist based in New Delhi, covering development and the environment: nivedita_him@rediffmail.com and on twitter at @nivedita_Him

China’s climate lead offers the planet new hope

Beijing’s plan to cut greenhouse gases could mean a global expansion of green industries following China’s climate lead.

LONDON, 19 October, 2020 – Whatever mixture of motives lies behind the announcement by President Xi Jinping that his country’s carbon dioxide emissions will peak before 2030, resulting in carbon neutrality before 2060, China’s climate lead offers the prospect of a new era in world affairs.

It alters the face of international negotiations to tackle the climate crisis and boosts hopes that catastrophic global heating can still be avoided.

It is not quite a month since the president took everyone by surprise by making the announcement at the United Nations. Cynics immediately began to question his motives.

Was he trying to corner the vast market in renewables, was he trying to upstage climate-denying and coal-loving President Trump, was he trying to divert attention from internal human rights issues and Hong Kong, or from accusations against China over the Covid crisis? Was he trying re-cast himself as a world leader on environmental matters?

Few seemed generous enough to accept that President Xi was making the announcement because he was genuinely concerned about the effects of climate change on China and the rest of the planet.

Either way, the President’s new targets were certainly a remarkable turnaround. Although there have been more positive statements recently, for more than a decade at successive climate talks China, along with the rest of the developing world, regarded climate change as the developed nations’ problem.

“China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025”

The old industrial countries of the EU, the US and Japan had caused global heating by burning fossil fuels, they argued, so it was up to them to solve the crisis. The immediate job for the developing world’s leaders was to raise their citizens’ living standards, and to worry about their domestic carbon emissions later.

But this was never the whole story. Chinese scientists had long pointed out to its leaders that the country’s future was as bleak as any other nation’s in the world if climate change was not controlled – and quickly.

The major rivers that feed Chinese agriculture will dry up as the glaciers on the Himalayas and the Tibetan plateau disappear; typhoons will regularly threaten the populous south; and the deserts of the north will grow.

And more recently fast-accelerating sea level rise has begun to threaten the economic powerhouse of Shanghai and much of the low-lying coast with inundation.

In addition, since the Beijing Olympics in 2008 it has been clear that air pollution from coal-burning and traffic fumes is a serious economic and health issue in China, while some drastic measures have succeeded in improving air quality.

On 12 October 18 Chinese think tanks combined to put some flesh on the bare bones of President Xi’s bold announcement. In a report published by the Institute of Climate Change and Sustainable Development at Tsinghua University, Beijing, they said immediate carbon cuts were required to keep temperature increases within 1.5°C by 2050.

Globally significant

Reuters news agency reported that a seminar held in Beijing to launch the Institute ’s report was attended by China’s top officials responsible for shaping the country’s energy policy.

One of the report’s contributors, He Jiankun, vice-director of the National Expert Committee on Climate Change, told the meeting: “China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025 and even realise negative growth.

“China is still expected to see the growth of natural gas consumption in 2026-2030, so the growth of carbon emissions from gas use should be offset by the reduction from the coal sector.”

The report also called for China to cut its carbon intensity – the amount of carbon dioxide emissions per GDP unit – by 65% by 2030 from 2015 levels, and to raise non-fossil fuel consumption to 25% by 2030.

This is way above anything that the Chinese government has committed to in the annual UN climate talks and would mean a drastic change in direction, since new coal power stations are still being constructed in large numbers to meet an ever-growing energy demand.

Whatever the motives behind these reduction targets, they matter hugely to the rest of the world. China is currently the world’s largest carbon emitter, with about 29% of the total. This is mainly due to massive coal burning for electricity and for major heavy industries like steel-making, which have moved there from Europe and the US. Switching away from coal would make an immediate difference.

Eye on exports

While critics, particularly climate deniers and right-wing think tanks in the US and Europe, constantly remind the world of Chinese coal-burning habits, they often neglect to mention that the country is a world leader in on-shore wind energy and solar power.

China is also aiming to soon have the largest off-shore wind market, overtaking the United Kingdom.

This might be the key to the President’s thinking. China has a massive domestic demand for renewables, but with wind and solar being the two fastest-growing industries in the world the export market is a great prize.

With President Trump firmly stuck in the fossil fuel age, China has an opportunity to become the lead provider of the technology that many countries in the world need to meet their climate targets.

Depending on who wins the US election on 3 November, President Xi may consolidate his renewables lead at leisure, or be in a race against the Democrat contender, Joe Biden, who has pledged to turn America from a climate laggard to a world leader.

If Biden does win he may find President Xi is already a lap ahead, and hard to overtake. – Climate News Network

Beijing’s plan to cut greenhouse gases could mean a global expansion of green industries following China’s climate lead.

LONDON, 19 October, 2020 – Whatever mixture of motives lies behind the announcement by President Xi Jinping that his country’s carbon dioxide emissions will peak before 2030, resulting in carbon neutrality before 2060, China’s climate lead offers the prospect of a new era in world affairs.

It alters the face of international negotiations to tackle the climate crisis and boosts hopes that catastrophic global heating can still be avoided.

It is not quite a month since the president took everyone by surprise by making the announcement at the United Nations. Cynics immediately began to question his motives.

Was he trying to corner the vast market in renewables, was he trying to upstage climate-denying and coal-loving President Trump, was he trying to divert attention from internal human rights issues and Hong Kong, or from accusations against China over the Covid crisis? Was he trying re-cast himself as a world leader on environmental matters?

Few seemed generous enough to accept that President Xi was making the announcement because he was genuinely concerned about the effects of climate change on China and the rest of the planet.

Either way, the President’s new targets were certainly a remarkable turnaround. Although there have been more positive statements recently, for more than a decade at successive climate talks China, along with the rest of the developing world, regarded climate change as the developed nations’ problem.

“China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025”

The old industrial countries of the EU, the US and Japan had caused global heating by burning fossil fuels, they argued, so it was up to them to solve the crisis. The immediate job for the developing world’s leaders was to raise their citizens’ living standards, and to worry about their domestic carbon emissions later.

But this was never the whole story. Chinese scientists had long pointed out to its leaders that the country’s future was as bleak as any other nation’s in the world if climate change was not controlled – and quickly.

The major rivers that feed Chinese agriculture will dry up as the glaciers on the Himalayas and the Tibetan plateau disappear; typhoons will regularly threaten the populous south; and the deserts of the north will grow.

And more recently fast-accelerating sea level rise has begun to threaten the economic powerhouse of Shanghai and much of the low-lying coast with inundation.

In addition, since the Beijing Olympics in 2008 it has been clear that air pollution from coal-burning and traffic fumes is a serious economic and health issue in China, while some drastic measures have succeeded in improving air quality.

On 12 October 18 Chinese think tanks combined to put some flesh on the bare bones of President Xi’s bold announcement. In a report published by the Institute of Climate Change and Sustainable Development at Tsinghua University, Beijing, they said immediate carbon cuts were required to keep temperature increases within 1.5°C by 2050.

Globally significant

Reuters news agency reported that a seminar held in Beijing to launch the Institute ’s report was attended by China’s top officials responsible for shaping the country’s energy policy.

One of the report’s contributors, He Jiankun, vice-director of the National Expert Committee on Climate Change, told the meeting: “China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025 and even realise negative growth.

“China is still expected to see the growth of natural gas consumption in 2026-2030, so the growth of carbon emissions from gas use should be offset by the reduction from the coal sector.”

The report also called for China to cut its carbon intensity – the amount of carbon dioxide emissions per GDP unit – by 65% by 2030 from 2015 levels, and to raise non-fossil fuel consumption to 25% by 2030.

This is way above anything that the Chinese government has committed to in the annual UN climate talks and would mean a drastic change in direction, since new coal power stations are still being constructed in large numbers to meet an ever-growing energy demand.

Whatever the motives behind these reduction targets, they matter hugely to the rest of the world. China is currently the world’s largest carbon emitter, with about 29% of the total. This is mainly due to massive coal burning for electricity and for major heavy industries like steel-making, which have moved there from Europe and the US. Switching away from coal would make an immediate difference.

Eye on exports

While critics, particularly climate deniers and right-wing think tanks in the US and Europe, constantly remind the world of Chinese coal-burning habits, they often neglect to mention that the country is a world leader in on-shore wind energy and solar power.

China is also aiming to soon have the largest off-shore wind market, overtaking the United Kingdom.

This might be the key to the President’s thinking. China has a massive domestic demand for renewables, but with wind and solar being the two fastest-growing industries in the world the export market is a great prize.

With President Trump firmly stuck in the fossil fuel age, China has an opportunity to become the lead provider of the technology that many countries in the world need to meet their climate targets.

Depending on who wins the US election on 3 November, President Xi may consolidate his renewables lead at leisure, or be in a race against the Democrat contender, Joe Biden, who has pledged to turn America from a climate laggard to a world leader.

If Biden does win he may find President Xi is already a lap ahead, and hard to overtake. – Climate News Network

Supply chains generate massive carbon emissions

When it comes to cutting carbon emissions, think global. Think multinational. Think Coca-Cola, or Total. But don’t fly.

LONDON, 25 September, 2020 – Chinese and European researchers have identified the source of almost one-fifth of all the world’s carbon emissions. They come from the supply chains of giant multinational companies.

Not only does global business export investment, it exports carbon dioxide emissions as well. And the big players play it really big.

The US business Walmart, the world’s biggest retailer, with 11,500 stores in 28 countries, in 2016 generated more emissions abroad than the whole of Germany’s foreign-owned retail sector.

That year Coca-Cola’s global emissions matched those from the entire foreign food-and-drink industry in China. Total SA’s foreign affiliates generated more than a tenth of the total emissions of France. Altogether, the multinational giants accounted for 18.7% of global emissions.

By contrast, and to provide perspective, the entire global aviation industry contributes just 3.5% of the forces that drive climate change – and that includes the impact of condensation trails and soot and sulphur exhausts as well as carbon dioxide emissions.

“If the world’s leading companies exercised leadership on climate change they could have a transformative effect on global efforts to reduce emissions”

In fact, in eight decades, the aviation industry’s total carbon dioxide discharges add up to only 1.5% of all humankind’s total carbon emissions up to 2018, according to British researchers.

These two very different studies illuminate the great challenge of climate change: it’s not enough for a country to claim it has reduced its carbon footprint, if its big achievement has been to export the burden of emissions to a labour force somewhere else.

And it’s not enough to measure just carbon dioxide. Tomorrow’s planners, investors, economists, designers and engineers must also think about the whole package of anthropogenic change that has begun to raise the planetary temperature to dangerous levels. And in each case the message is the same: think of it as a transnational challenge.

“Multinational companies have enormous influence stretching far beyond national borders,” said Dabo Guan of University College London. “If the world’s leading companies exercised leadership on climate change – for instance by requiring energy efficiency in their supply chains – they could have a transformative effect on global efforts to reduce emissions.”

Outsourced responsibility

Professor Guan and colleagues from Beijing and Norway report in the journal Nature Climate Change that they looked for a new way to measure the impact of big business.

They followed the money. They found that when investment flowed from developed to developing countries, those businesses were also outsourcing the responsibility for carbon emissions. So a fair way of accounting carbon responsibility would be to return it to the investor nation.

For example in 2011, US investment in India resulted in emissions of more than 43 million tonnes. By 2016, this figure had passed more than 70 million tonnes. In 2011, emissions from multinational investment stood at 22% of all emissions worldwide. By 2016 this figure had fallen to 18.7% – partly because of improvements in energy efficiency, and partly because of a fall in foreign investment.

Although carbon dioxide emissions have become a standard measure for potential climate change, they are only part of the story. The climate damage from a jet flight is more than just the greenhouse gas from burning high-octane fuel.

New analysis in the journal Atmospheric Environment confirms that aviation’s biggest contribution to global warming is the effects on clouds: cirrus condensation trails formed by the almost-explosive growth in air traffic reflect and trap heat escaping from the atmosphere on a massive scale.

International flights exempted

The discharge of water vapour, soot and sulphate particles from the engines is also part of what the researchers call “effective radiative forcing,” or ERF.

And when these aspects are factored in, it seems that aviation on a global scale adds up to 3.5% of all human activities that drive climate change. The Paris Agreement on climate change – a global resolve to contain global heating by 2100 to “well below” 2°C above the norm for most of human history – includes domestic aviation within national targets to reduce emissions.

But it does not address international aviation, which adds up to 64% of all air traffic.

“The new study means that aviation’s impact on climate change can be compared with other sectors such as maritime shipping, ground transportation and energy generation, as it has a consistent set of ERF measurements,” said David Lee, of Manchester Metropolitan University, who led the research. – Climate News Network

When it comes to cutting carbon emissions, think global. Think multinational. Think Coca-Cola, or Total. But don’t fly.

LONDON, 25 September, 2020 – Chinese and European researchers have identified the source of almost one-fifth of all the world’s carbon emissions. They come from the supply chains of giant multinational companies.

Not only does global business export investment, it exports carbon dioxide emissions as well. And the big players play it really big.

The US business Walmart, the world’s biggest retailer, with 11,500 stores in 28 countries, in 2016 generated more emissions abroad than the whole of Germany’s foreign-owned retail sector.

That year Coca-Cola’s global emissions matched those from the entire foreign food-and-drink industry in China. Total SA’s foreign affiliates generated more than a tenth of the total emissions of France. Altogether, the multinational giants accounted for 18.7% of global emissions.

By contrast, and to provide perspective, the entire global aviation industry contributes just 3.5% of the forces that drive climate change – and that includes the impact of condensation trails and soot and sulphur exhausts as well as carbon dioxide emissions.

“If the world’s leading companies exercised leadership on climate change they could have a transformative effect on global efforts to reduce emissions”

In fact, in eight decades, the aviation industry’s total carbon dioxide discharges add up to only 1.5% of all humankind’s total carbon emissions up to 2018, according to British researchers.

These two very different studies illuminate the great challenge of climate change: it’s not enough for a country to claim it has reduced its carbon footprint, if its big achievement has been to export the burden of emissions to a labour force somewhere else.

And it’s not enough to measure just carbon dioxide. Tomorrow’s planners, investors, economists, designers and engineers must also think about the whole package of anthropogenic change that has begun to raise the planetary temperature to dangerous levels. And in each case the message is the same: think of it as a transnational challenge.

“Multinational companies have enormous influence stretching far beyond national borders,” said Dabo Guan of University College London. “If the world’s leading companies exercised leadership on climate change – for instance by requiring energy efficiency in their supply chains – they could have a transformative effect on global efforts to reduce emissions.”

Outsourced responsibility

Professor Guan and colleagues from Beijing and Norway report in the journal Nature Climate Change that they looked for a new way to measure the impact of big business.

They followed the money. They found that when investment flowed from developed to developing countries, those businesses were also outsourcing the responsibility for carbon emissions. So a fair way of accounting carbon responsibility would be to return it to the investor nation.

For example in 2011, US investment in India resulted in emissions of more than 43 million tonnes. By 2016, this figure had passed more than 70 million tonnes. In 2011, emissions from multinational investment stood at 22% of all emissions worldwide. By 2016 this figure had fallen to 18.7% – partly because of improvements in energy efficiency, and partly because of a fall in foreign investment.

Although carbon dioxide emissions have become a standard measure for potential climate change, they are only part of the story. The climate damage from a jet flight is more than just the greenhouse gas from burning high-octane fuel.

New analysis in the journal Atmospheric Environment confirms that aviation’s biggest contribution to global warming is the effects on clouds: cirrus condensation trails formed by the almost-explosive growth in air traffic reflect and trap heat escaping from the atmosphere on a massive scale.

International flights exempted

The discharge of water vapour, soot and sulphate particles from the engines is also part of what the researchers call “effective radiative forcing,” or ERF.

And when these aspects are factored in, it seems that aviation on a global scale adds up to 3.5% of all human activities that drive climate change. The Paris Agreement on climate change – a global resolve to contain global heating by 2100 to “well below” 2°C above the norm for most of human history – includes domestic aviation within national targets to reduce emissions.

But it does not address international aviation, which adds up to 64% of all air traffic.

“The new study means that aviation’s impact on climate change can be compared with other sectors such as maritime shipping, ground transportation and energy generation, as it has a consistent set of ERF measurements,” said David Lee, of Manchester Metropolitan University, who led the research. – Climate News Network

Global offshore wind industry takes huge strides

The global offshore wind industry is booming, rapidly growing in size and earning vastly more across the globe.

LONDON, 12 August, 2020 − Despite Covid-19’s grim effects on many industries, the orders for the global offshore wind industry have increased dramatically in the first half of 2020, totalling US$35 billion (£26bn), up 319% on 2019.

Although this already makes it the fastest-growing industry in the world, it seems likely to be only the start of an extraordinary boom in a business that is still improving its technology, and because of that the prices for the electricity it produces are tumbling.

Europe was a pioneer of the industry, since its many square kilometres of shallow sea in the continental shelf meant there were many locations ideal for driving piles into the seabed to anchor the turbines, which happily were close to markets in major coastal cities.

As the technology has improved, so the size of the turbines being installed has increased, now reaching 10 megawatts (MW) and heading soon for 12.

“Offshore wind has the potential to generate more than 18 times global electricity demand today”

And as the turbines have grown bigger, the cost of the electricity they produce has come down, and offshore farms now not only compete with fossil fuels but are far cheaper than nuclear energy. The Far East, China and Taiwan have already become huge markets, and the US is beginning to invest heavily too.

Designs by the US National Renewable Energy Laboratory are already available for 15 to 20MW turbines. These will be 150 metres high, with rotor diameters of 240m, longer than two football pitches.

The extraordinary size of these models allows them to take advantage of the higher and more constant wind speeds available further out to sea, which provides a more reliable output.

While the boom in wind farms fixed to the seabed develops, a new surge is also expected in floating farms. These use what are basically identical turbines mounted on rafts anchored by cables to the seabed, allowing them to operate in much deeper water.

Costs head downwards

Floating wind farms have already been in operation and have exceeded output expectations, but like all prototypes they were expensive. As with all successful renewable energy technologies, though, the price of installation and operation will continue to fall as the industry gains experience and confidence.

Only 20 years ago turbines producing 3MW of electricity were considered giants. Today’s engineers are already considering whether models able to generate more than 20MW are feasible.

The International Energy Agency said in 2019 that the European Union (then including the UK), the US, Japan, India and even China had enough offshore wind potential to cover all their electricity needs. That was before the latest designs for even bigger turbines had been unveiled.

Its report said: “Today’s offshore wind market doesn’t even come close to tapping the full potential – with high-quality resources available in most major markets, offshore wind has the potential to generate more than 420,000 TWh per year worldwide. This is more than 18 times global electricity demand today.” − Climate News Network

The global offshore wind industry is booming, rapidly growing in size and earning vastly more across the globe.

LONDON, 12 August, 2020 − Despite Covid-19’s grim effects on many industries, the orders for the global offshore wind industry have increased dramatically in the first half of 2020, totalling US$35 billion (£26bn), up 319% on 2019.

Although this already makes it the fastest-growing industry in the world, it seems likely to be only the start of an extraordinary boom in a business that is still improving its technology, and because of that the prices for the electricity it produces are tumbling.

Europe was a pioneer of the industry, since its many square kilometres of shallow sea in the continental shelf meant there were many locations ideal for driving piles into the seabed to anchor the turbines, which happily were close to markets in major coastal cities.

As the technology has improved, so the size of the turbines being installed has increased, now reaching 10 megawatts (MW) and heading soon for 12.

“Offshore wind has the potential to generate more than 18 times global electricity demand today”

And as the turbines have grown bigger, the cost of the electricity they produce has come down, and offshore farms now not only compete with fossil fuels but are far cheaper than nuclear energy. The Far East, China and Taiwan have already become huge markets, and the US is beginning to invest heavily too.

Designs by the US National Renewable Energy Laboratory are already available for 15 to 20MW turbines. These will be 150 metres high, with rotor diameters of 240m, longer than two football pitches.

The extraordinary size of these models allows them to take advantage of the higher and more constant wind speeds available further out to sea, which provides a more reliable output.

While the boom in wind farms fixed to the seabed develops, a new surge is also expected in floating farms. These use what are basically identical turbines mounted on rafts anchored by cables to the seabed, allowing them to operate in much deeper water.

Costs head downwards

Floating wind farms have already been in operation and have exceeded output expectations, but like all prototypes they were expensive. As with all successful renewable energy technologies, though, the price of installation and operation will continue to fall as the industry gains experience and confidence.

Only 20 years ago turbines producing 3MW of electricity were considered giants. Today’s engineers are already considering whether models able to generate more than 20MW are feasible.

The International Energy Agency said in 2019 that the European Union (then including the UK), the US, Japan, India and even China had enough offshore wind potential to cover all their electricity needs. That was before the latest designs for even bigger turbines had been unveiled.

Its report said: “Today’s offshore wind market doesn’t even come close to tapping the full potential – with high-quality resources available in most major markets, offshore wind has the potential to generate more than 420,000 TWh per year worldwide. This is more than 18 times global electricity demand today.” − Climate News Network

South Korea backtracks on green promise

For South Korea, it seems, climate care is a case of going green at home – and doing the opposite overseas.

LONDON, 17 July, 2020 – After a landslide victory in South Korea’s national elections earlier this year, President Moon Jae-in and his Democratic Party of Korea announced a major plan to tackle climate change.

A package, known as the Green New Deal, aimed to transform what is one of the world’s most dynamic economies: emissions of climate-changing greenhouse gases would be sharply reduced over coming years and totally eliminated by 2050.

There were also promises of big public investments in renewable energy and a commitment to phase out state support for overseas coal projects. Coal is by far the most polluting of fossil fuels.

Moon Jae-in’s administration is now backtracking on many of its green promises.

Environmental groups are particularly concerned by an announcement late last month that South Korea’s largest state-owned electricity company – along with state banks – is investing hundreds of millions of dollars in a coal-fired power plant in Indonesia.

More to come

The Indonesian project – called Java 9 &10 – is at the giant Suralaya plant at Cilegon, near Jakarta.

Under the terms of an agreement reached between the South Korean and Indonesian state authorities, the Korea Electric Power Corporation (Kepco) will invest US$51 million (£40m) in adding two power units to the Cilegon plant.

In addition, South Korea’s state banks will make further investments amounting to more than $1billion, while Kepco will offer loan guarantees.

The Cilegon project is highly controversial: the plant is already one of the main sources of pollution in the densely populated area surrounding Jakarta.

Energy analysts and opponents of the project say that the additional power the plant will provide is not needed. They say enlarging the plant not only runs counter to South Korea government policy but also conflicts with the Indonesian government’s policies on tackling climate change: Jakarta recently announced ambitious plans to dramatically increase the use of solar power.

“By not ending public coal financing, Korea’s Green New Deal would not be green at all”

“Kepco’s decision to continue the Java 9 &10 project in the midst of a pandemic has shown the true face of the South Korean government and proves it is concerned with short-term profits rather than humans and the environment”, said Didit Haryo Wicaksono of Greenpeace Indonesia.

Elsewhere in the region, Kepco is involved in discussions on a multi-million dollar expansion of the coal-fired Vung Tau power plant in Vietnam.

Kepco shareholders have voiced concerns about both the Indonesia and Vietnam projects, saying that worries about pollution might lead to the loss of millions invested.

South Korea is not alone in touting green policies at home while seeking to make money from polluting projects overseas.

China is making efforts to clean up its once notorious urban pollution hot spots. It is the world’s biggest producer and also consumer of coal: many coal-fired enterprises have been shut down or converted to other energy sources.

Green deal undermined?

Yet China continues to promote coal-fired projects overseas. It is building and financing several coal-fired power plants in Pakistan and in the Balkans, as well as supporting the expansion of coal projects in various African countries. Japan is another large financier of overseas coal projects.

South Korea is among the world’s top ten emitters of greenhouse gases,  much of the pollution caused by emissions from coal-fired power plants, which generate more than 40% of the country’s electricity.

Under the terms of Seoul’s new green deal it’s planned to phase out the use of coal by 2030. In the aftermath of the Indonesia coal plant deal, there are doubts that South Korea will put a halt to its overseas coal projects.

Jessica Yun of the South Korea climate group Solutions For Our Climate,  quoted in the Eco-Business journal, says that if the government refuses to stop financing coal projects, the whole green deal will be undermined. “By not ending public coal financing, Korea’s Green New Deal would not be green at all”, Yun said.

“That would just push dirty air pollution and greenhouse gas emissions abroad – the height of hypocrisy and irresponsibility.” – Climate News Network

For South Korea, it seems, climate care is a case of going green at home – and doing the opposite overseas.

LONDON, 17 July, 2020 – After a landslide victory in South Korea’s national elections earlier this year, President Moon Jae-in and his Democratic Party of Korea announced a major plan to tackle climate change.

A package, known as the Green New Deal, aimed to transform what is one of the world’s most dynamic economies: emissions of climate-changing greenhouse gases would be sharply reduced over coming years and totally eliminated by 2050.

There were also promises of big public investments in renewable energy and a commitment to phase out state support for overseas coal projects. Coal is by far the most polluting of fossil fuels.

Moon Jae-in’s administration is now backtracking on many of its green promises.

Environmental groups are particularly concerned by an announcement late last month that South Korea’s largest state-owned electricity company – along with state banks – is investing hundreds of millions of dollars in a coal-fired power plant in Indonesia.

More to come

The Indonesian project – called Java 9 &10 – is at the giant Suralaya plant at Cilegon, near Jakarta.

Under the terms of an agreement reached between the South Korean and Indonesian state authorities, the Korea Electric Power Corporation (Kepco) will invest US$51 million (£40m) in adding two power units to the Cilegon plant.

In addition, South Korea’s state banks will make further investments amounting to more than $1billion, while Kepco will offer loan guarantees.

The Cilegon project is highly controversial: the plant is already one of the main sources of pollution in the densely populated area surrounding Jakarta.

Energy analysts and opponents of the project say that the additional power the plant will provide is not needed. They say enlarging the plant not only runs counter to South Korea government policy but also conflicts with the Indonesian government’s policies on tackling climate change: Jakarta recently announced ambitious plans to dramatically increase the use of solar power.

“By not ending public coal financing, Korea’s Green New Deal would not be green at all”

“Kepco’s decision to continue the Java 9 &10 project in the midst of a pandemic has shown the true face of the South Korean government and proves it is concerned with short-term profits rather than humans and the environment”, said Didit Haryo Wicaksono of Greenpeace Indonesia.

Elsewhere in the region, Kepco is involved in discussions on a multi-million dollar expansion of the coal-fired Vung Tau power plant in Vietnam.

Kepco shareholders have voiced concerns about both the Indonesia and Vietnam projects, saying that worries about pollution might lead to the loss of millions invested.

South Korea is not alone in touting green policies at home while seeking to make money from polluting projects overseas.

China is making efforts to clean up its once notorious urban pollution hot spots. It is the world’s biggest producer and also consumer of coal: many coal-fired enterprises have been shut down or converted to other energy sources.

Green deal undermined?

Yet China continues to promote coal-fired projects overseas. It is building and financing several coal-fired power plants in Pakistan and in the Balkans, as well as supporting the expansion of coal projects in various African countries. Japan is another large financier of overseas coal projects.

South Korea is among the world’s top ten emitters of greenhouse gases,  much of the pollution caused by emissions from coal-fired power plants, which generate more than 40% of the country’s electricity.

Under the terms of Seoul’s new green deal it’s planned to phase out the use of coal by 2030. In the aftermath of the Indonesia coal plant deal, there are doubts that South Korea will put a halt to its overseas coal projects.

Jessica Yun of the South Korea climate group Solutions For Our Climate,  quoted in the Eco-Business journal, says that if the government refuses to stop financing coal projects, the whole green deal will be undermined. “By not ending public coal financing, Korea’s Green New Deal would not be green at all”, Yun said.

“That would just push dirty air pollution and greenhouse gas emissions abroad – the height of hypocrisy and irresponsibility.” – Climate News Network

Powerful backers support a UK nuclear future

Insulating homes and installing renewable energy are the cheapest answers to climate change. Yet powerful backers urge a UK nuclear future.

LONDON, 15 July, 2020 – You may think a UK nuclear future, given the bright prospects for wind and solar power, is a dream that has finally died. Perhaps. But don’t be too sure.

If you watched BBC television in the 1980s, you might well have seen the Blackadder comedy series, one of whose stars was the hapless dogsbody Baldrick. However dire the plight into which the scriptwriters had plunged him and his companions, Baldrick unfailingly reassured them: he would save the day with his latest “cunning plan”, a phrase now hallowed as a guarantee of doom.

Leap forward 30 years to the present day, where one of the most influential figures involved with the UK government of prime minister Boris Johnson is his senior special adviser (an unelected figure), Dominic Cummings. He too has a plan, it’s said. But this is no comedy: the plan is serious, and it’s nuclear.

It envisages a massive expansion of the United Kingdom’s nuclear industry, prompting a reputed joke by civil servants that Cummings’ plan is little different from one of Baldrick’s.

The Cummings plan involves three elements: building several large nuclear reactors in the UK, plus dozens of prefabricated ones, called small modular reactors or SMRs, and investing heavily in research for what are called Generation IV nuclear reactors – technologies planned for deployment around 2030.

Rescue in sight?

Dominic Cummings is not alone in his enthusiasm. Donald Trump, President Putin of Russia and China’s President Xi Jinping all favour this approach.

His plan is also backed by the British company Rolls-Royce. It is suffering badly from its heavy involvement in the aviation industry, and it sees government investment in a new generation of reactors as a lifeline. The company is already building small reactors for the UK’s nuclear submarine fleet.

Backing for Cummings has come from a government-funded thinktank, Catapult Energy Systems. In a report, Nuclear For Net Zero, Catapult envisages using SMRs for district heating schemes and advanced reactors for producing hydrogen. This would be used for transport in cars, lorries and trains, or for storing energy for peak electricity production.

Although it is described as independent Catapult is largely funded by Innovate UK, itself funded by the government, and has as its strategy and performance director Guy Newey, previously an adviser to energy ministers in previous Conservative administrations when successive governments were aggressively pushing pro-nuclear policies.

Catapult’s report appears to mirror Dominic Cummings’ desire for imaginative solutions to climate problems. He is said to regard the idea of insulating millions of homes to reduce electricity bills and to improve health as “boring.”

“Only the French and Chinese appear to have the wish or expertise to build the reactors. But both these builders want British consumers to finance the nuclear stations’ construction”

His attitude, in turn, appears to reflect Boris Johnson’s enthusiasm for grandiose projects like a bridge between Northern Ireland and Scotland – and other projects, now abandoned, such as a new airport in the Thames estuary and a garden bridge across the Thames further upstream in central London, which Johnson championed when he was the capital’s mayor.

The problems that this nuclear agenda faces are both financial and political. The cost of developing such a programme is astronomical. Two reactors currently being built at Hinkley Point in the West of England are costing more than £10 billion (US$12.5bn) each. That price is likely to be exceeded for each of the eight further reactors proposed for the current building programme.

The second problem is that only the French and Chinese appear to have the wish or expertise to build the reactors. But both these builders want British consumers to stump up the cash in the form of a levy or tax on electricity bills to finance the nuclear stations’ construction.

Since the French and Chinese companies are both state-owned it might be politically difficult for the UK government to impose a tax on British consumers to enrich them. There is also a lot of disquiet among UK Members of Parliament about Chinese involvement in vital services like electricity supply and nuclear energy.

As for the SMRs, the idea is to build dozens in factories and then erect them on-site in prefabricated form. Apart from the fact that the technology is unproven and the expense of the electricity unknown (but likely to be high), the problem of where to site them does not seem to have been addressed.

Hydrogen’s appeal

It seems unlikely, given past public opposition to siting nuclear power stations close to centres of population, that they would be welcomed in cities, even if they did provide district heating.

The Generation IV reactors are still on the drawing board. Their development time is always quoted as more than a decade away.

In the meantime, while politicians make their plans, there is increasing business enthusiasm and an economic case for making green hydrogen from surplus wind and solar power, because it is much cheaper. The electricity needed will be surplus to grid requirements and therefore virtually free.

There is also a vast public and business appetite for building very competitive new onshore and offshore wind projects and small and large-scale solar installations. Finance would be no problem, because they are profit-making and quick to build.

Given a helping hand by government, many experts think the United Kingdom could be 100% powered by renewables by 2050, without any need for a Cummings plan. – Climate News Network

Insulating homes and installing renewable energy are the cheapest answers to climate change. Yet powerful backers urge a UK nuclear future.

LONDON, 15 July, 2020 – You may think a UK nuclear future, given the bright prospects for wind and solar power, is a dream that has finally died. Perhaps. But don’t be too sure.

If you watched BBC television in the 1980s, you might well have seen the Blackadder comedy series, one of whose stars was the hapless dogsbody Baldrick. However dire the plight into which the scriptwriters had plunged him and his companions, Baldrick unfailingly reassured them: he would save the day with his latest “cunning plan”, a phrase now hallowed as a guarantee of doom.

Leap forward 30 years to the present day, where one of the most influential figures involved with the UK government of prime minister Boris Johnson is his senior special adviser (an unelected figure), Dominic Cummings. He too has a plan, it’s said. But this is no comedy: the plan is serious, and it’s nuclear.

It envisages a massive expansion of the United Kingdom’s nuclear industry, prompting a reputed joke by civil servants that Cummings’ plan is little different from one of Baldrick’s.

The Cummings plan involves three elements: building several large nuclear reactors in the UK, plus dozens of prefabricated ones, called small modular reactors or SMRs, and investing heavily in research for what are called Generation IV nuclear reactors – technologies planned for deployment around 2030.

Rescue in sight?

Dominic Cummings is not alone in his enthusiasm. Donald Trump, President Putin of Russia and China’s President Xi Jinping all favour this approach.

His plan is also backed by the British company Rolls-Royce. It is suffering badly from its heavy involvement in the aviation industry, and it sees government investment in a new generation of reactors as a lifeline. The company is already building small reactors for the UK’s nuclear submarine fleet.

Backing for Cummings has come from a government-funded thinktank, Catapult Energy Systems. In a report, Nuclear For Net Zero, Catapult envisages using SMRs for district heating schemes and advanced reactors for producing hydrogen. This would be used for transport in cars, lorries and trains, or for storing energy for peak electricity production.

Although it is described as independent Catapult is largely funded by Innovate UK, itself funded by the government, and has as its strategy and performance director Guy Newey, previously an adviser to energy ministers in previous Conservative administrations when successive governments were aggressively pushing pro-nuclear policies.

Catapult’s report appears to mirror Dominic Cummings’ desire for imaginative solutions to climate problems. He is said to regard the idea of insulating millions of homes to reduce electricity bills and to improve health as “boring.”

“Only the French and Chinese appear to have the wish or expertise to build the reactors. But both these builders want British consumers to finance the nuclear stations’ construction”

His attitude, in turn, appears to reflect Boris Johnson’s enthusiasm for grandiose projects like a bridge between Northern Ireland and Scotland – and other projects, now abandoned, such as a new airport in the Thames estuary and a garden bridge across the Thames further upstream in central London, which Johnson championed when he was the capital’s mayor.

The problems that this nuclear agenda faces are both financial and political. The cost of developing such a programme is astronomical. Two reactors currently being built at Hinkley Point in the West of England are costing more than £10 billion (US$12.5bn) each. That price is likely to be exceeded for each of the eight further reactors proposed for the current building programme.

The second problem is that only the French and Chinese appear to have the wish or expertise to build the reactors. But both these builders want British consumers to stump up the cash in the form of a levy or tax on electricity bills to finance the nuclear stations’ construction.

Since the French and Chinese companies are both state-owned it might be politically difficult for the UK government to impose a tax on British consumers to enrich them. There is also a lot of disquiet among UK Members of Parliament about Chinese involvement in vital services like electricity supply and nuclear energy.

As for the SMRs, the idea is to build dozens in factories and then erect them on-site in prefabricated form. Apart from the fact that the technology is unproven and the expense of the electricity unknown (but likely to be high), the problem of where to site them does not seem to have been addressed.

Hydrogen’s appeal

It seems unlikely, given past public opposition to siting nuclear power stations close to centres of population, that they would be welcomed in cities, even if they did provide district heating.

The Generation IV reactors are still on the drawing board. Their development time is always quoted as more than a decade away.

In the meantime, while politicians make their plans, there is increasing business enthusiasm and an economic case for making green hydrogen from surplus wind and solar power, because it is much cheaper. The electricity needed will be surplus to grid requirements and therefore virtually free.

There is also a vast public and business appetite for building very competitive new onshore and offshore wind projects and small and large-scale solar installations. Finance would be no problem, because they are profit-making and quick to build.

Given a helping hand by government, many experts think the United Kingdom could be 100% powered by renewables by 2050, without any need for a Cummings plan. – Climate News Network