Tag Archives: climate change

Hope springs eternal for species facing extinction

Extinction is for ever, but not inevitable. Some threatened species are now surprising survivors. Can others follow suit?

LONDON, 22 February, 2021 − Scientists continue to issue strident warnings that the Earth faces a sixth mass extinction, and the evidence suggests they’re right.

There are some standout survivors, though − birds and mammals which not long ago appeared doomed but are now recovering. There is even a flickering hope that their resurgence could show the way to survival for some other species among the teeming millions at risk.

Researchers from the University of Newcastle, UK, and BirdLife International report in the journal Conservation Letters that different initiatives have prevented up to 32 bird and 16 mammal extinctions since 1993, the year the UN’s Convention on Biological Diversity entered into force.

As 10 bird and five mammal species are known to have become extinct in that time, the researchers think extinction rates would have been up to four times higher if humans had not acted to help the survivors.

“I think that’s a positive message. It’s not all bad news, always,” said Rike Bolam of the University of Newcastle, the study’s lead author. “It is encouraging that some of the species we studied have recovered very well.”

Success achieved

Stuart Butchart, chief scientist at BirdLife and an honorary research fellow in the zoology department of the University of Cambridge, said: “These results show that despite the overall failure to meet the targets for conserving nature set through the UN a decade ago, significant success in preventing extinctions was achieved.

“It would be easy to feel conservation was a pointless exercise and there’s nothing we can do to slow the juggernaut down. Broadly speaking, we have the tools, we just need much greater resource and political will.”

Many of the most successful conservation efforts involve what science knows as the charismatic megafauna, crowdpuller species such as the tiger, which may attract attention and funding relatively easily in their struggle to escape extinction. Most species do not.

But Bolam and Butchart’s team identified a number of recurring and widely applicable themes in trying to stem the catastrophic race towards oblivion: the removal of invasive species, for example, the management of hunting and protection of important habitats.

“We have the tools, we just need much greater resource and political will”

Saving the web of life intact to hand on to future generations the richness of species on which humanity depends won’t be easy. Adam Vaughan, chief reporter at the magazine New Scientist, writes: “Targeted actions won’t turn the tide alone. Stemming biodiversity loss will also require more fundamental changes to how we value nature – and whether those will be forthcoming is the trillion-dollar question.”

To give some idea of what works − and why − the magazine lists 10 survival success stories from around the world. It includes some obvious candidates, creatures which would be at the top of any keen zoologist’s bucket list − and probably most other people’s too. There’s the blue whale, obviously, its Antarctic sub-species reduced by hunters from an estimated 239,000 before industrial whaling started early in the last century to 360 by the early 1970s..

Yet by 2016 there were thought to be 4,500 in the southern ocean − something Jennifer Jackson at the British Antarctic Survey says has a wider lesson for conservation: “The blue whale recovery is symbolic of what humans can do if they just leave things alone.” Now, though, climate change is affecting the krill which are the whales’ main source of food. The possibility of extinction is returning.

China’s giant pandas declined fast in the 20th century. Political will and protected areas improved their prospects from “endangered” to “vulnerable.” The government has created 67 giant panda reserves since the 1960s, and in 1988 banned logging entirely in their habitats. “The determination and investment of the Chinese government is the key,” says Qiang Xu of WWF-China. But the pandas still need much more time before they’re safe.

Mountain gorilla numbers have risen from about 250 in 1981 to 1,063 today. Things were looking hopeful until last month, when a gorilla in a US zoo was found to have contracted Covid-19. Poaching and forest clearance for agriculture remain potent threats.

People matter

Indus river dolphins were once found along the entire 3,000 kms (1,860 miles) of the Indus, but their range fell to 1,300 kms (800 m). By 2001, their numbers had dropped to 1,200, largely because they become stranded and die in irrigation canals.

Acoustic devices help to deter the dolphins from entering the canals, but educating fishing communities and recruiting local people for ecotourism and monitoring has been the key to saving about 1,800 animals, says Uzma Khan of WWF-Pakistan. “I learned you cannot do anything without communities.”

Not every species on the New Scientist’s list will avoid extinction, let alone the countless others which will live and die unremarked. Not all of those listed is even a poster girl (or boy) for conservation.

The world’s most endangered primate, the Hainan gibbon, is endemic to the Chinese island of the same name, and probably not very widely-known. By 1980 its population had fallen from 2,000 to a total barely able to ensure survival − just nine animals. There are now thought to be around a slightly more secure 33 altogether. Wish them luck. − Climate New Network

Extinction is for ever, but not inevitable. Some threatened species are now surprising survivors. Can others follow suit?

LONDON, 22 February, 2021 − Scientists continue to issue strident warnings that the Earth faces a sixth mass extinction, and the evidence suggests they’re right.

There are some standout survivors, though − birds and mammals which not long ago appeared doomed but are now recovering. There is even a flickering hope that their resurgence could show the way to survival for some other species among the teeming millions at risk.

Researchers from the University of Newcastle, UK, and BirdLife International report in the journal Conservation Letters that different initiatives have prevented up to 32 bird and 16 mammal extinctions since 1993, the year the UN’s Convention on Biological Diversity entered into force.

As 10 bird and five mammal species are known to have become extinct in that time, the researchers think extinction rates would have been up to four times higher if humans had not acted to help the survivors.

“I think that’s a positive message. It’s not all bad news, always,” said Rike Bolam of the University of Newcastle, the study’s lead author. “It is encouraging that some of the species we studied have recovered very well.”

Success achieved

Stuart Butchart, chief scientist at BirdLife and an honorary research fellow in the zoology department of the University of Cambridge, said: “These results show that despite the overall failure to meet the targets for conserving nature set through the UN a decade ago, significant success in preventing extinctions was achieved.

“It would be easy to feel conservation was a pointless exercise and there’s nothing we can do to slow the juggernaut down. Broadly speaking, we have the tools, we just need much greater resource and political will.”

Many of the most successful conservation efforts involve what science knows as the charismatic megafauna, crowdpuller species such as the tiger, which may attract attention and funding relatively easily in their struggle to escape extinction. Most species do not.

But Bolam and Butchart’s team identified a number of recurring and widely applicable themes in trying to stem the catastrophic race towards oblivion: the removal of invasive species, for example, the management of hunting and protection of important habitats.

“We have the tools, we just need much greater resource and political will”

Saving the web of life intact to hand on to future generations the richness of species on which humanity depends won’t be easy. Adam Vaughan, chief reporter at the magazine New Scientist, writes: “Targeted actions won’t turn the tide alone. Stemming biodiversity loss will also require more fundamental changes to how we value nature – and whether those will be forthcoming is the trillion-dollar question.”

To give some idea of what works − and why − the magazine lists 10 survival success stories from around the world. It includes some obvious candidates, creatures which would be at the top of any keen zoologist’s bucket list − and probably most other people’s too. There’s the blue whale, obviously, its Antarctic sub-species reduced by hunters from an estimated 239,000 before industrial whaling started early in the last century to 360 by the early 1970s..

Yet by 2016 there were thought to be 4,500 in the southern ocean − something Jennifer Jackson at the British Antarctic Survey says has a wider lesson for conservation: “The blue whale recovery is symbolic of what humans can do if they just leave things alone.” Now, though, climate change is affecting the krill which are the whales’ main source of food. The possibility of extinction is returning.

China’s giant pandas declined fast in the 20th century. Political will and protected areas improved their prospects from “endangered” to “vulnerable.” The government has created 67 giant panda reserves since the 1960s, and in 1988 banned logging entirely in their habitats. “The determination and investment of the Chinese government is the key,” says Qiang Xu of WWF-China. But the pandas still need much more time before they’re safe.

Mountain gorilla numbers have risen from about 250 in 1981 to 1,063 today. Things were looking hopeful until last month, when a gorilla in a US zoo was found to have contracted Covid-19. Poaching and forest clearance for agriculture remain potent threats.

People matter

Indus river dolphins were once found along the entire 3,000 kms (1,860 miles) of the Indus, but their range fell to 1,300 kms (800 m). By 2001, their numbers had dropped to 1,200, largely because they become stranded and die in irrigation canals.

Acoustic devices help to deter the dolphins from entering the canals, but educating fishing communities and recruiting local people for ecotourism and monitoring has been the key to saving about 1,800 animals, says Uzma Khan of WWF-Pakistan. “I learned you cannot do anything without communities.”

Not every species on the New Scientist’s list will avoid extinction, let alone the countless others which will live and die unremarked. Not all of those listed is even a poster girl (or boy) for conservation.

The world’s most endangered primate, the Hainan gibbon, is endemic to the Chinese island of the same name, and probably not very widely-known. By 1980 its population had fallen from 2,000 to a total barely able to ensure survival − just nine animals. There are now thought to be around a slightly more secure 33 altogether. Wish them luck. − Climate New Network

How to rebuild a forest in a growing climate crisis

A global energy company’s mistake renewed debate on how to slow the climate crisis. Trees can help − but where, and how?

LONDON, 19 February, 2021 – The oil company Shell recently miscalculated the extent of its reserves on a pretty massive scale. The mistake meant its new scenario for meeting the internationally agreed 1.5°C climate target would need a new forest about the size of Brazil. And that renewed a debate about just what trees can do to ease the climate crisis.

Tree-planting to tackle possibly irreversible climate change is one hopeful route. Trees not only breathe carbon dioxide in; they also breathe out oxygen. But tree-planting is more complex than it may seem.

The Intergovernmental Panel on Climate Change (IPCC) says in its 2018 Special Report, that if the world wants to limit temperature rise to 1.5°C by 2050, an extra one billion hectares (2.4bn acres) of trees will be needed. But what types of trees, and where? Many different initiatives across the world have tried to restore woodland, but what works best for people and the biosphere?

The UK-based Rapid Transition Alliance (RTA) argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C” (the more stringent limit set by the Paris Agreement). It has several suggestions for understanding how trees might best help to cool the climate crisis, not least relying on natural forest regeneration rather than commercial plantations.

Over the last decade, several reforestation and afforestation schemes have sprung up under the programme of the UN Convention to Combat Desertification (UNCCD).

“In India, 66 million trees were planted in a 12-hour record-breaking campaign. Myanmar used drones to plant trees”

National and regional reforestation initiatives include China’s forest rehabilitation programme and Africa’s Great Green Wall scheme linking North Africa, the Sahel (the area south of the Sahara desert) and the Horn of Africa.

In 2019 the FAO launched a similar reforestation plan targeting cities – the Great Green Wall for Cities initiative. This is expected to remove from 0.5 to 5 Gigatonnes of CO2 from the atmosphere every year.

In 2017, Pakistan met its target of planting a billion trees and  made a commitment to reach 10 billion trees within five years. In its neighbour India, 66 million trees were planted in a 12-hour record-breaking campaign involving 1.5 million volunteers. Some countries have relied on equally novel methods; Myanmar used drones to plant trees.

Ambitious projects like these can sound attractive. But their ability to achieve their goals sometimes proves controversial.

Several climate and forest scientists favour what they call “natural forest regeneration” – essentially letting the forest grow back naturally – which often proves to be the most efficient and cheapest approach in achieving natural carbon sequestration.

Regeneration neglected

However, only 34% of the total area dedicated to forest restoration plans covered by the Bonn Challenge is earmarked for this approach.

A further 21% of land is reserved for agroforestry, a method promoting the production of multiple plants and crops side by side. The remaining 45% of the land area is given up to the monoculture production of trees.

Better ways of doing things are exemplified by Ghana and Malaysia, for example, where people restored their local forests after being granted ownership of the land.

In Ghana, the forest restoration projects found to be most successful were those which included a “rights-based approach”. Strengthening community rights contributed to the protection of forests from appropriation and privatisation and ensured greater accountability, the right to speak out, and provided safeguards against illegal practices.

In Malaysia, an NGO supported Penan indigenous communities in fighting for their legitimate entitlement to land rights in court. The Penan have strong ties with the land and forests, which play a strong role in maintaining local biodiversity.

Four pathways

Tree planting programmes have had very mixed results. Many failures occurred because the trees planted were not suitable for local climate conditions, and others depleted groundwater reserves, leaving nearby soils dried out and damaging local agricultural production.

Natural forest restoration is the most effective way to store carbon from the atmosphere, the RTA argues. These forests are 40 times more effective than plantations and six times better than agroforestry at retaining carbon. Their complex ecological systems are also better for biodiversity.

The RTA says there are four main ways for countries to encourage the successful restoration of natural forests so as to temper the effects of the climate crisis:

  • They should increase the proportion of their land allocated for regeneration to natural forest
  • Priority should be given to humid tropical areas, such as Amazonia, Borneo and the Congo Basin, which support high biomass forest. International climate adaptation and conservation funds could be used to support such action
  • Countries should focus on naturally regenerating existing carbon stocks such as degraded forests and partly wooded areas, using treeless regions for plantations or agroforestry
  • Restored forest must be protected, perhaps by giving title rights to indigenous peoples who protect forested land, changing the legal definition of land-use so that it cannot be converted to agriculture, and ensuring that commodities companies cannot clear restored forests.

Restoring natural forests, the Alliance concludes, is the most efficient, fast, safe and under-valued carbon sequestration tool. Climate News Network

*********

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

A global energy company’s mistake renewed debate on how to slow the climate crisis. Trees can help − but where, and how?

LONDON, 19 February, 2021 – The oil company Shell recently miscalculated the extent of its reserves on a pretty massive scale. The mistake meant its new scenario for meeting the internationally agreed 1.5°C climate target would need a new forest about the size of Brazil. And that renewed a debate about just what trees can do to ease the climate crisis.

Tree-planting to tackle possibly irreversible climate change is one hopeful route. Trees not only breathe carbon dioxide in; they also breathe out oxygen. But tree-planting is more complex than it may seem.

The Intergovernmental Panel on Climate Change (IPCC) says in its 2018 Special Report, that if the world wants to limit temperature rise to 1.5°C by 2050, an extra one billion hectares (2.4bn acres) of trees will be needed. But what types of trees, and where? Many different initiatives across the world have tried to restore woodland, but what works best for people and the biosphere?

The UK-based Rapid Transition Alliance (RTA) argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C” (the more stringent limit set by the Paris Agreement). It has several suggestions for understanding how trees might best help to cool the climate crisis, not least relying on natural forest regeneration rather than commercial plantations.

Over the last decade, several reforestation and afforestation schemes have sprung up under the programme of the UN Convention to Combat Desertification (UNCCD).

“In India, 66 million trees were planted in a 12-hour record-breaking campaign. Myanmar used drones to plant trees”

National and regional reforestation initiatives include China’s forest rehabilitation programme and Africa’s Great Green Wall scheme linking North Africa, the Sahel (the area south of the Sahara desert) and the Horn of Africa.

In 2019 the FAO launched a similar reforestation plan targeting cities – the Great Green Wall for Cities initiative. This is expected to remove from 0.5 to 5 Gigatonnes of CO2 from the atmosphere every year.

In 2017, Pakistan met its target of planting a billion trees and  made a commitment to reach 10 billion trees within five years. In its neighbour India, 66 million trees were planted in a 12-hour record-breaking campaign involving 1.5 million volunteers. Some countries have relied on equally novel methods; Myanmar used drones to plant trees.

Ambitious projects like these can sound attractive. But their ability to achieve their goals sometimes proves controversial.

Several climate and forest scientists favour what they call “natural forest regeneration” – essentially letting the forest grow back naturally – which often proves to be the most efficient and cheapest approach in achieving natural carbon sequestration.

Regeneration neglected

However, only 34% of the total area dedicated to forest restoration plans covered by the Bonn Challenge is earmarked for this approach.

A further 21% of land is reserved for agroforestry, a method promoting the production of multiple plants and crops side by side. The remaining 45% of the land area is given up to the monoculture production of trees.

Better ways of doing things are exemplified by Ghana and Malaysia, for example, where people restored their local forests after being granted ownership of the land.

In Ghana, the forest restoration projects found to be most successful were those which included a “rights-based approach”. Strengthening community rights contributed to the protection of forests from appropriation and privatisation and ensured greater accountability, the right to speak out, and provided safeguards against illegal practices.

In Malaysia, an NGO supported Penan indigenous communities in fighting for their legitimate entitlement to land rights in court. The Penan have strong ties with the land and forests, which play a strong role in maintaining local biodiversity.

Four pathways

Tree planting programmes have had very mixed results. Many failures occurred because the trees planted were not suitable for local climate conditions, and others depleted groundwater reserves, leaving nearby soils dried out and damaging local agricultural production.

Natural forest restoration is the most effective way to store carbon from the atmosphere, the RTA argues. These forests are 40 times more effective than plantations and six times better than agroforestry at retaining carbon. Their complex ecological systems are also better for biodiversity.

The RTA says there are four main ways for countries to encourage the successful restoration of natural forests so as to temper the effects of the climate crisis:

  • They should increase the proportion of their land allocated for regeneration to natural forest
  • Priority should be given to humid tropical areas, such as Amazonia, Borneo and the Congo Basin, which support high biomass forest. International climate adaptation and conservation funds could be used to support such action
  • Countries should focus on naturally regenerating existing carbon stocks such as degraded forests and partly wooded areas, using treeless regions for plantations or agroforestry
  • Restored forest must be protected, perhaps by giving title rights to indigenous peoples who protect forested land, changing the legal definition of land-use so that it cannot be converted to agriculture, and ensuring that commodities companies cannot clear restored forests.

Restoring natural forests, the Alliance concludes, is the most efficient, fast, safe and under-valued carbon sequestration tool. Climate News Network

*********

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

India’s energy policy is key to the planet’s future

India must adopt a clean energy policy, a real industrial revolution, if the world is to slow the rising climate crisis.

LONDON, 18 February, 2021 − Here’s the bad news. Unless India opts for a totally new energy policy, a revolutionary switch to a clean future, the world has no chance of avoiding dangerous climate change.

But there’s some much better news too: with the right policies, it can both improve the lives of its own citizens and offer the entire planet hope of a livable climate.

That is the view of the International Energy Agency (IEA), which says that as it is the world’s third largest consumer of energy after China and the United States, the direction India takes is crucial to everyone’s future.

In a report, India Energy Outlook 2021, the Agency says the country’s energy use has doubled in the last 20 years, with 80% of the energy consumed still coming from coal, oil and wood.

“The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India”

Despite this growth, India’s emissions per capita are still only half the world average. But this is set to change. Economic growth is expected to accelerate dramatically, and the rate of energy demand growth is already three times the global average.

Millions of Indian households are expected to buy new domestic appliances, air conditioning units and vehicles. Increasing urbanisation means four million people need new urban homes annually, requiring a city the size of Los Angeles to be built every year.

To meet this growth in electricity demand over the next twenty years, India will also need to add a power system the size of the whole European Union to what it already has, the IEA says.

The report describes the huge developments taking place in what is soon to overtake China as the world’s most populous country and explains how this growth can be achieved without destroying the planet in the process. The IEA has just entered what it calls “a strategic partnership” with India to help it towards a clean energy transition.

Huge opportunity

Dr Fatih Birol, the IEA’s executive director, admitted it was a daunting task: “The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India.

“What our new report makes clear is the tremendous opportunity for India to successfully meet the aspirations of its citizens without following the high-carbon pathway that other economies have pursued in the past.”

The report agrees. Transformations in the energy sector – on a scale no country has achieved in history – require huge advances in innovation, strong partnerships and vast amounts of capital.

The extra funding for the clean energy technologies required to put India on a sustainable path over the next 20 years is US$1.4 trillion (£1tn), or 70% higher than in a scenario based on its current policy settings. But the benefits are huge, including savings of the same magnitude on oil import bills, the IEA calculates.

Solar’s bright future

At present the Indian government’s projected 50% rise in greenhouse gas emissions by 2040 is enough to offset entirely the projected fall in emissions in Europe over the same period.

The Agency says these high emissions can be avoided. Although solar energy accounts for less than 4% of India’s electricity generation at the moment, and coal 70%, this will change: “Solar power is set for explosive growth, matching coal’s share in the Indian power generation mix within two decades.”

Even so, the government is not going far or fast enough. The scope for rooftop solar panels, solar thermal heating and pumps for irrigation and drinking water is very great.

Transport is another problem area. “An extra 25 million trucks will be travelling on India’s roads by 2040 as road freight activity triples, and a total of 300 million vehicles of all types are added to India’s fleet between now and then,” the report says.

Health will improve

India has many good policies to reduce the effect of this by electrifying rail routes and vehicles. But even so, without more policy improvements, its demand for oil is set to increase more than any other country’s.

Perhaps the most difficult area to control emissions is in the construction sector, with cement and steel production heavily dependent on fossil fuels. Ways to use electricity made with renewables for manufacturing rather than fossil fuels must be found.

There is also a need to replace and improve cooking stoves using gas and electricity instead of firewood and other traditional fuels, like animal dung.

The report makes the point that all the moves to reduce greenhouse gas emissions also help the country’s balance of payments and security by substituting home-produced renewables for fossil fuel imports. This cuts air pollution as well and improves people’s health, further improving economic output. − Climate News Network

India must adopt a clean energy policy, a real industrial revolution, if the world is to slow the rising climate crisis.

LONDON, 18 February, 2021 − Here’s the bad news. Unless India opts for a totally new energy policy, a revolutionary switch to a clean future, the world has no chance of avoiding dangerous climate change.

But there’s some much better news too: with the right policies, it can both improve the lives of its own citizens and offer the entire planet hope of a livable climate.

That is the view of the International Energy Agency (IEA), which says that as it is the world’s third largest consumer of energy after China and the United States, the direction India takes is crucial to everyone’s future.

In a report, India Energy Outlook 2021, the Agency says the country’s energy use has doubled in the last 20 years, with 80% of the energy consumed still coming from coal, oil and wood.

“The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India”

Despite this growth, India’s emissions per capita are still only half the world average. But this is set to change. Economic growth is expected to accelerate dramatically, and the rate of energy demand growth is already three times the global average.

Millions of Indian households are expected to buy new domestic appliances, air conditioning units and vehicles. Increasing urbanisation means four million people need new urban homes annually, requiring a city the size of Los Angeles to be built every year.

To meet this growth in electricity demand over the next twenty years, India will also need to add a power system the size of the whole European Union to what it already has, the IEA says.

The report describes the huge developments taking place in what is soon to overtake China as the world’s most populous country and explains how this growth can be achieved without destroying the planet in the process. The IEA has just entered what it calls “a strategic partnership” with India to help it towards a clean energy transition.

Huge opportunity

Dr Fatih Birol, the IEA’s executive director, admitted it was a daunting task: “The stakes could not be higher, for India and for the world. All roads to successful global clean energy transitions go via India.

“What our new report makes clear is the tremendous opportunity for India to successfully meet the aspirations of its citizens without following the high-carbon pathway that other economies have pursued in the past.”

The report agrees. Transformations in the energy sector – on a scale no country has achieved in history – require huge advances in innovation, strong partnerships and vast amounts of capital.

The extra funding for the clean energy technologies required to put India on a sustainable path over the next 20 years is US$1.4 trillion (£1tn), or 70% higher than in a scenario based on its current policy settings. But the benefits are huge, including savings of the same magnitude on oil import bills, the IEA calculates.

Solar’s bright future

At present the Indian government’s projected 50% rise in greenhouse gas emissions by 2040 is enough to offset entirely the projected fall in emissions in Europe over the same period.

The Agency says these high emissions can be avoided. Although solar energy accounts for less than 4% of India’s electricity generation at the moment, and coal 70%, this will change: “Solar power is set for explosive growth, matching coal’s share in the Indian power generation mix within two decades.”

Even so, the government is not going far or fast enough. The scope for rooftop solar panels, solar thermal heating and pumps for irrigation and drinking water is very great.

Transport is another problem area. “An extra 25 million trucks will be travelling on India’s roads by 2040 as road freight activity triples, and a total of 300 million vehicles of all types are added to India’s fleet between now and then,” the report says.

Health will improve

India has many good policies to reduce the effect of this by electrifying rail routes and vehicles. But even so, without more policy improvements, its demand for oil is set to increase more than any other country’s.

Perhaps the most difficult area to control emissions is in the construction sector, with cement and steel production heavily dependent on fossil fuels. Ways to use electricity made with renewables for manufacturing rather than fossil fuels must be found.

There is also a need to replace and improve cooking stoves using gas and electricity instead of firewood and other traditional fuels, like animal dung.

The report makes the point that all the moves to reduce greenhouse gas emissions also help the country’s balance of payments and security by substituting home-produced renewables for fossil fuel imports. This cuts air pollution as well and improves people’s health, further improving economic output. − Climate News Network

Millions will die if world fails on climate promises

Action to keep climate promises could prevent millions of deaths each year. Unless nations try harder, that won’t happen.

LONDON, 16 February, 2021 − Scientists have looked at conditions in just nine of the world’s 200 nations and found that − if the world keeps its Paris climate promises, of containing global heating to “well below” 2°C by 2100 − millions of lives could be saved.

And another team has looked at what nations actually propose to do so far to hit the Paris targets and found that it is not enough: that everybody will have to be 80% more ambitious.

But, though costly, such ambitions would deliver direct rewards. For a start, the consequences of embarking on policies that would seriously reduce the greenhouse gas emissions that fuel potentially catastrophic climate change could lead to better diets in Brazil, China, Germany, India, Indonesia, Nigeria, South Africa, the UK and the US: that alone could save 6.1 million lives.

Thanks to the cleaner air that would come with a drastic reduction in fossil fuel combustion, another 1.6 million people could expect to breathe freely for another year. And the shift from private cars to public transport and foot or bicycle journeys would mean another 2.1 million of us could expect to go on benefiting from the additional exercise for another year, every year.

The Lancet Countdown on Health and Climate Change says in the journal Lancet Planetary Health that it selected the nine nations because they embraced around half the global population and accounted for seven-tenths of the world’s greenhouse gas emissions.

“The message is stark. Not only does delivering on Paris prevent millions dying prematurely each year; the quality of life for millions more will be improved through better health”

The Countdown also looked at a range of scenarios for action. And the researchers also considered what, so far, those nine nations had promised to do to contain climate change − the international bureaucratic language calls such promises nationally determined contributions, or NDCs − and found them far short of the effective target: right now, the world is heading for a global temperature rise by 2100 of 3°C or more.

And with these higher global average temperatures there will be more devastating and possibly lethal heat waves, more intense and more frequent storms, protracted drought, torrential rain and flooding, and rising sea levels that will intensify erosion and coastal flooding.

The damage that these threaten alone delivers a long-term economic case for concerted global action to shift agricultural emphasis, save natural ecosystems and switch to renewable fuel sources. But the right choice of action could make lives a great deal better as well.

“The message is stark,” said Ian Hamilton, executive director of the Lancet Countdown. “Not only does delivering on Paris prevent millions dying prematurely each year; the quality of life for millions more will be improved through better health. We have an opportunity now to place health in the forefront of climate change policies to save even more lives.”

On the same day, a US team published the results of a look at what nations had to do to actually meet the goal chosen at a global conference in Paris in 2015 to contain global heating to no more than 2°C above what had been the long-term average for most of human history.

Avoiding despair

In the last century alone the planet has warmed by more than 1°C, and the last six years have been the warmest six years since records began. The promises made in Paris, if kept, could mean a 1% drop in greenhouse gas emissions every year.

But, scientists say in the journal Communications Earth and Environment, that will not contain global heating to 2°C. To deliver on the promise, the world must reduce emissions by 1.8% a year. That is, the global community will have to try 80% harder.

Some nations are nearer the more ambitious target: China’s declared plans so far would require only a 7% boost. The UK would have to raise its game by 17%. The US − which abandoned the Paris Agreement under former President Trump − has 38% more work to do.

“If you say ‘Everything’s a disaster and we need to radically overhaul society’ there’s a feeling of hopelessness,” said Adrian Raftery of the University of Washington, one of the authors.

“But if we say ‘We need to reduce emissions by 1.8% a year’ that’s a different mindset.” − Climate News Network

Action to keep climate promises could prevent millions of deaths each year. Unless nations try harder, that won’t happen.

LONDON, 16 February, 2021 − Scientists have looked at conditions in just nine of the world’s 200 nations and found that − if the world keeps its Paris climate promises, of containing global heating to “well below” 2°C by 2100 − millions of lives could be saved.

And another team has looked at what nations actually propose to do so far to hit the Paris targets and found that it is not enough: that everybody will have to be 80% more ambitious.

But, though costly, such ambitions would deliver direct rewards. For a start, the consequences of embarking on policies that would seriously reduce the greenhouse gas emissions that fuel potentially catastrophic climate change could lead to better diets in Brazil, China, Germany, India, Indonesia, Nigeria, South Africa, the UK and the US: that alone could save 6.1 million lives.

Thanks to the cleaner air that would come with a drastic reduction in fossil fuel combustion, another 1.6 million people could expect to breathe freely for another year. And the shift from private cars to public transport and foot or bicycle journeys would mean another 2.1 million of us could expect to go on benefiting from the additional exercise for another year, every year.

The Lancet Countdown on Health and Climate Change says in the journal Lancet Planetary Health that it selected the nine nations because they embraced around half the global population and accounted for seven-tenths of the world’s greenhouse gas emissions.

“The message is stark. Not only does delivering on Paris prevent millions dying prematurely each year; the quality of life for millions more will be improved through better health”

The Countdown also looked at a range of scenarios for action. And the researchers also considered what, so far, those nine nations had promised to do to contain climate change − the international bureaucratic language calls such promises nationally determined contributions, or NDCs − and found them far short of the effective target: right now, the world is heading for a global temperature rise by 2100 of 3°C or more.

And with these higher global average temperatures there will be more devastating and possibly lethal heat waves, more intense and more frequent storms, protracted drought, torrential rain and flooding, and rising sea levels that will intensify erosion and coastal flooding.

The damage that these threaten alone delivers a long-term economic case for concerted global action to shift agricultural emphasis, save natural ecosystems and switch to renewable fuel sources. But the right choice of action could make lives a great deal better as well.

“The message is stark,” said Ian Hamilton, executive director of the Lancet Countdown. “Not only does delivering on Paris prevent millions dying prematurely each year; the quality of life for millions more will be improved through better health. We have an opportunity now to place health in the forefront of climate change policies to save even more lives.”

On the same day, a US team published the results of a look at what nations had to do to actually meet the goal chosen at a global conference in Paris in 2015 to contain global heating to no more than 2°C above what had been the long-term average for most of human history.

Avoiding despair

In the last century alone the planet has warmed by more than 1°C, and the last six years have been the warmest six years since records began. The promises made in Paris, if kept, could mean a 1% drop in greenhouse gas emissions every year.

But, scientists say in the journal Communications Earth and Environment, that will not contain global heating to 2°C. To deliver on the promise, the world must reduce emissions by 1.8% a year. That is, the global community will have to try 80% harder.

Some nations are nearer the more ambitious target: China’s declared plans so far would require only a 7% boost. The UK would have to raise its game by 17%. The US − which abandoned the Paris Agreement under former President Trump − has 38% more work to do.

“If you say ‘Everything’s a disaster and we need to radically overhaul society’ there’s a feeling of hopelessness,” said Adrian Raftery of the University of Washington, one of the authors.

“But if we say ‘We need to reduce emissions by 1.8% a year’ that’s a different mindset.” − Climate News Network

Bill Gates: A stark and simple message for the world

His new book affirms what climate scientists have been saying for decades. But Bill Gates says it well, all the same.

LONDON, 15 February, 2021 − Bill Gates − yes, that Bill Gates − has for years been financing studies in geo-engineering: he calls it a “Break Glass in Case of Emergency” kind of tool.

But he also says, in a new book, How to Avoid a Climate Disaster: the Solutions We Have and the Breakthroughs We Need, that he has put much more money into the challenge of adapting to and mitigating climate change driven by global heating powered by greenhouse emissions that are a consequence of our dependence on fossil fuels.

The founder of Microsoft, now a philanthropist, says all geo-engineering approaches − to dim the sunlight, perhaps, or make clouds brighter − turn out to be relatively cheap compared with the scale of the problems ahead for the world. All the effects are relatively short-lived, so there might be no long-term impacts.

But the third thing they have in common is that the technical challenges to implementing them would be as nothing compared with the political hurdles such ambitions must face.

Not for dummies

There are some very encouraging things about this disarming book, and one of them is that on every page it addresses the messy uncertainties of the real world, rather than an ideal set of solutions.

People who have already thought a lot about the hazards and complexities of global temperature rise might be tempted to dismiss it as Climate Change for Dummies. They’d be wrong.

First, Gates addresses a global audience that includes (for instance) US Republican voters, fewer than one in four of whom understand that climate change is a consequence of what humans have done.

Then Gates write as an engineer. He starts from the basics and arrives swiftly and by the shortest route at a series of firm conclusions: sophisticated, but still outlined with considerable clarity and a happy trick of pinning big answers to down-to-earth analogies.

“There are two numbers you need to know about climate change. The first is 51 billion. The second is zero”

Crude oil, he calculates, “is cheaper than a soft drink”. By mid-century “climate change could be just as deadly as Covid-19, and by 2100 it could be five times as deadly”.

And population growth creates prodigious demands: by 2060, the world’s building stock will double. “That’s like putting up another New York City every month for 40 years.”

I call it a disarming book: yes, he concedes that the world is not lacking in rich men with big ideas about what other people should do; yes, he flew a private plane to the Paris Conference in 2015. He doesn’t deny being a rich guy with an opinion and an “absurdly high” carbon footprint. But he believes it is an informed opinion, and he’s always trying to learn more.

And then he gets on with clarifying the big challenges. Yes, there’s no choice: the world has to get to zero-carbon. It’s going to be difficult to achieve the technologies, the political will, the international consensus. Humans have to accomplish something gigantic, much faster than anything ever done before.

Simple message

He turns to the details: the questions that need to be addressed; the separate problems of electrical energy, of manufacture, of diet and agriculture, of transport, of adaptation; government policy, citizen choice and so on.

He touches on biofuels, nuclear power (“this might sound self-serving, given that I own an advanced nuclear company”), global development, global health, international co-operation and individual choices, all with the same brisk clarity. There already exists a huge literature of climate change: this is a useful addition.

That may be because he keeps the message simple from the start. Right now humans add 51 billion tons of greenhouse gases to the atmosphere every year. To avoid the worst effects of climate change, we have to emit none.

“There are two numbers you need to know about climate change,” he writes in his opening sentences. “The first is 51 billion. The second is zero.” − Climate News Network

* * * * * * *

How to Avoid a Climate Disaster: the Solutions We Have and the Breakthroughs We Need: Allen Lane, £20. By Bill Gates

His new book affirms what climate scientists have been saying for decades. But Bill Gates says it well, all the same.

LONDON, 15 February, 2021 − Bill Gates − yes, that Bill Gates − has for years been financing studies in geo-engineering: he calls it a “Break Glass in Case of Emergency” kind of tool.

But he also says, in a new book, How to Avoid a Climate Disaster: the Solutions We Have and the Breakthroughs We Need, that he has put much more money into the challenge of adapting to and mitigating climate change driven by global heating powered by greenhouse emissions that are a consequence of our dependence on fossil fuels.

The founder of Microsoft, now a philanthropist, says all geo-engineering approaches − to dim the sunlight, perhaps, or make clouds brighter − turn out to be relatively cheap compared with the scale of the problems ahead for the world. All the effects are relatively short-lived, so there might be no long-term impacts.

But the third thing they have in common is that the technical challenges to implementing them would be as nothing compared with the political hurdles such ambitions must face.

Not for dummies

There are some very encouraging things about this disarming book, and one of them is that on every page it addresses the messy uncertainties of the real world, rather than an ideal set of solutions.

People who have already thought a lot about the hazards and complexities of global temperature rise might be tempted to dismiss it as Climate Change for Dummies. They’d be wrong.

First, Gates addresses a global audience that includes (for instance) US Republican voters, fewer than one in four of whom understand that climate change is a consequence of what humans have done.

Then Gates write as an engineer. He starts from the basics and arrives swiftly and by the shortest route at a series of firm conclusions: sophisticated, but still outlined with considerable clarity and a happy trick of pinning big answers to down-to-earth analogies.

“There are two numbers you need to know about climate change. The first is 51 billion. The second is zero”

Crude oil, he calculates, “is cheaper than a soft drink”. By mid-century “climate change could be just as deadly as Covid-19, and by 2100 it could be five times as deadly”.

And population growth creates prodigious demands: by 2060, the world’s building stock will double. “That’s like putting up another New York City every month for 40 years.”

I call it a disarming book: yes, he concedes that the world is not lacking in rich men with big ideas about what other people should do; yes, he flew a private plane to the Paris Conference in 2015. He doesn’t deny being a rich guy with an opinion and an “absurdly high” carbon footprint. But he believes it is an informed opinion, and he’s always trying to learn more.

And then he gets on with clarifying the big challenges. Yes, there’s no choice: the world has to get to zero-carbon. It’s going to be difficult to achieve the technologies, the political will, the international consensus. Humans have to accomplish something gigantic, much faster than anything ever done before.

Simple message

He turns to the details: the questions that need to be addressed; the separate problems of electrical energy, of manufacture, of diet and agriculture, of transport, of adaptation; government policy, citizen choice and so on.

He touches on biofuels, nuclear power (“this might sound self-serving, given that I own an advanced nuclear company”), global development, global health, international co-operation and individual choices, all with the same brisk clarity. There already exists a huge literature of climate change: this is a useful addition.

That may be because he keeps the message simple from the start. Right now humans add 51 billion tons of greenhouse gases to the atmosphere every year. To avoid the worst effects of climate change, we have to emit none.

“There are two numbers you need to know about climate change,” he writes in his opening sentences. “The first is 51 billion. The second is zero.” − Climate News Network

* * * * * * *

How to Avoid a Climate Disaster: the Solutions We Have and the Breakthroughs We Need: Allen Lane, £20. By Bill Gates

Solar power’s future could soon be overshadowed

Despite its recent runaway success, solar power’s future as a key way to counter climate chaos could soon be at risk.

LONDON, 12 February, 2021– As more households and industries have opted to harness the sun’s energy, a small but definite shadow is nagging at the many manufacturers who have put their faith in solar power’s future.

Prices have fallen dramatically: according to the International Energy Agency, the cost of producing electricity from solar energy dropped 80% over the past decade. But a mix of international economic rivalries and human rights issues could hamper the onward expansion of solar around the world.

Up till 15 years ago companies in Europe and Japan dominated the solar manufacturing industry. That has all changed: as with so many manufactured products, China now accounts for the bulk of solar equipment produced globally, with about a 70% share.

China itself is also by far the world’s biggest market for solar: about half of all solar power installed round the globe is in China.

China-based companies have invested heavily in sophisticated manufacturing facilities and in research and development. The country’s dominance of the solar manufacturing sector has caused concern in some countries.

“We’ve been telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d ask all solar companies to immediately leave the region”

Manufacturers of photovoltaic panels and other solar products in East Asia, the US and Europe have alleged that cheaper, state-subsidised goods from China have hampered development of home-grown solar industries.

The former Trump administration in the US voiced increasingly strident opposition to what it saw as unfair trading practices by China: in early 2018 Washington slapped a 30% tariff on solar imports from China.

The resulting setback for the US solar market – and China’s exporters – was only temporary. The appetite in the US and elsewhere for solar power continues to grow.

In many countries solar energy is out-competing fossil fuels on price. Meanwhile new technologies and more efficient batteries mean large amounts of solar power can be stored for use in periods when the sun doesn’t shine.

Waiting for Biden

In 2019 there was a 24% increase in the number of solar installations in the US, with utility companies, particularly in sunnier and more environmentally progressive states such as California, leading the solar surge.

Whether or not the new Biden administration in the US will soften the hard line taken on China by former President Trump is uncertain.

Some feel that, while Biden might seek to ease trade tensions, there could be more emphasis on human rights issues, particularly in relation to the widely reported actions taken by Beijing against the Uighurs and other Muslim minorities in the north-western province of Xinjiang.

This could have serious implications for the solar industry, not only in China but worldwide. A number of China’s big solar manufacturers, some in partnership with foreign companies, have concentrated their operations in Xinjiang. The province accounts for the bulk of China’s production of polysilicon, one of the most important base materials for solar panels.

There have been reports not only about Uighurs and other groups in Xinjiang being forcibly herded into so-called re-education camps, but also of local people being used as forced labour in solar and other industries.

Human rights concern

Reacting to reports of widespread repression in the region, the US recently banned the import of tomatoes and cotton from Xinjiang.

The US Solar Energy Industries Association (SEIA) – a trade body representing the US solar industry and a sector employing an estimated 250,000 people – said it was taking the reports very seriously.

“Forced labour has no place in the solar industry”, said the SEIA. “Since the fall we’ve been proactively telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d like to reiterate this call to action and ask all solar companies to immediately leave the region.”

Beijing has described the reports of forced labour in the province as “the biggest lie of the century”. – Climate News Network

Despite its recent runaway success, solar power’s future as a key way to counter climate chaos could soon be at risk.

LONDON, 12 February, 2021– As more households and industries have opted to harness the sun’s energy, a small but definite shadow is nagging at the many manufacturers who have put their faith in solar power’s future.

Prices have fallen dramatically: according to the International Energy Agency, the cost of producing electricity from solar energy dropped 80% over the past decade. But a mix of international economic rivalries and human rights issues could hamper the onward expansion of solar around the world.

Up till 15 years ago companies in Europe and Japan dominated the solar manufacturing industry. That has all changed: as with so many manufactured products, China now accounts for the bulk of solar equipment produced globally, with about a 70% share.

China itself is also by far the world’s biggest market for solar: about half of all solar power installed round the globe is in China.

China-based companies have invested heavily in sophisticated manufacturing facilities and in research and development. The country’s dominance of the solar manufacturing sector has caused concern in some countries.

“We’ve been telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d ask all solar companies to immediately leave the region”

Manufacturers of photovoltaic panels and other solar products in East Asia, the US and Europe have alleged that cheaper, state-subsidised goods from China have hampered development of home-grown solar industries.

The former Trump administration in the US voiced increasingly strident opposition to what it saw as unfair trading practices by China: in early 2018 Washington slapped a 30% tariff on solar imports from China.

The resulting setback for the US solar market – and China’s exporters – was only temporary. The appetite in the US and elsewhere for solar power continues to grow.

In many countries solar energy is out-competing fossil fuels on price. Meanwhile new technologies and more efficient batteries mean large amounts of solar power can be stored for use in periods when the sun doesn’t shine.

Waiting for Biden

In 2019 there was a 24% increase in the number of solar installations in the US, with utility companies, particularly in sunnier and more environmentally progressive states such as California, leading the solar surge.

Whether or not the new Biden administration in the US will soften the hard line taken on China by former President Trump is uncertain.

Some feel that, while Biden might seek to ease trade tensions, there could be more emphasis on human rights issues, particularly in relation to the widely reported actions taken by Beijing against the Uighurs and other Muslim minorities in the north-western province of Xinjiang.

This could have serious implications for the solar industry, not only in China but worldwide. A number of China’s big solar manufacturers, some in partnership with foreign companies, have concentrated their operations in Xinjiang. The province accounts for the bulk of China’s production of polysilicon, one of the most important base materials for solar panels.

There have been reports not only about Uighurs and other groups in Xinjiang being forcibly herded into so-called re-education camps, but also of local people being used as forced labour in solar and other industries.

Human rights concern

Reacting to reports of widespread repression in the region, the US recently banned the import of tomatoes and cotton from Xinjiang.

The US Solar Energy Industries Association (SEIA) – a trade body representing the US solar industry and a sector employing an estimated 250,000 people – said it was taking the reports very seriously.

“Forced labour has no place in the solar industry”, said the SEIA. “Since the fall we’ve been proactively telling all solar companies operating in the Xinjiang region to immediately move their supply chains. We’d like to reiterate this call to action and ask all solar companies to immediately leave the region.”

Beijing has described the reports of forced labour in the province as “the biggest lie of the century”. – Climate News Network

Carbon-free future is in reach for the US by 2050

America could have a carbon-free future by 2050 with a big switch to wind and solar power, say US government scientists.

LONDON, 11 February, 2021 − The US − per head of population perhaps the world’s most prodigal emitter of greenhouse gases − can reverse that and have a carbon-free future within three decades, at a cost of no more than $1 per person per day.

That would mean renewable energy to power all 50 states: giant wind power farms, solar power stations, electric cars, heat pumps and a range of other technological solutions.

The argument has been made before: made repeatedly; and contested too. But this time the reasoning comes not from individual scientists in a handful of US universities, but from an American government research base: the Department of Energy’s Lawrence Berkeley National Laboratory, with help from the University of San Francisco.

To make the switch more politically feasible, the authors argue, existing power plant could be allowed to live out its economic life; nobody need be asked to scrap a brand new gasoline-driven car for an electric vehicle.

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries”

Their study − in the journal AGU Advances − looked at a range of ways to get to net zero carbon emissions, at costs as low as 0.2% of gross domestic product (GDP, the economist’s favourite measure of national wealth), or as high as 1.2%, with about 90% of power generated by wind or solar energy.

“The decarbonisation of the US energy system is fundamentally an infrastructure transformation,” said Margaret Torn, of the Berkeley Lab, one of the authors.

“It means that by 2050 we need to build many gigawatts of wind and solar plants, new transmission lines, a fleet of electric cars and light trucks, millions of heat pumps to replace conventional furnaces and water heaters, and more energy-efficient buildings, while continuing to research and innovate new technologies.”

The economic costs would be almost exclusively capital costs necessitated by the new infrastructure. That is both bad and good.

Jobs aplenty

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries.

“There’s no question that there will need to be a well thought-out economic transition strategy for fossil fuel-based industries and communities, but there’s also no question that there are a lot of jobs in building a low carbon economy.”

The study also suggests the US could even become a source of what the scientists call “net negative” emissions by mid-century, taking more carbon dioxide out of the atmosphere than is added.

This would mean systematic carbon capture, investment in biofuels, and a lot more electric power; which in turn would cost inland and interstate transmission lines. But, the authors argue, this would be affordable to society just on energy grounds alone. − Climate News Network

America could have a carbon-free future by 2050 with a big switch to wind and solar power, say US government scientists.

LONDON, 11 February, 2021 − The US − per head of population perhaps the world’s most prodigal emitter of greenhouse gases − can reverse that and have a carbon-free future within three decades, at a cost of no more than $1 per person per day.

That would mean renewable energy to power all 50 states: giant wind power farms, solar power stations, electric cars, heat pumps and a range of other technological solutions.

The argument has been made before: made repeatedly; and contested too. But this time the reasoning comes not from individual scientists in a handful of US universities, but from an American government research base: the Department of Energy’s Lawrence Berkeley National Laboratory, with help from the University of San Francisco.

To make the switch more politically feasible, the authors argue, existing power plant could be allowed to live out its economic life; nobody need be asked to scrap a brand new gasoline-driven car for an electric vehicle.

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries”

Their study − in the journal AGU Advances − looked at a range of ways to get to net zero carbon emissions, at costs as low as 0.2% of gross domestic product (GDP, the economist’s favourite measure of national wealth), or as high as 1.2%, with about 90% of power generated by wind or solar energy.

“The decarbonisation of the US energy system is fundamentally an infrastructure transformation,” said Margaret Torn, of the Berkeley Lab, one of the authors.

“It means that by 2050 we need to build many gigawatts of wind and solar plants, new transmission lines, a fleet of electric cars and light trucks, millions of heat pumps to replace conventional furnaces and water heaters, and more energy-efficient buildings, while continuing to research and innovate new technologies.”

The economic costs would be almost exclusively capital costs necessitated by the new infrastructure. That is both bad and good.

Jobs aplenty

“All that infrastructure build equates to jobs, and potentially jobs in the US, as opposed to spending money overseas to buy oil from other countries.

“There’s no question that there will need to be a well thought-out economic transition strategy for fossil fuel-based industries and communities, but there’s also no question that there are a lot of jobs in building a low carbon economy.”

The study also suggests the US could even become a source of what the scientists call “net negative” emissions by mid-century, taking more carbon dioxide out of the atmosphere than is added.

This would mean systematic carbon capture, investment in biofuels, and a lot more electric power; which in turn would cost inland and interstate transmission lines. But, the authors argue, this would be affordable to society just on energy grounds alone. − Climate News Network

Small may prove beautiful for the nuclear industry

The nuclear industry in much of the world is struggling to survive. Reverting to small reactors may be its best hope.

LONDON, 10 February, 2021 − Despite a campaign lasting two decades, the nuclear industry’s dream of building hundreds of large reactors to lead the fight to save the planet from overheating has evaporated.

While renewable energy industries, solar and wind in particular, get ever cheaper and expand faster, nuclear projects are steadily bogged down further in delays, cost over-runs and debt.

Some large nuclear power stations are still under construction in Russia and China, but in Europe and North America they are badly delayed and few in number. Many projects that have been long planned but not yet started are being abandoned.

This is despite the fact that nuclear-friendly governments, particularly those with nuclear-powered ships, submarines and weapons of mass destruction, have not given up on the industry.

But now, instead of building ever-larger reactors, these governments are switching their attention and financial backing to small modular reactors (SMRs).

“There is no justification for building new reactors at Sizewell C or Bradwell B”

These off-the-shelf prototypes can be scaled up or down in size, to double as power plants for ice breakers and submarines, or for use as electricity and heat generators for remote settlements, military bases and, theoretically, urban areas – if the local populations do not protest too loudly.

Currently the UK, the US, Russia and China are pouring large government subsidies into developing SMRs, which are said to be for electricity production, but equally are useful for training key personnel to use reactors for military purposes. In this regard the support of a non-nuclear weapon state (Canada) for SMRs seems odd, but it has many remote off-grid communities that might benefit if the technology works as claimed.

According to the International Atomic Energy Agency small modular reactors have a great future. Its latest report says there are 72 SMRs under development or construction in 18 countries, although large-scale deployment for the technology is still some years off.

For nuclear critics this lengthy timescale is always the problem. Solar and wind power can be deployed in a matter of months, whereas the nuclear timetables always stretch years ahead. Even then, critics wonder, will the promises made for SMRs live up to the hype? They say past experience has shown that timetables slip and costs escalate.

Time is problematic

For the moment this track record does not seem to have dampened politicians’ enthusiasm for the technology. The current promise is that once the prototypes are up and working, parts for future reactors will be made in factories and put together on-site, so reducing energy costs by mass production methods – a bit like assembly lines for cars.

Meanwhile the larger reactor-building projects are definitely in trouble. EDF, the French state-owned and debt-laden nuclear giant, the last of the big European nuclear construction companies, is currently attempting to restructure itself. The plan is to hive off its successful renewable and hydropower enterprises to separate them from its deeply troubled nuclear arm.

But, as Reuters news agency reports, these plans have run into difficulties with the European Union because of fears they may involve unfair state aid to the industry.

Even without this attempt to improve its finances by restructuring, though, EDF’s current nuclear building projects at Flamanville in France and Hinkley Point C in the west of England are behind schedule, and costs are escalating.

Mounting opposition

Flamanville is close to a decade late, and Hinkley Point’s timetable is slipping and its costs rising. Last month the Japanese giant Hitachi finally pulled the plug on its scheme to build twin reactors at Wylfa in North Wales.

Other plans by EDF and its Chinese partners to build two more French-designed giant twin reactors at Sizewell and then two Chinese reactors at Bradwell (both sites are in eastern England) are still officially going ahead. However, despite months of negotiation, neither the UK government nor the two companies have come up with a way of financing them, and opposition to both schemes is growing.

The Nuclear Free Local Authorities (NFLA) group, in a statement on the rising costs of Hinkley Point, said: “Given that renewable technologies are considerably cheaper than new nuclear, and the financial challenges of the pandemic are obvious to all, NFLA believe there needs to be an urgent rethink over the proposed ‘benefits’ of building large and highly expensive new nuclear power stations.

“In this, there is no justification for building new reactors at Sizewell C or Bradwell B.” For the nuclear industry at large, small is sounding increasingly the favoured option. − Climate News Network

The nuclear industry in much of the world is struggling to survive. Reverting to small reactors may be its best hope.

LONDON, 10 February, 2021 − Despite a campaign lasting two decades, the nuclear industry’s dream of building hundreds of large reactors to lead the fight to save the planet from overheating has evaporated.

While renewable energy industries, solar and wind in particular, get ever cheaper and expand faster, nuclear projects are steadily bogged down further in delays, cost over-runs and debt.

Some large nuclear power stations are still under construction in Russia and China, but in Europe and North America they are badly delayed and few in number. Many projects that have been long planned but not yet started are being abandoned.

This is despite the fact that nuclear-friendly governments, particularly those with nuclear-powered ships, submarines and weapons of mass destruction, have not given up on the industry.

But now, instead of building ever-larger reactors, these governments are switching their attention and financial backing to small modular reactors (SMRs).

“There is no justification for building new reactors at Sizewell C or Bradwell B”

These off-the-shelf prototypes can be scaled up or down in size, to double as power plants for ice breakers and submarines, or for use as electricity and heat generators for remote settlements, military bases and, theoretically, urban areas – if the local populations do not protest too loudly.

Currently the UK, the US, Russia and China are pouring large government subsidies into developing SMRs, which are said to be for electricity production, but equally are useful for training key personnel to use reactors for military purposes. In this regard the support of a non-nuclear weapon state (Canada) for SMRs seems odd, but it has many remote off-grid communities that might benefit if the technology works as claimed.

According to the International Atomic Energy Agency small modular reactors have a great future. Its latest report says there are 72 SMRs under development or construction in 18 countries, although large-scale deployment for the technology is still some years off.

For nuclear critics this lengthy timescale is always the problem. Solar and wind power can be deployed in a matter of months, whereas the nuclear timetables always stretch years ahead. Even then, critics wonder, will the promises made for SMRs live up to the hype? They say past experience has shown that timetables slip and costs escalate.

Time is problematic

For the moment this track record does not seem to have dampened politicians’ enthusiasm for the technology. The current promise is that once the prototypes are up and working, parts for future reactors will be made in factories and put together on-site, so reducing energy costs by mass production methods – a bit like assembly lines for cars.

Meanwhile the larger reactor-building projects are definitely in trouble. EDF, the French state-owned and debt-laden nuclear giant, the last of the big European nuclear construction companies, is currently attempting to restructure itself. The plan is to hive off its successful renewable and hydropower enterprises to separate them from its deeply troubled nuclear arm.

But, as Reuters news agency reports, these plans have run into difficulties with the European Union because of fears they may involve unfair state aid to the industry.

Even without this attempt to improve its finances by restructuring, though, EDF’s current nuclear building projects at Flamanville in France and Hinkley Point C in the west of England are behind schedule, and costs are escalating.

Mounting opposition

Flamanville is close to a decade late, and Hinkley Point’s timetable is slipping and its costs rising. Last month the Japanese giant Hitachi finally pulled the plug on its scheme to build twin reactors at Wylfa in North Wales.

Other plans by EDF and its Chinese partners to build two more French-designed giant twin reactors at Sizewell and then two Chinese reactors at Bradwell (both sites are in eastern England) are still officially going ahead. However, despite months of negotiation, neither the UK government nor the two companies have come up with a way of financing them, and opposition to both schemes is growing.

The Nuclear Free Local Authorities (NFLA) group, in a statement on the rising costs of Hinkley Point, said: “Given that renewable technologies are considerably cheaper than new nuclear, and the financial challenges of the pandemic are obvious to all, NFLA believe there needs to be an urgent rethink over the proposed ‘benefits’ of building large and highly expensive new nuclear power stations.

“In this, there is no justification for building new reactors at Sizewell C or Bradwell B.” For the nuclear industry at large, small is sounding increasingly the favoured option. − Climate News Network

Wild flowers and bees contend with climate heat

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoides, Artemisia genipi, Cardamine resedifolia, Leucanthemopsis alpina, Gnaphalium supinum, Sedum alpestre, Minuartia sedoides, Sempervivum arachnoideum, Hieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoides, Artemisia genipi, Cardamine resedifolia, Leucanthemopsis alpina, Gnaphalium supinum, Sedum alpestre, Minuartia sedoides, Sempervivum arachnoideum, Hieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network

Science suggests possible climate link to Covid-19

Researchers think there could be a climate link to Covid-19. In which case, worse could yet happen.

LONDON, 5 February, 2021 − British and US scientists think there may be a connection between global heating driven by profligate fossil fuel use, and the emergence of the bat-borne virus that has triggered a global pandemic and has so far claimed more than two million lives worldwide − in short, a possible climate link to Covid-19.

The connection is possibly quite simple. Rising average temperatures encouraged a change in the natural vegetation of the forests of Yunnan, the southern Chinese province, close to the forests of Laos and Myanmar.

What had been tropical shrubland shifted to tropical savannah and deciduous woodland: the province became a suitable habitat for many bat species. It is also home to the scaly anteater known as the pangolin, and the masked palm civet: both of these have been also proposed as intermediate carriers of the virus. 

And, researchers say, in the last century an additional 40 bat species moved into Yunnan: these may have delivered 100 more types of bat coronavirus to the pool of potential infection.

Magnet for bats

And this “global hotspot” − far from the city where the first human cases were first confirmed − is where all the genetic data suggest that the coronavirus known as SARS-CoV-2 may have arisen, says a study in the journal Science of the Total Environment.

“Climate change over the last century has made the habitat in Yunnan province suitable for more bat species,” said Robert Beyer of the University of Cambridge, now at the Potsdam Institute for Climate Impact Research in Germany, who led the research.

“Understanding how the global distribution of bat species has shifted as a result of climate change may be an important step in reconstructing the origin of the Covid-19 outbreak.”

That animals carry viruses which can infect other species is well established: the HIV-Aids pandemic, the Ebola outbreaks in Africa and many other infections have all been linked to animal-to-human transmission.

For decades, scientists have been recording new “zoonotic” or animal-borne diseases in humans at the rate of two a year. An estimated 80% of all the viruses linked to human disease are of animal origin, including rabies.

“The fact that climate change can accelerate the transmission of wildlife pathogens to humans should be an urgent wake-up call to reduce global emissions”

The link between human disturbance of wilderness and disease outbreak has been made before, and more than once. A study by Cambridge scientists last year identified 161 steps humankind could take to reduce the ever-growing risks of zoonotic infection that could lead to even more devastating pandemics.

The case for bat transmission of SARS-CoV-2 driven by climate change remains circumstantial. It identifies a suspect and a set of possibly incriminating connections, but does not deliver the evidence for a secure conviction.

Using global records of temperature, rainfall and cloud cover, the scientists behind the latest study mapped global vegetation as it must have been a century ago. Then they used what they knew of the ecology of the world’s bat species to estimate the global distribution of each species 100 years ago. And then they matched this with records of species distribution in the last decade.

“As climate change altered habitats, species left some areas and moved into others − taking their viruses with them. This not only altered the regions where viruses are present, but most likely allowed for new interactions between animals and viruses, causing more harmful viruses to be transmitted or evolve,” Dr Beyer said.

There are more than 1,400 species of bat worldwide: these carry around 3,000 kinds of coronavirus, in ways that are mostly harmless to the host.

Risk increases

If the number of bat species increases, in a region also occupied by humans, then the risk of the infection of a new host, via bat urine, faeces, saliva or other transmission, also increases.

Bat viruses have been linked to Middle East Respiratory Syndrome, or MERS, and Severe Acute Respiratory Syndrome Cov-1 and CoV-2.

The region of Yunnan identified as now richer in bat species is also home to the pangolin, and one theory is that the virus jumped from bat to pangolin, or bat to masked palm civet, and then to humans when a pangolin was sold at a wildlife market in Wuhan, in Hubei province, more than 1200 kilometres away, where the first cases of Covid-19 were detected..

The implication of such a research finding is that, if human disturbance of the natural world increases the chance of such animal-to-human infection, then it will happen again. And it could happen with even greater potential loss of life.

That is why the discovery of this possible climate link to Covid-19 will now attract the minutest attention not only of scientists but of policymakers across the world.

“The fact that climate change can accelerate the transmission of wildlife pathogens to humans should be an urgent wake-up call to reduce global emissions,” said Camilo Mora, of the University of Hawaii, another of the research team. − Climate News Network

Researchers think there could be a climate link to Covid-19. In which case, worse could yet happen.

LONDON, 5 February, 2021 − British and US scientists think there may be a connection between global heating driven by profligate fossil fuel use, and the emergence of the bat-borne virus that has triggered a global pandemic and has so far claimed more than two million lives worldwide − in short, a possible climate link to Covid-19.

The connection is possibly quite simple. Rising average temperatures encouraged a change in the natural vegetation of the forests of Yunnan, the southern Chinese province, close to the forests of Laos and Myanmar.

What had been tropical shrubland shifted to tropical savannah and deciduous woodland: the province became a suitable habitat for many bat species. It is also home to the scaly anteater known as the pangolin, and the masked palm civet: both of these have been also proposed as intermediate carriers of the virus. 

And, researchers say, in the last century an additional 40 bat species moved into Yunnan: these may have delivered 100 more types of bat coronavirus to the pool of potential infection.

Magnet for bats

And this “global hotspot” − far from the city where the first human cases were first confirmed − is where all the genetic data suggest that the coronavirus known as SARS-CoV-2 may have arisen, says a study in the journal Science of the Total Environment.

“Climate change over the last century has made the habitat in Yunnan province suitable for more bat species,” said Robert Beyer of the University of Cambridge, now at the Potsdam Institute for Climate Impact Research in Germany, who led the research.

“Understanding how the global distribution of bat species has shifted as a result of climate change may be an important step in reconstructing the origin of the Covid-19 outbreak.”

That animals carry viruses which can infect other species is well established: the HIV-Aids pandemic, the Ebola outbreaks in Africa and many other infections have all been linked to animal-to-human transmission.

For decades, scientists have been recording new “zoonotic” or animal-borne diseases in humans at the rate of two a year. An estimated 80% of all the viruses linked to human disease are of animal origin, including rabies.

“The fact that climate change can accelerate the transmission of wildlife pathogens to humans should be an urgent wake-up call to reduce global emissions”

The link between human disturbance of wilderness and disease outbreak has been made before, and more than once. A study by Cambridge scientists last year identified 161 steps humankind could take to reduce the ever-growing risks of zoonotic infection that could lead to even more devastating pandemics.

The case for bat transmission of SARS-CoV-2 driven by climate change remains circumstantial. It identifies a suspect and a set of possibly incriminating connections, but does not deliver the evidence for a secure conviction.

Using global records of temperature, rainfall and cloud cover, the scientists behind the latest study mapped global vegetation as it must have been a century ago. Then they used what they knew of the ecology of the world’s bat species to estimate the global distribution of each species 100 years ago. And then they matched this with records of species distribution in the last decade.

“As climate change altered habitats, species left some areas and moved into others − taking their viruses with them. This not only altered the regions where viruses are present, but most likely allowed for new interactions between animals and viruses, causing more harmful viruses to be transmitted or evolve,” Dr Beyer said.

There are more than 1,400 species of bat worldwide: these carry around 3,000 kinds of coronavirus, in ways that are mostly harmless to the host.

Risk increases

If the number of bat species increases, in a region also occupied by humans, then the risk of the infection of a new host, via bat urine, faeces, saliva or other transmission, also increases.

Bat viruses have been linked to Middle East Respiratory Syndrome, or MERS, and Severe Acute Respiratory Syndrome Cov-1 and CoV-2.

The region of Yunnan identified as now richer in bat species is also home to the pangolin, and one theory is that the virus jumped from bat to pangolin, or bat to masked palm civet, and then to humans when a pangolin was sold at a wildlife market in Wuhan, in Hubei province, more than 1200 kilometres away, where the first cases of Covid-19 were detected..

The implication of such a research finding is that, if human disturbance of the natural world increases the chance of such animal-to-human infection, then it will happen again. And it could happen with even greater potential loss of life.

That is why the discovery of this possible climate link to Covid-19 will now attract the minutest attention not only of scientists but of policymakers across the world.

“The fact that climate change can accelerate the transmission of wildlife pathogens to humans should be an urgent wake-up call to reduce global emissions,” said Camilo Mora, of the University of Hawaii, another of the research team. − Climate News Network