Tag Archives: Electricity generation

World Bank helps developing countries’ wind spurt

Wind power is the cheapest way to produce electricity, but some are not persuaded. The World Bank is out to change minds.

LONDON, 1 December, 2020 − Europe and the United States now accept onshore wind power as the cheapest way to generate electricity. But this novel technology still needs subsidising before some developing countries will embrace it. Enter the World Bank.

A total of US$80 billion in subsidies from the Bank has gone over 25 years to 565 developing world onshore wind projects, to persuade governments to invest in renewables rather than rely on fossil fuels.

Central and Latin American countries have received the lion’s share of this investment, but the Asia Pacific region and Eastern Europe have also seen dozens of Bank-funded developments. Now the fastest-growing market is in Africa and the Middle East.

But while continuing to campaign for more onshore wind farms, the World Bank in 2019 started encouraging target countries to embrace offshore wind as well. This uses two approaches: turbines in shallow water, which are fixed to the seabed, and also a newer technology, involving floating turbines anchored by cables at greater depth.

The extraordinary potential for offshore wind, which is being commercially developed very fast in Europe, China and the US, is now seen by the Bank as important for countries like Vietnam – which could harness enough offshore wind power to provide all its electricity needs.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets”

Other countries it has identified with enormous potential for offshore wind include Brazil, Indonesia, India, the Philippines, South Africa and Sri Lanka, all of them countries that need to keep building more power stations to connect every citizen to the national grid.

The Bank began investing in wind power in 1995, with its spending reaching billions of dollars annually in 2011. The biggest single recipient has been Brazil, receiving US$24.2 bn up to the end of 2018, 30% of the total the Bank has invested worldwide.

Many private companies have partnered with the Bank to build the wind farms. The biggest single beneficiary is Enel, the Italian energy giant, which has received US$6.1 bn to complete projects in Brazil, Mexico, South Africa, Romania, Morocco, Bulgaria, Peru, and Russia.

Among the countries now benefitting from the Bank’s continuing onshore wind programme are Egypt, Morocco, Senegal, Jordan, Vietnam, Thailand, Indonesia and the Philippines.

Offshore wind now costs less than nuclear power, and is able to compete in most countries with fossil fuels. Currently the fastest-growing industry in the world, its progress is scarcely affected by the Covid-19 pandemic.

Persistent coal demand

Particularly in Asia, some countries are continuing to burn large quantities of coal and are considering investing in yet more fossil fuel generation unless they can be persuaded that renewables are a better option.

Last year the World Bank began a pilot scheme to explore funding investment in offshore wind in these countries. Launching the scheme Riccardo Puliti, a senior director at the Bank, said: “Offshore wind is a clean, reliable and secure source of energy with massive potential to transform the energy mix in countries that have great wind resources.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets.”

Using data from the Global Wind Atlas, the Bank calculated that developing countries with shallow waters like India, Turkey and Sri Lanka had huge potential with fixed turbines, while others − the Philippines and South Africa, for example − would need floating foundations to reach greater depths, up to 1,000 metres.

For countries like Vietnam, with a mix of shallow and deep water, wind power could solve their entire electricity needs. In theory offshore wind power could produce ten times the amount of electricity that the country currently gets from all its current power stations, the Bank says. − Climate News Network

Wind power is the cheapest way to produce electricity, but some are not persuaded. The World Bank is out to change minds.

LONDON, 1 December, 2020 − Europe and the United States now accept onshore wind power as the cheapest way to generate electricity. But this novel technology still needs subsidising before some developing countries will embrace it. Enter the World Bank.

A total of US$80 billion in subsidies from the Bank has gone over 25 years to 565 developing world onshore wind projects, to persuade governments to invest in renewables rather than rely on fossil fuels.

Central and Latin American countries have received the lion’s share of this investment, but the Asia Pacific region and Eastern Europe have also seen dozens of Bank-funded developments. Now the fastest-growing market is in Africa and the Middle East.

But while continuing to campaign for more onshore wind farms, the World Bank in 2019 started encouraging target countries to embrace offshore wind as well. This uses two approaches: turbines in shallow water, which are fixed to the seabed, and also a newer technology, involving floating turbines anchored by cables at greater depth.

The extraordinary potential for offshore wind, which is being commercially developed very fast in Europe, China and the US, is now seen by the Bank as important for countries like Vietnam – which could harness enough offshore wind power to provide all its electricity needs.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets”

Other countries it has identified with enormous potential for offshore wind include Brazil, Indonesia, India, the Philippines, South Africa and Sri Lanka, all of them countries that need to keep building more power stations to connect every citizen to the national grid.

The Bank began investing in wind power in 1995, with its spending reaching billions of dollars annually in 2011. The biggest single recipient has been Brazil, receiving US$24.2 bn up to the end of 2018, 30% of the total the Bank has invested worldwide.

Many private companies have partnered with the Bank to build the wind farms. The biggest single beneficiary is Enel, the Italian energy giant, which has received US$6.1 bn to complete projects in Brazil, Mexico, South Africa, Romania, Morocco, Bulgaria, Peru, and Russia.

Among the countries now benefitting from the Bank’s continuing onshore wind programme are Egypt, Morocco, Senegal, Jordan, Vietnam, Thailand, Indonesia and the Philippines.

Offshore wind now costs less than nuclear power, and is able to compete in most countries with fossil fuels. Currently the fastest-growing industry in the world, its progress is scarcely affected by the Covid-19 pandemic.

Persistent coal demand

Particularly in Asia, some countries are continuing to burn large quantities of coal and are considering investing in yet more fossil fuel generation unless they can be persuaded that renewables are a better option.

Last year the World Bank began a pilot scheme to explore funding investment in offshore wind in these countries. Launching the scheme Riccardo Puliti, a senior director at the Bank, said: “Offshore wind is a clean, reliable and secure source of energy with massive potential to transform the energy mix in countries that have great wind resources.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets.”

Using data from the Global Wind Atlas, the Bank calculated that developing countries with shallow waters like India, Turkey and Sri Lanka had huge potential with fixed turbines, while others − the Philippines and South Africa, for example − would need floating foundations to reach greater depths, up to 1,000 metres.

For countries like Vietnam, with a mix of shallow and deep water, wind power could solve their entire electricity needs. In theory offshore wind power could produce ten times the amount of electricity that the country currently gets from all its current power stations, the Bank says. − Climate News Network

Western Europe cools on plans for nuclear power

As more reactors face closure, governments in Europe may prefer renewable energy to replace nuclear power.

LONDON, 25 November, 2020 – News that two more reactors in the United Kingdom are to shut down on safety grounds earlier than planned has capped a depressing month for nuclear power in Europe.

The news came after weeks of unfounded speculation, based on “leaks”, that the British government was about to take a stake in a giant new French-designed nuclear power station planned at Sizewell in Suffolk on the east coast of England as part of a “Green New Deal.” Taxpayers’ backing would have enabled the heavily-indebted French company EDF to finance the project.

In the event Boris Johnson, the prime minister, in his 10-point “green” plan  for the UK, boosted a far more speculative alternative scheme from a Rolls-Royce consortium which was helping to pay for research and development into a full-blown proposal to construct 16 small modular reactors (SMRs).

He failed to mention the Sizewell scheme at all, and instead of singing the praises of nuclear power extolled the virtues of offshore wind power, in which the UK is currently the world leader.

Johnson hopes that offshore wind will produce enough electricity to power every home in Britain, leaving little room for a nuclear industry. He has referred to the UK as “becoming the Saudi Arabia of wind power.”

Meanwhile across the English Channel in Belgium the Electrabel company – the Belgian subsidiary of French utility Engie – has cancelled any further planned investment in its seven-strong nuclear reactor fleet because of the government’s intention to phase out nuclear power by 2025.

“The cause of this damage [at Hunterston] is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive”

Plans will only be re-instated if a Belgian government review fails to find enough alternative electricity supply to replace the reactors’ output. The seven Belgian reactors currently produce half the country’s electricity supply.

These reversals come seven years after British governments promised a nuclear renaissance by encouraging French, Japanese, American and finally Chinese companies to build ten nuclear power stations in the UK. Only one station has been begun, a £22 billion (US$29 bn) joint venture between EDF and Chinese backers.

The French, with a 70% stake and the Chinese with 30%, began work on the twin reactors, to be known as Hinkley Point C, in Somerset in the West of England more than two years ago. The station was due to be completed in 2025, but is behind schedule and has cost overruns.

The two partners wanted to replicate these reactors at the planned Suffolk plant, Sizewell C, but EDF has not found the necessary capital to finance it, hoping that the London government would either take a stake or impose a nuclear tax on British consumers to help pay for it.

The idea was for Hinkley Point C and Sizewell C to replace the 14 smaller reactors that EDF owns in Britain, thus keeping the nuclear industry’s 20% share of the UK’s electricity production. Johnson appears to have dashed these hopes. At best Hinkley Point C will produce 7% of the nation’s needs.

Meanwhile there is a question mark over the future of EDF’s remaining reactor fleet in Britain. Two of the 14, also at the Sizewell site, are French-designed pressurised water reactors opened in 1991, and have plenty of life left in them, but the other 12 are all older British-designed advanced gas-cooled reactors (AGRs) that use graphite blocks to control nuclear reactions.

Premature closure

A serious safety flaw has emerged in this design, involving hundreds of cracks in the graphite, causing doubts over whether the reactors could be turned off quickly in an emergency.

After a long stand-off with the UK’s nuclear safety watchdog, the Office for Nuclear Regulation, EDF decided earlier this year to prematurely close two of the worst affected reactors – both in a station known as Hunterston B in Scotland. Now, for the same reason, two further reactors at Hinkley Point B in Somerset will also close. All four reactors will be defuelled in 2022.

Currently six of these 12 AGR reactors are turned off – out of service for maintenance or safety checks. Two of them, at Dungeness B on the south-east coast of England, have been undergoing repairs since 2018 – this time because of corrosion of vital pipework – although cracks in the graphite blocks are also a safety issue here too.

While EDF remains upbeat about its prospects in developing nuclear power and is keeping its remaining ageing AGR reactors going until they can be replaced, it is hard to see where the company will get the money to build a new generation of reactors or attract government subsidies to do so.

The UK’s decision to back the British company Rolls-Royce to develop SMRs means it is unlikely the government has the money or the political inclination to back the French as well.

Rolls-Royce has been badly hit by the Covid-19 pandemic because a large part of its business relies on the struggling aviation business, while it needs support because it makes mini-reactors to power British nuclear submarines. The proposed SMR research programme will allow nuclear-trained personnel to switch between military and civilian programmes.

Long out of office

The Rolls-Royce SMRs are a long shot from the commercial point of view, since they are unproven and likely to be wildly expensive compared with renewable energy. However, they have the political advantage of being British, and their development lies so far into the future that the current government will be out of office before anyone knows whether they actually work or are economic.

As far as the current crop of reactors is concerned, it is clear that at least those with graphite cores are nearing the end of their lives. Nuclear power has some way to go before it can expect a renaissance in the UK.

Paul Dorfman is a research fellow at University College London. He told the Climate News Network: “It is apparent that the graphite cores of Hunterston B, Hinkley B, and possibly all UK AGR reactors have developed and continue to develop significant structural damage to graphite bricks, including keyway cracks in the fuelled section of the reactor.

“It is also clear that the cause of this damage is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive.

“Given that weight loss in graphite blocks and subsequent graphite cracking occurs in all UK AGRs, what’s happening with Hunterston B has significant implications for the entire UK AGR fleet.

Dr Dorfman concluded: “Given the parlous finances of EDF, who are already struggling with their own reactor up-grade bills in France, it is entirely likely that UK nuclear generation will be reduced to  just Sizewell B, with electricity generation relying almost entirely on renewables by the time Hinkley C comes online, very late and over-cost as usual.” – Climate News Network

As more reactors face closure, governments in Europe may prefer renewable energy to replace nuclear power.

LONDON, 25 November, 2020 – News that two more reactors in the United Kingdom are to shut down on safety grounds earlier than planned has capped a depressing month for nuclear power in Europe.

The news came after weeks of unfounded speculation, based on “leaks”, that the British government was about to take a stake in a giant new French-designed nuclear power station planned at Sizewell in Suffolk on the east coast of England as part of a “Green New Deal.” Taxpayers’ backing would have enabled the heavily-indebted French company EDF to finance the project.

In the event Boris Johnson, the prime minister, in his 10-point “green” plan  for the UK, boosted a far more speculative alternative scheme from a Rolls-Royce consortium which was helping to pay for research and development into a full-blown proposal to construct 16 small modular reactors (SMRs).

He failed to mention the Sizewell scheme at all, and instead of singing the praises of nuclear power extolled the virtues of offshore wind power, in which the UK is currently the world leader.

Johnson hopes that offshore wind will produce enough electricity to power every home in Britain, leaving little room for a nuclear industry. He has referred to the UK as “becoming the Saudi Arabia of wind power.”

Meanwhile across the English Channel in Belgium the Electrabel company – the Belgian subsidiary of French utility Engie – has cancelled any further planned investment in its seven-strong nuclear reactor fleet because of the government’s intention to phase out nuclear power by 2025.

“The cause of this damage [at Hunterston] is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive”

Plans will only be re-instated if a Belgian government review fails to find enough alternative electricity supply to replace the reactors’ output. The seven Belgian reactors currently produce half the country’s electricity supply.

These reversals come seven years after British governments promised a nuclear renaissance by encouraging French, Japanese, American and finally Chinese companies to build ten nuclear power stations in the UK. Only one station has been begun, a £22 billion (US$29 bn) joint venture between EDF and Chinese backers.

The French, with a 70% stake and the Chinese with 30%, began work on the twin reactors, to be known as Hinkley Point C, in Somerset in the West of England more than two years ago. The station was due to be completed in 2025, but is behind schedule and has cost overruns.

The two partners wanted to replicate these reactors at the planned Suffolk plant, Sizewell C, but EDF has not found the necessary capital to finance it, hoping that the London government would either take a stake or impose a nuclear tax on British consumers to help pay for it.

The idea was for Hinkley Point C and Sizewell C to replace the 14 smaller reactors that EDF owns in Britain, thus keeping the nuclear industry’s 20% share of the UK’s electricity production. Johnson appears to have dashed these hopes. At best Hinkley Point C will produce 7% of the nation’s needs.

Meanwhile there is a question mark over the future of EDF’s remaining reactor fleet in Britain. Two of the 14, also at the Sizewell site, are French-designed pressurised water reactors opened in 1991, and have plenty of life left in them, but the other 12 are all older British-designed advanced gas-cooled reactors (AGRs) that use graphite blocks to control nuclear reactions.

Premature closure

A serious safety flaw has emerged in this design, involving hundreds of cracks in the graphite, causing doubts over whether the reactors could be turned off quickly in an emergency.

After a long stand-off with the UK’s nuclear safety watchdog, the Office for Nuclear Regulation, EDF decided earlier this year to prematurely close two of the worst affected reactors – both in a station known as Hunterston B in Scotland. Now, for the same reason, two further reactors at Hinkley Point B in Somerset will also close. All four reactors will be defuelled in 2022.

Currently six of these 12 AGR reactors are turned off – out of service for maintenance or safety checks. Two of them, at Dungeness B on the south-east coast of England, have been undergoing repairs since 2018 – this time because of corrosion of vital pipework – although cracks in the graphite blocks are also a safety issue here too.

While EDF remains upbeat about its prospects in developing nuclear power and is keeping its remaining ageing AGR reactors going until they can be replaced, it is hard to see where the company will get the money to build a new generation of reactors or attract government subsidies to do so.

The UK’s decision to back the British company Rolls-Royce to develop SMRs means it is unlikely the government has the money or the political inclination to back the French as well.

Rolls-Royce has been badly hit by the Covid-19 pandemic because a large part of its business relies on the struggling aviation business, while it needs support because it makes mini-reactors to power British nuclear submarines. The proposed SMR research programme will allow nuclear-trained personnel to switch between military and civilian programmes.

Long out of office

The Rolls-Royce SMRs are a long shot from the commercial point of view, since they are unproven and likely to be wildly expensive compared with renewable energy. However, they have the political advantage of being British, and their development lies so far into the future that the current government will be out of office before anyone knows whether they actually work or are economic.

As far as the current crop of reactors is concerned, it is clear that at least those with graphite cores are nearing the end of their lives. Nuclear power has some way to go before it can expect a renaissance in the UK.

Paul Dorfman is a research fellow at University College London. He told the Climate News Network: “It is apparent that the graphite cores of Hunterston B, Hinkley B, and possibly all UK AGR reactors have developed and continue to develop significant structural damage to graphite bricks, including keyway cracks in the fuelled section of the reactor.

“It is also clear that the cause of this damage is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive.

“Given that weight loss in graphite blocks and subsequent graphite cracking occurs in all UK AGRs, what’s happening with Hunterston B has significant implications for the entire UK AGR fleet.

Dr Dorfman concluded: “Given the parlous finances of EDF, who are already struggling with their own reactor up-grade bills in France, it is entirely likely that UK nuclear generation will be reduced to  just Sizewell B, with electricity generation relying almost entirely on renewables by the time Hinkley C comes online, very late and over-cost as usual.” – Climate News Network

Japan faces another Fukushima disaster crisis

A plan to dump a million tonnes of radioactive water from the Fukushima disaster off Japan is alarming local people.

LONDON, 3 November, 2020 − The Japanese government has an unsolvable problem: what to do with more than a million tonnes of water contaminated with radioactive tritium, in store since the Fukushima disaster and growing at more than 150 tonnes a day.

The water, contained in a thousand giant tanks, has been steadily accumulating since the nuclear accident in 2011. It has been used to cool the three reactors that suffered a meltdown as a result of the tsunami that hit the coast.

Tritium is a radioactive element produced as a by-product by nuclear reactors under normal operation, and is present everywhere in the fabric of the reactor buildings, so water used for cooling them is bound to be contaminated by it.

To avoid another potentially catastrophic meltdown in the remaining fuel the cooling has to continue indefinitely, so the problem continues to worsen. The government has been told that Japan will run out of storage tanks by 2022.

Announcement delayed

As often happens when governments are faced with difficult problems, the unpalatable decision to release the contaminated water into the sea has not been formally announced, but the intention of the government to take this course has been leaked and so widely reported.

Immediately both local and worldwide adverse reaction has resulted. There are the direct effects on the local fishermen who fear that no one will want to buy their catch, but over a wider area the health effects are the main concern.

As ever with the nuclear industry, there are two widely different views on tritium. The Health Physics Society says it is a mildly radioactive element that is present everywhere, and doubts that people will be affected by it. But the Nuclear Information and Resource Service believes tritium is far more dangerous and increases the likelihood of cancers, birth defects and genetic disorders.

The issue is further complicated because the Fukushima wastewater contains a number of other radionuclides, not in such high quantities, but sufficient to cause damage. Ian Fairlie, an independent consultant on radioactivity in the environment, is extremely concerned about Japan’s plans and the health of the local people.

“Ten half-lives for tritium is 123 years: that’s how long these tanks will have to last – at least. This will allow time also for politicians to reflect on the wisdom of their support for nuclear power”

In a detailed assessment of the situation he says other highly dangerous radioactive substances, including caesium-137 and strontium-90, are also in the water stored at Fukushima.

They are in lower quantities than the tritium, he says, but still unacceptably high – up to 100 times above the legally permitted limit. All these radionuclides decay over time − some take thousands of years − but tritium decays faster, the danger from it halving every 12.3 years.

In a briefing for the Nuclear Free Local Authorities (NFLA), a UK based organisation, another independent analyst, Tim Deere-Jones, discusses research that shows that tritium binds with organic material in plants and animals.

This is potentially highly damaging to human health because it travels up the food chain in the marine environment, specifically accumulating in fish. This means fish-eating communities on the Japanese coast could ingest much larger quantities of tritium than some physicists think likely.

Relying on dilution

Tim Deere-Jones is also concerned that the tritium will be blown inshore on the prevailing wind in sea spray and will bio-accumulate in food plants, making it risky to eat crops as far as ten miles inland. Because of the potential dangers of releasing the water the NFLA has asked the Japanese government to reconsider its decision.

The government has not yet responded though, because officially it is still considering what to do. However, it is likely to argue that pumping the contaminated water into the sea is acceptable because it will be diluted millions of times, and anyway seawater does already contain minute quantities of tritium.

Dr Fairlie is among many who think this is too dangerous, but he admits there are no easy solutions.

He says: “Barring a miraculous technical discovery which is unlikely, I think TEPCO/Japanese Gov’t [TEPCO is the Tokyo Electric Power Company, owner of the Fukushima Daiichi plant]  will have to buy more land and keep on building more holding tanks to allow for tritium decay to take place. Ten half-lives for tritium is 123 years: that’s how long these tanks will have to last – at least.

“This will allow time not only for tritium to decay, but also for politicians to reflect on the wisdom of their support for nuclear power.” − Climate News Network

A plan to dump a million tonnes of radioactive water from the Fukushima disaster off Japan is alarming local people.

LONDON, 3 November, 2020 − The Japanese government has an unsolvable problem: what to do with more than a million tonnes of water contaminated with radioactive tritium, in store since the Fukushima disaster and growing at more than 150 tonnes a day.

The water, contained in a thousand giant tanks, has been steadily accumulating since the nuclear accident in 2011. It has been used to cool the three reactors that suffered a meltdown as a result of the tsunami that hit the coast.

Tritium is a radioactive element produced as a by-product by nuclear reactors under normal operation, and is present everywhere in the fabric of the reactor buildings, so water used for cooling them is bound to be contaminated by it.

To avoid another potentially catastrophic meltdown in the remaining fuel the cooling has to continue indefinitely, so the problem continues to worsen. The government has been told that Japan will run out of storage tanks by 2022.

Announcement delayed

As often happens when governments are faced with difficult problems, the unpalatable decision to release the contaminated water into the sea has not been formally announced, but the intention of the government to take this course has been leaked and so widely reported.

Immediately both local and worldwide adverse reaction has resulted. There are the direct effects on the local fishermen who fear that no one will want to buy their catch, but over a wider area the health effects are the main concern.

As ever with the nuclear industry, there are two widely different views on tritium. The Health Physics Society says it is a mildly radioactive element that is present everywhere, and doubts that people will be affected by it. But the Nuclear Information and Resource Service believes tritium is far more dangerous and increases the likelihood of cancers, birth defects and genetic disorders.

The issue is further complicated because the Fukushima wastewater contains a number of other radionuclides, not in such high quantities, but sufficient to cause damage. Ian Fairlie, an independent consultant on radioactivity in the environment, is extremely concerned about Japan’s plans and the health of the local people.

“Ten half-lives for tritium is 123 years: that’s how long these tanks will have to last – at least. This will allow time also for politicians to reflect on the wisdom of their support for nuclear power”

In a detailed assessment of the situation he says other highly dangerous radioactive substances, including caesium-137 and strontium-90, are also in the water stored at Fukushima.

They are in lower quantities than the tritium, he says, but still unacceptably high – up to 100 times above the legally permitted limit. All these radionuclides decay over time − some take thousands of years − but tritium decays faster, the danger from it halving every 12.3 years.

In a briefing for the Nuclear Free Local Authorities (NFLA), a UK based organisation, another independent analyst, Tim Deere-Jones, discusses research that shows that tritium binds with organic material in plants and animals.

This is potentially highly damaging to human health because it travels up the food chain in the marine environment, specifically accumulating in fish. This means fish-eating communities on the Japanese coast could ingest much larger quantities of tritium than some physicists think likely.

Relying on dilution

Tim Deere-Jones is also concerned that the tritium will be blown inshore on the prevailing wind in sea spray and will bio-accumulate in food plants, making it risky to eat crops as far as ten miles inland. Because of the potential dangers of releasing the water the NFLA has asked the Japanese government to reconsider its decision.

The government has not yet responded though, because officially it is still considering what to do. However, it is likely to argue that pumping the contaminated water into the sea is acceptable because it will be diluted millions of times, and anyway seawater does already contain minute quantities of tritium.

Dr Fairlie is among many who think this is too dangerous, but he admits there are no easy solutions.

He says: “Barring a miraculous technical discovery which is unlikely, I think TEPCO/Japanese Gov’t [TEPCO is the Tokyo Electric Power Company, owner of the Fukushima Daiichi plant]  will have to buy more land and keep on building more holding tanks to allow for tritium decay to take place. Ten half-lives for tritium is 123 years: that’s how long these tanks will have to last – at least.

“This will allow time not only for tritium to decay, but also for politicians to reflect on the wisdom of their support for nuclear power.” − Climate News Network

World makes haste too slowly on cutting energy use

The annual report card on the global energy industry says progress towards lower energy use must be much faster.

LONDON, 16 October, 2020 – The world is dragging its feet on efforts to tackle the climate crisis by reducing its energy use, according to a global watchdog.

In its World Energy Outlook 2020, the lnternational Energy Agency (IEA) says that while emissions of carbon dioxide (CO2, the main climate-changing greenhouse gas), are falling, the reduction needs to be far steeper to make any meaningful impact.

“Despite a record drop in global emissions this year, the world is far from doing enough to put them into decisive decline”, says Fatih Birol, the IEA’s executive director.

The Agency says energy demand is set to drop by 5% in 2020, with an overall decline of 7% in emissions of CO2 from the global energy sector. This means that annual emissions of CO2 are back to where they were a decade ago, the report says.

Oil demand this year is likely to be down by 8%, while coal use will fall by 7%.

“Solar projects now offer some of the lowest-cost electricity ever seen”

That’s the headline good news: the bad news is that emissions of methane – among the most potent of greenhouse gases – are rising, says the report.

Total global investment in the energy sector is also falling dramatically, and is set to be down 18% year on year.

That means that despite the rise of renewable energy, particularly of solar power, governments, utilities and corporations around the world are still not spending enough to bring about a major transition in energy use – and to meet the challenge of catastrophic climate change.

“Only an acceleration in structural changes to the way the world produces and consumes energy can break the emissions trend for good”, says the IEA.

Problem grids

While hydropower is still the leading source of renewable power, solar is described as the new king of electricity.

“With sharp cost reductions over the past decade, solar PV [solar photovoltaic energy] is consistently cheaper than new coal- or gas-fired power plants in most countries, and solar projects now offer some of the lowest-cost electricity ever seen.”

A major problem is that as solar and wind projects are installed and expanded, other parts of the energy sector also need to be developed, particularly infrastructure associated with electricity grids.

In many parts of the world energy utilities are in severe financial straits and have little or no money to maintain or invest in achieving more efficiencies and in infrastructure.

“Electricity grids could prove to be the weak link in the transformation of the power sector, with implications for the reliability and security of electricity supply”, says the IEA.

Covid-19’s effects

The report says it’s not just the energy industry that has to change. “To reach net-zero emissions, governments, energy companies, investors and citizens all need to be on board – and will all have unprecedented contributions to make.”

The Covid crisis is a major factor in assessing the global energy outlook.

The pandemic, says the IEA, has caused more disruption in the energy sector than any other event in recent history, with impacts for years to come.

“It is too soon to say whether today’s crisis represents a setback for efforts to bring about a more secure and sustainable energy system, or a catalyst that accelerates the pace of change”, the report says. – Climate News Network

The annual report card on the global energy industry says progress towards lower energy use must be much faster.

LONDON, 16 October, 2020 – The world is dragging its feet on efforts to tackle the climate crisis by reducing its energy use, according to a global watchdog.

In its World Energy Outlook 2020, the lnternational Energy Agency (IEA) says that while emissions of carbon dioxide (CO2, the main climate-changing greenhouse gas), are falling, the reduction needs to be far steeper to make any meaningful impact.

“Despite a record drop in global emissions this year, the world is far from doing enough to put them into decisive decline”, says Fatih Birol, the IEA’s executive director.

The Agency says energy demand is set to drop by 5% in 2020, with an overall decline of 7% in emissions of CO2 from the global energy sector. This means that annual emissions of CO2 are back to where they were a decade ago, the report says.

Oil demand this year is likely to be down by 8%, while coal use will fall by 7%.

“Solar projects now offer some of the lowest-cost electricity ever seen”

That’s the headline good news: the bad news is that emissions of methane – among the most potent of greenhouse gases – are rising, says the report.

Total global investment in the energy sector is also falling dramatically, and is set to be down 18% year on year.

That means that despite the rise of renewable energy, particularly of solar power, governments, utilities and corporations around the world are still not spending enough to bring about a major transition in energy use – and to meet the challenge of catastrophic climate change.

“Only an acceleration in structural changes to the way the world produces and consumes energy can break the emissions trend for good”, says the IEA.

Problem grids

While hydropower is still the leading source of renewable power, solar is described as the new king of electricity.

“With sharp cost reductions over the past decade, solar PV [solar photovoltaic energy] is consistently cheaper than new coal- or gas-fired power plants in most countries, and solar projects now offer some of the lowest-cost electricity ever seen.”

A major problem is that as solar and wind projects are installed and expanded, other parts of the energy sector also need to be developed, particularly infrastructure associated with electricity grids.

In many parts of the world energy utilities are in severe financial straits and have little or no money to maintain or invest in achieving more efficiencies and in infrastructure.

“Electricity grids could prove to be the weak link in the transformation of the power sector, with implications for the reliability and security of electricity supply”, says the IEA.

Covid-19’s effects

The report says it’s not just the energy industry that has to change. “To reach net-zero emissions, governments, energy companies, investors and citizens all need to be on board – and will all have unprecedented contributions to make.”

The Covid crisis is a major factor in assessing the global energy outlook.

The pandemic, says the IEA, has caused more disruption in the energy sector than any other event in recent history, with impacts for years to come.

“It is too soon to say whether today’s crisis represents a setback for efforts to bring about a more secure and sustainable energy system, or a catalyst that accelerates the pace of change”, the report says. – Climate News Network

Food, waste, power: Ingenuity helps the climate

Electricity from the gentlest winds, plastic from exhaust, old packing turned into lunch: human ingenuity helps the climate.

LONDON, 7 October, 2020 − Chinese scientists have found a way to harness wind power when there is no wind, just a gentle breeze: one way in which human ingenuity helps the climate crisis towards a resolution.

There are others. Californian researchers have tested a copper wire catalyst that can convert carbon dioxide into ethylene. In effect, fuel exhaust could fuel industry − and help contain global heating.

And a team in the US Midwest has begun a military project to develop a portable system that could turn waste plastic and paper into food for soldiers in the field. If it works, it could add new resonance to the term “iron rations” and deliver another answer to the challenge of plastic waste.

All three advances are so far on a very small scale. Two of them depend on nano-engineering, the making of materials at scales of a billionth of a metre, while the third calls on help from the microbial world. None of them is yet near commercial exploitation.

But all of them are yet further examples of the astonishing ingenuity and resource at work in the world’s laboratories and universities, in pursuit of ways to recover energy, reduce fossil fuel dependence, recycle detritus, and contain climate change.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve”

Wind power worldwide is now big business, but not on days when there is no wind. Researchers in Beijing, Chongqing, Shanghai and Singapore write in the journal Cell Reports Physical Science that they have created a nanogenerator that can salvage energy from a breeze as mild as 1.6 metres a second. Worn on a sleeve, it could generate energy to power a cellphone while its wearer walks along a street

It works on a principle known as the tribo-electric effect. There is no turbine. Two plastic strips in a tube flutter and collide against each other in an airflow. When separated from contact, these two strips become electrically charged, and the energy can be captured and stored. The prototype can already power 100 LED lights and temperature sensors. It could be scaled up to 1000 watts.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve,” said Ya Yang, of the Chinese Academy of Sciences.

“Unlike wind turbines that use coils and magnets, where the costs are fixed, we can pick and choose low-cost materials for our device. Our device can be safely applied to nature reserves or cities, because it doesn’t have rotating structures.”

Quicker reaction

Ethylene is a chemical used to make plastics, solvents and cosmetics. Scientists report in the journal Nature Catalysis that they have exploited specially-shaped copper surfaces to reduce carbon dioxide (CO2) to ethylene, C2H4. Other researchers are attempting to turn CO2 into methane, or even jet fuel. Methane, or natural gas, is used industrially to make ethylene.

The latest study aims to cut out the natural gas, and make ethylene directly: world demand stands so far at 158 million tonnes, for plastic packaging or polyethylene, and other products.

“The idea of using copper to catalyse this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production,” said William Goddard, of the California Institute of Technology, and one of the authors.

“This study shows a solid path towards that mark, with the potential to transform ethylene production into a greener industry, using CO2 that would otherwise end up in the atmosphere.”

The ambition to convert plastic and paper waste into food is so far just that, an ambition: the US Defense Advanced Research Projects Agency (DARPA) has put up $2.7 million (£2.1m) towards a co-operative effort to solve a rubbish problem and deliver edible single-cell food rich in proteins and vitamins.

Appetite for plastic

Yeast is a nourishing single cell protein. So is the spread popular with Australians, called Vegemite. What the US researchers want is a system that soldiers could carry into the field, and concentrate waste into mouthfuls of high-protein nourishment. It is based on trials with biomass pyrolysis to turn paper into sugar, and the conversion of plastics into fatty compounds with heat and a little help from microbes.

“Plastics are in fact biodegradable but the process is very slow, as evidenced by the accumulation of plastic waste in the environment,” said Robert Brown of Iowa State University, principal investigator.

“We can dramatically increase oxo-degradation of plastics to fatty compounds by raising the temperature a few hundred degrees Fahrenheit. The cooled product is used to grow yeast or bacteria into single cell proteins suitable as food.”

The system would, the researchers say, “improve military logistics resiliency and extend military missions.” Beyond that, it could go a long way to helping with the challenge of growing plastic waste worldwide, and creating an extra source of food for an increasingly hungry world. − Climate News Network

Electricity from the gentlest winds, plastic from exhaust, old packing turned into lunch: human ingenuity helps the climate.

LONDON, 7 October, 2020 − Chinese scientists have found a way to harness wind power when there is no wind, just a gentle breeze: one way in which human ingenuity helps the climate crisis towards a resolution.

There are others. Californian researchers have tested a copper wire catalyst that can convert carbon dioxide into ethylene. In effect, fuel exhaust could fuel industry − and help contain global heating.

And a team in the US Midwest has begun a military project to develop a portable system that could turn waste plastic and paper into food for soldiers in the field. If it works, it could add new resonance to the term “iron rations” and deliver another answer to the challenge of plastic waste.

All three advances are so far on a very small scale. Two of them depend on nano-engineering, the making of materials at scales of a billionth of a metre, while the third calls on help from the microbial world. None of them is yet near commercial exploitation.

But all of them are yet further examples of the astonishing ingenuity and resource at work in the world’s laboratories and universities, in pursuit of ways to recover energy, reduce fossil fuel dependence, recycle detritus, and contain climate change.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve”

Wind power worldwide is now big business, but not on days when there is no wind. Researchers in Beijing, Chongqing, Shanghai and Singapore write in the journal Cell Reports Physical Science that they have created a nanogenerator that can salvage energy from a breeze as mild as 1.6 metres a second. Worn on a sleeve, it could generate energy to power a cellphone while its wearer walks along a street

It works on a principle known as the tribo-electric effect. There is no turbine. Two plastic strips in a tube flutter and collide against each other in an airflow. When separated from contact, these two strips become electrically charged, and the energy can be captured and stored. The prototype can already power 100 LED lights and temperature sensors. It could be scaled up to 1000 watts.

“Our intention isn’t to replace existing wind power generation technology. Our goal is to solve the issues that traditional wind turbines can’t solve,” said Ya Yang, of the Chinese Academy of Sciences.

“Unlike wind turbines that use coils and magnets, where the costs are fixed, we can pick and choose low-cost materials for our device. Our device can be safely applied to nature reserves or cities, because it doesn’t have rotating structures.”

Quicker reaction

Ethylene is a chemical used to make plastics, solvents and cosmetics. Scientists report in the journal Nature Catalysis that they have exploited specially-shaped copper surfaces to reduce carbon dioxide (CO2) to ethylene, C2H4. Other researchers are attempting to turn CO2 into methane, or even jet fuel. Methane, or natural gas, is used industrially to make ethylene.

The latest study aims to cut out the natural gas, and make ethylene directly: world demand stands so far at 158 million tonnes, for plastic packaging or polyethylene, and other products.

“The idea of using copper to catalyse this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production,” said William Goddard, of the California Institute of Technology, and one of the authors.

“This study shows a solid path towards that mark, with the potential to transform ethylene production into a greener industry, using CO2 that would otherwise end up in the atmosphere.”

The ambition to convert plastic and paper waste into food is so far just that, an ambition: the US Defense Advanced Research Projects Agency (DARPA) has put up $2.7 million (£2.1m) towards a co-operative effort to solve a rubbish problem and deliver edible single-cell food rich in proteins and vitamins.

Appetite for plastic

Yeast is a nourishing single cell protein. So is the spread popular with Australians, called Vegemite. What the US researchers want is a system that soldiers could carry into the field, and concentrate waste into mouthfuls of high-protein nourishment. It is based on trials with biomass pyrolysis to turn paper into sugar, and the conversion of plastics into fatty compounds with heat and a little help from microbes.

“Plastics are in fact biodegradable but the process is very slow, as evidenced by the accumulation of plastic waste in the environment,” said Robert Brown of Iowa State University, principal investigator.

“We can dramatically increase oxo-degradation of plastics to fatty compounds by raising the temperature a few hundred degrees Fahrenheit. The cooled product is used to grow yeast or bacteria into single cell proteins suitable as food.”

The system would, the researchers say, “improve military logistics resiliency and extend military missions.” Beyond that, it could go a long way to helping with the challenge of growing plastic waste worldwide, and creating an extra source of food for an increasingly hungry world. − Climate News Network

Nuclear power hinders fight against climate change

Countries investing in renewables are achieving carbon reductions far faster than those which opt to back nuclear power.

LONDON, 6 October, 2020 − Countries wishing to reduce carbon emissions should invest in renewables, abandoning any plans for nuclear power stations because they can no longer be considered a low-carbon option.

That is the conclusion of a study by the University of Sussex Business School, published in the journal Nature Energy, which analysed World Bank and International Energy Agency data from 125 countries over a 25-year period.

The study provides evidence that it is difficult to integrate renewables and nuclear together in a low-carbon strategy, because they require two different types of grid. Because of this, the authors say, it is better to avoid building nuclear power stations altogether.

A country which favours large-scale nuclear stations inevitably freezes out the most effective carbon-reducing technologies − small-scale renewables such as solar, wind and hydro power, they conclude.

Perhaps their most surprising finding is that countries around the world with large-scale nuclear programmes do not tend to show significantly lower carbon emissions over time. In poorer countries nuclear investment is associated with relatively higher emissions.

“This raises serious doubts about the wisdom of prioritising investment in nuclear over renewable energy”

The study found that in some large countries, going renewable was up to seven times more effective in lowering carbon emissions than nuclear.

The findings are a severe blow to the nuclear industry, which has been touting itself as the answer to climate change and calling itself a low-carbon energy. The scientists conclude that if countries want to lower emissions substantially, rapidly and as cost-effectively as possible, they should invest in solar and wind power and avoid nuclear.

Benjamin Sovacool, professor of energy policy at the University of Sussex and the study’s lead author, said: “The evidence clearly points to nuclear being the least effective of the two broad carbon emissions abatement strategies, and coupled with its tendency not to co-exist well with its renewable alternative, this raises serious doubts about the wisdom of prioritising investment in nuclear over renewable energy.

“Countries planning large-scale investments in new nuclear power are risking suppression of greater climate benefits from alternative renewable energy investments.”

The report says that as well as long lead times for nuclear, the necessity for the technology to have elaborate oversight of potentially catastrophic safety risks, security against attack, and long-term waste management strategies tends to take up resources and divert attention away from other simpler and much quicker options like renewables.

Consistent results

The nuclear industry has always claimed that countries need both nuclear and renewables in order to provide reliable power for a grid that does not have input from coal- or gas-fuelled power stations.

This study highlights several other papers which show that a reliable electricity supply is possible with 100% renewables, and that keeping nuclear in the mix hinders the development of renewables.

Patrick Schmidt, a co-author from the International School of Management in Munich,  said: “It is astonishing how clear and consistent the results are across different time frames and country sets. In certain large country samples the relationship between renewable electricity and CO2 emissions is up to seven times stronger than the corresponding relationship for nuclear.”

As well as being a blow to the nuclear industry, the paper’s publication comes at a critical time for governments still intending to invest in nuclear power.

For a long time it has been clear that most advanced democratic countries which are not nuclear weapons states and have no wish to be have been investing in renewables and abandoning nuclear power, because it is too expensive and unpopular with the public. In Europe they include Germany, Italy and Spain, with South Korea in the Far East.

Nuclear weapons needs

Nuclear weapons states like the UK and the US, which have both admitted the link between their military and civilian nuclear industries, continue to encourage the private sector to build nuclear stations and are prepared to provide public subsidy or guaranteed prices to induce them to do so.

With the evidence presented by this paper it will not be possible for these governments to claim that building new nuclear power stations is the right policy to halt climate change.

Both Russia and China continue to be enthusiastic about nuclear power, the cost being less important than the influence gained by exporting the technology to developing countries. Providing cheap loans and nuclear power stations gives their governments a long-term foothold in these countries, and involves controlling the supply of nuclear fuel in order to keep the lights on.

Andy Stirling, professor of science and technology policy at Sussex and also a co-author, said: “This paper exposes the irrationality of arguing for nuclear investment based on a ‘do everything’ argument.

“Our findings show not only that nuclear investments around the world tend on balance to be less effective than renewable investments at carbon emissions mitigation, but that tensions between these two strategies can further erode the effectiveness of averting climate disruption.” − Climate News Network

Countries investing in renewables are achieving carbon reductions far faster than those which opt to back nuclear power.

LONDON, 6 October, 2020 − Countries wishing to reduce carbon emissions should invest in renewables, abandoning any plans for nuclear power stations because they can no longer be considered a low-carbon option.

That is the conclusion of a study by the University of Sussex Business School, published in the journal Nature Energy, which analysed World Bank and International Energy Agency data from 125 countries over a 25-year period.

The study provides evidence that it is difficult to integrate renewables and nuclear together in a low-carbon strategy, because they require two different types of grid. Because of this, the authors say, it is better to avoid building nuclear power stations altogether.

A country which favours large-scale nuclear stations inevitably freezes out the most effective carbon-reducing technologies − small-scale renewables such as solar, wind and hydro power, they conclude.

Perhaps their most surprising finding is that countries around the world with large-scale nuclear programmes do not tend to show significantly lower carbon emissions over time. In poorer countries nuclear investment is associated with relatively higher emissions.

“This raises serious doubts about the wisdom of prioritising investment in nuclear over renewable energy”

The study found that in some large countries, going renewable was up to seven times more effective in lowering carbon emissions than nuclear.

The findings are a severe blow to the nuclear industry, which has been touting itself as the answer to climate change and calling itself a low-carbon energy. The scientists conclude that if countries want to lower emissions substantially, rapidly and as cost-effectively as possible, they should invest in solar and wind power and avoid nuclear.

Benjamin Sovacool, professor of energy policy at the University of Sussex and the study’s lead author, said: “The evidence clearly points to nuclear being the least effective of the two broad carbon emissions abatement strategies, and coupled with its tendency not to co-exist well with its renewable alternative, this raises serious doubts about the wisdom of prioritising investment in nuclear over renewable energy.

“Countries planning large-scale investments in new nuclear power are risking suppression of greater climate benefits from alternative renewable energy investments.”

The report says that as well as long lead times for nuclear, the necessity for the technology to have elaborate oversight of potentially catastrophic safety risks, security against attack, and long-term waste management strategies tends to take up resources and divert attention away from other simpler and much quicker options like renewables.

Consistent results

The nuclear industry has always claimed that countries need both nuclear and renewables in order to provide reliable power for a grid that does not have input from coal- or gas-fuelled power stations.

This study highlights several other papers which show that a reliable electricity supply is possible with 100% renewables, and that keeping nuclear in the mix hinders the development of renewables.

Patrick Schmidt, a co-author from the International School of Management in Munich,  said: “It is astonishing how clear and consistent the results are across different time frames and country sets. In certain large country samples the relationship between renewable electricity and CO2 emissions is up to seven times stronger than the corresponding relationship for nuclear.”

As well as being a blow to the nuclear industry, the paper’s publication comes at a critical time for governments still intending to invest in nuclear power.

For a long time it has been clear that most advanced democratic countries which are not nuclear weapons states and have no wish to be have been investing in renewables and abandoning nuclear power, because it is too expensive and unpopular with the public. In Europe they include Germany, Italy and Spain, with South Korea in the Far East.

Nuclear weapons needs

Nuclear weapons states like the UK and the US, which have both admitted the link between their military and civilian nuclear industries, continue to encourage the private sector to build nuclear stations and are prepared to provide public subsidy or guaranteed prices to induce them to do so.

With the evidence presented by this paper it will not be possible for these governments to claim that building new nuclear power stations is the right policy to halt climate change.

Both Russia and China continue to be enthusiastic about nuclear power, the cost being less important than the influence gained by exporting the technology to developing countries. Providing cheap loans and nuclear power stations gives their governments a long-term foothold in these countries, and involves controlling the supply of nuclear fuel in order to keep the lights on.

Andy Stirling, professor of science and technology policy at Sussex and also a co-author, said: “This paper exposes the irrationality of arguing for nuclear investment based on a ‘do everything’ argument.

“Our findings show not only that nuclear investments around the world tend on balance to be less effective than renewable investments at carbon emissions mitigation, but that tensions between these two strategies can further erode the effectiveness of averting climate disruption.” − Climate News Network

Poland’s coal remains king, but renewables gain

When it comes to meeting the challenge of climate change, Poland’s coal reliance leaves it one of Europe’s laggards.

LONDON, 1 October, 2020 – The burning of Poland’s coal, by far the most polluting of fossil fuels, provides more than 75% of its electricity.

But in a country where coal has been king for years and in which mining lobby groups and trades unions have traditionally wielded considerable economic and political power, change is on the way.

Under policies recently announced by the Warsaw government’s climate ministry, the aim is to reduce coal’s share in electricity generation to between 38% and 56% of the total by 2030 – and to between 11% and 28% by 2040.

The government says it will make big investments in nuclear power – with the first energy being generated by 2033 – and in installations for the import of liquefied natural gas. Meanwhile a pipeline importing natural gas from Norway is due to be completed in late 2022.

There’s also a big push into renewables – a part of the energy sector which till recently has been largely ignored by Poland’s rulers. At present the country has only limited onshore wind facilities and none offshore. A national energy and climate plan announced in July this year envisages large-scale development of offshore wind energy.

Solar dawn

“The Baltic Sea offers some of the world’s most favourable conditions”, says Janusz Gajowiecki, president of the Polish Wind Energy Association. “The planned construction of 10GW offshore is just a first step … Poland has a chance to become a leader in the Baltic Sea with a potential (of generating) up to 28GW by 2050.”

One sector where change is already under way is solar power. The growth rate of solar installations in Poland is now among the fastest in Europe: last year solar power grew nearly four times – albeit from a low base – to 784MW. The aim is for solar power to double this year – with 8GW installed by 2025.

Whether Poland will achieve its energy targets depends largely on the country’s politics – and on how much pressure the European Union is willing to exert on what has been one of the largest and fastest-growing economies within the bloc.

Poland’s ruling Law and Justice Party is a conservative body, strongly resistant to change. It is heavily dependent on coal-mining communities – particularly in the coal-rich region of Silesia – for shoring up its power base.

More than 80,000 people are directly employed in the country’s coal industry. Belchatow power station in central Poland is among the world’s biggest coal-fired energy plants.

“The Baltic Sea offers some of the world’s most favourable conditions [for offshore wind] … Poland has a chance to become a leader in the Baltic”

Poland has refused to give its support to an EU-wide plan to go carbon-neutral by mid-century: Warsaw says taking coal out of the country’s energy mix is unrealistic – and far too costly.

“The cost of this idea rises to hundreds of billions of dollars”, a senior energy adviser told the Financial Times. “Politicians trying to proceed with such a process, they are not living on the ground.”

Warsaw says its energy security is a priority: it particularly wants to avoid any dependence on Russia for its power supplies.

Government plans to either open new mines or expand existing ones – open-cast lignite facilities which are a main source of climate-changing greenhouse gases – are being met with strong opposition both within the country and by Poland’s neighbours.

The industry is also coming under fire from health experts concerned about one grave consequence of Poland’s coal: some of the worst air pollution in Europe.

A report by the World Bank says Poland has 36 of the 50 most polluted cities in Europe, and estimates that bad air quality is responsible for more than 44,000 premature deaths there each year. – Climate News Network

When it comes to meeting the challenge of climate change, Poland’s coal reliance leaves it one of Europe’s laggards.

LONDON, 1 October, 2020 – The burning of Poland’s coal, by far the most polluting of fossil fuels, provides more than 75% of its electricity.

But in a country where coal has been king for years and in which mining lobby groups and trades unions have traditionally wielded considerable economic and political power, change is on the way.

Under policies recently announced by the Warsaw government’s climate ministry, the aim is to reduce coal’s share in electricity generation to between 38% and 56% of the total by 2030 – and to between 11% and 28% by 2040.

The government says it will make big investments in nuclear power – with the first energy being generated by 2033 – and in installations for the import of liquefied natural gas. Meanwhile a pipeline importing natural gas from Norway is due to be completed in late 2022.

There’s also a big push into renewables – a part of the energy sector which till recently has been largely ignored by Poland’s rulers. At present the country has only limited onshore wind facilities and none offshore. A national energy and climate plan announced in July this year envisages large-scale development of offshore wind energy.

Solar dawn

“The Baltic Sea offers some of the world’s most favourable conditions”, says Janusz Gajowiecki, president of the Polish Wind Energy Association. “The planned construction of 10GW offshore is just a first step … Poland has a chance to become a leader in the Baltic Sea with a potential (of generating) up to 28GW by 2050.”

One sector where change is already under way is solar power. The growth rate of solar installations in Poland is now among the fastest in Europe: last year solar power grew nearly four times – albeit from a low base – to 784MW. The aim is for solar power to double this year – with 8GW installed by 2025.

Whether Poland will achieve its energy targets depends largely on the country’s politics – and on how much pressure the European Union is willing to exert on what has been one of the largest and fastest-growing economies within the bloc.

Poland’s ruling Law and Justice Party is a conservative body, strongly resistant to change. It is heavily dependent on coal-mining communities – particularly in the coal-rich region of Silesia – for shoring up its power base.

More than 80,000 people are directly employed in the country’s coal industry. Belchatow power station in central Poland is among the world’s biggest coal-fired energy plants.

“The Baltic Sea offers some of the world’s most favourable conditions [for offshore wind] … Poland has a chance to become a leader in the Baltic”

Poland has refused to give its support to an EU-wide plan to go carbon-neutral by mid-century: Warsaw says taking coal out of the country’s energy mix is unrealistic – and far too costly.

“The cost of this idea rises to hundreds of billions of dollars”, a senior energy adviser told the Financial Times. “Politicians trying to proceed with such a process, they are not living on the ground.”

Warsaw says its energy security is a priority: it particularly wants to avoid any dependence on Russia for its power supplies.

Government plans to either open new mines or expand existing ones – open-cast lignite facilities which are a main source of climate-changing greenhouse gases – are being met with strong opposition both within the country and by Poland’s neighbours.

The industry is also coming under fire from health experts concerned about one grave consequence of Poland’s coal: some of the worst air pollution in Europe.

A report by the World Bank says Poland has 36 of the 50 most polluted cities in Europe, and estimates that bad air quality is responsible for more than 44,000 premature deaths there each year. – Climate News Network

Climate Assembly UK: Act now to save our planet

Climate Assembly UK tells British politicians to act faster on climate change. France and Ireland echo its message.

LONDON, 28 September, 2020 − A random group of United Kingdom citizens, Climate Assembly UK: The path to net zero, has delivered an uncompromising verdict on the British approach to the climate crisis: do more, and don’t delay.

The UK is not alone in demanding urgent action. Presented with detailed evidence about the effects of climate change, citizens’ assemblies in two other European countries have come to identical conclusions; we have to make immediate progress, and we must change the way we live.

The most striking common feature about the views of the assemblies convened in Ireland, France and the United Kingdom is that the measures their governments are currently taking are grossly inadequate to tackle climate change.

Policies that politicians have shrunk from imposing on their voters for fear of a backlash have suddenly been urged on them by their own citizens. In Ireland and France this gave both governments the courage to promise to implement most of the assemblies’ recommendations. The UK report released on 10 September has yet to receive a full response, but the signs are encouraging.

The assemblies in each country were composed of a random selection of people to represent all ages, sexes and social groups, first to hear evidence and then to recommend action, including giving clear guidance on priorities.

A similar set of proposals came from the citizens in each of the three countries.

“The Earth can live without us, but we can’t live without her… It is a question of life or death”

On energy they wanted more renewable technologies, wind and solar, to replace fossil fuels.

All three assemblies favoured a reduction in air traffic, taxes on frequent flyers, the phasing out of fossil fuel-powered vehicles, encouragement for all things electric, the insulation of homes, and energy efficiency.

Changes in what we eat – particularly less meat – were also common features. More local production both of food and other goods was  important.

There were detailed recommendations, with for example the French suggesting statutory rules on turning central heating thermostats down to 19°C, and not using air conditioning until temperatures reached 30°C. They also advocated lowering the speed limit for cars, to reduce their emissions.

All the reports also wanted more green spaces, places for wildlife and improved habitats.

The reaction of participants, some of whom knew very little about climate change before being selected, is perhaps best summed up by a quote from the French report: “We have lived together, during nine months, an unprecedented and intense human experience, that led us to become conscious of the imperious necessity to profoundly change the organisation of our society and our ways of life…

“The Earth can live without us, but we can’t live without her… It is a question of life or death.”

Vested interests object

One of the characteristics of this new form of democracy – the citizens’ jury – is the lengths the organisers have to go to in order to select a cross-section of the community. This ensures that all political views are taken into account as well as age, class and race. But as the French experience shows, taking in vast quantities of information about climate change and sharing this experience with others has a profound effect.

In theory the recommendations these juries make should be accepted by all, since the groups have been selected to represent everyone in the country, but it is clear that vested interests are not prepared to do that.

For example, the UK’s right-wing Spectator magazine said of the results of the French assembly: “The problem with citizens’ assemblies is that their members don’t, unlike elected politicians, actually have to deal with the consequences of their breezy and idealistic proposals.

“In the first place, they are rarely representative of the entire population: in France, 25,000 people were approached to see if they wanted to take part; most refused, and 150 were chosen.

“Most of those are people with an agenda, who are prepared to give up entire weekends in return for a stipend of £74 (€86) a day plus expenses: in other words, political activists and people with time on their hands.”

Industry disappointed

Similarly, within days of the British assembly members having heard a great deal of expert evidence making it abundantly clear they wanted more renewables, onshore and offshore wind and solar power, rather than more nuclear energy, the nuclear industry poured cold water on their judgement and preferences.

In a long article offered to the Climate News Network extolling the virtues of nuclear power in fighting climate change, Tom Greatrex, chief executive of the UK’s Nuclear Industry Association, said he was pleased that the assembly wanted to see low carbon ways of producing electricity.

He added: “It is, however, disappointing to see that what this model of engagement was touted as delivering – an understanding of the complexity of decisions that need to be made – is all but absent when it comes to the future power mix.

“There are two lessons in this – firstly, for experts, industry and decision makers to have to communicate much more effectively on the reality of the challenges and the choices they open up. Secondly, that simplistic statements of the impossible made either through wishful thinking or wilful ignorance will not aid decarbonisation – but only increase reliance on burning fossil fuels and the emissions that come from them.”

So it seems that however hard organisers try to select a cross-section of citizens and provide them with clear evidence, there will be an immediate political backlash.

Whether it is climate scientists or citizens’ juries fearing for the future of civilisation, vested interests are always prepared to rubbish what they say. Perhaps though, now that voters (in the form of citizens’ assemblies) have added their voices to those of scientists, politicians will finally have the courage to act on their recommendations. − Climate News Network

Climate Assembly UK tells British politicians to act faster on climate change. France and Ireland echo its message.

LONDON, 28 September, 2020 − A random group of United Kingdom citizens, Climate Assembly UK: The path to net zero, has delivered an uncompromising verdict on the British approach to the climate crisis: do more, and don’t delay.

The UK is not alone in demanding urgent action. Presented with detailed evidence about the effects of climate change, citizens’ assemblies in two other European countries have come to identical conclusions; we have to make immediate progress, and we must change the way we live.

The most striking common feature about the views of the assemblies convened in Ireland, France and the United Kingdom is that the measures their governments are currently taking are grossly inadequate to tackle climate change.

Policies that politicians have shrunk from imposing on their voters for fear of a backlash have suddenly been urged on them by their own citizens. In Ireland and France this gave both governments the courage to promise to implement most of the assemblies’ recommendations. The UK report released on 10 September has yet to receive a full response, but the signs are encouraging.

The assemblies in each country were composed of a random selection of people to represent all ages, sexes and social groups, first to hear evidence and then to recommend action, including giving clear guidance on priorities.

A similar set of proposals came from the citizens in each of the three countries.

“The Earth can live without us, but we can’t live without her… It is a question of life or death”

On energy they wanted more renewable technologies, wind and solar, to replace fossil fuels.

All three assemblies favoured a reduction in air traffic, taxes on frequent flyers, the phasing out of fossil fuel-powered vehicles, encouragement for all things electric, the insulation of homes, and energy efficiency.

Changes in what we eat – particularly less meat – were also common features. More local production both of food and other goods was  important.

There were detailed recommendations, with for example the French suggesting statutory rules on turning central heating thermostats down to 19°C, and not using air conditioning until temperatures reached 30°C. They also advocated lowering the speed limit for cars, to reduce their emissions.

All the reports also wanted more green spaces, places for wildlife and improved habitats.

The reaction of participants, some of whom knew very little about climate change before being selected, is perhaps best summed up by a quote from the French report: “We have lived together, during nine months, an unprecedented and intense human experience, that led us to become conscious of the imperious necessity to profoundly change the organisation of our society and our ways of life…

“The Earth can live without us, but we can’t live without her… It is a question of life or death.”

Vested interests object

One of the characteristics of this new form of democracy – the citizens’ jury – is the lengths the organisers have to go to in order to select a cross-section of the community. This ensures that all political views are taken into account as well as age, class and race. But as the French experience shows, taking in vast quantities of information about climate change and sharing this experience with others has a profound effect.

In theory the recommendations these juries make should be accepted by all, since the groups have been selected to represent everyone in the country, but it is clear that vested interests are not prepared to do that.

For example, the UK’s right-wing Spectator magazine said of the results of the French assembly: “The problem with citizens’ assemblies is that their members don’t, unlike elected politicians, actually have to deal with the consequences of their breezy and idealistic proposals.

“In the first place, they are rarely representative of the entire population: in France, 25,000 people were approached to see if they wanted to take part; most refused, and 150 were chosen.

“Most of those are people with an agenda, who are prepared to give up entire weekends in return for a stipend of £74 (€86) a day plus expenses: in other words, political activists and people with time on their hands.”

Industry disappointed

Similarly, within days of the British assembly members having heard a great deal of expert evidence making it abundantly clear they wanted more renewables, onshore and offshore wind and solar power, rather than more nuclear energy, the nuclear industry poured cold water on their judgement and preferences.

In a long article offered to the Climate News Network extolling the virtues of nuclear power in fighting climate change, Tom Greatrex, chief executive of the UK’s Nuclear Industry Association, said he was pleased that the assembly wanted to see low carbon ways of producing electricity.

He added: “It is, however, disappointing to see that what this model of engagement was touted as delivering – an understanding of the complexity of decisions that need to be made – is all but absent when it comes to the future power mix.

“There are two lessons in this – firstly, for experts, industry and decision makers to have to communicate much more effectively on the reality of the challenges and the choices they open up. Secondly, that simplistic statements of the impossible made either through wishful thinking or wilful ignorance will not aid decarbonisation – but only increase reliance on burning fossil fuels and the emissions that come from them.”

So it seems that however hard organisers try to select a cross-section of citizens and provide them with clear evidence, there will be an immediate political backlash.

Whether it is climate scientists or citizens’ juries fearing for the future of civilisation, vested interests are always prepared to rubbish what they say. Perhaps though, now that voters (in the form of citizens’ assemblies) have added their voices to those of scientists, politicians will finally have the courage to act on their recommendations. − Climate News Network

UK nuclear industry seeks subsidies for survival

The UK nuclear industry hopes the British government will go on subsidising it, despite the existence of cheaper fuels.

LONDON, 23 September, 2020 – The decision by the Japanese company Hitachi to abandon its plan to build two large nuclear plants in the United Kingdom leaves the British government’s energy plans in tatters, and the UK nuclear industry reeling.

The UK’s official plan is still to build ten nuclear stations in Britain, but only three schemes remain. Most have now been cancelled by the companies that planned to build them, principally because they cannot raise the capital to do so. This leaves only the debt-laden French giant EdF and the Chinese state-owned industry still in the field.

At the same time, Britain’s existing nuclear plants are in trouble. They are not ageing gracefully, cracks in their graphite cores and rust in their pipework causing ever-lengthening shutdowns and retirement dates to be brought forward.

The plants at Hunterston B in Scotland, Hinkley Point B in Somerset in the West of England, and Dungeness B in Kent on the south-east coast, are all struggling to survive.

Meanwhile the main competitors to nuclear – solar, and both onshore and offshore wind farms – continue to be built apace and produce electricity at half the price of new nuclear power.

These setbacks for the nuclear industry are mirrored in the US, where existing nuclear plant can no longer compete with renewables and is being retired early by utilities, which need to make a profit to survive in a competitive market.

Vanished incentive

EdF, the only company currently constructing nuclear power stations in western Europe, is currently building two giant new reactors at Hinkley Point C. It hopes to build two more at Sizewell C in Suffolk in eastern England, but these are delayed because the lucrative deal offered by the UK government to induce EdF to build those in Somerset is no longer on offer.

The company awaits a decision from the government on a new way to subsidise Sizewell C, which could mean buying a stake in the power station, or a nuclear tax on consumers to pay for the capital cost, neither of which is likely to be popular with the public.

The problem for the French company is that it currently relies on the Chinese to pay one-third of the cost of both the Hinkley Point and Sizewell stations, and the UK’s relationship with China has soured over Hong Kong democracy and security concerns.

The Chinese also plan to build their own reactor on the seashore at Bradwell in Essex, east of London, as a global showcase for their technology, but because of fears of allowing the Chinese to control part of the UK’s power supply that scheme now looks increasingly unlikely, although officially Beijing is still pressing ahead.

A long-awaited energy White Paper (a government policy document setting out proposals for future legislation) describing how to get the country down to zero carbon emissions by 2050, a target enshrined in law, is due to be published before the end of 2020.

“In the UK, onshore and offshore wind is less than half the cost of nuclear. If the UK government keeps planning for nuclear power plants, it’s not because there was no choice”

The date has already been put back several times. The paper will include the government’s new position on nuclear power, which has not been revised since 2005.

At stake is the future of the nuclear industry, not just in Britain but further afield as well: the UK is the only country in Western Europe that still supports new large-scale nuclear plants.

The nuclear industry is not giving up hope for its technology, despite the bleak prospects. It is pushing the latest idea of small modular reactors (SMRs) that can be factory-built.

In the UK the engineering company Rolls-Royce is pushing its own version of this. Detractors say this is another unproven and potentially expensive diversion from the need to tackle climate change with cheaper renewable technologies.

One glimmer of hope for the industry is the British prime minister Boris Johnson’s chief adviser, Dominic Cummings, who is said to favour “blue sky thinking” and to enthuse about the possibilities offered by “green” hydrogen, produced by electrolysis from either renewables or nuclear stations.

This has led the nuclear industry to consider using reactors to produce hydrogen and so make it part of the green revolution, although it would be a very expensive way of doing it.

Intent on survival

While in the past the nuclear industry has struggled with public alarm about waste issues and radioactivity, it now has one over-riding problem: cheaper competition and its inability to finance itself.

As Mycle Schneider, lead author of the World Nuclear Industry Status Report, puts it in an interview with pv magazine: “It has become obvious that renewables, even unsubsidised, come in at a fraction of the cost of new nuclear power.

“In the UK, onshore and offshore wind is less than half the cost of nuclear. If the UK government keeps planning for nuclear power plants, it’s not because there was no choice, and it has nothing to do with market economy-driven energy policy.”

In western Europe, Japan and the US, where market forces dominate and nuclear power has fallen out of favour, the coming UK White Paper is a potential beacon of hope for what looks like a sunset industry.

The nuclear industry hopes that in Britain it still has a champion that will throw it a lifeline by providing new subsidies. If it does, it will be a political decision that triumphs over financial common sense. – Climate News Network

The UK nuclear industry hopes the British government will go on subsidising it, despite the existence of cheaper fuels.

LONDON, 23 September, 2020 – The decision by the Japanese company Hitachi to abandon its plan to build two large nuclear plants in the United Kingdom leaves the British government’s energy plans in tatters, and the UK nuclear industry reeling.

The UK’s official plan is still to build ten nuclear stations in Britain, but only three schemes remain. Most have now been cancelled by the companies that planned to build them, principally because they cannot raise the capital to do so. This leaves only the debt-laden French giant EdF and the Chinese state-owned industry still in the field.

At the same time, Britain’s existing nuclear plants are in trouble. They are not ageing gracefully, cracks in their graphite cores and rust in their pipework causing ever-lengthening shutdowns and retirement dates to be brought forward.

The plants at Hunterston B in Scotland, Hinkley Point B in Somerset in the West of England, and Dungeness B in Kent on the south-east coast, are all struggling to survive.

Meanwhile the main competitors to nuclear – solar, and both onshore and offshore wind farms – continue to be built apace and produce electricity at half the price of new nuclear power.

These setbacks for the nuclear industry are mirrored in the US, where existing nuclear plant can no longer compete with renewables and is being retired early by utilities, which need to make a profit to survive in a competitive market.

Vanished incentive

EdF, the only company currently constructing nuclear power stations in western Europe, is currently building two giant new reactors at Hinkley Point C. It hopes to build two more at Sizewell C in Suffolk in eastern England, but these are delayed because the lucrative deal offered by the UK government to induce EdF to build those in Somerset is no longer on offer.

The company awaits a decision from the government on a new way to subsidise Sizewell C, which could mean buying a stake in the power station, or a nuclear tax on consumers to pay for the capital cost, neither of which is likely to be popular with the public.

The problem for the French company is that it currently relies on the Chinese to pay one-third of the cost of both the Hinkley Point and Sizewell stations, and the UK’s relationship with China has soured over Hong Kong democracy and security concerns.

The Chinese also plan to build their own reactor on the seashore at Bradwell in Essex, east of London, as a global showcase for their technology, but because of fears of allowing the Chinese to control part of the UK’s power supply that scheme now looks increasingly unlikely, although officially Beijing is still pressing ahead.

A long-awaited energy White Paper (a government policy document setting out proposals for future legislation) describing how to get the country down to zero carbon emissions by 2050, a target enshrined in law, is due to be published before the end of 2020.

“In the UK, onshore and offshore wind is less than half the cost of nuclear. If the UK government keeps planning for nuclear power plants, it’s not because there was no choice”

The date has already been put back several times. The paper will include the government’s new position on nuclear power, which has not been revised since 2005.

At stake is the future of the nuclear industry, not just in Britain but further afield as well: the UK is the only country in Western Europe that still supports new large-scale nuclear plants.

The nuclear industry is not giving up hope for its technology, despite the bleak prospects. It is pushing the latest idea of small modular reactors (SMRs) that can be factory-built.

In the UK the engineering company Rolls-Royce is pushing its own version of this. Detractors say this is another unproven and potentially expensive diversion from the need to tackle climate change with cheaper renewable technologies.

One glimmer of hope for the industry is the British prime minister Boris Johnson’s chief adviser, Dominic Cummings, who is said to favour “blue sky thinking” and to enthuse about the possibilities offered by “green” hydrogen, produced by electrolysis from either renewables or nuclear stations.

This has led the nuclear industry to consider using reactors to produce hydrogen and so make it part of the green revolution, although it would be a very expensive way of doing it.

Intent on survival

While in the past the nuclear industry has struggled with public alarm about waste issues and radioactivity, it now has one over-riding problem: cheaper competition and its inability to finance itself.

As Mycle Schneider, lead author of the World Nuclear Industry Status Report, puts it in an interview with pv magazine: “It has become obvious that renewables, even unsubsidised, come in at a fraction of the cost of new nuclear power.

“In the UK, onshore and offshore wind is less than half the cost of nuclear. If the UK government keeps planning for nuclear power plants, it’s not because there was no choice, and it has nothing to do with market economy-driven energy policy.”

In western Europe, Japan and the US, where market forces dominate and nuclear power has fallen out of favour, the coming UK White Paper is a potential beacon of hope for what looks like a sunset industry.

The nuclear industry hopes that in Britain it still has a champion that will throw it a lifeline by providing new subsidies. If it does, it will be a political decision that triumphs over financial common sense. – Climate News Network

Cool your home, save money, chill the atmosphere

Feeling too hot? Then turn the thermostat down and cool your home − a good start to cooling the planet.

LONDON, 8 September, 2020 − Rescuing battered economies in the wake of the coronavirus onslaught often demands building anew, but it doesn’t have to mean altogether different ways of life, transformed industries and modern buildings: just cool your home for a start, because new ways to heat our houses could save money, improve health − and help the planet by cutting greenhouse gas emissions.

Housing, at least in temperate northern countries, could provide much better living conditions while doing much less environmental damage. A new approach in the Netherlands, known in Dutch as Energiesprong, is one answer.

It can cut the fossil fuel used for heating (or cooling) a house, offering occupants affordable, comfortable lives and helping to solve an urgent problem. And it can do it all in days, a fraction of the time energy retrofits usually need.

The Rapid Transition Alliance (RTA) is a UK-based group which argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C” (the more stringent limit set by the 2015 Paris Agreement on climate change). It thinks the built environment looks set for a long-overdue makeover.

Energiesprong involves some basic rethinking, about how much comfort we need. In 1970 the Danish scientist Povl Ole Fanger published his research on how warm people like to feel. His work still influences the designed-in temperature of modern buildings and their energy use.

“A reduction from 20°C to 18°C across the British housing stock would save the equivalent of 33 TWh of electricity − about two thirds of Portugal’s domestic consumption”

So, despite all of us having different metabolisms and body shapes and sizes, we usually work seated in a space heated or cooled to 21-22℃. Engineers and architects also factor in assumptions about what the supposedly typical occupant will be wearing: a man’s business suit  (trousers, a jacket and a long-sleeved shirt).

Fanger’s equation therefore locks in assumptions that apply only to a male, suited minority, ignoring more than half of humanity: women, people who don’t wear suits, those with different metabolisms. It also locks in a level of the carbon emissions which stoke the climate emergency.

A 2012 study commissioned by the UK government looked at potential energy savings from small behaviour changes. It concluded that lowering central heating temperatures worked best.

A reduction from 20°C to 18°C across the British housing stock would save the equivalent of 33 TWh of electricity − about two thirds of Portugal’s domestic electricity consumption in 2019 of 48 TWh.

Day-to-day energy use currently accounts for about 28% of global emissions annually. A massive increase in the rate of existing building energy efficiency is needed to meet the emissions reduction targets set by the Paris Agreement. But building renovations currently affect only 0.5-1% of the existing UK building stock each year.

Slow progress

Governments are variously funding schemes to insulate inefficient old buildings and to remove polluting systems such as gas boilers in favour of renewables. All these efforts are chasing the target of “net zero” carbon emissions and beyond to “negative” emissions, resulting in an overall reduction.

For most older houses especially, this can prove costly, disruptive and time-consuming; without government assistance or incentives, few people are willing or able to undertake the challenge. Even in countries claiming to be climate leaders, like the UK, progress has been slow.

Energiesprong offers integrated refurbishment, regulatory change and financing. Its retrofits leave net zero energy buildings, generating all the energy they need for heating, hot water and electrical appliances by using new technologies such as prefabricated facades, insulated rooftops with solar panels, smart heating, and ventilation and cooling installations. A complete home makeover can be finished in less than 10 days, and some have been done in as little as a single day.

It’s an approach that could become much more widespread, and experts say it needs to be. It has to be set against the predicted doubling in global building space by 2060, when two thirds of the expected global population of 10 billion people will live in cities.

That will need the equivalent of an entire New York City to be added to the global built environment every month for the next 40 years. The energy used simply to construct buildings before they are used constitutes an additional 11% of global emissions today.

Killer homes

The budget for an Energiesprong renovation or new build is reckoned as future energy cost savings plus the cost of planned maintenance and repairs over the next 30 years. To meet the goals of the Paris Agreement,  the built environment’s energy intensity − how much energy a building uses − will have to improve by 30% by 2030.

Globally, the energy intensity of the building sector is improving by about 1.5% annually, but this is more than offset by the number of new buildings. Global floor area is growing by about 2.3% annually, and carbon emissions related to buildings are expected to double by 2050 on present trends.

Making houses less energy-hungry also improves social justice. Most of the UK’s housing – and particularly rental properties and those in poorer areas – are leaky and cold, and often damp. Many people simply can’t afford to heat them, which can put a decision to cool your home in a different perspective.

A 2018 briefing paper by researchers from two UK groups, E3G and National Energy Action, said the UK had the sixth highest long-term rate of excess winter mortality out of 30 European countries, with 9,700 deaths attributable that winter to the avoidable circumstances of living in a cold home. Another estimate puts the 2018 figure at 17,000.

As well as the Netherlands, there are Energiesprong initiatives in the UK, France, Germany and Italy. In the US, groups inspired by Energiesprong are working on local solutions in New York state and California. − Climate News Network

* * * * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

Feeling too hot? Then turn the thermostat down and cool your home − a good start to cooling the planet.

LONDON, 8 September, 2020 − Rescuing battered economies in the wake of the coronavirus onslaught often demands building anew, but it doesn’t have to mean altogether different ways of life, transformed industries and modern buildings: just cool your home for a start, because new ways to heat our houses could save money, improve health − and help the planet by cutting greenhouse gas emissions.

Housing, at least in temperate northern countries, could provide much better living conditions while doing much less environmental damage. A new approach in the Netherlands, known in Dutch as Energiesprong, is one answer.

It can cut the fossil fuel used for heating (or cooling) a house, offering occupants affordable, comfortable lives and helping to solve an urgent problem. And it can do it all in days, a fraction of the time energy retrofits usually need.

The Rapid Transition Alliance (RTA) is a UK-based group which argues that humankind must undertake “widespread behaviour change to sustainable lifestyles … to live within planetary ecological boundaries and to limit global warming to below 1.5°C” (the more stringent limit set by the 2015 Paris Agreement on climate change). It thinks the built environment looks set for a long-overdue makeover.

Energiesprong involves some basic rethinking, about how much comfort we need. In 1970 the Danish scientist Povl Ole Fanger published his research on how warm people like to feel. His work still influences the designed-in temperature of modern buildings and their energy use.

“A reduction from 20°C to 18°C across the British housing stock would save the equivalent of 33 TWh of electricity − about two thirds of Portugal’s domestic consumption”

So, despite all of us having different metabolisms and body shapes and sizes, we usually work seated in a space heated or cooled to 21-22℃. Engineers and architects also factor in assumptions about what the supposedly typical occupant will be wearing: a man’s business suit  (trousers, a jacket and a long-sleeved shirt).

Fanger’s equation therefore locks in assumptions that apply only to a male, suited minority, ignoring more than half of humanity: women, people who don’t wear suits, those with different metabolisms. It also locks in a level of the carbon emissions which stoke the climate emergency.

A 2012 study commissioned by the UK government looked at potential energy savings from small behaviour changes. It concluded that lowering central heating temperatures worked best.

A reduction from 20°C to 18°C across the British housing stock would save the equivalent of 33 TWh of electricity − about two thirds of Portugal’s domestic electricity consumption in 2019 of 48 TWh.

Day-to-day energy use currently accounts for about 28% of global emissions annually. A massive increase in the rate of existing building energy efficiency is needed to meet the emissions reduction targets set by the Paris Agreement. But building renovations currently affect only 0.5-1% of the existing UK building stock each year.

Slow progress

Governments are variously funding schemes to insulate inefficient old buildings and to remove polluting systems such as gas boilers in favour of renewables. All these efforts are chasing the target of “net zero” carbon emissions and beyond to “negative” emissions, resulting in an overall reduction.

For most older houses especially, this can prove costly, disruptive and time-consuming; without government assistance or incentives, few people are willing or able to undertake the challenge. Even in countries claiming to be climate leaders, like the UK, progress has been slow.

Energiesprong offers integrated refurbishment, regulatory change and financing. Its retrofits leave net zero energy buildings, generating all the energy they need for heating, hot water and electrical appliances by using new technologies such as prefabricated facades, insulated rooftops with solar panels, smart heating, and ventilation and cooling installations. A complete home makeover can be finished in less than 10 days, and some have been done in as little as a single day.

It’s an approach that could become much more widespread, and experts say it needs to be. It has to be set against the predicted doubling in global building space by 2060, when two thirds of the expected global population of 10 billion people will live in cities.

That will need the equivalent of an entire New York City to be added to the global built environment every month for the next 40 years. The energy used simply to construct buildings before they are used constitutes an additional 11% of global emissions today.

Killer homes

The budget for an Energiesprong renovation or new build is reckoned as future energy cost savings plus the cost of planned maintenance and repairs over the next 30 years. To meet the goals of the Paris Agreement,  the built environment’s energy intensity − how much energy a building uses − will have to improve by 30% by 2030.

Globally, the energy intensity of the building sector is improving by about 1.5% annually, but this is more than offset by the number of new buildings. Global floor area is growing by about 2.3% annually, and carbon emissions related to buildings are expected to double by 2050 on present trends.

Making houses less energy-hungry also improves social justice. Most of the UK’s housing – and particularly rental properties and those in poorer areas – are leaky and cold, and often damp. Many people simply can’t afford to heat them, which can put a decision to cool your home in a different perspective.

A 2018 briefing paper by researchers from two UK groups, E3G and National Energy Action, said the UK had the sixth highest long-term rate of excess winter mortality out of 30 European countries, with 9,700 deaths attributable that winter to the avoidable circumstances of living in a cold home. Another estimate puts the 2018 figure at 17,000.

As well as the Netherlands, there are Energiesprong initiatives in the UK, France, Germany and Italy. In the US, groups inspired by Energiesprong are working on local solutions in New York state and California. − Climate News Network

* * * * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.