Tag Archives: emissions

Southward shift faces US climate by 2100

Climate change means a big shift for city dwellers worldwide. Americans can look ahead to very different cities as the US climate heads south.

LONDON, 21 February, 2019 − If the world continues to burn ever-increasing levels of fossil fuels, then life will change predictably for millions of American city dwellers as the US climate heats up. They will find conditions that will make it seem as if they have shifted south by as much as 850 kilometres.

New Yorkers will find themselves experiencing temperature and rainfall conditions appropriate to a small town in Arkansas. People from Los Angeles will discover what it is like to live, right now, on the southernmost tip of the Baja peninsula, Mexico. People in Abilene, Texas will find that it is as if they had crossed their own frontier, deep into Salinas, Mexico.

The lawmakers in Washington will have consigned themselves to conditions appropriate to Greenwood, Mississippi. Columbus, Ohio, will enjoy the climate of Jonesboro, Arkansas. Folk of Anchorage, Alaska, will find out what it feels like to live on Vancouver Sound. People of Vancouver, meanwhile, will feel as if they had crossed the border into Seattle, Washington.

This exercise in precision forecasting, published in the journal Nature Communications, has been tested in computer simulations for approximately 250 million US and Canadian citizens in 540 cities.

That is, around three quarters of all the population of the United States, and half of all Canadians, can now check the rainfall and temperature changes they can expect in one human lifetime, somewhere between 2070 and 2099.

“It is my hope that people have that ‘wow’ moment, and it sinks in for the first time the scale of the changes we’re expecting in a single generation”

There are a number of possible climate shifts, depending on whether or not 195 nations fulfil the vow made in Paris in 2015 to work to keep the average rise in global temperatures to “well below” 2°C by 2100.

In fact, President Trump has announced a US withdrawal from the Paris Agreement, and many of the nations that stand by the promise have yet to commit to convincing action.

So researchers continue to incorporate the notorious “business-as-usual” scenario in their simulations. So far, these have already predicted a sweltering future for many US cities, with devastating consequences for electrical power supplies and ever more destructive superstorms, megadroughts and floods, with huge economic costs for American government, business and taxpayers.

And, other researchers have found, climate change may already be at work: there is evidence that the division between the more arid American West and the more fertile eastern states has begun to shift significantly.

Long trip south

So the latest research could prove another way of bringing home to US citizens some of the challenges ahead.

“Under current high emissions, the average urban dweller is going to have to drive more than 500 miles (850 kms) to the south to find a climate like that expected in their home city by 2080. Not only is climate changing, but climates that don’t presently exist in North America will be prevalent in a lot of urban areas,” said Matt Fitzpatrick, of the University of Maryland, who led the study.

“Within the lifetime of children living today, the climate of many regions is projected to change from the familiar to conditions unlike those experienced in the same place by their parents, grandparents or perhaps any generation in millennia,” he said.

“It is my hope that people have that ‘wow’ moment, and it sinks in for the first time the scale of the changes we’re expecting in a single generation.” − Climate News Network

Climate change means a big shift for city dwellers worldwide. Americans can look ahead to very different cities as the US climate heads south.

LONDON, 21 February, 2019 − If the world continues to burn ever-increasing levels of fossil fuels, then life will change predictably for millions of American city dwellers as the US climate heats up. They will find conditions that will make it seem as if they have shifted south by as much as 850 kilometres.

New Yorkers will find themselves experiencing temperature and rainfall conditions appropriate to a small town in Arkansas. People from Los Angeles will discover what it is like to live, right now, on the southernmost tip of the Baja peninsula, Mexico. People in Abilene, Texas will find that it is as if they had crossed their own frontier, deep into Salinas, Mexico.

The lawmakers in Washington will have consigned themselves to conditions appropriate to Greenwood, Mississippi. Columbus, Ohio, will enjoy the climate of Jonesboro, Arkansas. Folk of Anchorage, Alaska, will find out what it feels like to live on Vancouver Sound. People of Vancouver, meanwhile, will feel as if they had crossed the border into Seattle, Washington.

This exercise in precision forecasting, published in the journal Nature Communications, has been tested in computer simulations for approximately 250 million US and Canadian citizens in 540 cities.

That is, around three quarters of all the population of the United States, and half of all Canadians, can now check the rainfall and temperature changes they can expect in one human lifetime, somewhere between 2070 and 2099.

“It is my hope that people have that ‘wow’ moment, and it sinks in for the first time the scale of the changes we’re expecting in a single generation”

There are a number of possible climate shifts, depending on whether or not 195 nations fulfil the vow made in Paris in 2015 to work to keep the average rise in global temperatures to “well below” 2°C by 2100.

In fact, President Trump has announced a US withdrawal from the Paris Agreement, and many of the nations that stand by the promise have yet to commit to convincing action.

So researchers continue to incorporate the notorious “business-as-usual” scenario in their simulations. So far, these have already predicted a sweltering future for many US cities, with devastating consequences for electrical power supplies and ever more destructive superstorms, megadroughts and floods, with huge economic costs for American government, business and taxpayers.

And, other researchers have found, climate change may already be at work: there is evidence that the division between the more arid American West and the more fertile eastern states has begun to shift significantly.

Long trip south

So the latest research could prove another way of bringing home to US citizens some of the challenges ahead.

“Under current high emissions, the average urban dweller is going to have to drive more than 500 miles (850 kms) to the south to find a climate like that expected in their home city by 2080. Not only is climate changing, but climates that don’t presently exist in North America will be prevalent in a lot of urban areas,” said Matt Fitzpatrick, of the University of Maryland, who led the study.

“Within the lifetime of children living today, the climate of many regions is projected to change from the familiar to conditions unlike those experienced in the same place by their parents, grandparents or perhaps any generation in millennia,” he said.

“It is my hope that people have that ‘wow’ moment, and it sinks in for the first time the scale of the changes we’re expecting in a single generation.” − Climate News Network

UK urged to remove carbon from gas

As coal in Europe yields to solar and wind power, UK politicians argue it should remove carbon from gas..

LONDON, 20 February, 2019 − To remove carbon from gas, which is used in vast quantities across Europe for heating and cooking, is one of the great technical difficulties that must be overcome to save the planet from dangerous overheating.

Gas distributed across thousands of miles of pipes has been put forward by oil companies as a necessary interim fuel while governments move away from coal as a power source, replacing it with renewables. But a new report says gas use must also be curtailed, and quickly.

Now come claims that work must start immediately to cut carbon emissions from the gas network if targets are to be met to keep carbon dioxide in the atmosphere to acceptable levels.

Bright Blue describes itself as “an independent think tank and pressure group for liberal conservatism.” It has published a report, Pressure in the Pipeline, which suggests a number of ways that gas use could be reduced and replaced with alternatives that do not involve pumping carbon dioxide into the atmosphere.

Although it is endorsed by leading members of the ruling  Conservative party, including the minister of state for energy and clean growth, Claire Perry, the report is clear that the government the party supports needs to reform existing legislation and do far more to encourage decarbonising gas if this energy revolution is to happen.

One of the key parts of the report is about the drive to replace natural gas with hydrogen. Currently the UK’s gas supplies are pumped from below the North Sea or piped from as far away as Russia. If the country can manage the transition, it could provide a blueprint for the rest of Europe, which is heavily reliant on Siberian gas and the goodwill of Russia for most of its heating.

“The government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity”

Antoinette Sandbach MP, a member of the House of Commons business, energy and industrial strategy committee, said: “This report is a significant contribution to the task of planning Britain’s energy future. Decarbonising our extensive gas network is an important priority. Over 80% of UK homes depend on gas for heating and cooking.”

Although presently hydrogen is mostly produced for commercial use by extracting it from natural gas, which is carbon-intensive, it is equally easy to extract hydrogen from freshwater or seawater using electrolysis − a process that involves passing an electric current through water to obtain hydrogen and oxygen. When the hydrogen is burned it produces only water as waste, and no carbon dioxide.

Currently gas is used to produce hydrogen because it is far cheaper than electricity, but this may change. The UK, with its growth of offshore wind power, is now frequently producing surpluses of electricity at non-peak times, and this “free” power could be used to produce hydrogen to pump into the gas network.

Several trials are already taking place in the UK with existing gas distribution networks to supply homes with a mixture of up to 20% of hydrogen and natural gas, and others are developing networks that can burn 100% hydrogen, the report says.

However, current legislation bans more than 0.1% of hydrogen in the gas network, so the report points out that if either or both of these trials prove successful the government will have to change legislation to allow the schemes to be rolled out to consumers.

No technical bar

The authors cannot see a technical barrier to allowing more hydrogen into the network, since before natural gas was tapped the UK used gas for cooking and heating after deriving it from coal that was more than 50% hydrogen.

Given the right regulations and market incentives, around 60% of the heat supplied to domestic, commercial and industry consumers could come from hydrogen in the gas network by 2050.

To help achieve this the government is urged to improve the energy efficiency of UK homes, where it has had a number of programmes in the past, now abandoned.

The report says that energy efficiency could reduce gas use by a quarter by 2035 in domestic buildings, the largest current user of gas, but that to achieve that the government would need to provide active support.

Apart from the discussion about hydrogen the report details existing progress with gas produced from waste food that is already injected into the network. Much more of this gas, and low carbon gas from other sources, could also be used as a fossil fuel substitute, but again the government needs to change legislation to enable it to work.

New remit needed

The report also says that the independent gas regulator that is supposed to protect consumers, Ofgem, needs to have its remit changed so that it can force companies to include hydrogen and other alternatives to natural gas in supplies to homes.

Wilf Lytton, senior researcher at Bright Blue and co-author of the report, said: “Existing gas regulations that were designed decades ago, and a lack of investment and incentives, are hampering deeper decarbonisation.

“Now, with time running out, the government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity. It is an urgent priority to ensure that Ofgem’s next price control framework from April 2021 includes stronger incentives and greater investment to support deeper decarbonisation.”

Claire Perry, endorsing the report, said: “Hydrogen and biomethane can help deliver serious climate action through our existing infrastructure, keeping consumers on board and maintaining the flexibility and resilience provided by the gas system.

“The UK has grown its economy whilst cutting carbon faster than any other country in the G7; but if we are going to build on this success, we need to get serious in tackling heat.” − Climate News Network

As coal in Europe yields to solar and wind power, UK politicians argue it should remove carbon from gas..

LONDON, 20 February, 2019 − To remove carbon from gas, which is used in vast quantities across Europe for heating and cooking, is one of the great technical difficulties that must be overcome to save the planet from dangerous overheating.

Gas distributed across thousands of miles of pipes has been put forward by oil companies as a necessary interim fuel while governments move away from coal as a power source, replacing it with renewables. But a new report says gas use must also be curtailed, and quickly.

Now come claims that work must start immediately to cut carbon emissions from the gas network if targets are to be met to keep carbon dioxide in the atmosphere to acceptable levels.

Bright Blue describes itself as “an independent think tank and pressure group for liberal conservatism.” It has published a report, Pressure in the Pipeline, which suggests a number of ways that gas use could be reduced and replaced with alternatives that do not involve pumping carbon dioxide into the atmosphere.

Although it is endorsed by leading members of the ruling  Conservative party, including the minister of state for energy and clean growth, Claire Perry, the report is clear that the government the party supports needs to reform existing legislation and do far more to encourage decarbonising gas if this energy revolution is to happen.

One of the key parts of the report is about the drive to replace natural gas with hydrogen. Currently the UK’s gas supplies are pumped from below the North Sea or piped from as far away as Russia. If the country can manage the transition, it could provide a blueprint for the rest of Europe, which is heavily reliant on Siberian gas and the goodwill of Russia for most of its heating.

“The government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity”

Antoinette Sandbach MP, a member of the House of Commons business, energy and industrial strategy committee, said: “This report is a significant contribution to the task of planning Britain’s energy future. Decarbonising our extensive gas network is an important priority. Over 80% of UK homes depend on gas for heating and cooking.”

Although presently hydrogen is mostly produced for commercial use by extracting it from natural gas, which is carbon-intensive, it is equally easy to extract hydrogen from freshwater or seawater using electrolysis − a process that involves passing an electric current through water to obtain hydrogen and oxygen. When the hydrogen is burned it produces only water as waste, and no carbon dioxide.

Currently gas is used to produce hydrogen because it is far cheaper than electricity, but this may change. The UK, with its growth of offshore wind power, is now frequently producing surpluses of electricity at non-peak times, and this “free” power could be used to produce hydrogen to pump into the gas network.

Several trials are already taking place in the UK with existing gas distribution networks to supply homes with a mixture of up to 20% of hydrogen and natural gas, and others are developing networks that can burn 100% hydrogen, the report says.

However, current legislation bans more than 0.1% of hydrogen in the gas network, so the report points out that if either or both of these trials prove successful the government will have to change legislation to allow the schemes to be rolled out to consumers.

No technical bar

The authors cannot see a technical barrier to allowing more hydrogen into the network, since before natural gas was tapped the UK used gas for cooking and heating after deriving it from coal that was more than 50% hydrogen.

Given the right regulations and market incentives, around 60% of the heat supplied to domestic, commercial and industry consumers could come from hydrogen in the gas network by 2050.

To help achieve this the government is urged to improve the energy efficiency of UK homes, where it has had a number of programmes in the past, now abandoned.

The report says that energy efficiency could reduce gas use by a quarter by 2035 in domestic buildings, the largest current user of gas, but that to achieve that the government would need to provide active support.

Apart from the discussion about hydrogen the report details existing progress with gas produced from waste food that is already injected into the network. Much more of this gas, and low carbon gas from other sources, could also be used as a fossil fuel substitute, but again the government needs to change legislation to enable it to work.

New remit needed

The report also says that the independent gas regulator that is supposed to protect consumers, Ofgem, needs to have its remit changed so that it can force companies to include hydrogen and other alternatives to natural gas in supplies to homes.

Wilf Lytton, senior researcher at Bright Blue and co-author of the report, said: “Existing gas regulations that were designed decades ago, and a lack of investment and incentives, are hampering deeper decarbonisation.

“Now, with time running out, the government and Ofgem should approach the task of decarbonising gas with the same fervour as it has applied to delivering low carbon and affordable electricity. It is an urgent priority to ensure that Ofgem’s next price control framework from April 2021 includes stronger incentives and greater investment to support deeper decarbonisation.”

Claire Perry, endorsing the report, said: “Hydrogen and biomethane can help deliver serious climate action through our existing infrastructure, keeping consumers on board and maintaining the flexibility and resilience provided by the gas system.

“The UK has grown its economy whilst cutting carbon faster than any other country in the G7; but if we are going to build on this success, we need to get serious in tackling heat.” − Climate News Network

Early rain as Arctic warms means more methane

As spring advances, so does the rain to warm the permafrost. It means more methane can get into the atmosphere to accelerate global warming.

LONDON, 18 February, 2019 − As the global temperature steadily rises, it ensures that levels of one of the most potent greenhouse gases are increasing in a way new to science: the planet will have to reckon with more methane than expected.

Researchers who monitored one bog for three years in the Alaskan permafrost have identified yet another instance of what engineers call positive feedback. They found that global warming meant earlier springs and with that, earlier spring rains.

And as a consequence, the influx of warm water on what had previously been frozen ground triggered a biological frenzy that sent methane emissions soaring.

One stretch of wetland in a forest of black spruce in the Alaskan interior stepped up its emissions of natural gas (another name for methane) by 30%. Methane is a greenhouse gas at least 30 times more potent than carbon dioxide.

“The microbes in this bog on some level are like ‘Oh man, we’re stuck making methane because that’s all this bog is allowing us to do’”

As a consequence, climate scientists may have to return yet again to the vexed question of the carbon budget, in their calculations of how fast the world will warm as humans burn more fossil fuels, to set up ever more rapid global warming and climate change, which will in turn accelerate the thawing of the permafrost.

The evidence so far comes from a detailed study of water, energy and carbon traffic from just one wetland. But other teams of scientists have repeatedly expressed concern about the integrity of the northern hemisphere permafrost and the vast stores of carbon preserved in the frozen soils, beneath the shallow layer that comes to life with each Arctic spring.

“We saw the plants going crazy and methane emissions going bonkers,” said Rebecca Neumann, an environmental engineer at the University of Washington in Seattle, who led the study. “2016 had above average rainfall, but so did 2014. So what was different about this year?”

What mattered was when the rain fell: it fell earlier, when the ground was still colder than the air. The warmer water saturated the frozen forest, flowed into the bog, and created a local permafrost thaw in anoxic conditions: the subterranean microbial communities responded by converting the once-frozen organic matter into a highly effective greenhouse gas.

Alarm rises

“It’d be the bottom of the barrel in terms of energy production for them,” Dr Neumann said. “The microbes in this bog on some level are like ‘Oh man, we’re stuck making methane because that’s all this bog is allowing us to do’.”

As global average temperature levels creep up, so does alarm about the state of the vast tracts of permafrost, home to huge stores of frozen carbon in the form of semi-decayed plant material that could be released into the atmosphere to fuel further global warming, with devastating consequences.

Spring has been arriving earlier everywhere in the northern hemisphere, including the Arctic, with unpredictable impacts on high latitude ecosystems.

The permafrost itself has been identified as a vulnerable region, change in which could tip the planet into a new and unpredictable climate regime, and geographers only this year have started to assess the direct hazard to the communities that live in the high latitudes as once-solid ground turns to slush under their feet.

More evaporation

Much more difficult to assess is how the steady attrition of the permafrost plays out in terms of the traffic of carbon between rocks, ocean, atmosphere and living things: researchers are still teasing out the roles of all the agencies at work, including subterranean microbes.

In a warmer world, evaporation will increase. Warmer air has a greater capacity for water vapour. In the end, it means more rain will fall. If it falls in spring or early summer, the research from one marshland in Alaska seems to suggest, more methane will escape into the atmosphere.

Right now, the rewards of the study are academic. They throw just a little more light on the subtle machinery of weather and climate. The test is whether what happens in one instance is likely to happen in other, similar terrain around the high latitudes.

“The ability of rain to transport thermal energy into soils has been under-appreciated,” Dr Neumann said. “Our study shows that by affecting soil temperature and methane emissions, rain can increase the ability of thawing permafrost to warm the climate.” − Climate News Network

As spring advances, so does the rain to warm the permafrost. It means more methane can get into the atmosphere to accelerate global warming.

LONDON, 18 February, 2019 − As the global temperature steadily rises, it ensures that levels of one of the most potent greenhouse gases are increasing in a way new to science: the planet will have to reckon with more methane than expected.

Researchers who monitored one bog for three years in the Alaskan permafrost have identified yet another instance of what engineers call positive feedback. They found that global warming meant earlier springs and with that, earlier spring rains.

And as a consequence, the influx of warm water on what had previously been frozen ground triggered a biological frenzy that sent methane emissions soaring.

One stretch of wetland in a forest of black spruce in the Alaskan interior stepped up its emissions of natural gas (another name for methane) by 30%. Methane is a greenhouse gas at least 30 times more potent than carbon dioxide.

“The microbes in this bog on some level are like ‘Oh man, we’re stuck making methane because that’s all this bog is allowing us to do’”

As a consequence, climate scientists may have to return yet again to the vexed question of the carbon budget, in their calculations of how fast the world will warm as humans burn more fossil fuels, to set up ever more rapid global warming and climate change, which will in turn accelerate the thawing of the permafrost.

The evidence so far comes from a detailed study of water, energy and carbon traffic from just one wetland. But other teams of scientists have repeatedly expressed concern about the integrity of the northern hemisphere permafrost and the vast stores of carbon preserved in the frozen soils, beneath the shallow layer that comes to life with each Arctic spring.

“We saw the plants going crazy and methane emissions going bonkers,” said Rebecca Neumann, an environmental engineer at the University of Washington in Seattle, who led the study. “2016 had above average rainfall, but so did 2014. So what was different about this year?”

What mattered was when the rain fell: it fell earlier, when the ground was still colder than the air. The warmer water saturated the frozen forest, flowed into the bog, and created a local permafrost thaw in anoxic conditions: the subterranean microbial communities responded by converting the once-frozen organic matter into a highly effective greenhouse gas.

Alarm rises

“It’d be the bottom of the barrel in terms of energy production for them,” Dr Neumann said. “The microbes in this bog on some level are like ‘Oh man, we’re stuck making methane because that’s all this bog is allowing us to do’.”

As global average temperature levels creep up, so does alarm about the state of the vast tracts of permafrost, home to huge stores of frozen carbon in the form of semi-decayed plant material that could be released into the atmosphere to fuel further global warming, with devastating consequences.

Spring has been arriving earlier everywhere in the northern hemisphere, including the Arctic, with unpredictable impacts on high latitude ecosystems.

The permafrost itself has been identified as a vulnerable region, change in which could tip the planet into a new and unpredictable climate regime, and geographers only this year have started to assess the direct hazard to the communities that live in the high latitudes as once-solid ground turns to slush under their feet.

More evaporation

Much more difficult to assess is how the steady attrition of the permafrost plays out in terms of the traffic of carbon between rocks, ocean, atmosphere and living things: researchers are still teasing out the roles of all the agencies at work, including subterranean microbes.

In a warmer world, evaporation will increase. Warmer air has a greater capacity for water vapour. In the end, it means more rain will fall. If it falls in spring or early summer, the research from one marshland in Alaska seems to suggest, more methane will escape into the atmosphere.

Right now, the rewards of the study are academic. They throw just a little more light on the subtle machinery of weather and climate. The test is whether what happens in one instance is likely to happen in other, similar terrain around the high latitudes.

“The ability of rain to transport thermal energy into soils has been under-appreciated,” Dr Neumann said. “Our study shows that by affecting soil temperature and methane emissions, rain can increase the ability of thawing permafrost to warm the climate.” − Climate News Network

Melting polar ice sheets will alter weather

Sea level rise and melting polar ice sheets may not cause a climate catastrophe, but they will certainly change weather patterns unpredictably.

LONDON, 15 February, 2019 – The global weather is about to get worse. The melting polar ice sheets will mean rainfall and windstorms could become more violent, and hot spells and ice storms could become more extreme.

This is because the ice sheets of Greenland and Antarctica are melting, to affect what were once stable ocean currents and airflow patterns around the globe.

Planetary surface temperatures could rise by 3°C or even 4°C by the end of the century. Global sea levels will rise in ways that would “enhance global temperature variability”, but this might not be as high as earlier studies have predicted. That is because the ice cliffs of Antarctica might not be so much at risk of disastrous collapse that would set the glaciers accelerating to the sea.

The latest revision of evidence from the melting ice sheets in two hemispheres – and there is plenty of evidence that melting is happening at ever greater rates – is based on two studies of what could happen to the world’s greatest reservoirs of frozen freshwater if nations pursue current policies, fossil fuel combustion continues to increase, and global average temperatures creep up to unprecedented levels.

“Even if we do include ice-cliff instability … the most likely contribution to sea level rise would be less than half a metre by 2100”

“Under current global government policies, we are heading towards 3 or 4 degrees of warming above pre-industrial levels, causing a significant amount of melt water from the Greenland and Antarctic ice sheets to enter Earth’s oceans. According to our models, this melt water will cause significant disruptions to ocean currents and change levels of warming around the world,” said Nick Golledge, a south polar researcher at Victoria University, in New Zealand.

He and colleagues from Canada, the US, Germany and the UK report in Nature that they matched satellite observations of what is happening to the ice sheets with detailed simulations of the complex effects of melting over time, and according to the human response so far to warnings of climate change.

In Paris in 2015, leaders from 195 nations vowed to contain global warming to “well below” an average rise of 2°C by 2100. But promises have yet to become concerted and coherent action, and researchers warn that on present policies, a 3°C rise seems inevitable.

Sea levels have already risen by about 14 cms in the last century: the worst scenarios have proposed a devastating rise of 130 cms by 2100. The fastest increase in the rise of sea levels is likely to happen between 2065 and 2075.

Gulf Stream weakens

As warmer melt water gets into the North Atlantic, that major ocean current the Gulf Stream is likely to be weakened. Air temperatures are likely to rise over eastern Canada, central America and the high Arctic. Northwestern Europe – scientists have been warning of this for years – will become cooler.

In the Antarctic, a lens of warm fresh water will form over the surface, allowing uprising warm ocean water to spread and cause what could be further Antarctic melting.

But how bad this could be is re-examined in a second, companion paper in Nature. Tamsin Edwards, now at King’s College London, Dr Golledge and others took a fresh look at an old scare: that the vast cliffs of ice – some of them 100 metres above sea level – around the Antarctic could become unstable and collapse, accelerating the retreat of the ice behind them.

They used geophysical techniques to analyse dramatic episodes of ice loss that must have happened 3 million years ago and 125,000 years ago, and they went back to the present patterns of melt. These losses, in their calculations, did not cause unstoppable ice loss in the past, and may not affect the future much either.

Instability less important

“We’ve shown that ice-cliff instability doesn’t appear to be an essential mechanism in reproducing past sea level changes and so this suggests ‘the jury’s still out’ when it comes to including it in future predictions,” said Dr Edwards.

“Even if we do include ice-cliff instability, our more thorough assessment shows the most likely contribution to sea level rise would be less than half a metre by 2100.”

At worst, there is a one in 20 chance that enough of Antarctica’s glacial burden will melt to raise sea levels by 39 cms. More likely, both studies conclude, under high levels of greenhouse gas concentrations, south polar ice will only melt to raise sea levels worldwide by about 15 cms. – Climate News Network

Sea level rise and melting polar ice sheets may not cause a climate catastrophe, but they will certainly change weather patterns unpredictably.

LONDON, 15 February, 2019 – The global weather is about to get worse. The melting polar ice sheets will mean rainfall and windstorms could become more violent, and hot spells and ice storms could become more extreme.

This is because the ice sheets of Greenland and Antarctica are melting, to affect what were once stable ocean currents and airflow patterns around the globe.

Planetary surface temperatures could rise by 3°C or even 4°C by the end of the century. Global sea levels will rise in ways that would “enhance global temperature variability”, but this might not be as high as earlier studies have predicted. That is because the ice cliffs of Antarctica might not be so much at risk of disastrous collapse that would set the glaciers accelerating to the sea.

The latest revision of evidence from the melting ice sheets in two hemispheres – and there is plenty of evidence that melting is happening at ever greater rates – is based on two studies of what could happen to the world’s greatest reservoirs of frozen freshwater if nations pursue current policies, fossil fuel combustion continues to increase, and global average temperatures creep up to unprecedented levels.

“Even if we do include ice-cliff instability … the most likely contribution to sea level rise would be less than half a metre by 2100”

“Under current global government policies, we are heading towards 3 or 4 degrees of warming above pre-industrial levels, causing a significant amount of melt water from the Greenland and Antarctic ice sheets to enter Earth’s oceans. According to our models, this melt water will cause significant disruptions to ocean currents and change levels of warming around the world,” said Nick Golledge, a south polar researcher at Victoria University, in New Zealand.

He and colleagues from Canada, the US, Germany and the UK report in Nature that they matched satellite observations of what is happening to the ice sheets with detailed simulations of the complex effects of melting over time, and according to the human response so far to warnings of climate change.

In Paris in 2015, leaders from 195 nations vowed to contain global warming to “well below” an average rise of 2°C by 2100. But promises have yet to become concerted and coherent action, and researchers warn that on present policies, a 3°C rise seems inevitable.

Sea levels have already risen by about 14 cms in the last century: the worst scenarios have proposed a devastating rise of 130 cms by 2100. The fastest increase in the rise of sea levels is likely to happen between 2065 and 2075.

Gulf Stream weakens

As warmer melt water gets into the North Atlantic, that major ocean current the Gulf Stream is likely to be weakened. Air temperatures are likely to rise over eastern Canada, central America and the high Arctic. Northwestern Europe – scientists have been warning of this for years – will become cooler.

In the Antarctic, a lens of warm fresh water will form over the surface, allowing uprising warm ocean water to spread and cause what could be further Antarctic melting.

But how bad this could be is re-examined in a second, companion paper in Nature. Tamsin Edwards, now at King’s College London, Dr Golledge and others took a fresh look at an old scare: that the vast cliffs of ice – some of them 100 metres above sea level – around the Antarctic could become unstable and collapse, accelerating the retreat of the ice behind them.

They used geophysical techniques to analyse dramatic episodes of ice loss that must have happened 3 million years ago and 125,000 years ago, and they went back to the present patterns of melt. These losses, in their calculations, did not cause unstoppable ice loss in the past, and may not affect the future much either.

Instability less important

“We’ve shown that ice-cliff instability doesn’t appear to be an essential mechanism in reproducing past sea level changes and so this suggests ‘the jury’s still out’ when it comes to including it in future predictions,” said Dr Edwards.

“Even if we do include ice-cliff instability, our more thorough assessment shows the most likely contribution to sea level rise would be less than half a metre by 2100.”

At worst, there is a one in 20 chance that enough of Antarctica’s glacial burden will melt to raise sea levels by 39 cms. More likely, both studies conclude, under high levels of greenhouse gas concentrations, south polar ice will only melt to raise sea levels worldwide by about 15 cms. – Climate News Network

Savage heat engulfs temperate Tasmania

One Australian state hit severely this ferocious summer is normally temperate Tasmania. A resident with vivid experience describes its ordeal.

TASMANIA, 14 February, 2019 − Australia has been going through one of its hottest and stormiest summers on record and usually temperate Tasmania, its island state, has taken a battering..

Climate change-related weather events have brought cyclones and raging floods to the north-east of the country, while drought and temperatures exceeding 40°C have resulted in parched lands and rivers drying up in areas of New South Wales.

Summer on the island of Tasmania, Australia’s most southerly state, with a generally temperate climate, is usually a time for BBQs and beach swimming. This summer has been very different.

A prolonged drought and record high temperatures have caused a series of devastating fires, destroying unique forests and vegetation and forcing people to leave their homes.

Critics of the Australian government say it’s clear climate change is wreaking havoc; meanwhile politicians continue to pander to the interests of the country’s powerful mining and fossil fuel industries.

“It’s a giant, macabre game of cat and mouse”

Mike Willson is a Tasmania resident, a fire equipment specialist and a volunteer with the Tasmania Fire Service. Here he tells Climate News Network what life has been like on the island over recent weeks.

“There is menace in the air. Days full of thick brown smoke. The clouds of smoke have even been swept across 2,500 kilometres of ocean to as far away as New Zealand – itself trying to cope with its own forest fires.

“A new phenomenon has arrived in Tasmania – lightning storms without rain. In one day in mid-January there were over 2,000 dry lightning strikes over the south-west and central highlands here, starting up to 70 bush fires.

““ Even with water bombing by planes and helicopters, the fires – which have already burned out 3% of the area of the island – are virtually impossible to control.

Leaping ahead

“Dealing with these fires is like fighting a snarling dragon. Small flakes of grey ash fall everywhere. Embers can trigger spot fires several kilometres ahead of the main fire.

“The fire can seem to disappear but still burns in logs and stumps. You have to always be on the lookout for tell-tale wisps of smoke. Walking across with a hose line to investigate, it’s a moonscape, the soil collapsing under your feet.

““ It’s like trudging through powder snow, sinking up to mid-calf in places, with the earth under your feet turning to hot dust. Aiming at a puff of smoke, the ground erupts and hisses like a volcano when we spray water.

“It’s a giant, macabre game of cat and mouse. If conditions are right, a controlled back burn can effectively starve the fire of fuel, but then the wind might whip up and the fire can jump – even across large rivers and bays – and rampage on.

Disaster avoided

“Luckily, so far there have been no casualties, and few homes have been lost. At least the drought and high temperatures have not come with very high winds – a cocktail for disaster.

“Firefighter and helicopter crews are being constantly rotated – it all takes a considerable physical and mental toll.”

*

In recent days rainfall over much of Tasmania has eased the fire risk, though the authorities are warning people that there is still a danger of further fire outbreaks.

Among the areas threatened or partially destroyed by fire are the world’s largest remaining forest of thousand-year-old King Billy pines. − Climate News Network

One Australian state hit severely this ferocious summer is normally temperate Tasmania. A resident with vivid experience describes its ordeal.

TASMANIA, 14 February, 2019 − Australia has been going through one of its hottest and stormiest summers on record and usually temperate Tasmania, its island state, has taken a battering..

Climate change-related weather events have brought cyclones and raging floods to the north-east of the country, while drought and temperatures exceeding 40°C have resulted in parched lands and rivers drying up in areas of New South Wales.

Summer on the island of Tasmania, Australia’s most southerly state, with a generally temperate climate, is usually a time for BBQs and beach swimming. This summer has been very different.

A prolonged drought and record high temperatures have caused a series of devastating fires, destroying unique forests and vegetation and forcing people to leave their homes.

Critics of the Australian government say it’s clear climate change is wreaking havoc; meanwhile politicians continue to pander to the interests of the country’s powerful mining and fossil fuel industries.

“It’s a giant, macabre game of cat and mouse”

Mike Willson is a Tasmania resident, a fire equipment specialist and a volunteer with the Tasmania Fire Service. Here he tells Climate News Network what life has been like on the island over recent weeks.

“There is menace in the air. Days full of thick brown smoke. The clouds of smoke have even been swept across 2,500 kilometres of ocean to as far away as New Zealand – itself trying to cope with its own forest fires.

“A new phenomenon has arrived in Tasmania – lightning storms without rain. In one day in mid-January there were over 2,000 dry lightning strikes over the south-west and central highlands here, starting up to 70 bush fires.

““ Even with water bombing by planes and helicopters, the fires – which have already burned out 3% of the area of the island – are virtually impossible to control.

Leaping ahead

“Dealing with these fires is like fighting a snarling dragon. Small flakes of grey ash fall everywhere. Embers can trigger spot fires several kilometres ahead of the main fire.

“The fire can seem to disappear but still burns in logs and stumps. You have to always be on the lookout for tell-tale wisps of smoke. Walking across with a hose line to investigate, it’s a moonscape, the soil collapsing under your feet.

““ It’s like trudging through powder snow, sinking up to mid-calf in places, with the earth under your feet turning to hot dust. Aiming at a puff of smoke, the ground erupts and hisses like a volcano when we spray water.

“It’s a giant, macabre game of cat and mouse. If conditions are right, a controlled back burn can effectively starve the fire of fuel, but then the wind might whip up and the fire can jump – even across large rivers and bays – and rampage on.

Disaster avoided

“Luckily, so far there have been no casualties, and few homes have been lost. At least the drought and high temperatures have not come with very high winds – a cocktail for disaster.

“Firefighter and helicopter crews are being constantly rotated – it all takes a considerable physical and mental toll.”

*

In recent days rainfall over much of Tasmania has eased the fire risk, though the authorities are warning people that there is still a danger of further fire outbreaks.

Among the areas threatened or partially destroyed by fire are the world’s largest remaining forest of thousand-year-old King Billy pines. − Climate News Network

World is halfway through its hottest decade

Things are warming up: already the world is halfway through its hottest decade on record, if predictions prove correct.

LONDON, 13 February, 2019 – Here is a climate forecast that climate scientists, meteorologists, politicians, voters and even climate sceptics can check: the next five years will be warm, and will probably help to complete the hottest decade ever.

They will on a global average be at least 1°C higher than the average temperature of the planet 200 years ago, before the accelerating combustion of fossil fuels.

That is because the planet is already midway through what may well prove to be its warmest 10 years since records began on a planetary scale in 1850. There is even a possibility that within the next five years, the global temperature rise could tip 1.5°C above the long-term average for human history.

This is the ambitious limit to global warming that the world set itself at an historic meeting in Paris in 2015, for the year 2100.

And the forecasters can make such predictions with some confidence because tomorrow’s temperature chart is already inscribed in the air we breathe: the pattern of warming over the last century is consistent with the steady rise in greenhouse gas levels in the atmosphere, and these are still increasing because fossil fuel use is still going up.

“Predictions now suggest around a 10% chance of at least one year between 2019 and 2023 temporarily exceeding 1.5°C”

Adam Scaife, who heads long-range prediction research at the UK Met Office, said: “2015 was the first year that global annual average surface temperatures reached 1.0°C above pre-industrial levels and the following three years have all remained close to this level.

“The global average temperature between now and 2023 is predicted to remain high, potentially making the decade from 2014 the warmest in more than 150 years of records.”

Climate is what people can reasonably bank on; weather is what they get. The forecast is significant because it is evidence of swelling confidence in the understanding of global warming and climate change science.

Climate researchers began warning at least 40 years ago of the potentially calamitous consequences of climate change: they were, at the time, unwilling to link any single weather event – flood, drought, windstorm or heat wave – to long-term global warming as a consequence of the steady increase of carbon dioxide in the atmosphere, released from power stations, factory chimneys and vehicle exhausts.

Possible catastrophe predicted

Not any more: in 2013, one group of geographers in Hawaii even predicted the possible onset of catastrophic climate change in some regions of the globe as early as 2020.

And the Met Office prediction is accompanied by a danger that – for a short while at least – the global increase could reach or exceed the level that 195 nations in Paris agreed would be potentially disastrous for human civilisation.

“A run of temperatures of 1.0°C or above would increase the risk of a temporary excursion above the threshold of 1.5°C above pre-industrial levels,” said Doug Smith, a researcher at the Met Office. “Predictions now suggest around a 10% chance of at least one year between 2019 and 2023 temporarily exceeding 1.5°C.”

Global temperatures in 2018 were around 0.91°C above the long-term average. This would make 2018 the fourth warmest year ever, although oceanographers recently warned that the oceans – and 70% of the planet is covered by ocean – reached their warmest ever in 2018.

Almost imperceptible

The three warmest years on record are 2015, 2016 and 2017. Climate scientists – and health chiefs – have consistently warned that the average global increase is at almost imperceptible pace, and is a trend rather than a year-on-year rise. This made it possible for some to argue about the interpretation of the data, and to even claim that global warming had paused.

But within this slow increase in average temperatures, there has been a pattern of increasing extremes of rainfall and temperature with the threat of increasingly frequent and potentially lethal heat waves to come.

And, researchers warned recently, the changes seem inexorable: by multiplying in number to more than 7bn in two centuries, by clearing forests and by burning fossil fuels, humans have managed to reverse a long-term climate trend and make the future uncomfortably hot.

A third UK researcher, Tim Osborn of the University of East Anglia’s Cllimatic Research Unit, spelled it out: “The warmth of 2018 is in line with the long-term warming trend driven by the world’s emissions of greenhouse gases.” – Climate News Network

Things are warming up: already the world is halfway through its hottest decade on record, if predictions prove correct.

LONDON, 13 February, 2019 – Here is a climate forecast that climate scientists, meteorologists, politicians, voters and even climate sceptics can check: the next five years will be warm, and will probably help to complete the hottest decade ever.

They will on a global average be at least 1°C higher than the average temperature of the planet 200 years ago, before the accelerating combustion of fossil fuels.

That is because the planet is already midway through what may well prove to be its warmest 10 years since records began on a planetary scale in 1850. There is even a possibility that within the next five years, the global temperature rise could tip 1.5°C above the long-term average for human history.

This is the ambitious limit to global warming that the world set itself at an historic meeting in Paris in 2015, for the year 2100.

And the forecasters can make such predictions with some confidence because tomorrow’s temperature chart is already inscribed in the air we breathe: the pattern of warming over the last century is consistent with the steady rise in greenhouse gas levels in the atmosphere, and these are still increasing because fossil fuel use is still going up.

“Predictions now suggest around a 10% chance of at least one year between 2019 and 2023 temporarily exceeding 1.5°C”

Adam Scaife, who heads long-range prediction research at the UK Met Office, said: “2015 was the first year that global annual average surface temperatures reached 1.0°C above pre-industrial levels and the following three years have all remained close to this level.

“The global average temperature between now and 2023 is predicted to remain high, potentially making the decade from 2014 the warmest in more than 150 years of records.”

Climate is what people can reasonably bank on; weather is what they get. The forecast is significant because it is evidence of swelling confidence in the understanding of global warming and climate change science.

Climate researchers began warning at least 40 years ago of the potentially calamitous consequences of climate change: they were, at the time, unwilling to link any single weather event – flood, drought, windstorm or heat wave – to long-term global warming as a consequence of the steady increase of carbon dioxide in the atmosphere, released from power stations, factory chimneys and vehicle exhausts.

Possible catastrophe predicted

Not any more: in 2013, one group of geographers in Hawaii even predicted the possible onset of catastrophic climate change in some regions of the globe as early as 2020.

And the Met Office prediction is accompanied by a danger that – for a short while at least – the global increase could reach or exceed the level that 195 nations in Paris agreed would be potentially disastrous for human civilisation.

“A run of temperatures of 1.0°C or above would increase the risk of a temporary excursion above the threshold of 1.5°C above pre-industrial levels,” said Doug Smith, a researcher at the Met Office. “Predictions now suggest around a 10% chance of at least one year between 2019 and 2023 temporarily exceeding 1.5°C.”

Global temperatures in 2018 were around 0.91°C above the long-term average. This would make 2018 the fourth warmest year ever, although oceanographers recently warned that the oceans – and 70% of the planet is covered by ocean – reached their warmest ever in 2018.

Almost imperceptible

The three warmest years on record are 2015, 2016 and 2017. Climate scientists – and health chiefs – have consistently warned that the average global increase is at almost imperceptible pace, and is a trend rather than a year-on-year rise. This made it possible for some to argue about the interpretation of the data, and to even claim that global warming had paused.

But within this slow increase in average temperatures, there has been a pattern of increasing extremes of rainfall and temperature with the threat of increasingly frequent and potentially lethal heat waves to come.

And, researchers warned recently, the changes seem inexorable: by multiplying in number to more than 7bn in two centuries, by clearing forests and by burning fossil fuels, humans have managed to reverse a long-term climate trend and make the future uncomfortably hot.

A third UK researcher, Tim Osborn of the University of East Anglia’s Cllimatic Research Unit, spelled it out: “The warmth of 2018 is in line with the long-term warming trend driven by the world’s emissions of greenhouse gases.” – Climate News Network

Ambitious Danish island ends fossil fuel use

A small Danish island ends fossil fuel use by combining ambitious aims with ensuring that local people have a say in cleaner replacements.

LONDON, 11 February, 2019 Tackling climate change is urgent. It’s too urgent to be feasible, say some critics. But as one Danish island ends fossil fuel use, its story shows it  may be time to think again.

In five years, by 2023, the UK Met Office says, global warming could temporarily rise by more than 1.5°C above pre-industrial levels, the target agreed by 195 governments in 2015. So the world needs to switch fast from fossil fuels to renewable energy.

The island of Samsø, off Denmark’s east coast, has wasted no time. Between 1998 and 2007 it abandoned its total dependence on imported fossil fuels and now relies entirely on renewables, mainly wind and biomass. It’s been singled out as the world’s first 100% renewable island by the Rapid Transition Alliance (RTA), which says Samsø can teach the world some vital lessons about changing fast and radically.

In 1997 Samsø, with 4,000 inhabitants, entered a Danish government competition to develop a model renewable energy community, aiming to prove that the country’s target of reducing carbon emissions by 21% was achievable.

Samsø’s winning proposal was based on strong community engagement and a cooperative ownership strategy. It showed how to make renewables a social, economic and energy success.

“Policy-making is too often limited to what is do-able in the short-term; establishing an ambitious mission can help reframe a problem, making the impossible possible”

With wind power now projected to be Europe’s biggest energy source by 2027, the RTA says, one essential element in making it work successfully is how it is managed − and Samsø is a trailblazer.

What the islanders did was straightforward enough. By the year 2000 they had installed 11 wind turbines, covering their electricity needs. A further 10 offshore turbines were erected in 2002, generating enough energy to offset emissions from their cars, buses, tractors and the ferry to the mainland. Three-quarters of their heating and hot water now comes from biomass boilers fuelled with locally grown straw.

Samsø’s transition, the Alliance says, proved that a wholesale shift to renewable energy was possible with existing technology and limited government assistance.

Nowadays, residents are producing so much more clean energy than they need (and exporting what they don’t use) that, in effect, they have an average annual CO2 footprint of minus 12 tonnes per person, helping their fellow citizens to lower their emissions too (the average Dane emits 6.2 tonnes of CO2 a year, the average Briton 10 tonnes).

Active buy-in

Samsø, the argument runs, proves the effectiveness of setting ambitious targets – and meeting them. The Alliance says Samsø’s transition is impressive because it was achieved with the active buy-in (both figuratively and financially) of the local community.

Winning hearts and minds was crucial. People often oppose on-shore wind turbines as a visual intrusion, a blot on the landscape. So the transition organisers, Samsø Energy Academy, worked out how to include the islanders as the turbines’ owners.

They had a simple principle: if you could see a turbine from your window, you could sign on as a co-investor, meaning that anyone living with the technology had a stake in it and stood to.benefit

With so many islanders having a direct stake in the turbines there is now near unanimity that the renewable transition has been good for Samsø. Of the 11 onshore turbines, nine are owned privately by local farmers and two by local cooperatives. Five of the offshore turbines are owned by the municipality, three privately and two cooperatively by small shareholders.

Sceptical island

Before the transition began Samsø had relied mainly on oil, with its electricity generated in coal-fired power plants on the mainland. The potential for renewables had not been explored, and there was deep scepticism towards them. A lack of opportunities for education and work had led many young people to leave the island.

The islanders embraced the transition, but not because of climate change. Instead, most looked to its potential to provide jobs, strengthen the local economy and secure greater energy independence.

Key to Samsø’s success, the Alliance believes, was the insistence on transparency, consultation, and starting from what people wanted. From the start there was full disclosure of information, with the master plan published in the island’s library and information shared through the local newspaper and discussed in detail at regular community meetings.

Samsø’s long tradition of agricultural cooperatives also helped to ensure strong local engagement. There was ample time for discussion and decision-making, which helped to build confidence and a strong sense of collective ownership of decisions.

Listening to doubters

Sometimes the organisers’ focus on flexibility and committment to meeting local expectations came at a price. One site planned for an onshore turbine, for example, aroused concerns from birdwatchers, church members and holiday home owners.

So the plans were changed, even though this meant choosing another site where turbine installation was more difficult and less energy could be generated.

The Alliance says: “This meant that the community felt genuine ownership over the siting of the wind turbines, which helped to dispel any negative feelings around them.”

It draws another lesson from Samsø, too. The transition to 100% renewables was achieved, the RTA believes, because the Danish government had an ambitious mission, which everyone wanted to realise:

It says: “Policy-making is too often limited to what is do-able in the short-term; establishing an ambitious mission can help reframe a problem, making the impossible possible.” − Climate News Network

 

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

A small Danish island ends fossil fuel use by combining ambitious aims with ensuring that local people have a say in cleaner replacements.

LONDON, 11 February, 2019 Tackling climate change is urgent. It’s too urgent to be feasible, say some critics. But as one Danish island ends fossil fuel use, its story shows it  may be time to think again.

In five years, by 2023, the UK Met Office says, global warming could temporarily rise by more than 1.5°C above pre-industrial levels, the target agreed by 195 governments in 2015. So the world needs to switch fast from fossil fuels to renewable energy.

The island of Samsø, off Denmark’s east coast, has wasted no time. Between 1998 and 2007 it abandoned its total dependence on imported fossil fuels and now relies entirely on renewables, mainly wind and biomass. It’s been singled out as the world’s first 100% renewable island by the Rapid Transition Alliance (RTA), which says Samsø can teach the world some vital lessons about changing fast and radically.

In 1997 Samsø, with 4,000 inhabitants, entered a Danish government competition to develop a model renewable energy community, aiming to prove that the country’s target of reducing carbon emissions by 21% was achievable.

Samsø’s winning proposal was based on strong community engagement and a cooperative ownership strategy. It showed how to make renewables a social, economic and energy success.

“Policy-making is too often limited to what is do-able in the short-term; establishing an ambitious mission can help reframe a problem, making the impossible possible”

With wind power now projected to be Europe’s biggest energy source by 2027, the RTA says, one essential element in making it work successfully is how it is managed − and Samsø is a trailblazer.

What the islanders did was straightforward enough. By the year 2000 they had installed 11 wind turbines, covering their electricity needs. A further 10 offshore turbines were erected in 2002, generating enough energy to offset emissions from their cars, buses, tractors and the ferry to the mainland. Three-quarters of their heating and hot water now comes from biomass boilers fuelled with locally grown straw.

Samsø’s transition, the Alliance says, proved that a wholesale shift to renewable energy was possible with existing technology and limited government assistance.

Nowadays, residents are producing so much more clean energy than they need (and exporting what they don’t use) that, in effect, they have an average annual CO2 footprint of minus 12 tonnes per person, helping their fellow citizens to lower their emissions too (the average Dane emits 6.2 tonnes of CO2 a year, the average Briton 10 tonnes).

Active buy-in

Samsø, the argument runs, proves the effectiveness of setting ambitious targets – and meeting them. The Alliance says Samsø’s transition is impressive because it was achieved with the active buy-in (both figuratively and financially) of the local community.

Winning hearts and minds was crucial. People often oppose on-shore wind turbines as a visual intrusion, a blot on the landscape. So the transition organisers, Samsø Energy Academy, worked out how to include the islanders as the turbines’ owners.

They had a simple principle: if you could see a turbine from your window, you could sign on as a co-investor, meaning that anyone living with the technology had a stake in it and stood to.benefit

With so many islanders having a direct stake in the turbines there is now near unanimity that the renewable transition has been good for Samsø. Of the 11 onshore turbines, nine are owned privately by local farmers and two by local cooperatives. Five of the offshore turbines are owned by the municipality, three privately and two cooperatively by small shareholders.

Sceptical island

Before the transition began Samsø had relied mainly on oil, with its electricity generated in coal-fired power plants on the mainland. The potential for renewables had not been explored, and there was deep scepticism towards them. A lack of opportunities for education and work had led many young people to leave the island.

The islanders embraced the transition, but not because of climate change. Instead, most looked to its potential to provide jobs, strengthen the local economy and secure greater energy independence.

Key to Samsø’s success, the Alliance believes, was the insistence on transparency, consultation, and starting from what people wanted. From the start there was full disclosure of information, with the master plan published in the island’s library and information shared through the local newspaper and discussed in detail at regular community meetings.

Samsø’s long tradition of agricultural cooperatives also helped to ensure strong local engagement. There was ample time for discussion and decision-making, which helped to build confidence and a strong sense of collective ownership of decisions.

Listening to doubters

Sometimes the organisers’ focus on flexibility and committment to meeting local expectations came at a price. One site planned for an onshore turbine, for example, aroused concerns from birdwatchers, church members and holiday home owners.

So the plans were changed, even though this meant choosing another site where turbine installation was more difficult and less energy could be generated.

The Alliance says: “This meant that the community felt genuine ownership over the siting of the wind turbines, which helped to dispel any negative feelings around them.”

It draws another lesson from Samsø, too. The transition to 100% renewables was achieved, the RTA believes, because the Danish government had an ambitious mission, which everyone wanted to realise:

It says: “Policy-making is too often limited to what is do-able in the short-term; establishing an ambitious mission can help reframe a problem, making the impossible possible.” − Climate News Network

 

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

Food webs alter as warmer seas change colour

Reflected sunlight tells a story: one of deeper shading in an ever-warmer ocean. That is because climate change will also alter green growth in the high seas.

LONDON, 11 February, 2019 – The Blue Planet is to get a little bluer as the world warms and climates change. Where the seas turn green, expect an even deeper verdant tint, new research suggests.

Since humans began increasing the levels of greenhouse gases in the atmosphere – by burning the fossil fuels that have provided the energy for both economic growth and a population explosion – the oceans have warmed in ways that affect marine life. They have grown ever more acidic, in ways that affect coral growth and fish behaviour.

But when US and British scientists tested a model of ocean physics, biogeochemistry and ecosystems – intending to simulate changes in the populations of marine phytoplankton or algae – they also incorporated some of the ocean’s optical properties. Since green plants photosynthesise, they absorb sunlight, and change reflectivity.

And, as mariners have known for centuries, the blue ocean is blue because levels of marine life in the warmer mid-ocean waters are very low.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious”

The researchers tweaked their simulation to see what the world would look like in 2100 if humanity carried on burning fossil fuels on the notorious business-as-usual scenario and took global average temperatures up to 3°C above historic levels.

And they found that higher temperatures would alter the global palette. More than half of the world’s oceans would intensify in colour. The subtropics would become even more blue, and the oceans that sweep around the poles would become an even deeper green, they report in the journal Nature Communications.

“The models suggest the changes won’t appear huge to the naked eye, and the ocean will still look like it has blue regions in the subtropics and greener regions near the equator and the poles,” said Stephanie Dutkiewicz, of the Massachusetts Institute of Technology, who led the research

Wider effects.

“That basic pattern will still be there. But it will be enough different that it will affect the rest of the food web that phytoplankton supports.”

The clearer the water, the bluer the reflection of the sunlight. From space, the world looks blue. Waters rich in phytoplankton are by definition rich too in chlorophyll that absorbs blue wavelengths and reflects a green tint. But changes in chlorophyll colouring, observed over the decades from satellite monitoring, can be affected by natural climate cycles and shifts in nutrient supply.

The researchers were looking for a more complete model of the wavelengths of visible light that are absorbed, scattered or reflected by living things. They devised one, and tested their new model against satellite evidence so far. When they found agreement with the past, they had also found yet another way to read the future

Explaining ecosystem change.

They tuned their simulated planet to the 3°C warming that seems inevitable unless humans rapidly shift from fossil fuels to renewable energy sources, to discover that wavelengths of light around the blue-green spectrum shifted the fastest. The shifts in colour could tell a story of altered ecosystems.

“The nice thing about this model is that we can use it as a laboratory, a place where we can experiment, to see how our planet is going to change,” Dr Dutkiewicz said.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious..

“Different types of phytoplankton absorb light differently, and if climate change shifts one community of phytoplankton to another, they will also change the types of food webs they can support.” – Climate News Network

Reflected sunlight tells a story: one of deeper shading in an ever-warmer ocean. That is because climate change will also alter green growth in the high seas.

LONDON, 11 February, 2019 – The Blue Planet is to get a little bluer as the world warms and climates change. Where the seas turn green, expect an even deeper verdant tint, new research suggests.

Since humans began increasing the levels of greenhouse gases in the atmosphere – by burning the fossil fuels that have provided the energy for both economic growth and a population explosion – the oceans have warmed in ways that affect marine life. They have grown ever more acidic, in ways that affect coral growth and fish behaviour.

But when US and British scientists tested a model of ocean physics, biogeochemistry and ecosystems – intending to simulate changes in the populations of marine phytoplankton or algae – they also incorporated some of the ocean’s optical properties. Since green plants photosynthesise, they absorb sunlight, and change reflectivity.

And, as mariners have known for centuries, the blue ocean is blue because levels of marine life in the warmer mid-ocean waters are very low.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious”

The researchers tweaked their simulation to see what the world would look like in 2100 if humanity carried on burning fossil fuels on the notorious business-as-usual scenario and took global average temperatures up to 3°C above historic levels.

And they found that higher temperatures would alter the global palette. More than half of the world’s oceans would intensify in colour. The subtropics would become even more blue, and the oceans that sweep around the poles would become an even deeper green, they report in the journal Nature Communications.

“The models suggest the changes won’t appear huge to the naked eye, and the ocean will still look like it has blue regions in the subtropics and greener regions near the equator and the poles,” said Stephanie Dutkiewicz, of the Massachusetts Institute of Technology, who led the research

Wider effects.

“That basic pattern will still be there. But it will be enough different that it will affect the rest of the food web that phytoplankton supports.”

The clearer the water, the bluer the reflection of the sunlight. From space, the world looks blue. Waters rich in phytoplankton are by definition rich too in chlorophyll that absorbs blue wavelengths and reflects a green tint. But changes in chlorophyll colouring, observed over the decades from satellite monitoring, can be affected by natural climate cycles and shifts in nutrient supply.

The researchers were looking for a more complete model of the wavelengths of visible light that are absorbed, scattered or reflected by living things. They devised one, and tested their new model against satellite evidence so far. When they found agreement with the past, they had also found yet another way to read the future

Explaining ecosystem change.

They tuned their simulated planet to the 3°C warming that seems inevitable unless humans rapidly shift from fossil fuels to renewable energy sources, to discover that wavelengths of light around the blue-green spectrum shifted the fastest. The shifts in colour could tell a story of altered ecosystems.

“The nice thing about this model is that we can use it as a laboratory, a place where we can experiment, to see how our planet is going to change,” Dr Dutkiewicz said.

“There will be a noticeable difference in the colour of 50% of the ocean by the end of the 21st century. It could be potentially quite serious..

“Different types of phytoplankton absorb light differently, and if climate change shifts one community of phytoplankton to another, they will also change the types of food webs they can support.” – Climate News Network

Energy from greenhouse gases is possible

Laboratories can make energy from greenhouse gases, power smartphones with their own radiation, and cut shipping costs naturally. And each could become reality.

LONDON, 8 February, 2019 – Researchers have found ways to realise a modern version of the medieval alchemists’ dream  not turning base metals into gold, but conjuring energy from greenhouse gases, exploiting abundant pollutants to help to power the world.

Korean scientists have developed a sophisticated fuel cell that consumes carbon dioxide and produces electricity and hydrogen – potentially another fuel – at the same time.

Researchers based in the US and Spain have devised a nanoscale fabric that converts electromagnetic waves into electrical current.

The dream is that a smartphone coated with the fabric could, without benefit of a battery, charge itself from the ambient wi-fi radiation that it exploits for texts, calls and data.

German scientists have taken a leaf from nature’s book and applied it – so far in theory – to bulk cargo shipping. Salvinia molesta, a floating fern native to Brazil, isolates itself from water with a thin sheath of air. If the large carriers could adopt the Salvinia trick and incorporate a similar layer of air in the anti-fouling coating on the hull, this would reduce drag sufficiently to save 20% of fuel costs.

To the Urals

And in yet another demonstration of the ingenuity and innovative ambition on show in the world’s laboratories, another German team has looked at the large-scale climate economics of artificial photosynthesis – a system of semiconductors and oxides – that could draw down carbon dioxide from the atmosphere and deliver stable chemical compounds.

To take 10 billion metric tons of carbon dioxide out of the atmosphere each year would demand a forest that covered all Europe as far as the Urals. But to do the same job, a commercial forest of “artificial leaves” would require a land area about the size of the German federal state of Brandenburg.

All these ideas are ready for further development. None is so far anywhere near the commercial market.

But all are evidence that chemists, engineers, physicists and biologists have taken up the great climate challenge: how to power modern society without fuelling even faster global warming and climate change that could, ultimately, bring global economic growth to a devastating halt.

And, as many researchers see it, that means not just by-passing the fossil fuels that drive climate change, but actively exploiting the ever-higher ratios of carbon dioxide now in the atmosphere, or soon to emerge from power station chimneys

“The best thing now would be to drastically reduce emissions immediately – that would be safer and much cheaper”

Scientists at UNIST, Korea’s National Institute of Science and Technology, report in the journal iScience that in collaboration with engineers at the Georgia Institute of Technology in the US they have already developed a hybrid sodium-carbon dioxide system of electrolytes that converts dissolved carbon dioxide to sodium bicarbonate and hydrogen, with a flow of electric current.

Efficiency is high – with 50% of the carbon dioxide exploited – and could be higher. And their test apparatus so far has run in stable fashion for 1000 hours. The system uses a new approach to materials to exploit something in the air everywhere.

And that too is exactly what researchers in the US have done: they report in the journal Nature that they have fashioned a flexible sheet of ultra-thin material that serves as what they call a “rectenna”: a radio-frequency antenna that harvests radiation, including wi-fi signals, as alternating current waveforms, and feeds them to a nanoscale semiconductor that converts it to direct current.

So far, the rectenna devices have produced 40 microwatts of power: enough to fire up a light-emitting diode, or power a silicon chip.

“We have come up with a new way to power the electronics systems of the future – by harvesting wi-fi energy in a way that’s easily integrated in large areas – to bring intelligence to every object around us,” said Tomás Palacios, an electrical engineer at Massachusetts Institute of Technology, and one of the authors.

Magic carpet

The waterweed Salvinia molesta exploits bubbles to keep itself afloat but out of the water: it literally rides in the water on a little magic carpet of air. The hydrophobic plant is regarded as an invasive pest, but the way it harnesses air to keep itself afloat and on top of things provides a lesson not just for evolutionary biologists but for engineers.

Researchers from the University of Bonn have been looking at the problem of the global shipping fleet: cargo freighters burn 250 million tonnes of fuel a year and emit a billion tonnes of carbon dioxide, much of it because of the sheer drag of moving a hull through the waves. So anything that reduces drag saves fuel (which accounts for half of all transport costs).

The German scientists report in the Philosophical Transactions A of the Royal Society that their experiments with hull coatings based on the lessons of Salvinia could in the medium term cut fuel costs by up to 20% and on a global scale reduce emissions by 130 million tonnes a year. If the same coating discouraged barnacles as well, the saving could reach 300 million tonnes – 1% of global CO2 output.

To keep global warming to the promised level of no more than 1.5°C, an ambition signed up to by 195 nations in Paris in 2015, global fossil fuel emissions will have to reach zero by 2050.

Right now, nations are adding 42 billion tonnes of carbon dioxide to the atmosphere every year. So there is pressure to find ways to remove carbon from the atmosphere and store it.

Huge economy

German scientists report in the journal Earth System Dynamics that they did the sums and calculated that to take 10 billion tonnes of carbon dioxide out of the atmosphere using the machinery supplied by 3 billion years of evolution would require new forest plantations that stretched over 10 million kilometres. This is about the size of continental Europe.

But supposing artificial leaf systems developed in laboratories could be further developed on a massive scale? These leaves would draw down carbon dioxide and deliver it for permanent storage or for chemical conversion to plastic or building material.

If so, then efficient synthetic photosynthesis installations could do the same job from an area of only 30,000 square kilometres.

“These kinds of modules could be placed in non-agricultural regions – in deserts, for example. In contrast to plants, they require hardly any water to operate,” said Matthias May of the Helmholtz-Zentrum Berlin, one of the authors. It would of course come at a formidable cost – about €650 bn
or US$740 bn a year.

“The best thing now,” Dr May said, “would be to drastically reduce emissions immediately – that would be safer and much cheaper.” – Climate News Network

Laboratories can make energy from greenhouse gases, power smartphones with their own radiation, and cut shipping costs naturally. And each could become reality.

LONDON, 8 February, 2019 – Researchers have found ways to realise a modern version of the medieval alchemists’ dream  not turning base metals into gold, but conjuring energy from greenhouse gases, exploiting abundant pollutants to help to power the world.

Korean scientists have developed a sophisticated fuel cell that consumes carbon dioxide and produces electricity and hydrogen – potentially another fuel – at the same time.

Researchers based in the US and Spain have devised a nanoscale fabric that converts electromagnetic waves into electrical current.

The dream is that a smartphone coated with the fabric could, without benefit of a battery, charge itself from the ambient wi-fi radiation that it exploits for texts, calls and data.

German scientists have taken a leaf from nature’s book and applied it – so far in theory – to bulk cargo shipping. Salvinia molesta, a floating fern native to Brazil, isolates itself from water with a thin sheath of air. If the large carriers could adopt the Salvinia trick and incorporate a similar layer of air in the anti-fouling coating on the hull, this would reduce drag sufficiently to save 20% of fuel costs.

To the Urals

And in yet another demonstration of the ingenuity and innovative ambition on show in the world’s laboratories, another German team has looked at the large-scale climate economics of artificial photosynthesis – a system of semiconductors and oxides – that could draw down carbon dioxide from the atmosphere and deliver stable chemical compounds.

To take 10 billion metric tons of carbon dioxide out of the atmosphere each year would demand a forest that covered all Europe as far as the Urals. But to do the same job, a commercial forest of “artificial leaves” would require a land area about the size of the German federal state of Brandenburg.

All these ideas are ready for further development. None is so far anywhere near the commercial market.

But all are evidence that chemists, engineers, physicists and biologists have taken up the great climate challenge: how to power modern society without fuelling even faster global warming and climate change that could, ultimately, bring global economic growth to a devastating halt.

And, as many researchers see it, that means not just by-passing the fossil fuels that drive climate change, but actively exploiting the ever-higher ratios of carbon dioxide now in the atmosphere, or soon to emerge from power station chimneys

“The best thing now would be to drastically reduce emissions immediately – that would be safer and much cheaper”

Scientists at UNIST, Korea’s National Institute of Science and Technology, report in the journal iScience that in collaboration with engineers at the Georgia Institute of Technology in the US they have already developed a hybrid sodium-carbon dioxide system of electrolytes that converts dissolved carbon dioxide to sodium bicarbonate and hydrogen, with a flow of electric current.

Efficiency is high – with 50% of the carbon dioxide exploited – and could be higher. And their test apparatus so far has run in stable fashion for 1000 hours. The system uses a new approach to materials to exploit something in the air everywhere.

And that too is exactly what researchers in the US have done: they report in the journal Nature that they have fashioned a flexible sheet of ultra-thin material that serves as what they call a “rectenna”: a radio-frequency antenna that harvests radiation, including wi-fi signals, as alternating current waveforms, and feeds them to a nanoscale semiconductor that converts it to direct current.

So far, the rectenna devices have produced 40 microwatts of power: enough to fire up a light-emitting diode, or power a silicon chip.

“We have come up with a new way to power the electronics systems of the future – by harvesting wi-fi energy in a way that’s easily integrated in large areas – to bring intelligence to every object around us,” said Tomás Palacios, an electrical engineer at Massachusetts Institute of Technology, and one of the authors.

Magic carpet

The waterweed Salvinia molesta exploits bubbles to keep itself afloat but out of the water: it literally rides in the water on a little magic carpet of air. The hydrophobic plant is regarded as an invasive pest, but the way it harnesses air to keep itself afloat and on top of things provides a lesson not just for evolutionary biologists but for engineers.

Researchers from the University of Bonn have been looking at the problem of the global shipping fleet: cargo freighters burn 250 million tonnes of fuel a year and emit a billion tonnes of carbon dioxide, much of it because of the sheer drag of moving a hull through the waves. So anything that reduces drag saves fuel (which accounts for half of all transport costs).

The German scientists report in the Philosophical Transactions A of the Royal Society that their experiments with hull coatings based on the lessons of Salvinia could in the medium term cut fuel costs by up to 20% and on a global scale reduce emissions by 130 million tonnes a year. If the same coating discouraged barnacles as well, the saving could reach 300 million tonnes – 1% of global CO2 output.

To keep global warming to the promised level of no more than 1.5°C, an ambition signed up to by 195 nations in Paris in 2015, global fossil fuel emissions will have to reach zero by 2050.

Right now, nations are adding 42 billion tonnes of carbon dioxide to the atmosphere every year. So there is pressure to find ways to remove carbon from the atmosphere and store it.

Huge economy

German scientists report in the journal Earth System Dynamics that they did the sums and calculated that to take 10 billion tonnes of carbon dioxide out of the atmosphere using the machinery supplied by 3 billion years of evolution would require new forest plantations that stretched over 10 million kilometres. This is about the size of continental Europe.

But supposing artificial leaf systems developed in laboratories could be further developed on a massive scale? These leaves would draw down carbon dioxide and deliver it for permanent storage or for chemical conversion to plastic or building material.

If so, then efficient synthetic photosynthesis installations could do the same job from an area of only 30,000 square kilometres.

“These kinds of modules could be placed in non-agricultural regions – in deserts, for example. In contrast to plants, they require hardly any water to operate,” said Matthias May of the Helmholtz-Zentrum Berlin, one of the authors. It would of course come at a formidable cost – about €650 bn
or US$740 bn a year.

“The best thing now,” Dr May said, “would be to drastically reduce emissions immediately – that would be safer and much cheaper.” – Climate News Network

UK vegetable and fruit supplies at risk

Britons’ familiar and well-loved fish and chips could become scarcer as politics and climate change imperil UK vegetable and fruit supplies.

LONDON, 5 February, 2019 − A combination of Brexit − Britain’s move to leave the European Union − and climate change is threatening UK vegetable and fruit supplies for its 66 million people.

Brexit-associated delays at ports could result in widespread shortages of a range of imported vegetables and fruit such as lettuces and tomatoes, particularly if the UK crashes out of Europe at the end of March this year with no deal in place.

Now there’s more bad news on the British food front; a just-released report says climate change and resulting abnormal weather conditions are causing significant decreases in the UK’s own vegetable and fruit harvests.

The study, produced by the Climate Coalition in association with the Priestley International Centre for Climate at the University of Leeds in the UK, says about 60% of food consumed in Britain is domestically produced.

The unusually warm summer in 2018 – the hottest ever in England since records began in 1910, according to the report – led to a drop in the onion harvest of 40% and a decline of between 25% and 30% in the carrot crop.

In 2017 the UK’s apple growers lost 25% of their produce due to unseasonably warm weather followed by an unusually late series of frosts.

“It’s really hard work growing fruit and vegetables, but erratic and extreme weather pushes you over the edge”

The study says climate change-related extreme and unpredictable weather is putting at risk future supplies of potatoes – a staple of the British diet.

“The UK could lose almost three-quarters of the area of land currently well-suited for potatoes by the 2050s under climate projections”, says the report.

Last year there was a 20% drop in potato yields in England and Wales, it says. More than 80% of potatoes consumed in the UK are home-grown.

“The climate extremes of the past few years – including the snowfall and freezing temperatures of February and March 2018 and one of the driest June months in England and Wales since 1910 – have been devastating for UK fruit and vegetable farmers”, the report says.

Matt Smee, who runs a vegetable growing and delivery service in the north-west of England, told the report’s authors that weather patterns in 2018 made his job near-impossible.

“It’s really hard work growing fruit and vegetables, but erratic and extreme weather pushes you over the edge”, says Smee. “I’d be devastated if I had to deal with this year (2018) again.”

Livelihoods at risk

Lee Abbey, head of horticulture at the UK’s National Farmers’ Union (NFU), says farmers’ livelihoods are being hit.

“Farmers and growers are used to dealing with fluctuations in the weather but if we have two or three extreme years in a row it has the potential to put growers out of business.”

The study says that more than half of all farms in the UK report being affected by severe flooding or storms over the past decade, while water shortages in the increasingly hot summer months are a growing problem.

“With climate scientists now predicting stronger and longer-lasting heatwaves for the UK, growers are faced with increasing risks to their operations and survival”, says the study.

The report’s authors say the priority for everyone – not just the food and farming sector – is to work to reduce carbon emissions.

The study reports some positive developments; the NFU says the aim is for the UK’s farming sector to be net zero in its greenhouse gas emissions by 2040. Increasing numbers of British farmers are investing in renewable energy. − Climate News Network

Britons’ familiar and well-loved fish and chips could become scarcer as politics and climate change imperil UK vegetable and fruit supplies.

LONDON, 5 February, 2019 − A combination of Brexit − Britain’s move to leave the European Union − and climate change is threatening UK vegetable and fruit supplies for its 66 million people.

Brexit-associated delays at ports could result in widespread shortages of a range of imported vegetables and fruit such as lettuces and tomatoes, particularly if the UK crashes out of Europe at the end of March this year with no deal in place.

Now there’s more bad news on the British food front; a just-released report says climate change and resulting abnormal weather conditions are causing significant decreases in the UK’s own vegetable and fruit harvests.

The study, produced by the Climate Coalition in association with the Priestley International Centre for Climate at the University of Leeds in the UK, says about 60% of food consumed in Britain is domestically produced.

The unusually warm summer in 2018 – the hottest ever in England since records began in 1910, according to the report – led to a drop in the onion harvest of 40% and a decline of between 25% and 30% in the carrot crop.

In 2017 the UK’s apple growers lost 25% of their produce due to unseasonably warm weather followed by an unusually late series of frosts.

“It’s really hard work growing fruit and vegetables, but erratic and extreme weather pushes you over the edge”

The study says climate change-related extreme and unpredictable weather is putting at risk future supplies of potatoes – a staple of the British diet.

“The UK could lose almost three-quarters of the area of land currently well-suited for potatoes by the 2050s under climate projections”, says the report.

Last year there was a 20% drop in potato yields in England and Wales, it says. More than 80% of potatoes consumed in the UK are home-grown.

“The climate extremes of the past few years – including the snowfall and freezing temperatures of February and March 2018 and one of the driest June months in England and Wales since 1910 – have been devastating for UK fruit and vegetable farmers”, the report says.

Matt Smee, who runs a vegetable growing and delivery service in the north-west of England, told the report’s authors that weather patterns in 2018 made his job near-impossible.

“It’s really hard work growing fruit and vegetables, but erratic and extreme weather pushes you over the edge”, says Smee. “I’d be devastated if I had to deal with this year (2018) again.”

Livelihoods at risk

Lee Abbey, head of horticulture at the UK’s National Farmers’ Union (NFU), says farmers’ livelihoods are being hit.

“Farmers and growers are used to dealing with fluctuations in the weather but if we have two or three extreme years in a row it has the potential to put growers out of business.”

The study says that more than half of all farms in the UK report being affected by severe flooding or storms over the past decade, while water shortages in the increasingly hot summer months are a growing problem.

“With climate scientists now predicting stronger and longer-lasting heatwaves for the UK, growers are faced with increasing risks to their operations and survival”, says the study.

The report’s authors say the priority for everyone – not just the food and farming sector – is to work to reduce carbon emissions.

The study reports some positive developments; the NFU says the aim is for the UK’s farming sector to be net zero in its greenhouse gas emissions by 2040. Increasing numbers of British farmers are investing in renewable energy. − Climate News Network