Tag Archives: emissions

Human carbon emissions to rise in 2019

Here comes another dismal science forecast, with human carbon emissions due to rise this year. Forests may be unable to keep pace as global warming increases.

LONDON, 31 January, 2019 − Stand by for a year in which global warming can only get worse as human carbon emissions climb still further. British meteorologists warn that although 2018 broke all records for greenhouse gas emissions, 2019 will see even more carbon dioxide take up long-term residence in the planetary atmosphere.

And it will happen for two reasons, both of them nominally at least under human control. The overall release of carbon dioxide from power stations, factory chimneys, cement quarries, car exhausts and so on will continue to rise with fossil fuel combustion, even though there has been greater investment than ever in renewable resources such as wind and solar energy.

And those natural “sinks” that absorb extra carbon from the atmosphere and sequester it as living timber in the forests, or bones and shells in the oceans, are expected to under-perform.

This is largely because of natural cyclic variation in the tropical climate, but also partly because humans continue to degrade grasslands and fell or burn the forests that naturally absorb carbon dioxide from the atmosphere and return oxygen for the animal world to breathe.

Hawaii’s unique record

Climate scientists know what is going to happen because they can see the future already written in a unique 60-year-old cycle of data recorded high on a mountaintop in Hawaii, in the Pacific, far from any heavy industry or city pollution that might distort the local chemistry of the atmosphere.

“Since 1958, monitoring at the Mauna Loa observatory in Hawaii has registered around a 30% increase in the concentration of carbon dioxide in the atmosphere,” said Richard Betts, of the UK Met Office’s Hadley Centre.

“This is caused by emissions from fossil fuels, deforestation and cement production, and the increase would have been even larger if it were not for natural carbon sinks which soak up some of the excess CO2.

This year we expect these carbon sinks to be relatively weak, so the impact of record high human-caused emissions will be larger than last year.”

“Deforestation in the Brazilian Amazon increased to around 8,000 square kilometres in 2018, equivalent to losing a football pitch of forest every 80 seconds”

At the heart of the diagnosis is the increasing understanding of the role of the world’s great oceans in managing planetary weather patterns.

A year ago the tropical Pacific was relatively cool, rainfall increased and land-based ecosystems flourished, soaking up atmospheric carbon. In a relatively warm cycle, many regions become warmer and drier, which in turn limits plant growth.

Carbon dioxide ratios in the global atmosphere for most of human history, until the Industrial Revolution and the arrival of the steam age and the internal combustion engine, oscillated at around 280 parts per million (ppm). In the last decade, the ratio reached 400 ppm, and in 2018 peaked at 414.7 ppm in May, before beginning to fall in the northern hemisphere growing season, to rise again in September.

El Niño distortion

Overall, the average for 2018 was 411 ppm, with an uncertainty factor of 0.6 ppm. In 2019, the average is likely to be 2.75 ppm higher still. This would be one of the largest annual rises on record.

The rises in 2015-2016 and in 1997-1998 were higher, but these years’ readings were distorted by the arrival of a dramatic but natural Pacific warming called El Niño, always associated with a sudden and often damaging shift in regional climate patterns far away.

Climate scientists have continued to hope for a global response to such predictions: these are the people who are professionally most aware of the big picture of global change.

Julienne Stroeve of University College London called the news “discouraging, for sure. Last year the extra CO2 was equivalent to melting about 110,000 square kilometres of Arctic Sea ice, or roughly three times the area of Switzerland. Sea ice loss is directly tied to increases in atmospheric CO2.”

Damage to forests

And Jos Barlow, of Lancaster University’s Environment Centre, warned that forest clearance in the tropics continued as a hazard.

Deforestation in the Brazilian Amazon increased to around 8,000 square kilometres in 2018, which is equivalent to losing a football pitch of forest every 80 seconds. This alone would result in CO2 emissions that exceed those of the UK over the same time period.”

Professor Betts called the Mauna Loa record of atmospheric carbon dioxide a “thing of beauty” and a stark reminder of human interference with the planetary climate.

“Looking at the monthly figures, it’s as if you can see the planet ‘breathing’ as the levels of carbon dioxide fall and rise with the seasonal cycle of plant growth and decay in the northern hemisphere. But each year’s CO2 is higher than the last, and this will keep happening until humans stop adding CO2 to the atmosphere.” − Climate News Network

Here comes another dismal science forecast, with human carbon emissions due to rise this year. Forests may be unable to keep pace as global warming increases.

LONDON, 31 January, 2019 − Stand by for a year in which global warming can only get worse as human carbon emissions climb still further. British meteorologists warn that although 2018 broke all records for greenhouse gas emissions, 2019 will see even more carbon dioxide take up long-term residence in the planetary atmosphere.

And it will happen for two reasons, both of them nominally at least under human control. The overall release of carbon dioxide from power stations, factory chimneys, cement quarries, car exhausts and so on will continue to rise with fossil fuel combustion, even though there has been greater investment than ever in renewable resources such as wind and solar energy.

And those natural “sinks” that absorb extra carbon from the atmosphere and sequester it as living timber in the forests, or bones and shells in the oceans, are expected to under-perform.

This is largely because of natural cyclic variation in the tropical climate, but also partly because humans continue to degrade grasslands and fell or burn the forests that naturally absorb carbon dioxide from the atmosphere and return oxygen for the animal world to breathe.

Hawaii’s unique record

Climate scientists know what is going to happen because they can see the future already written in a unique 60-year-old cycle of data recorded high on a mountaintop in Hawaii, in the Pacific, far from any heavy industry or city pollution that might distort the local chemistry of the atmosphere.

“Since 1958, monitoring at the Mauna Loa observatory in Hawaii has registered around a 30% increase in the concentration of carbon dioxide in the atmosphere,” said Richard Betts, of the UK Met Office’s Hadley Centre.

“This is caused by emissions from fossil fuels, deforestation and cement production, and the increase would have been even larger if it were not for natural carbon sinks which soak up some of the excess CO2.

This year we expect these carbon sinks to be relatively weak, so the impact of record high human-caused emissions will be larger than last year.”

“Deforestation in the Brazilian Amazon increased to around 8,000 square kilometres in 2018, equivalent to losing a football pitch of forest every 80 seconds”

At the heart of the diagnosis is the increasing understanding of the role of the world’s great oceans in managing planetary weather patterns.

A year ago the tropical Pacific was relatively cool, rainfall increased and land-based ecosystems flourished, soaking up atmospheric carbon. In a relatively warm cycle, many regions become warmer and drier, which in turn limits plant growth.

Carbon dioxide ratios in the global atmosphere for most of human history, until the Industrial Revolution and the arrival of the steam age and the internal combustion engine, oscillated at around 280 parts per million (ppm). In the last decade, the ratio reached 400 ppm, and in 2018 peaked at 414.7 ppm in May, before beginning to fall in the northern hemisphere growing season, to rise again in September.

El Niño distortion

Overall, the average for 2018 was 411 ppm, with an uncertainty factor of 0.6 ppm. In 2019, the average is likely to be 2.75 ppm higher still. This would be one of the largest annual rises on record.

The rises in 2015-2016 and in 1997-1998 were higher, but these years’ readings were distorted by the arrival of a dramatic but natural Pacific warming called El Niño, always associated with a sudden and often damaging shift in regional climate patterns far away.

Climate scientists have continued to hope for a global response to such predictions: these are the people who are professionally most aware of the big picture of global change.

Julienne Stroeve of University College London called the news “discouraging, for sure. Last year the extra CO2 was equivalent to melting about 110,000 square kilometres of Arctic Sea ice, or roughly three times the area of Switzerland. Sea ice loss is directly tied to increases in atmospheric CO2.”

Damage to forests

And Jos Barlow, of Lancaster University’s Environment Centre, warned that forest clearance in the tropics continued as a hazard.

Deforestation in the Brazilian Amazon increased to around 8,000 square kilometres in 2018, which is equivalent to losing a football pitch of forest every 80 seconds. This alone would result in CO2 emissions that exceed those of the UK over the same time period.”

Professor Betts called the Mauna Loa record of atmospheric carbon dioxide a “thing of beauty” and a stark reminder of human interference with the planetary climate.

“Looking at the monthly figures, it’s as if you can see the planet ‘breathing’ as the levels of carbon dioxide fall and rise with the seasonal cycle of plant growth and decay in the northern hemisphere. But each year’s CO2 is higher than the last, and this will keep happening until humans stop adding CO2 to the atmosphere.” − Climate News Network

Pyrenees pipeline veto is setback for gas

The global gas industry’s prospects will suffer from the Pyrenees pipeline veto imposed by regulators, say opponents of fossil fuels.

LONDON, 30 January, 2019 − The Pyrenees pipeline veto announced by regulators in France and Spain, rejecting plans to complete a €3 billion (£2.6 bn) gas link between both countries, is being hailed as a major victory by climate change protestors.

The pipeline, which would have doubled the capacity for transporting natural gas through the mountains on the Franco-Spanish border, was supported by the European Union as a way to reduce its reliance on Russian gas, but the project now appears doomed.

Campaigners in both countries said it was a defeat for the fossil fuel industry and a major step in preventing the EU from continuing to rely on gas instead of renewables.

“MidCat”, as the proposed Midi-Catalunya pipeline was known, would have allowed the flow of gas in both directions across the Pyrenees. Significantly, it would have allowed liquefied gas from terminals in Spain to be pumped north to France to replace an estimated 10% of the gas coming south from Russia.

Energy corporations Enagás and Teréga have been promoting its construction since 2005, and in 2013 the European Commission added the project to its list of favoured “Projects of Common Interest”.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels”

The companies presented the pipeline as a necessary piece of infrastructure to improve Europe’s energy security and to fight against climate change, but protestors said the money should instead have been invested in renewables.

Although it was only one of 90 projects designed to improve the transport of gas in the EU, it was one of the largest. Gas companies have lobbied hard everywhere in Europe to get the Commission and politicians to see gas as an interim step between coal and renewables, but campaigners say the climate cannot afford to burn gas either.

Clemence Dubois, a campaigner at 350.org, said: “All across Europe, we are building a future free of fossil fuels. Together we are making it harder and harder for dirty energy companies to build their pipelines and impose a destructive and outdated model of business.

“We have won an important victory because we have prevented the construction of a major piece of infrastructure that is totally incompatible with a liveable climate.”

Last week the French Energy Regulatory Commission (CRE) and the Spanish National Commission on Markets and Competition  (CNMC) issued a joint statement rejecting the scheme, not on climate grounds but because they said it was too costly and they could not see a sufficient need for it.

Red card

Antoine Simon, fossil free campaigner for Friends of the Earth Europe, said: “This dramatic red card to the MidCat gas pipeline marks a major victory in the fight to stop a new climate-wrecking fossil gas project. Activists, NGOs and local communities have been fighting this useless project for years, knowing it’s bad for taxpayers, consumers, local people, and the climate – and today they’ve been proved right.

“This is a major setback for the gas industry, and calls into question the hundred other gas projects that the EU has prioritised for support, all of which are similarly unviable. Gas is a dangerous fossil fuel which is killing the climate.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels.”

Although there has been fierce opposition from environment groups in the region, the pipeline’s future was in doubt from the moment the Spanish Conservative government lost power in June last year and socialists took over the environment ministry.

When last November Spain pledged to switch to 100% renewable electricity by 2050 and to become carbon-neutral soon afterwards, it was clear that the new pipeline was unlikely to find favour. − Climate News Network

The global gas industry’s prospects will suffer from the Pyrenees pipeline veto imposed by regulators, say opponents of fossil fuels.

LONDON, 30 January, 2019 − The Pyrenees pipeline veto announced by regulators in France and Spain, rejecting plans to complete a €3 billion (£2.6 bn) gas link between both countries, is being hailed as a major victory by climate change protestors.

The pipeline, which would have doubled the capacity for transporting natural gas through the mountains on the Franco-Spanish border, was supported by the European Union as a way to reduce its reliance on Russian gas, but the project now appears doomed.

Campaigners in both countries said it was a defeat for the fossil fuel industry and a major step in preventing the EU from continuing to rely on gas instead of renewables.

“MidCat”, as the proposed Midi-Catalunya pipeline was known, would have allowed the flow of gas in both directions across the Pyrenees. Significantly, it would have allowed liquefied gas from terminals in Spain to be pumped north to France to replace an estimated 10% of the gas coming south from Russia.

Energy corporations Enagás and Teréga have been promoting its construction since 2005, and in 2013 the European Commission added the project to its list of favoured “Projects of Common Interest”.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels”

The companies presented the pipeline as a necessary piece of infrastructure to improve Europe’s energy security and to fight against climate change, but protestors said the money should instead have been invested in renewables.

Although it was only one of 90 projects designed to improve the transport of gas in the EU, it was one of the largest. Gas companies have lobbied hard everywhere in Europe to get the Commission and politicians to see gas as an interim step between coal and renewables, but campaigners say the climate cannot afford to burn gas either.

Clemence Dubois, a campaigner at 350.org, said: “All across Europe, we are building a future free of fossil fuels. Together we are making it harder and harder for dirty energy companies to build their pipelines and impose a destructive and outdated model of business.

“We have won an important victory because we have prevented the construction of a major piece of infrastructure that is totally incompatible with a liveable climate.”

Last week the French Energy Regulatory Commission (CRE) and the Spanish National Commission on Markets and Competition  (CNMC) issued a joint statement rejecting the scheme, not on climate grounds but because they said it was too costly and they could not see a sufficient need for it.

Red card

Antoine Simon, fossil free campaigner for Friends of the Earth Europe, said: “This dramatic red card to the MidCat gas pipeline marks a major victory in the fight to stop a new climate-wrecking fossil gas project. Activists, NGOs and local communities have been fighting this useless project for years, knowing it’s bad for taxpayers, consumers, local people, and the climate – and today they’ve been proved right.

“This is a major setback for the gas industry, and calls into question the hundred other gas projects that the EU has prioritised for support, all of which are similarly unviable. Gas is a dangerous fossil fuel which is killing the climate.

“The gas industry should realise that the party is over and that we can’t keep sinking taxpayer billions into more fossil fuels.”

Although there has been fierce opposition from environment groups in the region, the pipeline’s future was in doubt from the moment the Spanish Conservative government lost power in June last year and socialists took over the environment ministry.

When last November Spain pledged to switch to 100% renewable electricity by 2050 and to become carbon-neutral soon afterwards, it was clear that the new pipeline was unlikely to find favour. − Climate News Network

Junk fossil fuel plants and stay below 1.5°C

The world could yet contain global warming to 1.5°C – but only if governments act now to junk fossil fuel plants and ditch all those smoking power stations.

LONDON, 24 January, 2019 British scientists have worked out how to make sure of a better-than-even chance that 195 nations can fulfill a promise made in Paris in 2015 to stop global warming at 1.5°C by the end of the century: junk fossil fuel plants.

The answer is simple: phase out fossil fuel hardware as soon as it reaches the end of its effective life. Scrap the old petrol-powered car and buy electric. Shut down the coal-burning power generator and get electricity from the wind or the sunlight. Find some renewable fuel for jet planes. Deliver transoceanic cargoes with a marine fuel that isn’t derived from oil or coal.

There is a catch. Those 195 nations should have already started doing all these things by the end of 2018. To delay a start until 2030 could mean failure, even if – little more than a decade from now – the world then accelerated its escape from fossil fuel addiction.

“Although the challenges laid out by the Paris Agreement are daunting, we indicate 1.5°C remains possible and is attainable with ambitious and immediate emission reduction across all sectors”, the researchers say in the journal Nature Communications.

Long working life

Their study is based on the match of climate models and a range of possible scenarios and is focused on energy generation, transport and industry: these account for 85% of the carbon dioxide emissions that have begun to warm the planet and change the climate, and for which researchers have the most reliable lifetime data.

“All fossil fuel infrastructure, such as coal power plants, carries a climate change commitment. A new coal plant will emit carbon dioxide for roughly 40 years across its lifecycle which in turn affects global warming,” said Christopher Smith, of the University of Leeds, who worked with colleagues from Britain, Norway, Austria, Switzerland and Canada to model a huge range of possibilities to identify a timetable strategy with a probability of success of 64%.

“Investments into carbon-intensive infrastructure and their development and maintenance lock us in to the associated carbon emissions and make the transition to lower-carbon alternatives more difficult.

“Our research found that the current amount of fossil fuel infrastructure in the global economy does not yet commit us to exceeding the 1.5°C temperature rise limit put forward by the Paris Agreement.

“Climate change policy does need some good news, and [the] message is that we are not (quite) doomed yet”

“We may have missed starting the phase-out by the end of 2018, but we are still within the margin of achieving the scenario the model put forward.”

The implication is that no new oil wells should be drilled, or mines opened; no more coal-burning or oil-burning power plant commissioned. Infrastructure in use now will be retired when it reaches the end of its life, perhaps 40 years from now.

The scientists don’t discuss how feasible – in political, economic and development terms – such a step will be. Their point is that, to keep the Paris promise, the world must start now.

And their assumption does not incorporate any of the much-feared and potentially catastrophic changes in the near future, as ice caps melt and permafrost thaws to release vast quantities of carbon trapped in once-frozen Arctic soils, and make global warming accelerate.

Series of warnings

The study is not the first to warn that the time available for ending fossil fuel dependence and switching to renewable energy resources is limited. Almost as soon as the world made its historic agreement in Paris many scientists warned that on the basis of pledges made at the time the target would be difficult or impossible to achieve.

The planet has already warmed by 1°C since the Industrial Revolution began to release ever greater levels of greenhouse gases into the atmosphere. One study forecast that a world already at least 1.5°C warmer than it had been for most of human history could arrive by 2026.

Other scientists have welcomed the Leeds research. “Climate change policy does need some good news, and their message is that we are not (quite) doomed yet,” said Phillip Williamson of the University of East Anglia.

“If from now on the greenhouse gas-emitting power plants, factories, cars, ships and planes are replaced by non-polluting alternatives as they reach the end of their lifetimes, then the threshold of 1.5°C warming might not be crossed. Yet that is a very big ‘if’.” – Climate News Network

The world could yet contain global warming to 1.5°C – but only if governments act now to junk fossil fuel plants and ditch all those smoking power stations.

LONDON, 24 January, 2019 British scientists have worked out how to make sure of a better-than-even chance that 195 nations can fulfill a promise made in Paris in 2015 to stop global warming at 1.5°C by the end of the century: junk fossil fuel plants.

The answer is simple: phase out fossil fuel hardware as soon as it reaches the end of its effective life. Scrap the old petrol-powered car and buy electric. Shut down the coal-burning power generator and get electricity from the wind or the sunlight. Find some renewable fuel for jet planes. Deliver transoceanic cargoes with a marine fuel that isn’t derived from oil or coal.

There is a catch. Those 195 nations should have already started doing all these things by the end of 2018. To delay a start until 2030 could mean failure, even if – little more than a decade from now – the world then accelerated its escape from fossil fuel addiction.

“Although the challenges laid out by the Paris Agreement are daunting, we indicate 1.5°C remains possible and is attainable with ambitious and immediate emission reduction across all sectors”, the researchers say in the journal Nature Communications.

Long working life

Their study is based on the match of climate models and a range of possible scenarios and is focused on energy generation, transport and industry: these account for 85% of the carbon dioxide emissions that have begun to warm the planet and change the climate, and for which researchers have the most reliable lifetime data.

“All fossil fuel infrastructure, such as coal power plants, carries a climate change commitment. A new coal plant will emit carbon dioxide for roughly 40 years across its lifecycle which in turn affects global warming,” said Christopher Smith, of the University of Leeds, who worked with colleagues from Britain, Norway, Austria, Switzerland and Canada to model a huge range of possibilities to identify a timetable strategy with a probability of success of 64%.

“Investments into carbon-intensive infrastructure and their development and maintenance lock us in to the associated carbon emissions and make the transition to lower-carbon alternatives more difficult.

“Our research found that the current amount of fossil fuel infrastructure in the global economy does not yet commit us to exceeding the 1.5°C temperature rise limit put forward by the Paris Agreement.

“Climate change policy does need some good news, and [the] message is that we are not (quite) doomed yet”

“We may have missed starting the phase-out by the end of 2018, but we are still within the margin of achieving the scenario the model put forward.”

The implication is that no new oil wells should be drilled, or mines opened; no more coal-burning or oil-burning power plant commissioned. Infrastructure in use now will be retired when it reaches the end of its life, perhaps 40 years from now.

The scientists don’t discuss how feasible – in political, economic and development terms – such a step will be. Their point is that, to keep the Paris promise, the world must start now.

And their assumption does not incorporate any of the much-feared and potentially catastrophic changes in the near future, as ice caps melt and permafrost thaws to release vast quantities of carbon trapped in once-frozen Arctic soils, and make global warming accelerate.

Series of warnings

The study is not the first to warn that the time available for ending fossil fuel dependence and switching to renewable energy resources is limited. Almost as soon as the world made its historic agreement in Paris many scientists warned that on the basis of pledges made at the time the target would be difficult or impossible to achieve.

The planet has already warmed by 1°C since the Industrial Revolution began to release ever greater levels of greenhouse gases into the atmosphere. One study forecast that a world already at least 1.5°C warmer than it had been for most of human history could arrive by 2026.

Other scientists have welcomed the Leeds research. “Climate change policy does need some good news, and their message is that we are not (quite) doomed yet,” said Phillip Williamson of the University of East Anglia.

“If from now on the greenhouse gas-emitting power plants, factories, cars, ships and planes are replaced by non-polluting alternatives as they reach the end of their lifetimes, then the threshold of 1.5°C warming might not be crossed. Yet that is a very big ‘if’.” – Climate News Network

Battery boom aids climate change battle

The fastest-expanding industrial sector on the planet is now electricity storage − a battery boom which heralds an end to the need for fossil fuels.

LONDON, 18 January, 2019 − Billions of dollars are being invested worldwide in the developing battery boom, involving research into storage techniques to use the growing surpluses of cheap renewable energy now becoming available.

Recent developments in batteries are set to sweep aside the old arguments about renewables being intermittent, dismissing any need to continue building nuclear power plants and burning fossil fuels to act as a back-up when the wind does not blow, or the sun does not shine.

Batteries as large as the average family house and controlled by digital technology are being positioned across electricity networks. They are being charged when electricity is in surplus and therefore cheap, and the power they store is resold to the grid at a higher price during peak periods.

According to Bloomberg, around US$600 billion will be invested in large-scale batteries over the next 20 years to provide back-up to the grid and power for the expected boom in electric cars.

The cost of batteries is also expected to fall by 50% in the next decade, following the same pattern as the drop in cost of solar panels.

“The generally-held belief that there was no way to store electricity has been disproved. The battery boom means it is now just a question of finding the easiest and most economic way of doing it”

It is already financially viable for individual businesses to install batteries to buy electricity when it is cheap, so as to use it during peak periods. Two recent examples are the English premier league club Arsenal FC and a hotel in Edinburgh, the Scottish capital.

For Arsenal it makes sense to have a giant battery under its London stadium to store cheap power for use when its floodlights are needed during matches which are usually played when electricity prices are at their peak.

In Edinburgh, where there is often a surplus of wind power at night, the batteries provide cheap power for the 200-bedroom Premier Inn hotel in the morning and evening rush. In both cases the capital cost of the batteries is soon repaid in lower power costs.

Currently most large batteries are made of lithium, a relatively scarce and expensive mineral. Large investments are being made to find a way of making lithium batteries cheaper and more efficient, and the search is on for less expensive materials that can also be used to store electricity in battery form.

In Belgium, ironically on the site of a former coalmine, five large experimental batteries have been installed near Brussels to test the best technologies.

New possibilities

One of the latest advances is to use another rare metal, vanadium. Vanadium flow batteries are large static batteries that last for decades and can be charged and discharged completely thousands of times. They are not portable, but last for years without deterioration and are increasingly being deployed by national grids to boost supply during peak demand. A Canadian company, CellCube, has just sold a large battery plant to France.

This has been hailed as one of the most promising technologies in energy storage, but there are many other possibilities under development including high-energy magnesium batteries and lithium-air batteries, which are an advance on the current lithium-ion versions used in electric cars and for grid storage.

There are also new types of chemical batteries under trial as large-scale static installations which allow the grid to pump out more power at peak times.

The key battle for all these technologies is beating rivals on price. This means not just other battery types, but other options under development for storing energy. Surplus energy from renewables is also being used to produce hydrogen, while the surplus from solar power is often stored as heat.

In the first few years of this century the generally-held belief that there was no way to store electricity has been disproved. The battery boom means it is now just a question of finding the easiest and most economic way of doing it, and in doing so making a giant step towards a carbon-free future. − Climate News Network

The fastest-expanding industrial sector on the planet is now electricity storage − a battery boom which heralds an end to the need for fossil fuels.

LONDON, 18 January, 2019 − Billions of dollars are being invested worldwide in the developing battery boom, involving research into storage techniques to use the growing surpluses of cheap renewable energy now becoming available.

Recent developments in batteries are set to sweep aside the old arguments about renewables being intermittent, dismissing any need to continue building nuclear power plants and burning fossil fuels to act as a back-up when the wind does not blow, or the sun does not shine.

Batteries as large as the average family house and controlled by digital technology are being positioned across electricity networks. They are being charged when electricity is in surplus and therefore cheap, and the power they store is resold to the grid at a higher price during peak periods.

According to Bloomberg, around US$600 billion will be invested in large-scale batteries over the next 20 years to provide back-up to the grid and power for the expected boom in electric cars.

The cost of batteries is also expected to fall by 50% in the next decade, following the same pattern as the drop in cost of solar panels.

“The generally-held belief that there was no way to store electricity has been disproved. The battery boom means it is now just a question of finding the easiest and most economic way of doing it”

It is already financially viable for individual businesses to install batteries to buy electricity when it is cheap, so as to use it during peak periods. Two recent examples are the English premier league club Arsenal FC and a hotel in Edinburgh, the Scottish capital.

For Arsenal it makes sense to have a giant battery under its London stadium to store cheap power for use when its floodlights are needed during matches which are usually played when electricity prices are at their peak.

In Edinburgh, where there is often a surplus of wind power at night, the batteries provide cheap power for the 200-bedroom Premier Inn hotel in the morning and evening rush. In both cases the capital cost of the batteries is soon repaid in lower power costs.

Currently most large batteries are made of lithium, a relatively scarce and expensive mineral. Large investments are being made to find a way of making lithium batteries cheaper and more efficient, and the search is on for less expensive materials that can also be used to store electricity in battery form.

In Belgium, ironically on the site of a former coalmine, five large experimental batteries have been installed near Brussels to test the best technologies.

New possibilities

One of the latest advances is to use another rare metal, vanadium. Vanadium flow batteries are large static batteries that last for decades and can be charged and discharged completely thousands of times. They are not portable, but last for years without deterioration and are increasingly being deployed by national grids to boost supply during peak demand. A Canadian company, CellCube, has just sold a large battery plant to France.

This has been hailed as one of the most promising technologies in energy storage, but there are many other possibilities under development including high-energy magnesium batteries and lithium-air batteries, which are an advance on the current lithium-ion versions used in electric cars and for grid storage.

There are also new types of chemical batteries under trial as large-scale static installations which allow the grid to pump out more power at peak times.

The key battle for all these technologies is beating rivals on price. This means not just other battery types, but other options under development for storing energy. Surplus energy from renewables is also being used to produce hydrogen, while the surplus from solar power is often stored as heat.

In the first few years of this century the generally-held belief that there was no way to store electricity has been disproved. The battery boom means it is now just a question of finding the easiest and most economic way of doing it, and in doing so making a giant step towards a carbon-free future. − Climate News Network

More vegetables, less meat for all our sakes

Researchers are clear: the healthy diet for a healthy planet is more vegetables, less meat. What matters is the food that’s served, and the way it’s produced too.

LONDON, 17 January, 2019 − An international panel of health scientists and climate researchers has prescribed a new diet for the planet: more vegetables, less meat, fresh fruit, wholegrains and pulses, give up sugar, waste less and keep counting the calories.

And if 200 nations accept the diagnosis and follow doctor’s orders, tomorrow’s farmers may be able to feed 10 billion people comfortably by 2050, help contain climate change, and prevent 11 million premature deaths per year.

A commission sponsored by one of the oldest and most distinguished medical journals in the world today provides what it calls the first scientific targets for a healthy diet, from a sustainable food production system, that operates within what its authors term “planetary boundaries.”

The commission is the result of three years’ consultation by 37 experts from 16 countries, among them experts in health, nutrition, environmental sustainability, economics and political governance.

Goal within reach

It addresses the twin problems of global food supply: altogether 3 billion people are either under-nourished, or approaching clinical obesity because they are too well-nourished.

And global food production in its present form is helping to drive global warming and climate change, trigger accelerating biodiversity loss, pollute the rivers, lakes and coasts with ever greater levels of nitrogen and phosphorus run-off, and make unsustainable use of both land and fresh water.

“The food we eat and how we produce it determines the health of people and the planet, and we are currently getting this seriously wrong,” said Tim Lang, a food scientist at the City University of London, and one of the authors.

“ We need a significant overhaul, changing the global food system on a scale not seen before in ways appropriate to each country’s circumstances. While this is uncharted policy territory and these problems are not easily fixed, this goal is within reach and there are opportunities to adapt international, local and business policies. The scientific targets we have devised for a healthy, sustainable diet are an important foundation which will underpin and drive this change.”

“Humanity now poses a threat to the stability of the planet”

The study simultaneously addresses what should be on the global supper table, and how it gets there. It presumes a daily intake for a 70kg active adult male aged 30, or a 60kg woman, of up to 2,500 kilocalories per day, with around 35% of these from wholegrains and tubers.

It recommends a limit of 14 grams of red meat per day, and 500 grams of vegetables and fruits. The global appetite for red meat and sugar must be halved, while consumption of nuts, vegetables, legumes and fruit intake must double.

And it recommends fair shares on a global scale; North Americans chew their way through more than six times the recommended meat portion; people in South Asia right now consume only half what they should.

And across the globe, people depend too much on starchy foods such as potato and cassava: in sub-Saharan Africa, 7.5 times too much. If people adopt a healthy diet and limit the use of processed foods, this would avert between 10.9m and 11.6m premature deaths each year.

Unprecedented change

But the same advice then addresses the global and seemingly intractable problem of managing agriculture so that it serves all and saves the planet for permanent occupation. To make this happen, change is necessary at rates so far without precedent in history.

Somehow, production must be intensified, but without greater destruction of forests and savannah, and while eliminating the use of fossil fuels.

Another of the authors, Johan Rockström, of the Stockholm Resilience Centre and who now directs the Potsdam Institute for Climate Impact Research in Germany, calls it “nothing less than a new global agricultural revolution.”

“The good news is that not only is it doable, we have increasing evidence that it can be achieved through sustainable intensification that benefits both farmer, consumer and planet,” he said.

Planetary perspective needed

“Humanity now poses a threat to the stability of the planet. Sustainability of the food system must therefore be defined from a planetary perspective.”

The study is the latest and most authoritative iteration of a series of research papers that have argued, over and over again, for a change in planetary diet, a shift towards more efficient but also more sustainable  farming methods, and a greater focus on planetary equity.

The message from most of them is that it is, or should be, technically possible to grow food for a hungry planet without wasting productivity and without devastating wildlife and natural ecosystems any further.

Five-point plan

The Lancet Commission proposes a fivefold strategy. It includes campaigns and pricing policies to promote sustainable sources; a shift from high-volume crops to a greater variety of nutrient-rich plants; appropriate agricultural practices; careful governance of land and ocean use, along with protection of natural areas; and a concerted attempt to at least halve food wastage, an issue in high-income countries and in different ways also in poor and middle-income countries.

This is one of a series of studies published by the Lancet to address global problems related to climate: in December the same journal carried an authoritative assessment of the health costs of heat extremes in the decades to come.

Richard Horton, editor in chief of The Lancet, said the issue of global nutrition was “everyone’s and no-one’s problem. The transformation that this Commission calls for is not superficial or simple, and requires a focus on complex systems, incentives and regulations, with communities and governments at multiple levels having a part to play in redefining how we eat.

“Our connection with nature holds the answer, and if we can eat in a way that works for the planet as well as our bodies, the natural balance of the planet’s resources will be restored. The very nature that is disappearing holds the key to human and planetary survival.” − Climate News Network

Researchers are clear: the healthy diet for a healthy planet is more vegetables, less meat. What matters is the food that’s served, and the way it’s produced too.

LONDON, 17 January, 2019 − An international panel of health scientists and climate researchers has prescribed a new diet for the planet: more vegetables, less meat, fresh fruit, wholegrains and pulses, give up sugar, waste less and keep counting the calories.

And if 200 nations accept the diagnosis and follow doctor’s orders, tomorrow’s farmers may be able to feed 10 billion people comfortably by 2050, help contain climate change, and prevent 11 million premature deaths per year.

A commission sponsored by one of the oldest and most distinguished medical journals in the world today provides what it calls the first scientific targets for a healthy diet, from a sustainable food production system, that operates within what its authors term “planetary boundaries.”

The commission is the result of three years’ consultation by 37 experts from 16 countries, among them experts in health, nutrition, environmental sustainability, economics and political governance.

Goal within reach

It addresses the twin problems of global food supply: altogether 3 billion people are either under-nourished, or approaching clinical obesity because they are too well-nourished.

And global food production in its present form is helping to drive global warming and climate change, trigger accelerating biodiversity loss, pollute the rivers, lakes and coasts with ever greater levels of nitrogen and phosphorus run-off, and make unsustainable use of both land and fresh water.

“The food we eat and how we produce it determines the health of people and the planet, and we are currently getting this seriously wrong,” said Tim Lang, a food scientist at the City University of London, and one of the authors.

“ We need a significant overhaul, changing the global food system on a scale not seen before in ways appropriate to each country’s circumstances. While this is uncharted policy territory and these problems are not easily fixed, this goal is within reach and there are opportunities to adapt international, local and business policies. The scientific targets we have devised for a healthy, sustainable diet are an important foundation which will underpin and drive this change.”

“Humanity now poses a threat to the stability of the planet”

The study simultaneously addresses what should be on the global supper table, and how it gets there. It presumes a daily intake for a 70kg active adult male aged 30, or a 60kg woman, of up to 2,500 kilocalories per day, with around 35% of these from wholegrains and tubers.

It recommends a limit of 14 grams of red meat per day, and 500 grams of vegetables and fruits. The global appetite for red meat and sugar must be halved, while consumption of nuts, vegetables, legumes and fruit intake must double.

And it recommends fair shares on a global scale; North Americans chew their way through more than six times the recommended meat portion; people in South Asia right now consume only half what they should.

And across the globe, people depend too much on starchy foods such as potato and cassava: in sub-Saharan Africa, 7.5 times too much. If people adopt a healthy diet and limit the use of processed foods, this would avert between 10.9m and 11.6m premature deaths each year.

Unprecedented change

But the same advice then addresses the global and seemingly intractable problem of managing agriculture so that it serves all and saves the planet for permanent occupation. To make this happen, change is necessary at rates so far without precedent in history.

Somehow, production must be intensified, but without greater destruction of forests and savannah, and while eliminating the use of fossil fuels.

Another of the authors, Johan Rockström, of the Stockholm Resilience Centre and who now directs the Potsdam Institute for Climate Impact Research in Germany, calls it “nothing less than a new global agricultural revolution.”

“The good news is that not only is it doable, we have increasing evidence that it can be achieved through sustainable intensification that benefits both farmer, consumer and planet,” he said.

Planetary perspective needed

“Humanity now poses a threat to the stability of the planet. Sustainability of the food system must therefore be defined from a planetary perspective.”

The study is the latest and most authoritative iteration of a series of research papers that have argued, over and over again, for a change in planetary diet, a shift towards more efficient but also more sustainable  farming methods, and a greater focus on planetary equity.

The message from most of them is that it is, or should be, technically possible to grow food for a hungry planet without wasting productivity and without devastating wildlife and natural ecosystems any further.

Five-point plan

The Lancet Commission proposes a fivefold strategy. It includes campaigns and pricing policies to promote sustainable sources; a shift from high-volume crops to a greater variety of nutrient-rich plants; appropriate agricultural practices; careful governance of land and ocean use, along with protection of natural areas; and a concerted attempt to at least halve food wastage, an issue in high-income countries and in different ways also in poor and middle-income countries.

This is one of a series of studies published by the Lancet to address global problems related to climate: in December the same journal carried an authoritative assessment of the health costs of heat extremes in the decades to come.

Richard Horton, editor in chief of The Lancet, said the issue of global nutrition was “everyone’s and no-one’s problem. The transformation that this Commission calls for is not superficial or simple, and requires a focus on complex systems, incentives and regulations, with communities and governments at multiple levels having a part to play in redefining how we eat.

“Our connection with nature holds the answer, and if we can eat in a way that works for the planet as well as our bodies, the natural balance of the planet’s resources will be restored. The very nature that is disappearing holds the key to human and planetary survival.” − Climate News Network

Ocean warming speeds vary with depth

The world’s oceans are a vast reservoir of heat, a slow register of natural climate change − and ocean warming speeds differ widely.

LONDON, 10 January, 2019 − Climate scientists who have found a new way to chart temperature change in the world’s seas over time say ocean warming speeds are much slower in deep water than on the surface.

Planet Earth is mostly ocean. Human-linked changes have started to raise global temperatures to what could be alarming levels and, as the thermometer rises, so will sea levels. So detailed understanding of temperature and ocean is vital. But two separate studies confirm that the connection is far from simple.

One study of the Atlantic confirms that in the last 150 years, the oceans have taken up 90% of the excess energy released by the combustion of fossil fuels to drive human economic growth and power − and to fuel potentially-catastrophic global warming and runaway climate change.

But what the oceans will actually do with that colossal burst of heat has yet to be fully explored. And a separate examination of the deep history of the Pacific Ocean confirms that change may be inexorable, but it is also very slow: the deeper parts of the Pacific are still registering the onset of the so-called “Little Ice Age” several centuries ago.

“These waters are so old and haven’t been near the surface in so long, they still ‘remember’ what was going on hundreds of years ago”

Both studies are reminders that oceanography is still a relatively new science and researchers still have a lot to learn about the fine detail of the ways in which temperature, atmosphere and ocean interact to affect climate over the world’s continents.

But repeated research has confirmed that the oceans are warming in response to human-triggered changes on land, that this warming presents several different kinds of hazard  to marine life, and that there is a link between overall ocean temperatures and the behaviour of the ocean’s currents, a link that plays out in dramatic shifts in regional climates.

So the rewards for a more precise understanding are considerable. But understanding starts with accurate and comprehensive data, and systematic measurement of ocean temperatures began only with the voyage of the British research ship HMS Challenger in 1871.

So Laure Zanna, a physicist at the University of Oxford and her colleagues, report in the Proceedings of the National Academy of Sciences that they deployed sophisticated mathematical techniques to calculate the heat uptake of the oceans and the way the blue planet has responded since 1871.

Huge heat uptake

Altogether, in the last 150 years, the deep waters have absorbed 436 zettajoules: a joule is the unit of energy required to deliver one watt for one second and a zettajoule is a number followed by 21 zeroes. This is an enormous amount of heat, roughly 1,000 times the energy consumed by 7 billion humans in the course of a year.

The researchers’ results so far show that roughly half the observed warming of the last 60 years – and the associated sea level rise – is linked to changes in ocean circulation. They were able to reconstruct two considerable bouts of warming, over the years 1920 to 1945 and between 1990 and 2015. What they have yet to do is sort out what this means for the behaviour of the oceans over the decades to come.

“The technique is only applicable to tracers like man-made carbon that are passively transported by ocean circulation,” Professor Zanna said. “However, heat does not behave in this manner as it affects circulation by changing the density of seawater. We were pleasantly surprised by how well the approach works. It opens up an exciting new way to study ocean warming in addition to using direct measurements.”

What the research also underlines is that the oceans have a long memory: so extensive and so deep are the five oceans that the surface waters may respond to 20th century greenhouse gas emissions while the deepest trenches contain water that last warmed more than 1,000 years ago in the reign of Charlemagne, the first Holy Roman Emperor.

Still adjusting

US oceanographers report in the journal Science that they matched predictions from computer models and modern data and ancient evidence with readings from the Challenger expedition to show that two kilometres under the waves, the Pacific Ocean is still adjusting to cooling that began with the onset of the Little Ice Age centuries ago.

Such studies count as basic research: as a way of testing techniques and establishing ground rules from which more discovery could follow. They also offer new ways to understand oceans as registers of climate change over long intervals.

“These waters are so old and haven’t been near the surface in so long, they still ‘remember’ what was going on hundreds of years ago when Europe experienced some of its coldest winters in history,” said Jake Gebbie, of the Woods Hole Oceanographic Institution.

“The close correspondence between prediction and observed trends gave us confidence that this is a real phenomenon.” − Climate News Network

The world’s oceans are a vast reservoir of heat, a slow register of natural climate change − and ocean warming speeds differ widely.

LONDON, 10 January, 2019 − Climate scientists who have found a new way to chart temperature change in the world’s seas over time say ocean warming speeds are much slower in deep water than on the surface.

Planet Earth is mostly ocean. Human-linked changes have started to raise global temperatures to what could be alarming levels and, as the thermometer rises, so will sea levels. So detailed understanding of temperature and ocean is vital. But two separate studies confirm that the connection is far from simple.

One study of the Atlantic confirms that in the last 150 years, the oceans have taken up 90% of the excess energy released by the combustion of fossil fuels to drive human economic growth and power − and to fuel potentially-catastrophic global warming and runaway climate change.

But what the oceans will actually do with that colossal burst of heat has yet to be fully explored. And a separate examination of the deep history of the Pacific Ocean confirms that change may be inexorable, but it is also very slow: the deeper parts of the Pacific are still registering the onset of the so-called “Little Ice Age” several centuries ago.

“These waters are so old and haven’t been near the surface in so long, they still ‘remember’ what was going on hundreds of years ago”

Both studies are reminders that oceanography is still a relatively new science and researchers still have a lot to learn about the fine detail of the ways in which temperature, atmosphere and ocean interact to affect climate over the world’s continents.

But repeated research has confirmed that the oceans are warming in response to human-triggered changes on land, that this warming presents several different kinds of hazard  to marine life, and that there is a link between overall ocean temperatures and the behaviour of the ocean’s currents, a link that plays out in dramatic shifts in regional climates.

So the rewards for a more precise understanding are considerable. But understanding starts with accurate and comprehensive data, and systematic measurement of ocean temperatures began only with the voyage of the British research ship HMS Challenger in 1871.

So Laure Zanna, a physicist at the University of Oxford and her colleagues, report in the Proceedings of the National Academy of Sciences that they deployed sophisticated mathematical techniques to calculate the heat uptake of the oceans and the way the blue planet has responded since 1871.

Huge heat uptake

Altogether, in the last 150 years, the deep waters have absorbed 436 zettajoules: a joule is the unit of energy required to deliver one watt for one second and a zettajoule is a number followed by 21 zeroes. This is an enormous amount of heat, roughly 1,000 times the energy consumed by 7 billion humans in the course of a year.

The researchers’ results so far show that roughly half the observed warming of the last 60 years – and the associated sea level rise – is linked to changes in ocean circulation. They were able to reconstruct two considerable bouts of warming, over the years 1920 to 1945 and between 1990 and 2015. What they have yet to do is sort out what this means for the behaviour of the oceans over the decades to come.

“The technique is only applicable to tracers like man-made carbon that are passively transported by ocean circulation,” Professor Zanna said. “However, heat does not behave in this manner as it affects circulation by changing the density of seawater. We were pleasantly surprised by how well the approach works. It opens up an exciting new way to study ocean warming in addition to using direct measurements.”

What the research also underlines is that the oceans have a long memory: so extensive and so deep are the five oceans that the surface waters may respond to 20th century greenhouse gas emissions while the deepest trenches contain water that last warmed more than 1,000 years ago in the reign of Charlemagne, the first Holy Roman Emperor.

Still adjusting

US oceanographers report in the journal Science that they matched predictions from computer models and modern data and ancient evidence with readings from the Challenger expedition to show that two kilometres under the waves, the Pacific Ocean is still adjusting to cooling that began with the onset of the Little Ice Age centuries ago.

Such studies count as basic research: as a way of testing techniques and establishing ground rules from which more discovery could follow. They also offer new ways to understand oceans as registers of climate change over long intervals.

“These waters are so old and haven’t been near the surface in so long, they still ‘remember’ what was going on hundreds of years ago when Europe experienced some of its coldest winters in history,” said Jake Gebbie, of the Woods Hole Oceanographic Institution.

“The close correspondence between prediction and observed trends gave us confidence that this is a real phenomenon.” − Climate News Network

Soil and water carbon stores puzzle science

Under the ice, and deep in the soil, carbon stores maintain a lively traffic. Researchers are teasing out the complexities of greenhouse gases and global warming.

LONDON, 7 January, 2019 − Two new studies have highlighted yet more unexpected findings in the epic story of the Earth’s carbon stores: how the world’s waters and soils accumulate and discharge them.

One team of researchers has found, to their surprise, that the meltwaters of Greenland are washing measurable quantities of carbon into the atmosphere in the form of the potent greenhouse gas methane.

And another has looked more closely at the way carbon is stored in the world’s soils, and come to the conclusion that even the minerals in the bedrock play a role: with help from rainwater, they can capture and hold potentially vast quantities of carbon in the soils of planet Earth.

Neither discovery changes the big picture of global warming driven by profligate human combustion of fossil fuels during the last two centuries. But both are reminders that climate scientists still have a lot to learn about precisely how the trafficking of carbon between life, rocks and atmosphere really happens.

“Before we can start thinking about storing carbon in the ground, we need to understand how it gets there and how likely it is to stick around”

And both will prompt a fresh look at the great unresolved question facing climate science: how much of the greenhouse gases emitted by human activity can be absorbed naturally by the rocks and living things on the planet?

British, Canadian, US, German, Czech and Danish researchers report in the journal Nature that they camped for three summer months on Greenland to take continuous samples of meltwater from a 600 square kilometre icesheet.

They found what they term “a continuous export” of methane: six tons of it from this site alone, or roughly the equivalent of what might be belched from 100 cows. Busy microbes, at work below kilometres of ice, are producing a greenhouse gas many times more potent as a global warming agent than carbon dioxide.

“A key finding is that much of the methane produced beneath the ice likely escapes the Greenland Ice Sheet in large, fast-flowing rivers before it can be oxidised to CO2, a typical fate for methane gas which normally reduces its greenhouse potency,” said Jemma Wadham, of the University of Bristol’s Cabot Institute for the Environment, who led the investigation.

Sizeable challenge

Climate scientists have been worrying for decades about the carbon locked − for the moment − in the Arctic permafrost. But the discovery that even the ice sheets are a source of atmospheric carbon accentuates the scale of the challenge facing those researchers who are trying to settle the great questions of the carbon budget: how much more fossil fuel can humans burn before planetary temperatures reach catastrophic levels, and how much of this build-up of greenhouse gases will be absorbed naturally by oceans, forests and soils?

Attention has repeatedly centred on the role of vegetation,  and in particular the great forests, in soaking up some of this carbon.

But huge questions remain about the roles played by flowing water and by soils as bankers of the planet’s atmospheric carbon. A second study in the journal Nature Climate Change offers a fresh insight into the obscurities of carbon storage underfoot.

Iron- and aluminium-bearing minerals in the soils cling to a lot of carbon. How much varies according to rainfall and evaporation, but it could be that between 3% and 72% of organic carbon found in soils is retained by reactive minerals. And, the researchers think, in all, this could add up to 600 billion metric tons worldwide, most of it in the rainforests.

Long-term uncertainty

“When plants photosynthesise, they draw carbon out of the atmosphere, then they die and their organic matter is incorporated in the soil,” said Oliver Chadwick of the University of Santa Barbara, one of the researchers. “Bacteria decompose that organic matter, releasing carbon that can either go right back into the atmosphere as carbon dioxide or can get held on the surface of soil minerals.”

What the finding means in the long term is not certain: as the researchers say, the capacity of mineral soils to cling to carbon suggests what they call “high sensitivity to future changes in climate.” That is, with yet more warming, the same mineral soils could release their imprisoned carbon. Nobody knows at what point this would happen.

So there is a need for further research. For more than a decade,scientists have debated the challenge of capturing carbon dioxide and burying it underground, as a way of limiting climate change. The discovery seems to suggest it can be done. But it also suggests ways in which that entrapment could be undone.

“We know less about the soils on Earth than we do about the surface of Mars,” said Marc Kramer of Washington State University, as co-author.

“Before we can start thinking about storing carbon in the ground, we need to understand how it gets there and how likely it is to stick around. This finding highlights a major breakthrough in our understanding.” − Climate News Network

Under the ice, and deep in the soil, carbon stores maintain a lively traffic. Researchers are teasing out the complexities of greenhouse gases and global warming.

LONDON, 7 January, 2019 − Two new studies have highlighted yet more unexpected findings in the epic story of the Earth’s carbon stores: how the world’s waters and soils accumulate and discharge them.

One team of researchers has found, to their surprise, that the meltwaters of Greenland are washing measurable quantities of carbon into the atmosphere in the form of the potent greenhouse gas methane.

And another has looked more closely at the way carbon is stored in the world’s soils, and come to the conclusion that even the minerals in the bedrock play a role: with help from rainwater, they can capture and hold potentially vast quantities of carbon in the soils of planet Earth.

Neither discovery changes the big picture of global warming driven by profligate human combustion of fossil fuels during the last two centuries. But both are reminders that climate scientists still have a lot to learn about precisely how the trafficking of carbon between life, rocks and atmosphere really happens.

“Before we can start thinking about storing carbon in the ground, we need to understand how it gets there and how likely it is to stick around”

And both will prompt a fresh look at the great unresolved question facing climate science: how much of the greenhouse gases emitted by human activity can be absorbed naturally by the rocks and living things on the planet?

British, Canadian, US, German, Czech and Danish researchers report in the journal Nature that they camped for three summer months on Greenland to take continuous samples of meltwater from a 600 square kilometre icesheet.

They found what they term “a continuous export” of methane: six tons of it from this site alone, or roughly the equivalent of what might be belched from 100 cows. Busy microbes, at work below kilometres of ice, are producing a greenhouse gas many times more potent as a global warming agent than carbon dioxide.

“A key finding is that much of the methane produced beneath the ice likely escapes the Greenland Ice Sheet in large, fast-flowing rivers before it can be oxidised to CO2, a typical fate for methane gas which normally reduces its greenhouse potency,” said Jemma Wadham, of the University of Bristol’s Cabot Institute for the Environment, who led the investigation.

Sizeable challenge

Climate scientists have been worrying for decades about the carbon locked − for the moment − in the Arctic permafrost. But the discovery that even the ice sheets are a source of atmospheric carbon accentuates the scale of the challenge facing those researchers who are trying to settle the great questions of the carbon budget: how much more fossil fuel can humans burn before planetary temperatures reach catastrophic levels, and how much of this build-up of greenhouse gases will be absorbed naturally by oceans, forests and soils?

Attention has repeatedly centred on the role of vegetation,  and in particular the great forests, in soaking up some of this carbon.

But huge questions remain about the roles played by flowing water and by soils as bankers of the planet’s atmospheric carbon. A second study in the journal Nature Climate Change offers a fresh insight into the obscurities of carbon storage underfoot.

Iron- and aluminium-bearing minerals in the soils cling to a lot of carbon. How much varies according to rainfall and evaporation, but it could be that between 3% and 72% of organic carbon found in soils is retained by reactive minerals. And, the researchers think, in all, this could add up to 600 billion metric tons worldwide, most of it in the rainforests.

Long-term uncertainty

“When plants photosynthesise, they draw carbon out of the atmosphere, then they die and their organic matter is incorporated in the soil,” said Oliver Chadwick of the University of Santa Barbara, one of the researchers. “Bacteria decompose that organic matter, releasing carbon that can either go right back into the atmosphere as carbon dioxide or can get held on the surface of soil minerals.”

What the finding means in the long term is not certain: as the researchers say, the capacity of mineral soils to cling to carbon suggests what they call “high sensitivity to future changes in climate.” That is, with yet more warming, the same mineral soils could release their imprisoned carbon. Nobody knows at what point this would happen.

So there is a need for further research. For more than a decade,scientists have debated the challenge of capturing carbon dioxide and burying it underground, as a way of limiting climate change. The discovery seems to suggest it can be done. But it also suggests ways in which that entrapment could be undone.

“We know less about the soils on Earth than we do about the surface of Mars,” said Marc Kramer of Washington State University, as co-author.

“Before we can start thinking about storing carbon in the ground, we need to understand how it gets there and how likely it is to stick around. This finding highlights a major breakthrough in our understanding.” − Climate News Network

Tell us more on palm oil sources, say buyers

A British study says consumers must be able to make sustainable choices more easily on products containing palm oil.

LONDON, 4 January, 2019 − Companies selling products which contain palm oil need to be upfront about where it comes from, so as to relieve consumers of the burden of making sustainable choices, a UK study says.

Researchers from the University of Cambridge say companies should not rely simply on purchasers’ own awareness of the need to make environmentally responsible decisions, but should publicly disclose the identities of their palm oil suppliers.

Palm oil production causes deforestation, greenhouse gas emissions from peatland conversion, and biodiversity loss, and the oil is found in many products, often without consumers’ knowledge. It is a common ingredient in foods, body products, detergents and biofuels.

Dr Rosemary Ostfeld is the study’s lead author. She said: “The Roundtable on Sustainable Palm Oil (RSPO) has made efforts to improve the sustainability of palm oil production by creating an environmental certification system for palm oil.

Low uptake

“But currently only 19% of palm oil is RSPO-certified. This means the majority that finds its way into products people buy daily is still produced using conventional practices.

“We wanted to find out if consumers were actively seeking to make a sustainable choice about palm oil. We also explored what extra efforts governments could make to ensure sustainable palm oil consumption.”

The researchers, whose study is published in the journal Environmental Research Letters, surveyed 1,695 British consumers through the market research company YouGov.

Respondents were asked about their awareness of palm oil and its environmental impact; their recognition of “ecolabels” such as Fairtrade, the Soil Association and RSPO; and which ecolabelled products they included in their weekly household shopping.

“Relying on consumers to consciously and regularly include certified products in their shopping has limitations”

The study found that UK consumer awareness of palm oil was high (77%), with 41% of those aware of it viewing it as “environmentally unfriendly”. Yet almost no consumers were aware of the RSPO label that showed a product contained sustainably-produced palm oil.

“In terms of label recognition versus action, 82% of people recognised the Fairtrade label, but only 29% actively buy Fairtrade products,” said Dr Ostfeld.

“Only five per cent recognised the RSPO label – the same as a fictional label we put into the survey as a control. Of that small number, only one per cent said they actively include products with the label in their shopping.”

The low recognition of the RSPO label could be caused by the scarcity of its use by consumer goods companies and retailers.

Action not guaranteed

Dr Ostfeld said: “This may be due in part to reluctance to draw attention to their use of palm oil, or it may be because they fall short of the 95% physical certified palm oil content that used to be needed to use the label.

“Either way, we found that relying on consumers to consciously and regularly include certified products in their shopping has limitations. Our results show that even when consumer awareness of an ecolabel is high, action is not guaranteed.”

To address this problem, the researchers put forward several policy recommendations. Dr Ostfeld explained: “Palm oil is more efficient to produce than other vegetable oils and plays a vital role in the livelihoods of millions of people, so banning it is not plausible. Instead, the goal should be to encourage sustainable palm oil production.

“We recommend governments require consumer goods companies and retailers to buy identity-preserved certified palm oil, which can be traced back to the individual plantation. If national targets must be met with identity-preserved certified palm oil, demand for it will increase. It will also enable unsustainable practices to be uncovered more easily.

Disclosure needed

“Companies should also publicly disclose their palm oil suppliers. This will help consumers know if they’re sourcing their palm oil from growers who use best practices.

“We believe these measures could promote a more rapid move towards sustainable palm oil consumption, and higher levels of accountability throughout the supply chain.”

Some campaigners argue that sustainability standards, including certification schemes, can have a wider effect by, for example, helping to shape governments’ policies and to steer investment into research.

A year ago one major US financial company, Dimensional, said it had divested two of its portfolios of all palm oil plantation companies. − Climate News Network

A British study says consumers must be able to make sustainable choices more easily on products containing palm oil.

LONDON, 4 January, 2019 − Companies selling products which contain palm oil need to be upfront about where it comes from, so as to relieve consumers of the burden of making sustainable choices, a UK study says.

Researchers from the University of Cambridge say companies should not rely simply on purchasers’ own awareness of the need to make environmentally responsible decisions, but should publicly disclose the identities of their palm oil suppliers.

Palm oil production causes deforestation, greenhouse gas emissions from peatland conversion, and biodiversity loss, and the oil is found in many products, often without consumers’ knowledge. It is a common ingredient in foods, body products, detergents and biofuels.

Dr Rosemary Ostfeld is the study’s lead author. She said: “The Roundtable on Sustainable Palm Oil (RSPO) has made efforts to improve the sustainability of palm oil production by creating an environmental certification system for palm oil.

Low uptake

“But currently only 19% of palm oil is RSPO-certified. This means the majority that finds its way into products people buy daily is still produced using conventional practices.

“We wanted to find out if consumers were actively seeking to make a sustainable choice about palm oil. We also explored what extra efforts governments could make to ensure sustainable palm oil consumption.”

The researchers, whose study is published in the journal Environmental Research Letters, surveyed 1,695 British consumers through the market research company YouGov.

Respondents were asked about their awareness of palm oil and its environmental impact; their recognition of “ecolabels” such as Fairtrade, the Soil Association and RSPO; and which ecolabelled products they included in their weekly household shopping.

“Relying on consumers to consciously and regularly include certified products in their shopping has limitations”

The study found that UK consumer awareness of palm oil was high (77%), with 41% of those aware of it viewing it as “environmentally unfriendly”. Yet almost no consumers were aware of the RSPO label that showed a product contained sustainably-produced palm oil.

“In terms of label recognition versus action, 82% of people recognised the Fairtrade label, but only 29% actively buy Fairtrade products,” said Dr Ostfeld.

“Only five per cent recognised the RSPO label – the same as a fictional label we put into the survey as a control. Of that small number, only one per cent said they actively include products with the label in their shopping.”

The low recognition of the RSPO label could be caused by the scarcity of its use by consumer goods companies and retailers.

Action not guaranteed

Dr Ostfeld said: “This may be due in part to reluctance to draw attention to their use of palm oil, or it may be because they fall short of the 95% physical certified palm oil content that used to be needed to use the label.

“Either way, we found that relying on consumers to consciously and regularly include certified products in their shopping has limitations. Our results show that even when consumer awareness of an ecolabel is high, action is not guaranteed.”

To address this problem, the researchers put forward several policy recommendations. Dr Ostfeld explained: “Palm oil is more efficient to produce than other vegetable oils and plays a vital role in the livelihoods of millions of people, so banning it is not plausible. Instead, the goal should be to encourage sustainable palm oil production.

“We recommend governments require consumer goods companies and retailers to buy identity-preserved certified palm oil, which can be traced back to the individual plantation. If national targets must be met with identity-preserved certified palm oil, demand for it will increase. It will also enable unsustainable practices to be uncovered more easily.

Disclosure needed

“Companies should also publicly disclose their palm oil suppliers. This will help consumers know if they’re sourcing their palm oil from growers who use best practices.

“We believe these measures could promote a more rapid move towards sustainable palm oil consumption, and higher levels of accountability throughout the supply chain.”

Some campaigners argue that sustainability standards, including certification schemes, can have a wider effect by, for example, helping to shape governments’ policies and to steer investment into research.

A year ago one major US financial company, Dimensional, said it had divested two of its portfolios of all palm oil plantation companies. − Climate News Network

Nine vital signs found for forest health

Forests help to moderate climate change, which can itself affect forest health. Researchers still puzzle over how the canopy affects the global carbon exchange.

LONDON, 3 January, 2019 – It is a given of climate science that forest health, the consequence of protected and biodiverse forests, will play a vital role in containing global warming. Now a new study for the first time offers foresters, botanists and conservationists the tools to test the health of a vast woodland.

And a second, separate study confirms an ominous discovery: trees can be counted upon to greedily consume ever more atmospheric carbon dioxide – but only while the natural supply of nitrogen holds out.

Trees use photosynthesis to build tissue from atmospheric carbon dioxide, and store the carbon in the form of leaves, fruits and timber while respiring oxygen. In doing so, they reduce levels of global warming.

Humans – by clearing forests, ploughing fields, grazing cattle and burning fossil fuels – tip about 34 billion tonnes of the greenhouse gas carbon dioxide into the atmosphere each year, and the world’s trees take up an estimated 11 bn tonnes of it. But quite how, and how reliably, forests store carbon is still a puzzle.

“The limes, planes, magnolias and poplars that line boulevards and shade city parks could be just as significant to carbon budget calculations as tropical rainforests”

US researchers report in the Proceedings of the National Academy of Sciences that they decided to find out. They analysed data from 421 plots of forest around the world, and took direct samples in 66 of them. They measured temperature, rainfall, vapour pressure, sunlight and wind speed.

Their search spanned 100 degrees of latitude and more than 3,300 metres in altitude. Altogether the scientists gathered information on 55,983 individual trees greater than 2 cms in diameter and divided into 2,701 tree species.

By the time they had finished they had identified nine vital signs that might help with a diagnosis of a forest’s health. These are two different measures of leaf area, as well as wood density, tree height, the counts of leaf carbon, nitrogen and phosphorus and the important ratio of nitrogen to phosphorus.

Armed with these measures, they began to look at precisely how climate might affect a tree population. Two climatic factors in particular had a disproportionate impact.

New pointers

One was temperature variability – that is, the swing from the lowest to the highest mercury levels – and the other was vapour pressure. And they confirmed that, overall, the measured traits are responding to overall global warming.

Such research offers a new set of signposts for understanding how atmosphere, climate and forests interact. The response of the woodlands has become one of the big unresolved questions.

Researchers have found, a little to their surprise, the “urban forests” – the limes, planes, magnolias and poplars that line boulevards and shade city parks – could be just as significant to carbon budget calculations as tropical rainforests.

They have measured unexpected ways in which trees have responded to the rise of 1°C in global average temperatures in the last century, as carbon dioxide levels in the atmosphere have soared from around 280 parts per million to more than 400 ppm.

Concern over nitrogen

But they have also taken serious stock of the planet’s cover of trees, to find that humans are destroying trees at the rate of 15 billion a year and that climate change and human intrusion pose the threat of extinction to many of the world’s 40,000 tropical tree species.

A second team of the US researchers is now sure of one of the mechanisms that might affect the overall health of forests in a warming world. They report in the journal Nature Ecology and Evolution on an intensive examination of the response of 15,000 trees in the wilds of West Virginia to a steady rise in atmospheric carbon dioxide.

Yes, the extra greenhouse gas is fertilising forest growth. But climate change is extending the growing season, as spring arrives earlier and autumn leaf fall happens ever later. A study of the nitrogen isotopes in the leaves suggests that the supply of that other, all-important nutrient, could be on the way down.

If so, the growth of the forests could soon peak, and with that the capacity of forests to moderate climate change could diminish. – Climate News Network

Forests help to moderate climate change, which can itself affect forest health. Researchers still puzzle over how the canopy affects the global carbon exchange.

LONDON, 3 January, 2019 – It is a given of climate science that forest health, the consequence of protected and biodiverse forests, will play a vital role in containing global warming. Now a new study for the first time offers foresters, botanists and conservationists the tools to test the health of a vast woodland.

And a second, separate study confirms an ominous discovery: trees can be counted upon to greedily consume ever more atmospheric carbon dioxide – but only while the natural supply of nitrogen holds out.

Trees use photosynthesis to build tissue from atmospheric carbon dioxide, and store the carbon in the form of leaves, fruits and timber while respiring oxygen. In doing so, they reduce levels of global warming.

Humans – by clearing forests, ploughing fields, grazing cattle and burning fossil fuels – tip about 34 billion tonnes of the greenhouse gas carbon dioxide into the atmosphere each year, and the world’s trees take up an estimated 11 bn tonnes of it. But quite how, and how reliably, forests store carbon is still a puzzle.

“The limes, planes, magnolias and poplars that line boulevards and shade city parks could be just as significant to carbon budget calculations as tropical rainforests”

US researchers report in the Proceedings of the National Academy of Sciences that they decided to find out. They analysed data from 421 plots of forest around the world, and took direct samples in 66 of them. They measured temperature, rainfall, vapour pressure, sunlight and wind speed.

Their search spanned 100 degrees of latitude and more than 3,300 metres in altitude. Altogether the scientists gathered information on 55,983 individual trees greater than 2 cms in diameter and divided into 2,701 tree species.

By the time they had finished they had identified nine vital signs that might help with a diagnosis of a forest’s health. These are two different measures of leaf area, as well as wood density, tree height, the counts of leaf carbon, nitrogen and phosphorus and the important ratio of nitrogen to phosphorus.

Armed with these measures, they began to look at precisely how climate might affect a tree population. Two climatic factors in particular had a disproportionate impact.

New pointers

One was temperature variability – that is, the swing from the lowest to the highest mercury levels – and the other was vapour pressure. And they confirmed that, overall, the measured traits are responding to overall global warming.

Such research offers a new set of signposts for understanding how atmosphere, climate and forests interact. The response of the woodlands has become one of the big unresolved questions.

Researchers have found, a little to their surprise, the “urban forests” – the limes, planes, magnolias and poplars that line boulevards and shade city parks – could be just as significant to carbon budget calculations as tropical rainforests.

They have measured unexpected ways in which trees have responded to the rise of 1°C in global average temperatures in the last century, as carbon dioxide levels in the atmosphere have soared from around 280 parts per million to more than 400 ppm.

Concern over nitrogen

But they have also taken serious stock of the planet’s cover of trees, to find that humans are destroying trees at the rate of 15 billion a year and that climate change and human intrusion pose the threat of extinction to many of the world’s 40,000 tropical tree species.

A second team of the US researchers is now sure of one of the mechanisms that might affect the overall health of forests in a warming world. They report in the journal Nature Ecology and Evolution on an intensive examination of the response of 15,000 trees in the wilds of West Virginia to a steady rise in atmospheric carbon dioxide.

Yes, the extra greenhouse gas is fertilising forest growth. But climate change is extending the growing season, as spring arrives earlier and autumn leaf fall happens ever later. A study of the nitrogen isotopes in the leaves suggests that the supply of that other, all-important nutrient, could be on the way down.

If so, the growth of the forests could soon peak, and with that the capacity of forests to moderate climate change could diminish. – Climate News Network

China’s cities face sobering cooling costs

As the Earth warms humans will reach for the air conditioning, meaning more electricity demand and higher household bills in China’s cities.

LONDON, 2 January, 2019 – China’s cities now have a better idea of what global warming is going to cost. New research warns that for every rise of one degree Celsius in global average temperatures, average electricity demand will rise by 9%.

And that’s the average demand. For the same shift in the thermometer reading, peak electricity demand in the Yangtze Valley delta could go up by 36%.

And the global average rise of 1°C so far during the last century is just a start. By 2099, mean surface temperatures on planet Earth could be somewhere between 2°C and 5° hotter. That means that average household electricity use – assuming today’s consumption patterns don’t change – could rise by between 18% and 55%. And peak demand could rise by at least 72%.

“Household electricity consumption in China is expected to double by 2040”

Governments, energy utilities and taxpayers must plan for an uncertain future. The latest study in the needs of the fast-developing economy of China, now one of the world’s great powers, and the biggest emitter of the greenhouse gases that drive global warming, would be necessary even if there were no climate change: that is because even without the factor of climate change driven by profligate combustion of fossil fuels almost everywhere in the world, household electricity consumption in China is expected to double by 2040.

And climate change brings severe additional problems. Chinese scientists already know that climate change within the country is a consequence of human-induced global warming. They know that average warming worldwide means more intense and more frequent extremes of heat and drought. And they have just learned that by the century’s end, levels of heat and humidity could become potentially lethal,  particularly so in the north China plains.

Most responsive

So researchers from Fudan University in Shanghai and Duke University in North Carolina report in the Proceedings of the National Academy of Sciences that they built up a picture of how householders respond to weather shifts by examining data from 800,000 residential customers in the Pudong district of Shanghai between 2014 and 2016, and then tested their findings against various projections of global climate change in this century.

Residential power demand makes up only about a quarter of the total for the Shanghai metropolis, but the scientists focused on individual householders because these were most responsive to fluctuations in temperature.

To nobody’s great surprise, home usage of electricity went up during the days of extreme cold, early in February, and the days of extreme heat, usually around the end of July and early August.

Clear link

They found that for every daily degree of temperature rise above 25°C, electricity use shot up by 14.5%. Compared with demand during the household comfort zone of around 20°C, on those days when temperatures reached 32°C, daily electricity consumption rose by 174%.

The implication is that more investment in air conditioning is going to drive even more global warming: other research teams have already identified the potential costs of heat waves and repeatedly warned that demand for air conditioning will warm the world even further. In the US, there are already signs that power grids may not be able to keep up with demand in long spells of extreme heat.

Shanghai is a bustling commercial powerhouse of a city: other parts of China have yet to catch up. The study found that higher-income households reached for the thermostat in cold weather. But in hot weather – and the Yangtze delta region, which is home to one fifth of the nation’s urban population and produced one fourth of China’s economic output, can get very hot – all income groups turned on the air conditioning.

“If we consider that more provinces would become ‘Shanghai’ as incomes rise, our results may ultimately be more broadly applicable,” said Yatang Li, a PhD student at Duke University, who led the research. – Climate News Network

As the Earth warms humans will reach for the air conditioning, meaning more electricity demand and higher household bills in China’s cities.

LONDON, 2 January, 2019 – China’s cities now have a better idea of what global warming is going to cost. New research warns that for every rise of one degree Celsius in global average temperatures, average electricity demand will rise by 9%.

And that’s the average demand. For the same shift in the thermometer reading, peak electricity demand in the Yangtze Valley delta could go up by 36%.

And the global average rise of 1°C so far during the last century is just a start. By 2099, mean surface temperatures on planet Earth could be somewhere between 2°C and 5° hotter. That means that average household electricity use – assuming today’s consumption patterns don’t change – could rise by between 18% and 55%. And peak demand could rise by at least 72%.

“Household electricity consumption in China is expected to double by 2040”

Governments, energy utilities and taxpayers must plan for an uncertain future. The latest study in the needs of the fast-developing economy of China, now one of the world’s great powers, and the biggest emitter of the greenhouse gases that drive global warming, would be necessary even if there were no climate change: that is because even without the factor of climate change driven by profligate combustion of fossil fuels almost everywhere in the world, household electricity consumption in China is expected to double by 2040.

And climate change brings severe additional problems. Chinese scientists already know that climate change within the country is a consequence of human-induced global warming. They know that average warming worldwide means more intense and more frequent extremes of heat and drought. And they have just learned that by the century’s end, levels of heat and humidity could become potentially lethal,  particularly so in the north China plains.

Most responsive

So researchers from Fudan University in Shanghai and Duke University in North Carolina report in the Proceedings of the National Academy of Sciences that they built up a picture of how householders respond to weather shifts by examining data from 800,000 residential customers in the Pudong district of Shanghai between 2014 and 2016, and then tested their findings against various projections of global climate change in this century.

Residential power demand makes up only about a quarter of the total for the Shanghai metropolis, but the scientists focused on individual householders because these were most responsive to fluctuations in temperature.

To nobody’s great surprise, home usage of electricity went up during the days of extreme cold, early in February, and the days of extreme heat, usually around the end of July and early August.

Clear link

They found that for every daily degree of temperature rise above 25°C, electricity use shot up by 14.5%. Compared with demand during the household comfort zone of around 20°C, on those days when temperatures reached 32°C, daily electricity consumption rose by 174%.

The implication is that more investment in air conditioning is going to drive even more global warming: other research teams have already identified the potential costs of heat waves and repeatedly warned that demand for air conditioning will warm the world even further. In the US, there are already signs that power grids may not be able to keep up with demand in long spells of extreme heat.

Shanghai is a bustling commercial powerhouse of a city: other parts of China have yet to catch up. The study found that higher-income households reached for the thermostat in cold weather. But in hot weather – and the Yangtze delta region, which is home to one fifth of the nation’s urban population and produced one fourth of China’s economic output, can get very hot – all income groups turned on the air conditioning.

“If we consider that more provinces would become ‘Shanghai’ as incomes rise, our results may ultimately be more broadly applicable,” said Yatang Li, a PhD student at Duke University, who led the research. – Climate News Network