Tag Archives: Food

Climate crisis raises risk of conflict

A warmer world will be more dangerous. As the thermometer rises, so does the risk of conflict and bloodshed in more vulnerable regions.

LONDON, 14 June, 2019 − If the world warms by 4°C this century, the climate factor becomes more dangerous – five times more dangerous, according to new research, which predicts a 26% increase in the risk of conflict, just because of climate change.

Even if the world sticks to a promise made in Paris in 2015, when 195 nations vowed to contain global warming to “well below” 2°C above pre-industrial levels by the end of the century, the impact of climate on the risk of armed conflict will double. The risk will rise to 13%.

US researchers report in the journal Nature that they quizzed a pool of 11 experts on climate and conflict from a range of disciplines. There is no consensus on the mechanism that links a shift in average temperatures and ethnic bitterness, migration, violence and outright civil war within any single nation. But there is a simple conclusion: whatever the process, climate change raises the risk of conflict.

And the study comes just as the latest publication of the  Global Peace Index warns that 971 million people now live in areas with what is termed high or “very high climate change exposure”, and 400 million of these people already live in countries with “low levels of peacefulness.”

Making conflict likelier

The Global Peace Index issues the same warning: that climate change can indirectly increase the likelihood of violent conflict by affecting the resources available to citizens, to jobs and careers, and by undermining security and forcing migration.

And, the same study says, this comes at a colossal economic cost. In 2018, the impact of violence on the global economy totalled $14.1 trillion in purchasing power. This is more than 11% of the world’s economic activity and adds up to $1,853 per person.

Both studies reinforce earlier research. Social scientists, geographers and statisticians have repeatedly found links between climate change and conflict, between climate change and migration, and have warned of more to come, specifically in South Asia, and worldwide.

“Over this century, unprecedented climate change is going to have significant impacts … but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn”

There is a debate about the role of drought in the bloodshed in Syria, but there is less argument about the proposition that climate change unsettles what may already be nations or communities vulnerable to conflict.

There have also been bleak warnings from prehistory: archaeologists think that climate change may have been behind the collapse of the Bronze Age Mediterranean culture and the fall of an ancient Assyrian society.

The point of the latest study was simply to find some consensus on the risks of conflict in a world in climate crisis. The theorists think that climate stresses over the last century have already influenced in some way between 3% and 20% of armed conflict risk.

They think the risks could increase dramatically, as normally productive agricultural regions face catastrophic crop failure, as extremes of temperature make crowded cities more dangerous, as people are driven off their land by sustained drought, and as climate impacts impoverish the already vulnerable, to increase global levels of injustice and inequality.

Planning protection

Armed with a sense of the scale of the future hazard, governments and international agencies could equip themselves with strategies that might help to increase global food security and provide other economic opportunities. Peacekeeping forces and aid agencies need to understand, too, that climate factors are, increasingly, part of the risk.

“Historically, levels of armed conflict over time have been heavily influenced by shocks to, and changes in, international relations among states and in their domestic political systems,” said James Fearon, a political scientist at Stanford University and one of the authors.

“It is quite likely that, over this century, unprecedented climate change is going to have significant impacts on both, but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn. So I think putting non-trivial weight on significant climate effects on conflict is reasonable.” − Climate News Network

A warmer world will be more dangerous. As the thermometer rises, so does the risk of conflict and bloodshed in more vulnerable regions.

LONDON, 14 June, 2019 − If the world warms by 4°C this century, the climate factor becomes more dangerous – five times more dangerous, according to new research, which predicts a 26% increase in the risk of conflict, just because of climate change.

Even if the world sticks to a promise made in Paris in 2015, when 195 nations vowed to contain global warming to “well below” 2°C above pre-industrial levels by the end of the century, the impact of climate on the risk of armed conflict will double. The risk will rise to 13%.

US researchers report in the journal Nature that they quizzed a pool of 11 experts on climate and conflict from a range of disciplines. There is no consensus on the mechanism that links a shift in average temperatures and ethnic bitterness, migration, violence and outright civil war within any single nation. But there is a simple conclusion: whatever the process, climate change raises the risk of conflict.

And the study comes just as the latest publication of the  Global Peace Index warns that 971 million people now live in areas with what is termed high or “very high climate change exposure”, and 400 million of these people already live in countries with “low levels of peacefulness.”

Making conflict likelier

The Global Peace Index issues the same warning: that climate change can indirectly increase the likelihood of violent conflict by affecting the resources available to citizens, to jobs and careers, and by undermining security and forcing migration.

And, the same study says, this comes at a colossal economic cost. In 2018, the impact of violence on the global economy totalled $14.1 trillion in purchasing power. This is more than 11% of the world’s economic activity and adds up to $1,853 per person.

Both studies reinforce earlier research. Social scientists, geographers and statisticians have repeatedly found links between climate change and conflict, between climate change and migration, and have warned of more to come, specifically in South Asia, and worldwide.

“Over this century, unprecedented climate change is going to have significant impacts … but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn”

There is a debate about the role of drought in the bloodshed in Syria, but there is less argument about the proposition that climate change unsettles what may already be nations or communities vulnerable to conflict.

There have also been bleak warnings from prehistory: archaeologists think that climate change may have been behind the collapse of the Bronze Age Mediterranean culture and the fall of an ancient Assyrian society.

The point of the latest study was simply to find some consensus on the risks of conflict in a world in climate crisis. The theorists think that climate stresses over the last century have already influenced in some way between 3% and 20% of armed conflict risk.

They think the risks could increase dramatically, as normally productive agricultural regions face catastrophic crop failure, as extremes of temperature make crowded cities more dangerous, as people are driven off their land by sustained drought, and as climate impacts impoverish the already vulnerable, to increase global levels of injustice and inequality.

Planning protection

Armed with a sense of the scale of the future hazard, governments and international agencies could equip themselves with strategies that might help to increase global food security and provide other economic opportunities. Peacekeeping forces and aid agencies need to understand, too, that climate factors are, increasingly, part of the risk.

“Historically, levels of armed conflict over time have been heavily influenced by shocks to, and changes in, international relations among states and in their domestic political systems,” said James Fearon, a political scientist at Stanford University and one of the authors.

“It is quite likely that, over this century, unprecedented climate change is going to have significant impacts on both, but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn. So I think putting non-trivial weight on significant climate effects on conflict is reasonable.” − Climate News Network

Rising US heat spurs urban rats’ numbers

It may not be the sole cause of US urban rats’ rising numbers, but climate change’s growing heat is probably implicated.

LONDON, 12 June, 2019 − In the heat of a US summer, urban rats’ thoughts focus on one goal: it’s reproduction time, as the media make clear.

They go for the type of headlines which send shivers down the spine. “Rats love climate change”, says one. “Climate change is scary; rat explosion is scarier”, says another.

Reports from several cities in the US indicate that city rat populations are increasing, and many point to climate change as a primary cause of what is a growing rodent problem.

The actual reasons for what some of the more florid commentators refer to as a “ratpocalypse” are difficult to gauge. Little research has been carried out.

Take, for example, New York City. Estimates of the size of the city’s rat population – the human population is 8.6 million – range anywhere between 2 and 32 million.

“The brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter”

While the figures might be vague, there’s general agreement that the city’s rat numbers are growing substantially. Calls to vermin controllers have increased. City officials say the incidence of rat sightings has gone up by nearly 40% over the last five years.

Rats can be vectors, or carriers, of disease and can transmit ticks and fleas. They can also do considerable damage to vital infrastructure, gnawing through wires and damaging pavements and drainage systems by their burrowing.

In cold weather rats tend to be inactive and stay in their burrows. With milder winters and rising average temperatures, rats’ breeding season is extended.

Rats reproduce at a prolific rate; the brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter.

“Everywhere I go, rat populations are up”, a research scientist told the New York Times newspaper.

More city residents

Other US cities report similar rat infestations; Chicago is said to have a particularly serious rodent problem.

While increased temperatures are believed to be one cause of the growth in rat populations, other factors are involved. In the US and around the world, more and more people are choosing to live in cities.

By 2050, it’s estimated that 70% of the world’s population will be urban-based. More people in tightly-packed areas means more food being accumulated and more rubbish. Inefficient waste collection facilities in many urban areas inevitably lead to a growth in rodent numbers.

Surprisingly, there seems to have been little research into urban rats, their behaviour and the size of populations in various cities.

One problem encountered by researchers is that many urban dwellers, particularly landlords, are reluctant to admit to rat infestation problems – or to highlight the issue by allowing scientists to carry out surveys on their premises. − Climate News Network

It may not be the sole cause of US urban rats’ rising numbers, but climate change’s growing heat is probably implicated.

LONDON, 12 June, 2019 − In the heat of a US summer, urban rats’ thoughts focus on one goal: it’s reproduction time, as the media make clear.

They go for the type of headlines which send shivers down the spine. “Rats love climate change”, says one. “Climate change is scary; rat explosion is scarier”, says another.

Reports from several cities in the US indicate that city rat populations are increasing, and many point to climate change as a primary cause of what is a growing rodent problem.

The actual reasons for what some of the more florid commentators refer to as a “ratpocalypse” are difficult to gauge. Little research has been carried out.

Take, for example, New York City. Estimates of the size of the city’s rat population – the human population is 8.6 million – range anywhere between 2 and 32 million.

“The brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter”

While the figures might be vague, there’s general agreement that the city’s rat numbers are growing substantially. Calls to vermin controllers have increased. City officials say the incidence of rat sightings has gone up by nearly 40% over the last five years.

Rats can be vectors, or carriers, of disease and can transmit ticks and fleas. They can also do considerable damage to vital infrastructure, gnawing through wires and damaging pavements and drainage systems by their burrowing.

In cold weather rats tend to be inactive and stay in their burrows. With milder winters and rising average temperatures, rats’ breeding season is extended.

Rats reproduce at a prolific rate; the brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter.

“Everywhere I go, rat populations are up”, a research scientist told the New York Times newspaper.

More city residents

Other US cities report similar rat infestations; Chicago is said to have a particularly serious rodent problem.

While increased temperatures are believed to be one cause of the growth in rat populations, other factors are involved. In the US and around the world, more and more people are choosing to live in cities.

By 2050, it’s estimated that 70% of the world’s population will be urban-based. More people in tightly-packed areas means more food being accumulated and more rubbish. Inefficient waste collection facilities in many urban areas inevitably lead to a growth in rodent numbers.

Surprisingly, there seems to have been little research into urban rats, their behaviour and the size of populations in various cities.

One problem encountered by researchers is that many urban dwellers, particularly landlords, are reluctant to admit to rat infestation problems – or to highlight the issue by allowing scientists to carry out surveys on their premises. − Climate News Network

Thirty years to climate meltdown – or not?

For years most of us largely ignored the idea of climate meltdown. Now we’re talking about it. So what should we be doing?

LONDON, 10 June, 2019 − How much of a threat is climate meltdown? Should we treat it as the biggest danger to life in the 21st century, or as one of many problems − serious, but manageable?

A new study says human civilisation itself could pass the point of no return by 2050. The Australian climate think-tank Breakthrough: National Centre for Climate Restoration says that unless humanity takes drastic and immediate action to save the climate, a combination of unstable food production, water shortages and extreme weather could lead to the breakdown of global society.

One renowned US climate scientist, Michael Mann of Pennsylvania State University, says that Breakthrough is exaggerating and its report could be counter-productive.

In the UK, though, Mark Maslin of University College London says the report underlines the deep concerns expressed by some security experts.

Act together

Chris Barrie, a retired Royal Australian Navy admiral and former Chief of the Australian Defence Force, is now an honorary professor at the Australian National University, Canberra.

In a foreword to the Breakthrough study he writes: “We must act collectively. We need strong, determined leadership in government, in business and in our communities to ensure a sustainable future for humankind.”

David Spratt, Breakthrough’s research director and a co-author of the study, says that “much knowledge produced for policymakers is too conservative,” but that the new paper, by showing the extreme end of what could happen in just the next three decades, aims to make the stakes clear. “The report speaks, in our opinion, a harsh but necessary truth,” he says.

“To reduce this risk and protect human civilisation, a massive global mobilisation of resources is needed in the coming decade to build a zero-emissions industrial system and set in train the restoration of a safe climate,” the report reads. “This would be akin in scale to the World War II emergency mobilisation.”

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly”

Breakthrough acknowledges that the worst possibility it foresees − the total collapse of civilisation by mid-century − is an example of a worst-case scenario, but it insists that “the world is currently completely unprepared to envisage, and even less deal with, the consequences of catastrophic climate change.”

The picture of the possible near future it presents is stark. By 2050, it says, the world could have reached:

  • a 3°C temperature rise, with a further 1°C in store
  • sea levels 0.5 metres above today’s, with a possible eventual rise of 25m
  • 55% of the world’s people subject to more than 20 days a year of heat “beyond the threshold of human survivability”
  • one billion people forced to leave the tropics
  • a 20% decline in crop yields, leaving too little food to feed the world
  • armed conflict likely and nuclear war possible.

The report’s authors conclude: “The scale of destruction is beyond our capacity to model, with a high likelihood of human civilisation coming to an end.”

Warnings examined

Warnings of the possible end of human civilisation are not new. They range from those which offer highly-qualified hope for humanity’s future to others which find very little to celebrate, even tentatively.

The Breakthrough study fits unequivocally into the second group. To weigh the credibility of some of its statements, the journal New Scientist looks at the sources they cite and the wider context of the claims they make.

Its scrutiny ends with the views of two eminent climate scientists. Michael Mann, professor of atmospheric science at Penn State, says: “I respect the authors and appreciate that their intentions are good, but … overblown rhetoric, exaggeration, and unsupportable doomist framing can be counteractive to climate action.”

For his part, Mark Maslin, professor of geography at UCL, tells New Scientist that the Breakthrough report adds to the deep concerns expressed by security experts such as the Pentagon over climate change.

Hope nurtured

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly,” he says.

The 2020 round of UN climate negotiations is due to take place in November next year, with hopes building that many countries will agree then to make much more radical cuts in greenhouse gas emissions than they have pledged so far.

Altogether 195 countries promised in 2015, in the Paris Agreement, to make the cuts needed to prevent global average temperatures rising more than 2°C, and if possible to stay below a maximum rise of 1.5°C, the levels climate scientists say are the highest that can assure the planet’s safety. But the cuts that many countries have promised so far will not achieve either goal.

Scientists say it is still possible for the world to achieve the 1.5°C limit. But doing so requires immediate emissions cuts, on a scale and at a pace that are not yet in sight − “a very big ‘if’”, as one of them put it. − Climate News Network

For years most of us largely ignored the idea of climate meltdown. Now we’re talking about it. So what should we be doing?

LONDON, 10 June, 2019 − How much of a threat is climate meltdown? Should we treat it as the biggest danger to life in the 21st century, or as one of many problems − serious, but manageable?

A new study says human civilisation itself could pass the point of no return by 2050. The Australian climate think-tank Breakthrough: National Centre for Climate Restoration says that unless humanity takes drastic and immediate action to save the climate, a combination of unstable food production, water shortages and extreme weather could lead to the breakdown of global society.

One renowned US climate scientist, Michael Mann of Pennsylvania State University, says that Breakthrough is exaggerating and its report could be counter-productive.

In the UK, though, Mark Maslin of University College London says the report underlines the deep concerns expressed by some security experts.

Act together

Chris Barrie, a retired Royal Australian Navy admiral and former Chief of the Australian Defence Force, is now an honorary professor at the Australian National University, Canberra.

In a foreword to the Breakthrough study he writes: “We must act collectively. We need strong, determined leadership in government, in business and in our communities to ensure a sustainable future for humankind.”

David Spratt, Breakthrough’s research director and a co-author of the study, says that “much knowledge produced for policymakers is too conservative,” but that the new paper, by showing the extreme end of what could happen in just the next three decades, aims to make the stakes clear. “The report speaks, in our opinion, a harsh but necessary truth,” he says.

“To reduce this risk and protect human civilisation, a massive global mobilisation of resources is needed in the coming decade to build a zero-emissions industrial system and set in train the restoration of a safe climate,” the report reads. “This would be akin in scale to the World War II emergency mobilisation.”

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly”

Breakthrough acknowledges that the worst possibility it foresees − the total collapse of civilisation by mid-century − is an example of a worst-case scenario, but it insists that “the world is currently completely unprepared to envisage, and even less deal with, the consequences of catastrophic climate change.”

The picture of the possible near future it presents is stark. By 2050, it says, the world could have reached:

  • a 3°C temperature rise, with a further 1°C in store
  • sea levels 0.5 metres above today’s, with a possible eventual rise of 25m
  • 55% of the world’s people subject to more than 20 days a year of heat “beyond the threshold of human survivability”
  • one billion people forced to leave the tropics
  • a 20% decline in crop yields, leaving too little food to feed the world
  • armed conflict likely and nuclear war possible.

The report’s authors conclude: “The scale of destruction is beyond our capacity to model, with a high likelihood of human civilisation coming to an end.”

Warnings examined

Warnings of the possible end of human civilisation are not new. They range from those which offer highly-qualified hope for humanity’s future to others which find very little to celebrate, even tentatively.

The Breakthrough study fits unequivocally into the second group. To weigh the credibility of some of its statements, the journal New Scientist looks at the sources they cite and the wider context of the claims they make.

Its scrutiny ends with the views of two eminent climate scientists. Michael Mann, professor of atmospheric science at Penn State, says: “I respect the authors and appreciate that their intentions are good, but … overblown rhetoric, exaggeration, and unsupportable doomist framing can be counteractive to climate action.”

For his part, Mark Maslin, professor of geography at UCL, tells New Scientist that the Breakthrough report adds to the deep concerns expressed by security experts such as the Pentagon over climate change.

Hope nurtured

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly,” he says.

The 2020 round of UN climate negotiations is due to take place in November next year, with hopes building that many countries will agree then to make much more radical cuts in greenhouse gas emissions than they have pledged so far.

Altogether 195 countries promised in 2015, in the Paris Agreement, to make the cuts needed to prevent global average temperatures rising more than 2°C, and if possible to stay below a maximum rise of 1.5°C, the levels climate scientists say are the highest that can assure the planet’s safety. But the cuts that many countries have promised so far will not achieve either goal.

Scientists say it is still possible for the world to achieve the 1.5°C limit. But doing so requires immediate emissions cuts, on a scale and at a pace that are not yet in sight − “a very big ‘if’”, as one of them put it. − Climate News Network

Carbon farming can slash CO2 emissions

US entrepreneurs say a new technique − carbon farming, improving the health of the soil − can achieve big cuts in atmospheric carbon.
WASHINGTON DC, 17 May, 2019 − Soil health improvement, a technique known as carbon farming, could cut the amount of carbon dioxide in the Earth’s atmosphere by more than one-sixth, a US business group says.
It says a concerted effort by the world’s farmers to restore and protect soil health could reduce atmospheric carbon dioxide by as much as 65 parts per million (ppm) from its current level of more than 415 ppm.
It made the announcement at a webinar on carbon farming which it hosted here in April. A full report of the webinar appears on the website of the The Energy Mix.
The group, the US-based Environmental Entrepreneurs (E2), describes itself as “a national, nonpartisan group of business leaders, investors, and professionals from every sector of the economy who advocate … smart policies that are good for the economy and good for the environment”
World leaders … said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”
The total saving of 65 ppm represents the estimated amount of carbon that human activity has removed from the soil since the dawn of industrial agriculture.
But, E2 says, even if its eventual contribution to climate stabilisation falls well short of this figure, drawing attention to soil carbon sequestration could still concentrate minds on a climate solution often neglected in comparison with more complex and often riskier options for emission cuts.
E2 says a critical step in advancing climate-friendly soil health in the US is the ground-breaking Soil Health Demonstration Trial, a carbon farming pilot project that a coalition of farmers, agricultural technology entrepreneurs and environmentalists managed to persuade a deeply divided US Congress to accept in the December 2018 farm bill, the Agricultural Improvement Act of 2018.
The idea for the carbon farming pilot emerged in the wake of the UN’s 2016 annual climate conference, known as COP23, held in the German city of Bonn. World leaders there said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”.
Microbial key
Carbon farming depends on the activity of microbes in the soil, says E2. Through photosynthesis, plants remove vast amounts of CO2 from the atmosphere and convert it into sugars. They use as much as 30% of these sugars to “recruit and nurture” huge, diverse populations of microbes around their root systems.
The microbes help the plants take up nutrients, retain water and tolerate stress, functioning as a key part of the process by which plants produce the roots and leaves that end up as carbon in the soil. When they die, they deposit huge amounts of carbon in the soil.
Scientists have developed a new microbial soil additive that substantially increased soil carbon sequestration in trial applications to California grapes and citrus fruit in Florida.
In the citrus trial, after scientists treated one acre of land three to four times over the course of a year, soil carbon increased by 32%, to 4.3 tons. Soil greenhouse gas emissions decreased by 2.33 tons, reckoned to be the rough equivalent of the CO2 produced by driving a car with an internal combustion engine for a whole year.
Depositing four tons of carbon per acre in just 10% of California’s agricultural land, it is estimated, would be the equivalent of taking 4.3 million cars off the road. − Climate News Network

 

* * * * *

The Climate News Network wishes to thank The Energy Mix, a thrice-weekly e-digest on climate, energy and post-carbon solutions, for permission to publish this slightly adapted version of its original report on carbon farming.

US entrepreneurs say a new technique − carbon farming, improving the health of the soil − can achieve big cuts in atmospheric carbon.
WASHINGTON DC, 17 May, 2019 − Soil health improvement, a technique known as carbon farming, could cut the amount of carbon dioxide in the Earth’s atmosphere by more than one-sixth, a US business group says.
It says a concerted effort by the world’s farmers to restore and protect soil health could reduce atmospheric carbon dioxide by as much as 65 parts per million (ppm) from its current level of more than 415 ppm.
It made the announcement at a webinar on carbon farming which it hosted here in April. A full report of the webinar appears on the website of the The Energy Mix.
The group, the US-based Environmental Entrepreneurs (E2), describes itself as “a national, nonpartisan group of business leaders, investors, and professionals from every sector of the economy who advocate … smart policies that are good for the economy and good for the environment”
World leaders … said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”
The total saving of 65 ppm represents the estimated amount of carbon that human activity has removed from the soil since the dawn of industrial agriculture.
But, E2 says, even if its eventual contribution to climate stabilisation falls well short of this figure, drawing attention to soil carbon sequestration could still concentrate minds on a climate solution often neglected in comparison with more complex and often riskier options for emission cuts.
E2 says a critical step in advancing climate-friendly soil health in the US is the ground-breaking Soil Health Demonstration Trial, a carbon farming pilot project that a coalition of farmers, agricultural technology entrepreneurs and environmentalists managed to persuade a deeply divided US Congress to accept in the December 2018 farm bill, the Agricultural Improvement Act of 2018.
The idea for the carbon farming pilot emerged in the wake of the UN’s 2016 annual climate conference, known as COP23, held in the German city of Bonn. World leaders there said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”.
Microbial key
Carbon farming depends on the activity of microbes in the soil, says E2. Through photosynthesis, plants remove vast amounts of CO2 from the atmosphere and convert it into sugars. They use as much as 30% of these sugars to “recruit and nurture” huge, diverse populations of microbes around their root systems.
The microbes help the plants take up nutrients, retain water and tolerate stress, functioning as a key part of the process by which plants produce the roots and leaves that end up as carbon in the soil. When they die, they deposit huge amounts of carbon in the soil.
Scientists have developed a new microbial soil additive that substantially increased soil carbon sequestration in trial applications to California grapes and citrus fruit in Florida.
In the citrus trial, after scientists treated one acre of land three to four times over the course of a year, soil carbon increased by 32%, to 4.3 tons. Soil greenhouse gas emissions decreased by 2.33 tons, reckoned to be the rough equivalent of the CO2 produced by driving a car with an internal combustion engine for a whole year.
Depositing four tons of carbon per acre in just 10% of California’s agricultural land, it is estimated, would be the equivalent of taking 4.3 million cars off the road. − Climate News Network

 

* * * * *

The Climate News Network wishes to thank The Energy Mix, a thrice-weekly e-digest on climate, energy and post-carbon solutions, for permission to publish this slightly adapted version of its original report on carbon farming.

Crops at risk from changing climate

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

New orchards offer life to wild species

While many of the UK’s traditional orchards are vanishing, new orchards are being planted to help wildlife and to slow global warming.

LONDON, 8 May, 2019 − New orchards are appearing across the UK to stop the widespread decline of rare insects and birds, and to slow down climate change.

The National Trust, Britain’s largest conservation organisation, which owns hundreds of miles of coastline as well as country houses and farms, already looks after 200 orchards, but is to create another 68 across England by 2025 to try to halt a national decline.

There are still 25,350 hectares (62,650 acres) of orchards in the country − but that is 63% less than in 1950. Many are commercial monocultures. As a result, many rare types of apple are in danger of being lost and plum, pear and damson production is in decline.

Apart from saving endangered species of fruit from old orchards, the Trust is keen to preserve the bees that thrive on the springtime blossom and many other rare species of insect that live only on fruit trees. Unlike commercial growers, the Trust will be managing its new orchards without pesticides, and specifically for wildlife.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth”

It will provide new habitats for insects like the noble chafer, a rare and beautiful relative of the scarab beetle, coloured a metallic bronze-green, as well as many other species that live mainly in old orchards.

Traditional orchards are far better for wildlife than commercial ones because they often contain very old trees, and have more space between them. Wildflower meadows are often grown underneath the trees to encourage insects to pollinate blossom when the trees burst into bloom.

The new orchards will also store carbon in the trunks of the growing trees and in the grassland below.

National Trust rangers and their volunteer teams will keep a close eye on the trees and encourage tits and other insect-eating birds to nest in the trees to eat caterpillars and help keep other pests down.

Ideal home

Dr David Bullock, head of species and habitat conservation at the Trust, said: “We launched a new wildlife and nature strategy in 2015. We identified traditional orchards as being of particular importance because they provide the perfect home for a variety of birds, pollinators and insects, as well as being great for people.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth. The amazing number of apple and other traditional fruit varieties that we can plant reflects the wonderful diversity of life.”

Traditional orchards were listed as one of the 65 priority habitats in the UK’s Natural Environment and Rural Communities Act 2006, but they have continued to decline.

Dr Bullock says that as well as providing homes for wildlife traditional orchards are also important for conserving heritage fruit varieties such as two cider apples, called Jackets and Petticoats, and Ashmead’s Kernel.

Hopeful sign

“They are also vital for people. They provide us with delicious local and seasonal food and drink, they are places for people to enjoy and gather, have great cultural significance, and are places of beauty.”

One of the Trust’s properties, Cotehele, a medieval house in Cornwall in the far south-west of England, has seven orchards covering approximately 15 acres (six hectares), which are home to over 125 varieties of apple tree including the Cornish Honeypinnick, Limberlimb, Pig’s’ Nose and Lemon Pippin.

David Bouch, head gardener at Cotehele, says: “As we’re so far south, many flowers and trees come into bloom slightly earlier than elsewhere in the country because we experience milder winter temperatures.

“Apple blossom is such a delicate flower. It starts off with a tinge of pink when in bud, before bursting forth to reveal a fragile, snowy white flower which, for me, is hopefully a sign of the last of the frosts and the orchard bursting into life, from the bees to the wildflowers to the hope of a successful apple harvest.” − Climate News Network

While many of the UK’s traditional orchards are vanishing, new orchards are being planted to help wildlife and to slow global warming.

LONDON, 8 May, 2019 − New orchards are appearing across the UK to stop the widespread decline of rare insects and birds, and to slow down climate change.

The National Trust, Britain’s largest conservation organisation, which owns hundreds of miles of coastline as well as country houses and farms, already looks after 200 orchards, but is to create another 68 across England by 2025 to try to halt a national decline.

There are still 25,350 hectares (62,650 acres) of orchards in the country − but that is 63% less than in 1950. Many are commercial monocultures. As a result, many rare types of apple are in danger of being lost and plum, pear and damson production is in decline.

Apart from saving endangered species of fruit from old orchards, the Trust is keen to preserve the bees that thrive on the springtime blossom and many other rare species of insect that live only on fruit trees. Unlike commercial growers, the Trust will be managing its new orchards without pesticides, and specifically for wildlife.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth”

It will provide new habitats for insects like the noble chafer, a rare and beautiful relative of the scarab beetle, coloured a metallic bronze-green, as well as many other species that live mainly in old orchards.

Traditional orchards are far better for wildlife than commercial ones because they often contain very old trees, and have more space between them. Wildflower meadows are often grown underneath the trees to encourage insects to pollinate blossom when the trees burst into bloom.

The new orchards will also store carbon in the trunks of the growing trees and in the grassland below.

National Trust rangers and their volunteer teams will keep a close eye on the trees and encourage tits and other insect-eating birds to nest in the trees to eat caterpillars and help keep other pests down.

Ideal home

Dr David Bullock, head of species and habitat conservation at the Trust, said: “We launched a new wildlife and nature strategy in 2015. We identified traditional orchards as being of particular importance because they provide the perfect home for a variety of birds, pollinators and insects, as well as being great for people.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth. The amazing number of apple and other traditional fruit varieties that we can plant reflects the wonderful diversity of life.”

Traditional orchards were listed as one of the 65 priority habitats in the UK’s Natural Environment and Rural Communities Act 2006, but they have continued to decline.

Dr Bullock says that as well as providing homes for wildlife traditional orchards are also important for conserving heritage fruit varieties such as two cider apples, called Jackets and Petticoats, and Ashmead’s Kernel.

Hopeful sign

“They are also vital for people. They provide us with delicious local and seasonal food and drink, they are places for people to enjoy and gather, have great cultural significance, and are places of beauty.”

One of the Trust’s properties, Cotehele, a medieval house in Cornwall in the far south-west of England, has seven orchards covering approximately 15 acres (six hectares), which are home to over 125 varieties of apple tree including the Cornish Honeypinnick, Limberlimb, Pig’s’ Nose and Lemon Pippin.

David Bouch, head gardener at Cotehele, says: “As we’re so far south, many flowers and trees come into bloom slightly earlier than elsewhere in the country because we experience milder winter temperatures.

“Apple blossom is such a delicate flower. It starts off with a tinge of pink when in bud, before bursting forth to reveal a fragile, snowy white flower which, for me, is hopefully a sign of the last of the frosts and the orchard bursting into life, from the bees to the wildflowers to the hope of a successful apple harvest.” − Climate News Network

Marine microbes may fuel ocean warming

Warmer air means warmer seas, and marine microbes in warmer seas could mean yet warmer air. The climate cycle could get increasingly vicious.

LONDON, 6 May, 2019 − US scientists say marine microbes are the cause of yet another potentially positive feedback that could accelerate global warming.

As the oceans warm, marine microbial life might start to pump yet more carbon dioxide into the air. This process would of course increase the greenhouse gas levels still further and warm the oceans to increasing temperatures.

The finding is a reminder that the atmosphere, oceans, ice caps, rocks, algae, bacteria and forests are all intricate parts of the planetary climate machinery, and researchers still have a long way to go before they understand all the working parts in detail. But it is also a reminder that every small rise in planetary average temperatures in some way feeds back into this complex system.

The new study, based on analysis of data gathered during a research cruise in 2013 from Peru to Tahiti, is published in the Proceedings of the National Academy of Sciences.

“Warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored”

The shipboard scientists looked in depth at processes in highly productive waters off the South American coasts, and at the more or less barren waters south of the equator that cycle in a set of currents known as the South Pacific Gyre.

They did so to estimate the fate of tiny green plants – plankton – as they flourished in the ocean surface, and then perished and sank to the depths.

In the great and far-from-complete reckoning of the planet’s carbon budget – from atmosphere to plants to animals and back to the air, or to the rocks – climate scientists think that the oceans absorb around one fourth of all the extra carbon dioxide that humans burn as fossil fuels to power economic growth.

Plankton produce about 40 to 50 billion tonnes of organic carbon as they flourish, and then perish. Microbes set to work and begin the process of decay, recycling the carbon into the atmosphere. But somewhere between 8bn and 10bn tonnes of green tissue sink below 100 metres, into waters increasingly starved of oxygen, and decay stops.

Long sojourn

Once the dead plankton reach the ocean bottom, they could be there for centuries. More heat, however, could alter the balance of recycling and long-term storage.

“The results are telling us that warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored,” said Robert Anderson, of Columbia University’s Lamont-Doherty Earth Observatory, and one of the authors.

The fear is that as the oceans warm, the oxygen-low zones will increase and expand. That could suggest more long-term carbon burial. But as the surface waters warm, the microbial activity could accelerate, and release even more carbon into the atmosphere. In which case, the world would warm more swiftly.

Research like this is necessarily inconclusive: marine biologists have a lot more to do before they get a convincing answer to a global puzzle. Climate scientists started worrying about oxygen depletion in the oceans years ago, but they have been more bothered by evidence that in a warmer world microbial scavengers and recyclers work ever harder, and not just on land.

Positive feedbacks

As the polar ice retreats, there are more emissions of potent greenhouse gases from the tundra. And as high latitude ice and snow retreats, the levels of radiation back into space are reduced, while deep blue sea and brown rock absorb ever higher doses of sunlight.

All these are instances of positive feedback: planetary responses that seem overall to make climate change more likely, and climate extremes more hazardous. And the increasing evidence of oxygen depletion in the oceans provides no comfort: as the seas warm, less oxygen is available for the ocean’s animals: including of course the huge hauls of fish on which millions depend for income and nourishment.

As the scientists say, in the opaque language of a research journal: “Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modelling and future work to disentangle.”

In other words, there is more research to be done. − Climate News Network

Warmer air means warmer seas, and marine microbes in warmer seas could mean yet warmer air. The climate cycle could get increasingly vicious.

LONDON, 6 May, 2019 − US scientists say marine microbes are the cause of yet another potentially positive feedback that could accelerate global warming.

As the oceans warm, marine microbial life might start to pump yet more carbon dioxide into the air. This process would of course increase the greenhouse gas levels still further and warm the oceans to increasing temperatures.

The finding is a reminder that the atmosphere, oceans, ice caps, rocks, algae, bacteria and forests are all intricate parts of the planetary climate machinery, and researchers still have a long way to go before they understand all the working parts in detail. But it is also a reminder that every small rise in planetary average temperatures in some way feeds back into this complex system.

The new study, based on analysis of data gathered during a research cruise in 2013 from Peru to Tahiti, is published in the Proceedings of the National Academy of Sciences.

“Warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored”

The shipboard scientists looked in depth at processes in highly productive waters off the South American coasts, and at the more or less barren waters south of the equator that cycle in a set of currents known as the South Pacific Gyre.

They did so to estimate the fate of tiny green plants – plankton – as they flourished in the ocean surface, and then perished and sank to the depths.

In the great and far-from-complete reckoning of the planet’s carbon budget – from atmosphere to plants to animals and back to the air, or to the rocks – climate scientists think that the oceans absorb around one fourth of all the extra carbon dioxide that humans burn as fossil fuels to power economic growth.

Plankton produce about 40 to 50 billion tonnes of organic carbon as they flourish, and then perish. Microbes set to work and begin the process of decay, recycling the carbon into the atmosphere. But somewhere between 8bn and 10bn tonnes of green tissue sink below 100 metres, into waters increasingly starved of oxygen, and decay stops.

Long sojourn

Once the dead plankton reach the ocean bottom, they could be there for centuries. More heat, however, could alter the balance of recycling and long-term storage.

“The results are telling us that warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored,” said Robert Anderson, of Columbia University’s Lamont-Doherty Earth Observatory, and one of the authors.

The fear is that as the oceans warm, the oxygen-low zones will increase and expand. That could suggest more long-term carbon burial. But as the surface waters warm, the microbial activity could accelerate, and release even more carbon into the atmosphere. In which case, the world would warm more swiftly.

Research like this is necessarily inconclusive: marine biologists have a lot more to do before they get a convincing answer to a global puzzle. Climate scientists started worrying about oxygen depletion in the oceans years ago, but they have been more bothered by evidence that in a warmer world microbial scavengers and recyclers work ever harder, and not just on land.

Positive feedbacks

As the polar ice retreats, there are more emissions of potent greenhouse gases from the tundra. And as high latitude ice and snow retreats, the levels of radiation back into space are reduced, while deep blue sea and brown rock absorb ever higher doses of sunlight.

All these are instances of positive feedback: planetary responses that seem overall to make climate change more likely, and climate extremes more hazardous. And the increasing evidence of oxygen depletion in the oceans provides no comfort: as the seas warm, less oxygen is available for the ocean’s animals: including of course the huge hauls of fish on which millions depend for income and nourishment.

As the scientists say, in the opaque language of a research journal: “Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modelling and future work to disentangle.”

In other words, there is more research to be done. − Climate News Network

Cold-blooded sealife runs double heat risk

Extremes of heat are twice as risky for cold-blooded sealife as for other ectotherms. A hot rock could be safer than the deep sea.

LONDON, 29 April, 2019 – When it comes to global warming, there may no longer be plenty of fish in the sea: new research suggests that cold-blooded sealife may be twice as likely to be at risk in its natural habitat as land-dwelling ectotherms.

This finding is unexpected: the ocean is, in both area and volume, the single biggest living space on the planet. Fish that feel the heat can move towards the poles when temperatures get too high.

But when US researchers took a closer look at the data available on the thermal discomfort zones – those moments when cold-blooded creatures begin to overheat and need to find a safe, cool place in which to lie low – those spiders and lizards that survive in the tropics and temperate zones actually stand a better chance of finding somewhere to hide, and thus living through heatwaves, than their marine cousins.

“New conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity”

“We find that, globally, marine species are being eliminated from their habitats by warming temperatures twice as often as land species,” said Malin Pinsky, of Rutgers University in New Brunswick.

“The findings suggest that new conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity.”

He and colleagues report in the journal Nature that they searched the literature for detailed information on 400 species, and calculated the safe conditions for 88 marine and 294 land animals. They also identified the coolest temperatures available to each species during the hottest parts of the year.

More terrestrial refuges

And they found that, on average, fish and marine animals were more likely to live on the edge of temperatures that could become dangerously high. Land animals – insects and reptiles – could disappear into the forests, seek the shade or go underground: something sea creatures could not do.

That terrestrial reptiles and amphibians and marine animals are at risk is not news: researchers have already recorded significant movements of sea species in response to heat extremes off the Californian coast.

There has been repeated evidence that rising global temperature, as a consequence of greenhouse gas emissions from fossil fuel use, has begun to affect commercial fisheries, and other researchers have made it emphatically clear that only determined human action to contain global warming and protect breeding grounds can keep fish on the family supper table.

What most would not have expected was to find that land animals were less at risk, simply because they were land-dwellers.

Limited evidence

Research of this kind tends to deliver findings that can be challenged, and the authors concede that their conclusions are limited by the available evidence. Of 159 separate studies, 153 were in the northern hemisphere and 137 were from the temperate latitudes. Of their marine ectotherms, only 7% were pelagic: these are the fish – among them cod and tuna – that can swim to deeper, cooler layers when surface temperatures soar.

The remaining 93% included slow-moving bottom-dwellers such as lobsters, horseshoe crabs, abalone and snails, which may have nowhere left to go when life locally gets too hot to handle. The researchers make it clear that they are not talking about complete global extinctions of species: they choose the phrase “local extirpations”.

And they make it clear that land-dwelling cold-blooded animals are by no means safe from increasingly frequent, intense episodes of heat extremes driven by climate change: they would continue to be vulnerable to loss of what the researchers call “local refugia” – for example woodland cover – which “would make habitat fragmentation and changes in land use critical drivers of species loss on land.” – Climate News Network

Extremes of heat are twice as risky for cold-blooded sealife as for other ectotherms. A hot rock could be safer than the deep sea.

LONDON, 29 April, 2019 – When it comes to global warming, there may no longer be plenty of fish in the sea: new research suggests that cold-blooded sealife may be twice as likely to be at risk in its natural habitat as land-dwelling ectotherms.

This finding is unexpected: the ocean is, in both area and volume, the single biggest living space on the planet. Fish that feel the heat can move towards the poles when temperatures get too high.

But when US researchers took a closer look at the data available on the thermal discomfort zones – those moments when cold-blooded creatures begin to overheat and need to find a safe, cool place in which to lie low – those spiders and lizards that survive in the tropics and temperate zones actually stand a better chance of finding somewhere to hide, and thus living through heatwaves, than their marine cousins.

“New conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity”

“We find that, globally, marine species are being eliminated from their habitats by warming temperatures twice as often as land species,” said Malin Pinsky, of Rutgers University in New Brunswick.

“The findings suggest that new conservation efforts will be needed if the ocean is going to continue supporting human well-being, nutrition and economic activity.”

He and colleagues report in the journal Nature that they searched the literature for detailed information on 400 species, and calculated the safe conditions for 88 marine and 294 land animals. They also identified the coolest temperatures available to each species during the hottest parts of the year.

More terrestrial refuges

And they found that, on average, fish and marine animals were more likely to live on the edge of temperatures that could become dangerously high. Land animals – insects and reptiles – could disappear into the forests, seek the shade or go underground: something sea creatures could not do.

That terrestrial reptiles and amphibians and marine animals are at risk is not news: researchers have already recorded significant movements of sea species in response to heat extremes off the Californian coast.

There has been repeated evidence that rising global temperature, as a consequence of greenhouse gas emissions from fossil fuel use, has begun to affect commercial fisheries, and other researchers have made it emphatically clear that only determined human action to contain global warming and protect breeding grounds can keep fish on the family supper table.

What most would not have expected was to find that land animals were less at risk, simply because they were land-dwellers.

Limited evidence

Research of this kind tends to deliver findings that can be challenged, and the authors concede that their conclusions are limited by the available evidence. Of 159 separate studies, 153 were in the northern hemisphere and 137 were from the temperate latitudes. Of their marine ectotherms, only 7% were pelagic: these are the fish – among them cod and tuna – that can swim to deeper, cooler layers when surface temperatures soar.

The remaining 93% included slow-moving bottom-dwellers such as lobsters, horseshoe crabs, abalone and snails, which may have nowhere left to go when life locally gets too hot to handle. The researchers make it clear that they are not talking about complete global extinctions of species: they choose the phrase “local extirpations”.

And they make it clear that land-dwelling cold-blooded animals are by no means safe from increasingly frequent, intense episodes of heat extremes driven by climate change: they would continue to be vulnerable to loss of what the researchers call “local refugia” – for example woodland cover – which “would make habitat fragmentation and changes in land use critical drivers of species loss on land.” – Climate News Network

Extreme heat is growing threat to harvests

A warmer world means more chance of extreme heat in more than one continent at the same time, and a rising threat to global food security.

LONDON, 17 April, 2019 − Ever-higher average global temperatures mean more intense extreme heat over ever-wider regions.

When the planet becomes on average 1.5°C warmer than it was for most of human history, then for two out of every three years, one-fourth of the northern hemisphere will experience the kind of blistering heat waves recorded in 2018.

And should planetary average temperatures creep up by 2°C – the maximum proposed by 195 nations at the global climate conference in Paris in 2015 – then the probability rises to 100%. That is, extreme heat over a large area of the hemisphere will be guaranteed every summer.

Heat extremes are all too often accompanied by devastating thunderstorms or extended drought and massive outbreaks of wildfire, with potentially disastrous consequences for harvests in the blighted regions.

“Ultimately, extreme events affecting large areas of the planet could threaten food supply elsewhere, even in Switzerland”

In 2018, people died of heatstroke, roads and even rails started to melt, forests went up in flames, and power generation systems sometimes failed, not just in one region but in a number in the temperate zones and the Arctic at the same time.

Between May and July, 22% of agricultural land and crowded cities of the northern half of the globe were hit simultaneously by extended periods of extreme heat. In all, 17 countries were affected, from Canada and the US across the Atlantic and Pacific to Russia, Japan and South Korea. In Europe, temperatures in the rivers Rhine and Elbe reached such heights that fish suffocated; there were wildfires in Sweden, Latvia and Greece and record temperatures in Germany.

“Without climate change that can be explained by human activity, we wouldn’t have such a large area being simultaneously affected by heat as we did in 2018,” said Martha Vogel, of the Swiss Federal Institute of Technology, known as ETH Zurich, who presented her findings at a press conference held by the European Geosciences Union in Vienna.

Serious impacts

The reasoning and methodology have yet to be published, but the authors say their paper is in review for the journal Earth’s Future. “If in future more and more key agricultural regions and densely populated areas are affected by simultaneous heatwaves, this would have severe consequences.”

Other research teams have already warned that global warming could bring a repeat of the simultaneous drought and heat outbreaks across the world that triggered calamitous famines in Asia and Africa between 1875 and 1878.

They have repeatedly warned of potentially catastrophic levels of heat that could arrive with increasing frequency to claim greater numbers of lives especially when accompanied by extreme levels of humidity.

The Swiss scientists focussed on data from agricultural regions and busy urban areas above latitude 30° for the years 1958 to 2018 to find occasions of heat extremes in more than one region and then used computer modelling to simulate probabilities as average planetary temperatures continued to grow.

Poor are hardest-hit

The choice of agricultural areas was purposeful: in such scenarios where more than one region suffers harvest failures, food prices begin to soar. In the 2010 heatwave, Russia ended all its wheat exports and prices in Pakistan rose by 16%, with harsh consequences for the poorest. Governments, agriculture ministries and international aid agencies need to be prepared.

“Such incidents cannot be resolved by individual countries acting on their own. Ultimately, extreme events affecting large areas of the planet could threaten food supply elsewhere, even in Switzerland,” said Sonia Seneviratne, an ETH climate scientist who has also shared in the study.

“We are already clearly feeling the effects just from the one degree that global average temperature has risen since the pre-industrial era.” − Climate News Network

A warmer world means more chance of extreme heat in more than one continent at the same time, and a rising threat to global food security.

LONDON, 17 April, 2019 − Ever-higher average global temperatures mean more intense extreme heat over ever-wider regions.

When the planet becomes on average 1.5°C warmer than it was for most of human history, then for two out of every three years, one-fourth of the northern hemisphere will experience the kind of blistering heat waves recorded in 2018.

And should planetary average temperatures creep up by 2°C – the maximum proposed by 195 nations at the global climate conference in Paris in 2015 – then the probability rises to 100%. That is, extreme heat over a large area of the hemisphere will be guaranteed every summer.

Heat extremes are all too often accompanied by devastating thunderstorms or extended drought and massive outbreaks of wildfire, with potentially disastrous consequences for harvests in the blighted regions.

“Ultimately, extreme events affecting large areas of the planet could threaten food supply elsewhere, even in Switzerland”

In 2018, people died of heatstroke, roads and even rails started to melt, forests went up in flames, and power generation systems sometimes failed, not just in one region but in a number in the temperate zones and the Arctic at the same time.

Between May and July, 22% of agricultural land and crowded cities of the northern half of the globe were hit simultaneously by extended periods of extreme heat. In all, 17 countries were affected, from Canada and the US across the Atlantic and Pacific to Russia, Japan and South Korea. In Europe, temperatures in the rivers Rhine and Elbe reached such heights that fish suffocated; there were wildfires in Sweden, Latvia and Greece and record temperatures in Germany.

“Without climate change that can be explained by human activity, we wouldn’t have such a large area being simultaneously affected by heat as we did in 2018,” said Martha Vogel, of the Swiss Federal Institute of Technology, known as ETH Zurich, who presented her findings at a press conference held by the European Geosciences Union in Vienna.

Serious impacts

The reasoning and methodology have yet to be published, but the authors say their paper is in review for the journal Earth’s Future. “If in future more and more key agricultural regions and densely populated areas are affected by simultaneous heatwaves, this would have severe consequences.”

Other research teams have already warned that global warming could bring a repeat of the simultaneous drought and heat outbreaks across the world that triggered calamitous famines in Asia and Africa between 1875 and 1878.

They have repeatedly warned of potentially catastrophic levels of heat that could arrive with increasing frequency to claim greater numbers of lives especially when accompanied by extreme levels of humidity.

The Swiss scientists focussed on data from agricultural regions and busy urban areas above latitude 30° for the years 1958 to 2018 to find occasions of heat extremes in more than one region and then used computer modelling to simulate probabilities as average planetary temperatures continued to grow.

Poor are hardest-hit

The choice of agricultural areas was purposeful: in such scenarios where more than one region suffers harvest failures, food prices begin to soar. In the 2010 heatwave, Russia ended all its wheat exports and prices in Pakistan rose by 16%, with harsh consequences for the poorest. Governments, agriculture ministries and international aid agencies need to be prepared.

“Such incidents cannot be resolved by individual countries acting on their own. Ultimately, extreme events affecting large areas of the planet could threaten food supply elsewhere, even in Switzerland,” said Sonia Seneviratne, an ETH climate scientist who has also shared in the study.

“We are already clearly feeling the effects just from the one degree that global average temperature has risen since the pre-industrial era.” − Climate News Network

Europe’s food imports devour rainforests

Human appetites drive global rainforest destruction. Now science has measured how Europe’s food imports leave scorched tropical soils and greenhouse gases.

LONDON, 5 April, 2019 − European scientists have worked out how European consumers can reduce tropical forest loss and cut down greenhouse emissions in other countries.

One: stop buying beef, especially from Brazil. And two: be sparing with the oil from tropical palms and soybean plantations.

In theory, this should be news to nobody. Forests absorb carbon dioxide from the atmosphere and slow global warming. But forests that have been felled for cattle-grazing or burned and cleared for oil plantations are net emitters of carbon into the atmosphere to accelerate global warming and precipitate yet more dangerous climate change.

But in two related publications, researchers have looked beyond the theory to identify the responsibility of one geopolitical grouping for precise volumes of greenhouse gas emissions in faraway places.

First they report, in the journal Global Environmental Change, that they looked at the loss of tropical rainforests, and then at the ways in which the felled or scorched forests have been used, for food production.

“If you give tropical countries support . . . to protect the rainforest, as well as giving farmers alternatives to deforestation to increase production, it can have a big impact”

And then, in the journal Environmental Research Letters, they took the measure of carbon dioxide emissions that might be linked to food production from the destroyed rainforest, and then worked out from world trade data where that food went.

The European Union as a whole is a huge importer of food. And the conclusion is that one-sixth of the emissions from a typical EU diet can be traced directly back to deforestation in the tropics.

“In effect, you could say that the EU imports large amounts of deforestation every year. If the EU really wants to achieve climate goals, it must set harder environmental standards on those who export food to the EU,” said Martin Persson of Chalmers University of Technology in Sweden.

And his co-author Florence Pendrill, also at Chalmers, said: “We can see that more than half of deforestation is due to the production of food and animal feed, such as beef, soy beans and palm oil.

Food exports rising

“There is a big variation between different countries and goods, but overall, exports account for about a fourth of that deforestation which is connected to food production. And these figures have increased during the period we have looked at.”

The principles are clear: like the shift away from dependence on fossil fuels, the preservation and growth of the world’s forests is one of the priorities in slowing greenhouse gas emissions and limiting climate change.

Researchers have repeatedly stressed that a shift away from a meat diet could reduce emissions; a global switch to crops rather than cattle would mean greater output from existing farmland and help save forests everywhere.

In general, many developed countries have begun to enlarge the space covered by forest canopy. But the tropical rainforests remain at risk: from drought and wildfire linked to climate change, and from direct human invasion in pursuit of yet more space to exploit for cattle ranches and oil plantations. Greenhouse gas emissions from rainforests are on the increase.

Extending the rules

The European Union already has strict rules about the provision of timber and wood products from exporting countries: these have already helped protect some areas of the vulnerable tropical rainforests. The next challenge is to see whether such regulation can be effectively tailored to food imports.

The scientists found that between 2010 and 2014, around 2.6 billion tonnes of carbon dioxide escaped from ranches, croplands and plantations on cleared forest land. Of this, 900 million tonnes of carbon dioxide came from cattle meat, much of it from Brazil, and 600 million from palm oil and soybean plantations, almost half of this from Indonesia.

“Now, as the connection between food production and deforestation is made clearer, we should start to discuss possibilities for the EU to adopt similar regulations for food imports. Quite simply, deforestation should end up costing the producer more,” said Dr Pendrill.

“If you give tropical countries support in their work to protect the rainforest, as well as giving farmers alternatives to deforestation to increase production, it can have a big impact.” − Climate News Network

Human appetites drive global rainforest destruction. Now science has measured how Europe’s food imports leave scorched tropical soils and greenhouse gases.

LONDON, 5 April, 2019 − European scientists have worked out how European consumers can reduce tropical forest loss and cut down greenhouse emissions in other countries.

One: stop buying beef, especially from Brazil. And two: be sparing with the oil from tropical palms and soybean plantations.

In theory, this should be news to nobody. Forests absorb carbon dioxide from the atmosphere and slow global warming. But forests that have been felled for cattle-grazing or burned and cleared for oil plantations are net emitters of carbon into the atmosphere to accelerate global warming and precipitate yet more dangerous climate change.

But in two related publications, researchers have looked beyond the theory to identify the responsibility of one geopolitical grouping for precise volumes of greenhouse gas emissions in faraway places.

First they report, in the journal Global Environmental Change, that they looked at the loss of tropical rainforests, and then at the ways in which the felled or scorched forests have been used, for food production.

“If you give tropical countries support . . . to protect the rainforest, as well as giving farmers alternatives to deforestation to increase production, it can have a big impact”

And then, in the journal Environmental Research Letters, they took the measure of carbon dioxide emissions that might be linked to food production from the destroyed rainforest, and then worked out from world trade data where that food went.

The European Union as a whole is a huge importer of food. And the conclusion is that one-sixth of the emissions from a typical EU diet can be traced directly back to deforestation in the tropics.

“In effect, you could say that the EU imports large amounts of deforestation every year. If the EU really wants to achieve climate goals, it must set harder environmental standards on those who export food to the EU,” said Martin Persson of Chalmers University of Technology in Sweden.

And his co-author Florence Pendrill, also at Chalmers, said: “We can see that more than half of deforestation is due to the production of food and animal feed, such as beef, soy beans and palm oil.

Food exports rising

“There is a big variation between different countries and goods, but overall, exports account for about a fourth of that deforestation which is connected to food production. And these figures have increased during the period we have looked at.”

The principles are clear: like the shift away from dependence on fossil fuels, the preservation and growth of the world’s forests is one of the priorities in slowing greenhouse gas emissions and limiting climate change.

Researchers have repeatedly stressed that a shift away from a meat diet could reduce emissions; a global switch to crops rather than cattle would mean greater output from existing farmland and help save forests everywhere.

In general, many developed countries have begun to enlarge the space covered by forest canopy. But the tropical rainforests remain at risk: from drought and wildfire linked to climate change, and from direct human invasion in pursuit of yet more space to exploit for cattle ranches and oil plantations. Greenhouse gas emissions from rainforests are on the increase.

Extending the rules

The European Union already has strict rules about the provision of timber and wood products from exporting countries: these have already helped protect some areas of the vulnerable tropical rainforests. The next challenge is to see whether such regulation can be effectively tailored to food imports.

The scientists found that between 2010 and 2014, around 2.6 billion tonnes of carbon dioxide escaped from ranches, croplands and plantations on cleared forest land. Of this, 900 million tonnes of carbon dioxide came from cattle meat, much of it from Brazil, and 600 million from palm oil and soybean plantations, almost half of this from Indonesia.

“Now, as the connection between food production and deforestation is made clearer, we should start to discuss possibilities for the EU to adopt similar regulations for food imports. Quite simply, deforestation should end up costing the producer more,” said Dr Pendrill.

“If you give tropical countries support in their work to protect the rainforest, as well as giving farmers alternatives to deforestation to increase production, it can have a big impact.” − Climate News Network