Tag Archives: Food

Under-nutrition will grow in warmer world

Tomorrow’s world will not just be hungrier: it will increasingly face under-nutrition. More carbon dioxide means harvests with lower protein, iron and zinc.

LONDON, 1 August, 2019 − Climate change driven by ever-higher levels of carbon dioxide in the atmosphere will do more than just limit harvests. It will increase under-nutrition, making the planet’s staple foods less nourishing.

Put simply, the higher the use of fossil fuels, the greater the growth in the numbers of anaemic mothers, malnourished babies and stunted children, and the higher the count of overall deaths from malnutrition.

More than 2 million children of five years or less die each year from conditions associated with protein deficiency. Zinc deficiency is linked to 100,000 deaths a year, and iron levels to 200,000 deaths a year among young children.

And things will get worse. Over the next three decades, according to a new study in the journal Lancet Planetary Health, the combination of shocks from a hotter, stormier, more extreme world and ever-higher levels of atmospheric carbon dioxide will combine to make plant proteins, zinc and iron less available.

By 2050, levels of protein available per head could fall by 19.5% and of iron and zinc by 14.4% and 14.6% respectively. That is a fall of – for all three vital elements of survival – almost one fifth.

“Diet and human health are incredibly complex and difficult to predict, and by reducing the availability of critical nutrients, climate change will further complicate efforts to eliminate undernutrition worldwide”

Researchers warn that even though agricultural techniques have improved, even though markets are better at distributing food surpluses, and even though the extra carbon dioxide will act to add fertility to crops if atmospheric carbon levels continue to rise, dietary protein, iron and zinc will all fall by significant percentages in the harvests of 2050.

This will hold true for many of the world’s most important staples, among them wheat, rice, maize, barley, potatoes, soybeans and vegetables.

And many nations that already experience higher levels of malnutrition – in South Asia, the Middle East, sub-Saharan Africa, North Africa and the former Soviet Union − will continue to be disproportionately affected.

“We’ve made a lot of progress reducing under-nutrition around the world recently but global population growth over the next 30 years will require increasing production of foods that provide sufficient nutrients,” said Timothy Sulser of the International Food Policy Research Institute, one of the researchers.

Plant-based diet

“These findings suggest that climate change could slow progress on improvements in global nutrition by simply making key nutrients less available than they would be without it.”

The Lancet is one of the world’s oldest and most distinguished medical journals: it has at least twice comprehensively addressed aspects of climate change. At the start of this year it found that with a plant-based diet, it would be in theory possible to feed, and properly nourish, the 10 billion population expected later this century.

Late last year it also warned that, just in this century alone, extremes of temperature had threatened the health and economic growth of an additional 157 million people.

The latest study is a confirmation of earlier findings: other scientists have already warned that protein levels and micronutrient properties will be diminished in a greenhouse world.

Separate research has found that both the rice and wheat harvests of tomorrow could have less food value.

Famine threat

A third study has found that global fruit and vegetable production is already not enough to sustain a healthy population. And researchers have repeatedly warned that ever more-intense and frequent natural shocks that accompany global heating – floods, heat waves, drought, windstorm and so on – threaten food harvests worldwide and could even precipitate the kind of global famines last seen in the 19th century.

The researchers limited their horizon to 2050: they warn that, on present trends, problems with food nutrition levels are only likely to get worse in the decades beyond.

They also point out that the availability of nutrients is only part of the problem: the poorest also need access to clean water, sanitation and education to take advantage of any improved diet.

“Diet and human health are incredibly complex and difficult to predict, and by reducing the availability of critical nutrients, climate change will further complicate efforts to eliminate undernutrition worldwide,” Professor Sulser said. − Climate News Network

Tomorrow’s world will not just be hungrier: it will increasingly face under-nutrition. More carbon dioxide means harvests with lower protein, iron and zinc.

LONDON, 1 August, 2019 − Climate change driven by ever-higher levels of carbon dioxide in the atmosphere will do more than just limit harvests. It will increase under-nutrition, making the planet’s staple foods less nourishing.

Put simply, the higher the use of fossil fuels, the greater the growth in the numbers of anaemic mothers, malnourished babies and stunted children, and the higher the count of overall deaths from malnutrition.

More than 2 million children of five years or less die each year from conditions associated with protein deficiency. Zinc deficiency is linked to 100,000 deaths a year, and iron levels to 200,000 deaths a year among young children.

And things will get worse. Over the next three decades, according to a new study in the journal Lancet Planetary Health, the combination of shocks from a hotter, stormier, more extreme world and ever-higher levels of atmospheric carbon dioxide will combine to make plant proteins, zinc and iron less available.

By 2050, levels of protein available per head could fall by 19.5% and of iron and zinc by 14.4% and 14.6% respectively. That is a fall of – for all three vital elements of survival – almost one fifth.

“Diet and human health are incredibly complex and difficult to predict, and by reducing the availability of critical nutrients, climate change will further complicate efforts to eliminate undernutrition worldwide”

Researchers warn that even though agricultural techniques have improved, even though markets are better at distributing food surpluses, and even though the extra carbon dioxide will act to add fertility to crops if atmospheric carbon levels continue to rise, dietary protein, iron and zinc will all fall by significant percentages in the harvests of 2050.

This will hold true for many of the world’s most important staples, among them wheat, rice, maize, barley, potatoes, soybeans and vegetables.

And many nations that already experience higher levels of malnutrition – in South Asia, the Middle East, sub-Saharan Africa, North Africa and the former Soviet Union − will continue to be disproportionately affected.

“We’ve made a lot of progress reducing under-nutrition around the world recently but global population growth over the next 30 years will require increasing production of foods that provide sufficient nutrients,” said Timothy Sulser of the International Food Policy Research Institute, one of the researchers.

Plant-based diet

“These findings suggest that climate change could slow progress on improvements in global nutrition by simply making key nutrients less available than they would be without it.”

The Lancet is one of the world’s oldest and most distinguished medical journals: it has at least twice comprehensively addressed aspects of climate change. At the start of this year it found that with a plant-based diet, it would be in theory possible to feed, and properly nourish, the 10 billion population expected later this century.

Late last year it also warned that, just in this century alone, extremes of temperature had threatened the health and economic growth of an additional 157 million people.

The latest study is a confirmation of earlier findings: other scientists have already warned that protein levels and micronutrient properties will be diminished in a greenhouse world.

Separate research has found that both the rice and wheat harvests of tomorrow could have less food value.

Famine threat

A third study has found that global fruit and vegetable production is already not enough to sustain a healthy population. And researchers have repeatedly warned that ever more-intense and frequent natural shocks that accompany global heating – floods, heat waves, drought, windstorm and so on – threaten food harvests worldwide and could even precipitate the kind of global famines last seen in the 19th century.

The researchers limited their horizon to 2050: they warn that, on present trends, problems with food nutrition levels are only likely to get worse in the decades beyond.

They also point out that the availability of nutrients is only part of the problem: the poorest also need access to clean water, sanitation and education to take advantage of any improved diet.

“Diet and human health are incredibly complex and difficult to predict, and by reducing the availability of critical nutrients, climate change will further complicate efforts to eliminate undernutrition worldwide,” Professor Sulser said. − Climate News Network

Crop diversity keeps bees buzzing happily

Big business agriculture could be bad for pollinators, which need crop diversity. And that could mean very bad news for an ever-hungrier world.

LONDON, 26 July, 2019 − Tomorrow’s world could be a hungrier world. That is because as large-scale agribusiness gets busier crop diversity diminishes, and the pool of potential pollinators will become increasingly at risk.

Those crops that rely on pollination by the animal world can only deliver the reward of nourishment to bees and other insects for a very short time. As developing nations switch increasingly to massive plantations of soy, canola and palm oil, the creatures farmers rely on to set seed and begin the process of setting fruit will have a problem finding a food supply for the rest of the year.

The message of the latest research is simple: a sustainable world must be a diverse one. And that means a diversity of crops and crop varieties as well as a diversity of forest, grasslands and wildflowers to keep the honeybees buzzing.

Scientists from Argentina, Chile, the US, the Netherlands, Germany, South Africa and Korea report in the journal Global Change Biology that without an increase in crop diversity, agricultural productivity worldwide could be put at risk by its increasing dependence on pollinators – and insects of all kinds could be on the decline, even as crop-devouring predator insects could be on the increase.

The researchers looked at data from the UN’s Food and Agricultural Organization on the cultivation of field crops between 1961 and 2016. They found that more and more land is being colonised for agriculture, and the area cultivated for crops that rely on pollinators has increased by 137%. But crop diversity has increased only by 20%. And 16 of the 20 fastest-growing crops require pollination by insects or other animals.

Efficiency above all

The researchers paint a picture of a world in which vast tracts of landscape have been converted for maximum efficiency into plantations producing just one crop, while bees and other pollinators − already at hazard from climate change, pesticides and invasive infection – face a fall in the variety of their own potential food supply.

“This work should sound an alarm for policymakers who need to think about how they are going to protect and foster pollinator populations that can support the growing need for the services they provide to crops that require pollination,” said David Inouye of the University of Maryland in the US, one of the authors.

And a co-author, Robert Paxton of the Martin Luther University at Halle-Wittenberg in Germany, said: “Just a few months ago, the World Biodiversity Council (IPBES) revealed that up to one million plant and animal species are being threatened with extinction, including many pollinators.”

The researchers found that developing nations in South America, Africa and Asia had invested in vast monocultures grown for the global market: soy, for instance, exported to Europe as cattle feed, had risen by about 30% per decade globally, at great cost to natural and semi-natural tropical and subtropical forests and meadows that might otherwise have provided the blooms that pollinators could turn to once the cash crop seeds and nuts had set.

“Studying how this mismatch will affect the reproduction and survival of plants and insects could give us clues to how global warming is affecting the overall ecosystem”

“The bottom line is that if you’re increasing pollinator crops, you also need to diversify crops and implement pollinator-friendly management,” said Professor Inouye.

In a world of potentially catastrophic climate change, global food security is already a worry. Researchers have repeatedly warned that extremes of heat could slash yields and even precipitate global famine.

They have warned that rapid ecosystem change could affect global food supplies and that rapid warming will accelerate the spread of crop pests and diseases.

And even the shifts in the growing season – and in particular the earlier flowering each spring – may soon no longer be matched by the appearance of vital pollinators.

Bees avoid cold

Researchers in Japan report in the Proceedings of the Royal Society that they monitored the emergence of the flower Corydalis ambigua and its pollinator bumblebee in the forests of northern Japan for 19 years.

The earlier the snowmelt, the earlier the flowering. And the earlier the snowmelt, the more likely it was that the flowers would emerge before the bumblebees, which hibernate underground until the soil temperatures reach 6°C, could begin looking for food and, in the course of doing so, pollinate the flower and set seed for the next generation.

“Our study suggests the early arrival of spring increases the risk of disruption to the mutualism between plants and pollinators,” said Gaku Kudo, who led the research.

“Studying how this phenological mismatch will affect the reproduction and survival of plants and insects could give us clues to the larger question of how global warming is affecting the overall ecosystem.” − Climate News Network

Big business agriculture could be bad for pollinators, which need crop diversity. And that could mean very bad news for an ever-hungrier world.

LONDON, 26 July, 2019 − Tomorrow’s world could be a hungrier world. That is because as large-scale agribusiness gets busier crop diversity diminishes, and the pool of potential pollinators will become increasingly at risk.

Those crops that rely on pollination by the animal world can only deliver the reward of nourishment to bees and other insects for a very short time. As developing nations switch increasingly to massive plantations of soy, canola and palm oil, the creatures farmers rely on to set seed and begin the process of setting fruit will have a problem finding a food supply for the rest of the year.

The message of the latest research is simple: a sustainable world must be a diverse one. And that means a diversity of crops and crop varieties as well as a diversity of forest, grasslands and wildflowers to keep the honeybees buzzing.

Scientists from Argentina, Chile, the US, the Netherlands, Germany, South Africa and Korea report in the journal Global Change Biology that without an increase in crop diversity, agricultural productivity worldwide could be put at risk by its increasing dependence on pollinators – and insects of all kinds could be on the decline, even as crop-devouring predator insects could be on the increase.

The researchers looked at data from the UN’s Food and Agricultural Organization on the cultivation of field crops between 1961 and 2016. They found that more and more land is being colonised for agriculture, and the area cultivated for crops that rely on pollinators has increased by 137%. But crop diversity has increased only by 20%. And 16 of the 20 fastest-growing crops require pollination by insects or other animals.

Efficiency above all

The researchers paint a picture of a world in which vast tracts of landscape have been converted for maximum efficiency into plantations producing just one crop, while bees and other pollinators − already at hazard from climate change, pesticides and invasive infection – face a fall in the variety of their own potential food supply.

“This work should sound an alarm for policymakers who need to think about how they are going to protect and foster pollinator populations that can support the growing need for the services they provide to crops that require pollination,” said David Inouye of the University of Maryland in the US, one of the authors.

And a co-author, Robert Paxton of the Martin Luther University at Halle-Wittenberg in Germany, said: “Just a few months ago, the World Biodiversity Council (IPBES) revealed that up to one million plant and animal species are being threatened with extinction, including many pollinators.”

The researchers found that developing nations in South America, Africa and Asia had invested in vast monocultures grown for the global market: soy, for instance, exported to Europe as cattle feed, had risen by about 30% per decade globally, at great cost to natural and semi-natural tropical and subtropical forests and meadows that might otherwise have provided the blooms that pollinators could turn to once the cash crop seeds and nuts had set.

“Studying how this mismatch will affect the reproduction and survival of plants and insects could give us clues to how global warming is affecting the overall ecosystem”

“The bottom line is that if you’re increasing pollinator crops, you also need to diversify crops and implement pollinator-friendly management,” said Professor Inouye.

In a world of potentially catastrophic climate change, global food security is already a worry. Researchers have repeatedly warned that extremes of heat could slash yields and even precipitate global famine.

They have warned that rapid ecosystem change could affect global food supplies and that rapid warming will accelerate the spread of crop pests and diseases.

And even the shifts in the growing season – and in particular the earlier flowering each spring – may soon no longer be matched by the appearance of vital pollinators.

Bees avoid cold

Researchers in Japan report in the Proceedings of the Royal Society that they monitored the emergence of the flower Corydalis ambigua and its pollinator bumblebee in the forests of northern Japan for 19 years.

The earlier the snowmelt, the earlier the flowering. And the earlier the snowmelt, the more likely it was that the flowers would emerge before the bumblebees, which hibernate underground until the soil temperatures reach 6°C, could begin looking for food and, in the course of doing so, pollinate the flower and set seed for the next generation.

“Our study suggests the early arrival of spring increases the risk of disruption to the mutualism between plants and pollinators,” said Gaku Kudo, who led the research.

“Studying how this phenological mismatch will affect the reproduction and survival of plants and insects could give us clues to the larger question of how global warming is affecting the overall ecosystem.” − Climate News Network

Climate crisis needs radical food changes

From farm to fork, agriculture fuels global heating. Can the world eat well, but stay a little cooler? That will need radical food changes.

LONDON, 3 July, 2019 – To feed 9 billion people by 2050, and keep planet Earth from overheating, will mean massive and radical food changes – and not just in the way food is grown.

To contain global temperatures to no more than 2°C above the average for most of human history will require humanity to change its diet, contain its appetite and reform the entire system of food production and distribution.

This is the verdict of the latest study of the challenge set in Paris in 2015, when 195 nations promised to limit global warming – driven by profligate use of fossil fuels and by the conversion of forest, grassland and wetlands into commercial use – to “well below” 2°C by 2100.

Researchers report in the journal Sustainability that they looked at 160 studies and analyses of global agriculture and food systems and most closely at the world’s smallholders and markets that sustain as many as 2.5 billion people, mostly in the developing world.

Farming’s massive impact

Small farmers account for about a third of global agriculture’s greenhouse gas emissions, but these include also many of the people most vulnerable to the coming climate crisis, which is likely to put harvests at hazard on a global scale.

Agriculture, together with forestry and changes in land use, accounts for a quarter of all the carbon dioxide, methane and oxides of nitrogen that fuel global warming.

Just on its own, the action of growing grain, fruit and vegetables or feeding grazing animals accounts for no more than 12% of global warming, but a third of all the food that leaves the farm gate is wasted before it arrives on the supper table.

This is enough to provide 8% of the world’s emissions, and if just one fourth of the waste could be saved, that would be enough to feed 870 million people for a year.

By making smart investments in climate action, we can save lives now through improved air quality and health”

Agronomists, crop researchers, climate scientists and ministry planners know of many steps that can be taken to reduce the greenhouse impact of agriculture: even under the most hopeful forecasts, these are likely to be deployed slowly.

The researchers see reductions in food loss as a “big opportunity” that will benefit farmers and consumers as well as reduce emissions. A more challenging problem is to change global appetites: the meat and dairy business accounts for about 18% of all human-triggered emissions, counting the clearance of forests and the impact of changes in the way land is used to feed the demand for meat, milk, butter and cheese.

A shift to plant-based diets would save on land and water and deliver more and healthier meals and permit more forest restoration.

“If you think about the two degree increase, efforts need to go beyond the agriculture sector,” said Anna Maria Loboguerrero, of the climate change, agriculture and food security programme of CGIAR, once known as the Consultative Group for International Agricultural Research, who led the study.

Drastic cuts needed

“This means reducing emissions by stopping deforestation, decreasing food loss and waste, reducing supply chain emissions and rethinking human diets, if we really want to get on track to that target.”

The researchers acknowledge that what they propose will constrain farm choices and increase costs. But a second study reports once again that the health benefits of immediate, dramatic cuts in carbon dioxide emissions will save lives, improve human health, and offset the immediate costs of containing planetary heating and adapting to the climate crisis.

“The global health benefits from climate policy could reach trillions of dollars annually, but will importantly depend on the air quality policies that nations adopt independently of climate change,” they write in the journal Nature Communications.

And Mark Budolfson of the University of Vermont, one of the authors, said: “We show the climate conversation doesn’t need to be about the current generation investing in the further future. By making smart investments in climate action, we can save lives now through improved air quality and health.” – Climate News Network

From farm to fork, agriculture fuels global heating. Can the world eat well, but stay a little cooler? That will need radical food changes.

LONDON, 3 July, 2019 – To feed 9 billion people by 2050, and keep planet Earth from overheating, will mean massive and radical food changes – and not just in the way food is grown.

To contain global temperatures to no more than 2°C above the average for most of human history will require humanity to change its diet, contain its appetite and reform the entire system of food production and distribution.

This is the verdict of the latest study of the challenge set in Paris in 2015, when 195 nations promised to limit global warming – driven by profligate use of fossil fuels and by the conversion of forest, grassland and wetlands into commercial use – to “well below” 2°C by 2100.

Researchers report in the journal Sustainability that they looked at 160 studies and analyses of global agriculture and food systems and most closely at the world’s smallholders and markets that sustain as many as 2.5 billion people, mostly in the developing world.

Farming’s massive impact

Small farmers account for about a third of global agriculture’s greenhouse gas emissions, but these include also many of the people most vulnerable to the coming climate crisis, which is likely to put harvests at hazard on a global scale.

Agriculture, together with forestry and changes in land use, accounts for a quarter of all the carbon dioxide, methane and oxides of nitrogen that fuel global warming.

Just on its own, the action of growing grain, fruit and vegetables or feeding grazing animals accounts for no more than 12% of global warming, but a third of all the food that leaves the farm gate is wasted before it arrives on the supper table.

This is enough to provide 8% of the world’s emissions, and if just one fourth of the waste could be saved, that would be enough to feed 870 million people for a year.

By making smart investments in climate action, we can save lives now through improved air quality and health”

Agronomists, crop researchers, climate scientists and ministry planners know of many steps that can be taken to reduce the greenhouse impact of agriculture: even under the most hopeful forecasts, these are likely to be deployed slowly.

The researchers see reductions in food loss as a “big opportunity” that will benefit farmers and consumers as well as reduce emissions. A more challenging problem is to change global appetites: the meat and dairy business accounts for about 18% of all human-triggered emissions, counting the clearance of forests and the impact of changes in the way land is used to feed the demand for meat, milk, butter and cheese.

A shift to plant-based diets would save on land and water and deliver more and healthier meals and permit more forest restoration.

“If you think about the two degree increase, efforts need to go beyond the agriculture sector,” said Anna Maria Loboguerrero, of the climate change, agriculture and food security programme of CGIAR, once known as the Consultative Group for International Agricultural Research, who led the study.

Drastic cuts needed

“This means reducing emissions by stopping deforestation, decreasing food loss and waste, reducing supply chain emissions and rethinking human diets, if we really want to get on track to that target.”

The researchers acknowledge that what they propose will constrain farm choices and increase costs. But a second study reports once again that the health benefits of immediate, dramatic cuts in carbon dioxide emissions will save lives, improve human health, and offset the immediate costs of containing planetary heating and adapting to the climate crisis.

“The global health benefits from climate policy could reach trillions of dollars annually, but will importantly depend on the air quality policies that nations adopt independently of climate change,” they write in the journal Nature Communications.

And Mark Budolfson of the University of Vermont, one of the authors, said: “We show the climate conversation doesn’t need to be about the current generation investing in the further future. By making smart investments in climate action, we can save lives now through improved air quality and health.” – Climate News Network

Climate crisis raises risk of conflict

A warmer world will be more dangerous. As the thermometer rises, so does the risk of conflict and bloodshed in more vulnerable regions.

LONDON, 14 June, 2019 − If the world warms by 4°C this century, the climate factor becomes more dangerous – five times more dangerous, according to new research, which predicts a 26% increase in the risk of conflict, just because of climate change.

Even if the world sticks to a promise made in Paris in 2015, when 195 nations vowed to contain global warming to “well below” 2°C above pre-industrial levels by the end of the century, the impact of climate on the risk of armed conflict will double. The risk will rise to 13%.

US researchers report in the journal Nature that they quizzed a pool of 11 experts on climate and conflict from a range of disciplines. There is no consensus on the mechanism that links a shift in average temperatures and ethnic bitterness, migration, violence and outright civil war within any single nation. But there is a simple conclusion: whatever the process, climate change raises the risk of conflict.

And the study comes just as the latest publication of the  Global Peace Index warns that 971 million people now live in areas with what is termed high or “very high climate change exposure”, and 400 million of these people already live in countries with “low levels of peacefulness.”

Making conflict likelier

The Global Peace Index issues the same warning: that climate change can indirectly increase the likelihood of violent conflict by affecting the resources available to citizens, to jobs and careers, and by undermining security and forcing migration.

And, the same study says, this comes at a colossal economic cost. In 2018, the impact of violence on the global economy totalled $14.1 trillion in purchasing power. This is more than 11% of the world’s economic activity and adds up to $1,853 per person.

Both studies reinforce earlier research. Social scientists, geographers and statisticians have repeatedly found links between climate change and conflict, between climate change and migration, and have warned of more to come, specifically in South Asia, and worldwide.

“Over this century, unprecedented climate change is going to have significant impacts … but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn”

There is a debate about the role of drought in the bloodshed in Syria, but there is less argument about the proposition that climate change unsettles what may already be nations or communities vulnerable to conflict.

There have also been bleak warnings from prehistory: archaeologists think that climate change may have been behind the collapse of the Bronze Age Mediterranean culture and the fall of an ancient Assyrian society.

The point of the latest study was simply to find some consensus on the risks of conflict in a world in climate crisis. The theorists think that climate stresses over the last century have already influenced in some way between 3% and 20% of armed conflict risk.

They think the risks could increase dramatically, as normally productive agricultural regions face catastrophic crop failure, as extremes of temperature make crowded cities more dangerous, as people are driven off their land by sustained drought, and as climate impacts impoverish the already vulnerable, to increase global levels of injustice and inequality.

Planning protection

Armed with a sense of the scale of the future hazard, governments and international agencies could equip themselves with strategies that might help to increase global food security and provide other economic opportunities. Peacekeeping forces and aid agencies need to understand, too, that climate factors are, increasingly, part of the risk.

“Historically, levels of armed conflict over time have been heavily influenced by shocks to, and changes in, international relations among states and in their domestic political systems,” said James Fearon, a political scientist at Stanford University and one of the authors.

“It is quite likely that, over this century, unprecedented climate change is going to have significant impacts on both, but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn. So I think putting non-trivial weight on significant climate effects on conflict is reasonable.” − Climate News Network

A warmer world will be more dangerous. As the thermometer rises, so does the risk of conflict and bloodshed in more vulnerable regions.

LONDON, 14 June, 2019 − If the world warms by 4°C this century, the climate factor becomes more dangerous – five times more dangerous, according to new research, which predicts a 26% increase in the risk of conflict, just because of climate change.

Even if the world sticks to a promise made in Paris in 2015, when 195 nations vowed to contain global warming to “well below” 2°C above pre-industrial levels by the end of the century, the impact of climate on the risk of armed conflict will double. The risk will rise to 13%.

US researchers report in the journal Nature that they quizzed a pool of 11 experts on climate and conflict from a range of disciplines. There is no consensus on the mechanism that links a shift in average temperatures and ethnic bitterness, migration, violence and outright civil war within any single nation. But there is a simple conclusion: whatever the process, climate change raises the risk of conflict.

And the study comes just as the latest publication of the  Global Peace Index warns that 971 million people now live in areas with what is termed high or “very high climate change exposure”, and 400 million of these people already live in countries with “low levels of peacefulness.”

Making conflict likelier

The Global Peace Index issues the same warning: that climate change can indirectly increase the likelihood of violent conflict by affecting the resources available to citizens, to jobs and careers, and by undermining security and forcing migration.

And, the same study says, this comes at a colossal economic cost. In 2018, the impact of violence on the global economy totalled $14.1 trillion in purchasing power. This is more than 11% of the world’s economic activity and adds up to $1,853 per person.

Both studies reinforce earlier research. Social scientists, geographers and statisticians have repeatedly found links between climate change and conflict, between climate change and migration, and have warned of more to come, specifically in South Asia, and worldwide.

“Over this century, unprecedented climate change is going to have significant impacts … but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn”

There is a debate about the role of drought in the bloodshed in Syria, but there is less argument about the proposition that climate change unsettles what may already be nations or communities vulnerable to conflict.

There have also been bleak warnings from prehistory: archaeologists think that climate change may have been behind the collapse of the Bronze Age Mediterranean culture and the fall of an ancient Assyrian society.

The point of the latest study was simply to find some consensus on the risks of conflict in a world in climate crisis. The theorists think that climate stresses over the last century have already influenced in some way between 3% and 20% of armed conflict risk.

They think the risks could increase dramatically, as normally productive agricultural regions face catastrophic crop failure, as extremes of temperature make crowded cities more dangerous, as people are driven off their land by sustained drought, and as climate impacts impoverish the already vulnerable, to increase global levels of injustice and inequality.

Planning protection

Armed with a sense of the scale of the future hazard, governments and international agencies could equip themselves with strategies that might help to increase global food security and provide other economic opportunities. Peacekeeping forces and aid agencies need to understand, too, that climate factors are, increasingly, part of the risk.

“Historically, levels of armed conflict over time have been heavily influenced by shocks to, and changes in, international relations among states and in their domestic political systems,” said James Fearon, a political scientist at Stanford University and one of the authors.

“It is quite likely that, over this century, unprecedented climate change is going to have significant impacts on both, but it is extremely hard to anticipate whether the political changes related to climate change will have big effects on armed conflict in turn. So I think putting non-trivial weight on significant climate effects on conflict is reasonable.” − Climate News Network

Rising US heat spurs urban rats’ numbers

It may not be the sole cause of US urban rats’ rising numbers, but climate change’s growing heat is probably implicated.

LONDON, 12 June, 2019 − In the heat of a US summer, urban rats’ thoughts focus on one goal: it’s reproduction time, as the media make clear.

They go for the type of headlines which send shivers down the spine. “Rats love climate change”, says one. “Climate change is scary; rat explosion is scarier”, says another.

Reports from several cities in the US indicate that city rat populations are increasing, and many point to climate change as a primary cause of what is a growing rodent problem.

The actual reasons for what some of the more florid commentators refer to as a “ratpocalypse” are difficult to gauge. Little research has been carried out.

Take, for example, New York City. Estimates of the size of the city’s rat population – the human population is 8.6 million – range anywhere between 2 and 32 million.

“The brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter”

While the figures might be vague, there’s general agreement that the city’s rat numbers are growing substantially. Calls to vermin controllers have increased. City officials say the incidence of rat sightings has gone up by nearly 40% over the last five years.

Rats can be vectors, or carriers, of disease and can transmit ticks and fleas. They can also do considerable damage to vital infrastructure, gnawing through wires and damaging pavements and drainage systems by their burrowing.

In cold weather rats tend to be inactive and stay in their burrows. With milder winters and rising average temperatures, rats’ breeding season is extended.

Rats reproduce at a prolific rate; the brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter.

“Everywhere I go, rat populations are up”, a research scientist told the New York Times newspaper.

More city residents

Other US cities report similar rat infestations; Chicago is said to have a particularly serious rodent problem.

While increased temperatures are believed to be one cause of the growth in rat populations, other factors are involved. In the US and around the world, more and more people are choosing to live in cities.

By 2050, it’s estimated that 70% of the world’s population will be urban-based. More people in tightly-packed areas means more food being accumulated and more rubbish. Inefficient waste collection facilities in many urban areas inevitably lead to a growth in rodent numbers.

Surprisingly, there seems to have been little research into urban rats, their behaviour and the size of populations in various cities.

One problem encountered by researchers is that many urban dwellers, particularly landlords, are reluctant to admit to rat infestation problems – or to highlight the issue by allowing scientists to carry out surveys on their premises. − Climate News Network

It may not be the sole cause of US urban rats’ rising numbers, but climate change’s growing heat is probably implicated.

LONDON, 12 June, 2019 − In the heat of a US summer, urban rats’ thoughts focus on one goal: it’s reproduction time, as the media make clear.

They go for the type of headlines which send shivers down the spine. “Rats love climate change”, says one. “Climate change is scary; rat explosion is scarier”, says another.

Reports from several cities in the US indicate that city rat populations are increasing, and many point to climate change as a primary cause of what is a growing rodent problem.

The actual reasons for what some of the more florid commentators refer to as a “ratpocalypse” are difficult to gauge. Little research has been carried out.

Take, for example, New York City. Estimates of the size of the city’s rat population – the human population is 8.6 million – range anywhere between 2 and 32 million.

“The brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter”

While the figures might be vague, there’s general agreement that the city’s rat numbers are growing substantially. Calls to vermin controllers have increased. City officials say the incidence of rat sightings has gone up by nearly 40% over the last five years.

Rats can be vectors, or carriers, of disease and can transmit ticks and fleas. They can also do considerable damage to vital infrastructure, gnawing through wires and damaging pavements and drainage systems by their burrowing.

In cold weather rats tend to be inactive and stay in their burrows. With milder winters and rising average temperatures, rats’ breeding season is extended.

Rats reproduce at a prolific rate; the brown rat, or Rattus norvegicus, common on the US east coast, can produce six litters a year with an average of 12 pups per litter.

“Everywhere I go, rat populations are up”, a research scientist told the New York Times newspaper.

More city residents

Other US cities report similar rat infestations; Chicago is said to have a particularly serious rodent problem.

While increased temperatures are believed to be one cause of the growth in rat populations, other factors are involved. In the US and around the world, more and more people are choosing to live in cities.

By 2050, it’s estimated that 70% of the world’s population will be urban-based. More people in tightly-packed areas means more food being accumulated and more rubbish. Inefficient waste collection facilities in many urban areas inevitably lead to a growth in rodent numbers.

Surprisingly, there seems to have been little research into urban rats, their behaviour and the size of populations in various cities.

One problem encountered by researchers is that many urban dwellers, particularly landlords, are reluctant to admit to rat infestation problems – or to highlight the issue by allowing scientists to carry out surveys on their premises. − Climate News Network

Thirty years to climate meltdown – or not?

For years most of us largely ignored the idea of climate meltdown. Now we’re talking about it. So what should we be doing?

LONDON, 10 June, 2019 − How much of a threat is climate meltdown? Should we treat it as the biggest danger to life in the 21st century, or as one of many problems − serious, but manageable?

A new study says human civilisation itself could pass the point of no return by 2050. The Australian climate think-tank Breakthrough: National Centre for Climate Restoration says that unless humanity takes drastic and immediate action to save the climate, a combination of unstable food production, water shortages and extreme weather could lead to the breakdown of global society.

One renowned US climate scientist, Michael Mann of Pennsylvania State University, says that Breakthrough is exaggerating and its report could be counter-productive.

In the UK, though, Mark Maslin of University College London says the report underlines the deep concerns expressed by some security experts.

Act together

Chris Barrie, a retired Royal Australian Navy admiral and former Chief of the Australian Defence Force, is now an honorary professor at the Australian National University, Canberra.

In a foreword to the Breakthrough study he writes: “We must act collectively. We need strong, determined leadership in government, in business and in our communities to ensure a sustainable future for humankind.”

David Spratt, Breakthrough’s research director and a co-author of the study, says that “much knowledge produced for policymakers is too conservative,” but that the new paper, by showing the extreme end of what could happen in just the next three decades, aims to make the stakes clear. “The report speaks, in our opinion, a harsh but necessary truth,” he says.

“To reduce this risk and protect human civilisation, a massive global mobilisation of resources is needed in the coming decade to build a zero-emissions industrial system and set in train the restoration of a safe climate,” the report reads. “This would be akin in scale to the World War II emergency mobilisation.”

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly”

Breakthrough acknowledges that the worst possibility it foresees − the total collapse of civilisation by mid-century − is an example of a worst-case scenario, but it insists that “the world is currently completely unprepared to envisage, and even less deal with, the consequences of catastrophic climate change.”

The picture of the possible near future it presents is stark. By 2050, it says, the world could have reached:

  • a 3°C temperature rise, with a further 1°C in store
  • sea levels 0.5 metres above today’s, with a possible eventual rise of 25m
  • 55% of the world’s people subject to more than 20 days a year of heat “beyond the threshold of human survivability”
  • one billion people forced to leave the tropics
  • a 20% decline in crop yields, leaving too little food to feed the world
  • armed conflict likely and nuclear war possible.

The report’s authors conclude: “The scale of destruction is beyond our capacity to model, with a high likelihood of human civilisation coming to an end.”

Warnings examined

Warnings of the possible end of human civilisation are not new. They range from those which offer highly-qualified hope for humanity’s future to others which find very little to celebrate, even tentatively.

The Breakthrough study fits unequivocally into the second group. To weigh the credibility of some of its statements, the journal New Scientist looks at the sources they cite and the wider context of the claims they make.

Its scrutiny ends with the views of two eminent climate scientists. Michael Mann, professor of atmospheric science at Penn State, says: “I respect the authors and appreciate that their intentions are good, but … overblown rhetoric, exaggeration, and unsupportable doomist framing can be counteractive to climate action.”

For his part, Mark Maslin, professor of geography at UCL, tells New Scientist that the Breakthrough report adds to the deep concerns expressed by security experts such as the Pentagon over climate change.

Hope nurtured

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly,” he says.

The 2020 round of UN climate negotiations is due to take place in November next year, with hopes building that many countries will agree then to make much more radical cuts in greenhouse gas emissions than they have pledged so far.

Altogether 195 countries promised in 2015, in the Paris Agreement, to make the cuts needed to prevent global average temperatures rising more than 2°C, and if possible to stay below a maximum rise of 1.5°C, the levels climate scientists say are the highest that can assure the planet’s safety. But the cuts that many countries have promised so far will not achieve either goal.

Scientists say it is still possible for the world to achieve the 1.5°C limit. But doing so requires immediate emissions cuts, on a scale and at a pace that are not yet in sight − “a very big ‘if’”, as one of them put it. − Climate News Network

For years most of us largely ignored the idea of climate meltdown. Now we’re talking about it. So what should we be doing?

LONDON, 10 June, 2019 − How much of a threat is climate meltdown? Should we treat it as the biggest danger to life in the 21st century, or as one of many problems − serious, but manageable?

A new study says human civilisation itself could pass the point of no return by 2050. The Australian climate think-tank Breakthrough: National Centre for Climate Restoration says that unless humanity takes drastic and immediate action to save the climate, a combination of unstable food production, water shortages and extreme weather could lead to the breakdown of global society.

One renowned US climate scientist, Michael Mann of Pennsylvania State University, says that Breakthrough is exaggerating and its report could be counter-productive.

In the UK, though, Mark Maslin of University College London says the report underlines the deep concerns expressed by some security experts.

Act together

Chris Barrie, a retired Royal Australian Navy admiral and former Chief of the Australian Defence Force, is now an honorary professor at the Australian National University, Canberra.

In a foreword to the Breakthrough study he writes: “We must act collectively. We need strong, determined leadership in government, in business and in our communities to ensure a sustainable future for humankind.”

David Spratt, Breakthrough’s research director and a co-author of the study, says that “much knowledge produced for policymakers is too conservative,” but that the new paper, by showing the extreme end of what could happen in just the next three decades, aims to make the stakes clear. “The report speaks, in our opinion, a harsh but necessary truth,” he says.

“To reduce this risk and protect human civilisation, a massive global mobilisation of resources is needed in the coming decade to build a zero-emissions industrial system and set in train the restoration of a safe climate,” the report reads. “This would be akin in scale to the World War II emergency mobilisation.”

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly”

Breakthrough acknowledges that the worst possibility it foresees − the total collapse of civilisation by mid-century − is an example of a worst-case scenario, but it insists that “the world is currently completely unprepared to envisage, and even less deal with, the consequences of catastrophic climate change.”

The picture of the possible near future it presents is stark. By 2050, it says, the world could have reached:

  • a 3°C temperature rise, with a further 1°C in store
  • sea levels 0.5 metres above today’s, with a possible eventual rise of 25m
  • 55% of the world’s people subject to more than 20 days a year of heat “beyond the threshold of human survivability”
  • one billion people forced to leave the tropics
  • a 20% decline in crop yields, leaving too little food to feed the world
  • armed conflict likely and nuclear war possible.

The report’s authors conclude: “The scale of destruction is beyond our capacity to model, with a high likelihood of human civilisation coming to an end.”

Warnings examined

Warnings of the possible end of human civilisation are not new. They range from those which offer highly-qualified hope for humanity’s future to others which find very little to celebrate, even tentatively.

The Breakthrough study fits unequivocally into the second group. To weigh the credibility of some of its statements, the journal New Scientist looks at the sources they cite and the wider context of the claims they make.

Its scrutiny ends with the views of two eminent climate scientists. Michael Mann, professor of atmospheric science at Penn State, says: “I respect the authors and appreciate that their intentions are good, but … overblown rhetoric, exaggeration, and unsupportable doomist framing can be counteractive to climate action.”

For his part, Mark Maslin, professor of geography at UCL, tells New Scientist that the Breakthrough report adds to the deep concerns expressed by security experts such as the Pentagon over climate change.

Hope nurtured

“Maybe, just maybe, it is time for our politicians to be worried and start to act to avoid the scenarios painted so vividly,” he says.

The 2020 round of UN climate negotiations is due to take place in November next year, with hopes building that many countries will agree then to make much more radical cuts in greenhouse gas emissions than they have pledged so far.

Altogether 195 countries promised in 2015, in the Paris Agreement, to make the cuts needed to prevent global average temperatures rising more than 2°C, and if possible to stay below a maximum rise of 1.5°C, the levels climate scientists say are the highest that can assure the planet’s safety. But the cuts that many countries have promised so far will not achieve either goal.

Scientists say it is still possible for the world to achieve the 1.5°C limit. But doing so requires immediate emissions cuts, on a scale and at a pace that are not yet in sight − “a very big ‘if’”, as one of them put it. − Climate News Network

Carbon farming can slash CO2 emissions

US entrepreneurs say a new technique − carbon farming, improving the health of the soil − can achieve big cuts in atmospheric carbon.
WASHINGTON DC, 17 May, 2019 − Soil health improvement, a technique known as carbon farming, could cut the amount of carbon dioxide in the Earth’s atmosphere by more than one-sixth, a US business group says.
It says a concerted effort by the world’s farmers to restore and protect soil health could reduce atmospheric carbon dioxide by as much as 65 parts per million (ppm) from its current level of more than 415 ppm.
It made the announcement at a webinar on carbon farming which it hosted here in April. A full report of the webinar appears on the website of the The Energy Mix.
The group, the US-based Environmental Entrepreneurs (E2), describes itself as “a national, nonpartisan group of business leaders, investors, and professionals from every sector of the economy who advocate … smart policies that are good for the economy and good for the environment”
World leaders … said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”
The total saving of 65 ppm represents the estimated amount of carbon that human activity has removed from the soil since the dawn of industrial agriculture.
But, E2 says, even if its eventual contribution to climate stabilisation falls well short of this figure, drawing attention to soil carbon sequestration could still concentrate minds on a climate solution often neglected in comparison with more complex and often riskier options for emission cuts.
E2 says a critical step in advancing climate-friendly soil health in the US is the ground-breaking Soil Health Demonstration Trial, a carbon farming pilot project that a coalition of farmers, agricultural technology entrepreneurs and environmentalists managed to persuade a deeply divided US Congress to accept in the December 2018 farm bill, the Agricultural Improvement Act of 2018.
The idea for the carbon farming pilot emerged in the wake of the UN’s 2016 annual climate conference, known as COP23, held in the German city of Bonn. World leaders there said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”.
Microbial key
Carbon farming depends on the activity of microbes in the soil, says E2. Through photosynthesis, plants remove vast amounts of CO2 from the atmosphere and convert it into sugars. They use as much as 30% of these sugars to “recruit and nurture” huge, diverse populations of microbes around their root systems.
The microbes help the plants take up nutrients, retain water and tolerate stress, functioning as a key part of the process by which plants produce the roots and leaves that end up as carbon in the soil. When they die, they deposit huge amounts of carbon in the soil.
Scientists have developed a new microbial soil additive that substantially increased soil carbon sequestration in trial applications to California grapes and citrus fruit in Florida.
In the citrus trial, after scientists treated one acre of land three to four times over the course of a year, soil carbon increased by 32%, to 4.3 tons. Soil greenhouse gas emissions decreased by 2.33 tons, reckoned to be the rough equivalent of the CO2 produced by driving a car with an internal combustion engine for a whole year.
Depositing four tons of carbon per acre in just 10% of California’s agricultural land, it is estimated, would be the equivalent of taking 4.3 million cars off the road. − Climate News Network

 

* * * * *

The Climate News Network wishes to thank The Energy Mix, a thrice-weekly e-digest on climate, energy and post-carbon solutions, for permission to publish this slightly adapted version of its original report on carbon farming.

US entrepreneurs say a new technique − carbon farming, improving the health of the soil − can achieve big cuts in atmospheric carbon.
WASHINGTON DC, 17 May, 2019 − Soil health improvement, a technique known as carbon farming, could cut the amount of carbon dioxide in the Earth’s atmosphere by more than one-sixth, a US business group says.
It says a concerted effort by the world’s farmers to restore and protect soil health could reduce atmospheric carbon dioxide by as much as 65 parts per million (ppm) from its current level of more than 415 ppm.
It made the announcement at a webinar on carbon farming which it hosted here in April. A full report of the webinar appears on the website of the The Energy Mix.
The group, the US-based Environmental Entrepreneurs (E2), describes itself as “a national, nonpartisan group of business leaders, investors, and professionals from every sector of the economy who advocate … smart policies that are good for the economy and good for the environment”
World leaders … said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”
The total saving of 65 ppm represents the estimated amount of carbon that human activity has removed from the soil since the dawn of industrial agriculture.
But, E2 says, even if its eventual contribution to climate stabilisation falls well short of this figure, drawing attention to soil carbon sequestration could still concentrate minds on a climate solution often neglected in comparison with more complex and often riskier options for emission cuts.
E2 says a critical step in advancing climate-friendly soil health in the US is the ground-breaking Soil Health Demonstration Trial, a carbon farming pilot project that a coalition of farmers, agricultural technology entrepreneurs and environmentalists managed to persuade a deeply divided US Congress to accept in the December 2018 farm bill, the Agricultural Improvement Act of 2018.
The idea for the carbon farming pilot emerged in the wake of the UN’s 2016 annual climate conference, known as COP23, held in the German city of Bonn. World leaders there said that regenerative agriculture to naturally conserve and protect topsoil and support its fertility and resilience were “a huge carbon capture opportunity”.
Microbial key
Carbon farming depends on the activity of microbes in the soil, says E2. Through photosynthesis, plants remove vast amounts of CO2 from the atmosphere and convert it into sugars. They use as much as 30% of these sugars to “recruit and nurture” huge, diverse populations of microbes around their root systems.
The microbes help the plants take up nutrients, retain water and tolerate stress, functioning as a key part of the process by which plants produce the roots and leaves that end up as carbon in the soil. When they die, they deposit huge amounts of carbon in the soil.
Scientists have developed a new microbial soil additive that substantially increased soil carbon sequestration in trial applications to California grapes and citrus fruit in Florida.
In the citrus trial, after scientists treated one acre of land three to four times over the course of a year, soil carbon increased by 32%, to 4.3 tons. Soil greenhouse gas emissions decreased by 2.33 tons, reckoned to be the rough equivalent of the CO2 produced by driving a car with an internal combustion engine for a whole year.
Depositing four tons of carbon per acre in just 10% of California’s agricultural land, it is estimated, would be the equivalent of taking 4.3 million cars off the road. − Climate News Network

 

* * * * *

The Climate News Network wishes to thank The Energy Mix, a thrice-weekly e-digest on climate, energy and post-carbon solutions, for permission to publish this slightly adapted version of its original report on carbon farming.

Crops at risk from changing climate

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

New orchards offer life to wild species

While many of the UK’s traditional orchards are vanishing, new orchards are being planted to help wildlife and to slow global warming.

LONDON, 8 May, 2019 − New orchards are appearing across the UK to stop the widespread decline of rare insects and birds, and to slow down climate change.

The National Trust, Britain’s largest conservation organisation, which owns hundreds of miles of coastline as well as country houses and farms, already looks after 200 orchards, but is to create another 68 across England by 2025 to try to halt a national decline.

There are still 25,350 hectares (62,650 acres) of orchards in the country − but that is 63% less than in 1950. Many are commercial monocultures. As a result, many rare types of apple are in danger of being lost and plum, pear and damson production is in decline.

Apart from saving endangered species of fruit from old orchards, the Trust is keen to preserve the bees that thrive on the springtime blossom and many other rare species of insect that live only on fruit trees. Unlike commercial growers, the Trust will be managing its new orchards without pesticides, and specifically for wildlife.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth”

It will provide new habitats for insects like the noble chafer, a rare and beautiful relative of the scarab beetle, coloured a metallic bronze-green, as well as many other species that live mainly in old orchards.

Traditional orchards are far better for wildlife than commercial ones because they often contain very old trees, and have more space between them. Wildflower meadows are often grown underneath the trees to encourage insects to pollinate blossom when the trees burst into bloom.

The new orchards will also store carbon in the trunks of the growing trees and in the grassland below.

National Trust rangers and their volunteer teams will keep a close eye on the trees and encourage tits and other insect-eating birds to nest in the trees to eat caterpillars and help keep other pests down.

Ideal home

Dr David Bullock, head of species and habitat conservation at the Trust, said: “We launched a new wildlife and nature strategy in 2015. We identified traditional orchards as being of particular importance because they provide the perfect home for a variety of birds, pollinators and insects, as well as being great for people.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth. The amazing number of apple and other traditional fruit varieties that we can plant reflects the wonderful diversity of life.”

Traditional orchards were listed as one of the 65 priority habitats in the UK’s Natural Environment and Rural Communities Act 2006, but they have continued to decline.

Dr Bullock says that as well as providing homes for wildlife traditional orchards are also important for conserving heritage fruit varieties such as two cider apples, called Jackets and Petticoats, and Ashmead’s Kernel.

Hopeful sign

“They are also vital for people. They provide us with delicious local and seasonal food and drink, they are places for people to enjoy and gather, have great cultural significance, and are places of beauty.”

One of the Trust’s properties, Cotehele, a medieval house in Cornwall in the far south-west of England, has seven orchards covering approximately 15 acres (six hectares), which are home to over 125 varieties of apple tree including the Cornish Honeypinnick, Limberlimb, Pig’s’ Nose and Lemon Pippin.

David Bouch, head gardener at Cotehele, says: “As we’re so far south, many flowers and trees come into bloom slightly earlier than elsewhere in the country because we experience milder winter temperatures.

“Apple blossom is such a delicate flower. It starts off with a tinge of pink when in bud, before bursting forth to reveal a fragile, snowy white flower which, for me, is hopefully a sign of the last of the frosts and the orchard bursting into life, from the bees to the wildflowers to the hope of a successful apple harvest.” − Climate News Network

While many of the UK’s traditional orchards are vanishing, new orchards are being planted to help wildlife and to slow global warming.

LONDON, 8 May, 2019 − New orchards are appearing across the UK to stop the widespread decline of rare insects and birds, and to slow down climate change.

The National Trust, Britain’s largest conservation organisation, which owns hundreds of miles of coastline as well as country houses and farms, already looks after 200 orchards, but is to create another 68 across England by 2025 to try to halt a national decline.

There are still 25,350 hectares (62,650 acres) of orchards in the country − but that is 63% less than in 1950. Many are commercial monocultures. As a result, many rare types of apple are in danger of being lost and plum, pear and damson production is in decline.

Apart from saving endangered species of fruit from old orchards, the Trust is keen to preserve the bees that thrive on the springtime blossom and many other rare species of insect that live only on fruit trees. Unlike commercial growers, the Trust will be managing its new orchards without pesticides, and specifically for wildlife.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth”

It will provide new habitats for insects like the noble chafer, a rare and beautiful relative of the scarab beetle, coloured a metallic bronze-green, as well as many other species that live mainly in old orchards.

Traditional orchards are far better for wildlife than commercial ones because they often contain very old trees, and have more space between them. Wildflower meadows are often grown underneath the trees to encourage insects to pollinate blossom when the trees burst into bloom.

The new orchards will also store carbon in the trunks of the growing trees and in the grassland below.

National Trust rangers and their volunteer teams will keep a close eye on the trees and encourage tits and other insect-eating birds to nest in the trees to eat caterpillars and help keep other pests down.

Ideal home

Dr David Bullock, head of species and habitat conservation at the Trust, said: “We launched a new wildlife and nature strategy in 2015. We identified traditional orchards as being of particular importance because they provide the perfect home for a variety of birds, pollinators and insects, as well as being great for people.

“Every tree is precious because it can become a home for birds such as the lesser spotted woodpecker, bats and mistletoe moth. The amazing number of apple and other traditional fruit varieties that we can plant reflects the wonderful diversity of life.”

Traditional orchards were listed as one of the 65 priority habitats in the UK’s Natural Environment and Rural Communities Act 2006, but they have continued to decline.

Dr Bullock says that as well as providing homes for wildlife traditional orchards are also important for conserving heritage fruit varieties such as two cider apples, called Jackets and Petticoats, and Ashmead’s Kernel.

Hopeful sign

“They are also vital for people. They provide us with delicious local and seasonal food and drink, they are places for people to enjoy and gather, have great cultural significance, and are places of beauty.”

One of the Trust’s properties, Cotehele, a medieval house in Cornwall in the far south-west of England, has seven orchards covering approximately 15 acres (six hectares), which are home to over 125 varieties of apple tree including the Cornish Honeypinnick, Limberlimb, Pig’s’ Nose and Lemon Pippin.

David Bouch, head gardener at Cotehele, says: “As we’re so far south, many flowers and trees come into bloom slightly earlier than elsewhere in the country because we experience milder winter temperatures.

“Apple blossom is such a delicate flower. It starts off with a tinge of pink when in bud, before bursting forth to reveal a fragile, snowy white flower which, for me, is hopefully a sign of the last of the frosts and the orchard bursting into life, from the bees to the wildflowers to the hope of a successful apple harvest.” − Climate News Network

Marine microbes may fuel ocean warming

Warmer air means warmer seas, and marine microbes in warmer seas could mean yet warmer air. The climate cycle could get increasingly vicious.

LONDON, 6 May, 2019 − US scientists say marine microbes are the cause of yet another potentially positive feedback that could accelerate global warming.

As the oceans warm, marine microbial life might start to pump yet more carbon dioxide into the air. This process would of course increase the greenhouse gas levels still further and warm the oceans to increasing temperatures.

The finding is a reminder that the atmosphere, oceans, ice caps, rocks, algae, bacteria and forests are all intricate parts of the planetary climate machinery, and researchers still have a long way to go before they understand all the working parts in detail. But it is also a reminder that every small rise in planetary average temperatures in some way feeds back into this complex system.

The new study, based on analysis of data gathered during a research cruise in 2013 from Peru to Tahiti, is published in the Proceedings of the National Academy of Sciences.

“Warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored”

The shipboard scientists looked in depth at processes in highly productive waters off the South American coasts, and at the more or less barren waters south of the equator that cycle in a set of currents known as the South Pacific Gyre.

They did so to estimate the fate of tiny green plants – plankton – as they flourished in the ocean surface, and then perished and sank to the depths.

In the great and far-from-complete reckoning of the planet’s carbon budget – from atmosphere to plants to animals and back to the air, or to the rocks – climate scientists think that the oceans absorb around one fourth of all the extra carbon dioxide that humans burn as fossil fuels to power economic growth.

Plankton produce about 40 to 50 billion tonnes of organic carbon as they flourish, and then perish. Microbes set to work and begin the process of decay, recycling the carbon into the atmosphere. But somewhere between 8bn and 10bn tonnes of green tissue sink below 100 metres, into waters increasingly starved of oxygen, and decay stops.

Long sojourn

Once the dead plankton reach the ocean bottom, they could be there for centuries. More heat, however, could alter the balance of recycling and long-term storage.

“The results are telling us that warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored,” said Robert Anderson, of Columbia University’s Lamont-Doherty Earth Observatory, and one of the authors.

The fear is that as the oceans warm, the oxygen-low zones will increase and expand. That could suggest more long-term carbon burial. But as the surface waters warm, the microbial activity could accelerate, and release even more carbon into the atmosphere. In which case, the world would warm more swiftly.

Research like this is necessarily inconclusive: marine biologists have a lot more to do before they get a convincing answer to a global puzzle. Climate scientists started worrying about oxygen depletion in the oceans years ago, but they have been more bothered by evidence that in a warmer world microbial scavengers and recyclers work ever harder, and not just on land.

Positive feedbacks

As the polar ice retreats, there are more emissions of potent greenhouse gases from the tundra. And as high latitude ice and snow retreats, the levels of radiation back into space are reduced, while deep blue sea and brown rock absorb ever higher doses of sunlight.

All these are instances of positive feedback: planetary responses that seem overall to make climate change more likely, and climate extremes more hazardous. And the increasing evidence of oxygen depletion in the oceans provides no comfort: as the seas warm, less oxygen is available for the ocean’s animals: including of course the huge hauls of fish on which millions depend for income and nourishment.

As the scientists say, in the opaque language of a research journal: “Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modelling and future work to disentangle.”

In other words, there is more research to be done. − Climate News Network

Warmer air means warmer seas, and marine microbes in warmer seas could mean yet warmer air. The climate cycle could get increasingly vicious.

LONDON, 6 May, 2019 − US scientists say marine microbes are the cause of yet another potentially positive feedback that could accelerate global warming.

As the oceans warm, marine microbial life might start to pump yet more carbon dioxide into the air. This process would of course increase the greenhouse gas levels still further and warm the oceans to increasing temperatures.

The finding is a reminder that the atmosphere, oceans, ice caps, rocks, algae, bacteria and forests are all intricate parts of the planetary climate machinery, and researchers still have a long way to go before they understand all the working parts in detail. But it is also a reminder that every small rise in planetary average temperatures in some way feeds back into this complex system.

The new study, based on analysis of data gathered during a research cruise in 2013 from Peru to Tahiti, is published in the Proceedings of the National Academy of Sciences.

“Warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored”

The shipboard scientists looked in depth at processes in highly productive waters off the South American coasts, and at the more or less barren waters south of the equator that cycle in a set of currents known as the South Pacific Gyre.

They did so to estimate the fate of tiny green plants – plankton – as they flourished in the ocean surface, and then perished and sank to the depths.

In the great and far-from-complete reckoning of the planet’s carbon budget – from atmosphere to plants to animals and back to the air, or to the rocks – climate scientists think that the oceans absorb around one fourth of all the extra carbon dioxide that humans burn as fossil fuels to power economic growth.

Plankton produce about 40 to 50 billion tonnes of organic carbon as they flourish, and then perish. Microbes set to work and begin the process of decay, recycling the carbon into the atmosphere. But somewhere between 8bn and 10bn tonnes of green tissue sink below 100 metres, into waters increasingly starved of oxygen, and decay stops.

Long sojourn

Once the dead plankton reach the ocean bottom, they could be there for centuries. More heat, however, could alter the balance of recycling and long-term storage.

“The results are telling us that warming will cause faster recycling of carbon in many areas, and that means less carbon will reach the deep ocean and get stored,” said Robert Anderson, of Columbia University’s Lamont-Doherty Earth Observatory, and one of the authors.

The fear is that as the oceans warm, the oxygen-low zones will increase and expand. That could suggest more long-term carbon burial. But as the surface waters warm, the microbial activity could accelerate, and release even more carbon into the atmosphere. In which case, the world would warm more swiftly.

Research like this is necessarily inconclusive: marine biologists have a lot more to do before they get a convincing answer to a global puzzle. Climate scientists started worrying about oxygen depletion in the oceans years ago, but they have been more bothered by evidence that in a warmer world microbial scavengers and recyclers work ever harder, and not just on land.

Positive feedbacks

As the polar ice retreats, there are more emissions of potent greenhouse gases from the tundra. And as high latitude ice and snow retreats, the levels of radiation back into space are reduced, while deep blue sea and brown rock absorb ever higher doses of sunlight.

All these are instances of positive feedback: planetary responses that seem overall to make climate change more likely, and climate extremes more hazardous. And the increasing evidence of oxygen depletion in the oceans provides no comfort: as the seas warm, less oxygen is available for the ocean’s animals: including of course the huge hauls of fish on which millions depend for income and nourishment.

As the scientists say, in the opaque language of a research journal: “Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modelling and future work to disentangle.”

In other words, there is more research to be done. − Climate News Network