Tag Archives: Forests

Natural forests are best at storing carbon

Natural forests are a global good. Well conserved, they help combat climate change. But as new research confirms, it’s not that simple.

LONDON, 18 May, 2020 – Two new studies have freshly confirmed an argument unchallenged for more than three decades: the best way to absorb and permanently store carbon from the atmosphere is to restore and conserve existing natural forests.

This proposition – successively urged on governments around the world since the first studies of strategy to confront global warming and potentially catastrophic climate change – has more chance of sustained success than any attempts to offset carbon emissions by indiscriminate plantations of new canopy, or even systematic investment in public initiatives such as the Trillion Tree Campaign.

And the argument gets even more support from a closer look at disturbances to natural woodland: these demonstrate that even simple clearings in forests will create unfavourable local microclimates and disturb the species that flourish in stable forests.

Karen Holl is a restoration ecologist at the University of California at Santa Cruz. She and a colleague from São Paulo in Brazil argue in the journal Science that while planting trees can help protect biodiversity, assist in natural water management and increase local shade, the same act can actually also damage local native ecosystems, reduce water supply, dispossess local landholders and increase social inequity.

“We can’t plant our way out of climate change. It is only one piece of the puzzle. Planting trees is not a simple solution”

The point she makes is that the wrong kind of tree on the wrong sort of land helps nobody. Nor does a tree that, once planted, is neglected and left to die, or to change the nature of the land it occupies – not even if there are a trillion of them.

“We can’t plant our way out of climate change. It is only one piece of the puzzle,” she said. “Planting trees is not a simple solution. It’s complicated, and we need to be realistic about what we can and cannot achieve.”

Her argument is that planting trees is not the same as increasing forest cover, and in any case will add up to only a fraction of the carbon reductions needed by 2100 to keep global temperatures from rising to 2°C above the long-term average for most of human history.

And given that increasing drought and temperatures can lead to widespread tree death, some of the effort could be hopelessly wasted.

Leave well alone

“The first thing we can do is keep existing forests standing, and the second is to allow trees to regenerate in areas that were formerly forests,” she said.

“In many cases, trees will recover on their own – just look at the entire eastern United States that was deforested 200 years ago. Much of that has come back without actively planting trees.

“Yes, in some highly degraded lands we will need to plant trees, but that should be the last option since it is the most expensive and often is not successful. I’ve spent my life on this. We need to be thoughtful about how we bring the forest back.”

Just how thoughtful is illuminated by another study, also in Science. European scientists looked at temperatures in 100 forest interiors and matched this with 80 years of data from 2,955 locations in 56 regions to discover that the routine open space temperature measurements collected by climate scientists do not reflect conditions under a mature forest canopy.

Avoid clearings

The denser the leaf cover, the more effectively the forest buffers the wild things that live there from climate change. But as the cover becomes sparser, conditions change and the thermometer goes up by several degrees.

The implication – supported by other recent research – is that any kind of clearing in some way weakens the integrity of a forest, both as a refuge for otherwise threatened biodiversity, and as a potential store of atmospheric carbon.

Global warming is already increasing what researchers have labelled “thermophilisation” – that is, a tendency for warm climate species to flourish at the expense of those already at the limit of their preferred temperature.

The implication is that some species will not be able to adapt swiftly enough to ever more intense extremes of heat and drought, and the nature of forest cover is likely to change. – Climate News Network

Natural forests are a global good. Well conserved, they help combat climate change. But as new research confirms, it’s not that simple.

LONDON, 18 May, 2020 – Two new studies have freshly confirmed an argument unchallenged for more than three decades: the best way to absorb and permanently store carbon from the atmosphere is to restore and conserve existing natural forests.

This proposition – successively urged on governments around the world since the first studies of strategy to confront global warming and potentially catastrophic climate change – has more chance of sustained success than any attempts to offset carbon emissions by indiscriminate plantations of new canopy, or even systematic investment in public initiatives such as the Trillion Tree Campaign.

And the argument gets even more support from a closer look at disturbances to natural woodland: these demonstrate that even simple clearings in forests will create unfavourable local microclimates and disturb the species that flourish in stable forests.

Karen Holl is a restoration ecologist at the University of California at Santa Cruz. She and a colleague from São Paulo in Brazil argue in the journal Science that while planting trees can help protect biodiversity, assist in natural water management and increase local shade, the same act can actually also damage local native ecosystems, reduce water supply, dispossess local landholders and increase social inequity.

“We can’t plant our way out of climate change. It is only one piece of the puzzle. Planting trees is not a simple solution”

The point she makes is that the wrong kind of tree on the wrong sort of land helps nobody. Nor does a tree that, once planted, is neglected and left to die, or to change the nature of the land it occupies – not even if there are a trillion of them.

“We can’t plant our way out of climate change. It is only one piece of the puzzle,” she said. “Planting trees is not a simple solution. It’s complicated, and we need to be realistic about what we can and cannot achieve.”

Her argument is that planting trees is not the same as increasing forest cover, and in any case will add up to only a fraction of the carbon reductions needed by 2100 to keep global temperatures from rising to 2°C above the long-term average for most of human history.

And given that increasing drought and temperatures can lead to widespread tree death, some of the effort could be hopelessly wasted.

Leave well alone

“The first thing we can do is keep existing forests standing, and the second is to allow trees to regenerate in areas that were formerly forests,” she said.

“In many cases, trees will recover on their own – just look at the entire eastern United States that was deforested 200 years ago. Much of that has come back without actively planting trees.

“Yes, in some highly degraded lands we will need to plant trees, but that should be the last option since it is the most expensive and often is not successful. I’ve spent my life on this. We need to be thoughtful about how we bring the forest back.”

Just how thoughtful is illuminated by another study, also in Science. European scientists looked at temperatures in 100 forest interiors and matched this with 80 years of data from 2,955 locations in 56 regions to discover that the routine open space temperature measurements collected by climate scientists do not reflect conditions under a mature forest canopy.

Avoid clearings

The denser the leaf cover, the more effectively the forest buffers the wild things that live there from climate change. But as the cover becomes sparser, conditions change and the thermometer goes up by several degrees.

The implication – supported by other recent research – is that any kind of clearing in some way weakens the integrity of a forest, both as a refuge for otherwise threatened biodiversity, and as a potential store of atmospheric carbon.

Global warming is already increasing what researchers have labelled “thermophilisation” – that is, a tendency for warm climate species to flourish at the expense of those already at the limit of their preferred temperature.

The implication is that some species will not be able to adapt swiftly enough to ever more intense extremes of heat and drought, and the nature of forest cover is likely to change. – Climate News Network

Tigers retreat before spreading road networks

The global push to save an iconic species from extinction struggles, as tigers retreat before the relentless growth of roads.

LONDON, 4 May, 2020 − Humans have made inroads into the last territory of the tiger – literally: the inexorable increase in roads is driving the tigers’ retreat.

A new study of the wilderness set aside for the rapidly-dwindling populations of Panthera tigris in 13 countries warns that more than half of all this supposedly untouched reserve is within 5kms of a road.

Altogether, tiger conservation landscapes considered crucial for the recovery of an endangered species are now home to 134,000 kilometres of road. This intrusion alone may have reduced the abundance of both the carnivore and its natural prey by about one fifth.

And by 2050 researchers expect that another 24,000kms of road will have been built through the 1.16 million square kilometres of wilderness officially conserved in Russia, China, India, Myanmar, Nepal, Bangladesh, Thailand, Vietnam, Malaysia, Indonesia, Cambodia, Laos and Bhutan. Many of these will have been built under China’s so-called “belt-and-road initiative” in the developing world.

“Our analysis demonstrates that, overall, tigers face a ubiquitous and mounting threat from road networks across much of their 13-country range,” said Neil Carter, of the University of Michigan in the US, who led the research.

“Tiger habitats have declined by 40% since 2006, underscoring the importance of maintaining roadless areas and resisting road expansion in places where tigers still exist, before it is too late”

He and colleagues report in the journal Science Advances that they calculated road density, distance to the nearest road and average species abundance in all 76 blocks of land set aside for tiger conservation, to confirm conservationists’ worst fears.

Encroaching roads discourage the herbivores that tigers might prey upon; they degrade the habitat for all wildlife in the region; and they provide easier access for poachers, for whom a tiger carcass is a valuable commodity. In the Russian Far East, collisions with road vehicles were enough to reduce tiger survival rates.

The road seems the first enemy of conservation. Researchers have recently established that even the presence of human intrusion – the border of a ranch, a commercial clearing, a palm oil plantation or just a simple road – is enough to weaken and in some way damage the integrity of the 500 metres of wilderness next to the clearing.

The global record for the protection of those areas set aside for the conservation of endemic species is not good: another study found that, worldwide, since 1993, more than 280,000 sq kms of natural reserve had been subjected to “intense human pressure.”

And a third study fingered the road itself as the problem, and a growing problem: roads already fragment the world’s landscapes, and by 2050 governments will have added another 25 million kilometres of asphalt, traffic and settlement, most of it in the developing world.

Numbers still dropping

Thanks to human population growth and climate change, the planet is poised for the extinction of wild creatures and plants on a massive scale. So the tiger study reflects a wider pattern.

The difference is that for more than 50 years conservationists and governments have encouraged international efforts to conserve one of the most iconic and at the same time one of the most endangered of all the big cats, but the numbers are still falling, as roads turn what had been undisturbed habitat into an archipelago of little “tiger islands” in which populations are isolated from each other.

The scientists found that those areas most strictly protected in the tiger conservation were less densely interrupted by roads: however, these densities varied widely across countries. China’s average road density in tiger conservation landscapes was almost eight times greater than, for example, Malaysia’s.

“Tiger habitats have declined by 40% since 2006, underscoring the importance of maintaining roadless areas and resisting road expansion in places where tigers still exist, before it is too late,” Dr Carter said.

“Given that roads will be a pervasive challenge to tiger recovery in the future, we urge decision-makers to make sustainable road development a top priority.” − Climate News Network

The global push to save an iconic species from extinction struggles, as tigers retreat before the relentless growth of roads.

LONDON, 4 May, 2020 − Humans have made inroads into the last territory of the tiger – literally: the inexorable increase in roads is driving the tigers’ retreat.

A new study of the wilderness set aside for the rapidly-dwindling populations of Panthera tigris in 13 countries warns that more than half of all this supposedly untouched reserve is within 5kms of a road.

Altogether, tiger conservation landscapes considered crucial for the recovery of an endangered species are now home to 134,000 kilometres of road. This intrusion alone may have reduced the abundance of both the carnivore and its natural prey by about one fifth.

And by 2050 researchers expect that another 24,000kms of road will have been built through the 1.16 million square kilometres of wilderness officially conserved in Russia, China, India, Myanmar, Nepal, Bangladesh, Thailand, Vietnam, Malaysia, Indonesia, Cambodia, Laos and Bhutan. Many of these will have been built under China’s so-called “belt-and-road initiative” in the developing world.

“Our analysis demonstrates that, overall, tigers face a ubiquitous and mounting threat from road networks across much of their 13-country range,” said Neil Carter, of the University of Michigan in the US, who led the research.

“Tiger habitats have declined by 40% since 2006, underscoring the importance of maintaining roadless areas and resisting road expansion in places where tigers still exist, before it is too late”

He and colleagues report in the journal Science Advances that they calculated road density, distance to the nearest road and average species abundance in all 76 blocks of land set aside for tiger conservation, to confirm conservationists’ worst fears.

Encroaching roads discourage the herbivores that tigers might prey upon; they degrade the habitat for all wildlife in the region; and they provide easier access for poachers, for whom a tiger carcass is a valuable commodity. In the Russian Far East, collisions with road vehicles were enough to reduce tiger survival rates.

The road seems the first enemy of conservation. Researchers have recently established that even the presence of human intrusion – the border of a ranch, a commercial clearing, a palm oil plantation or just a simple road – is enough to weaken and in some way damage the integrity of the 500 metres of wilderness next to the clearing.

The global record for the protection of those areas set aside for the conservation of endemic species is not good: another study found that, worldwide, since 1993, more than 280,000 sq kms of natural reserve had been subjected to “intense human pressure.”

And a third study fingered the road itself as the problem, and a growing problem: roads already fragment the world’s landscapes, and by 2050 governments will have added another 25 million kilometres of asphalt, traffic and settlement, most of it in the developing world.

Numbers still dropping

Thanks to human population growth and climate change, the planet is poised for the extinction of wild creatures and plants on a massive scale. So the tiger study reflects a wider pattern.

The difference is that for more than 50 years conservationists and governments have encouraged international efforts to conserve one of the most iconic and at the same time one of the most endangered of all the big cats, but the numbers are still falling, as roads turn what had been undisturbed habitat into an archipelago of little “tiger islands” in which populations are isolated from each other.

The scientists found that those areas most strictly protected in the tiger conservation were less densely interrupted by roads: however, these densities varied widely across countries. China’s average road density in tiger conservation landscapes was almost eight times greater than, for example, Malaysia’s.

“Tiger habitats have declined by 40% since 2006, underscoring the importance of maintaining roadless areas and resisting road expansion in places where tigers still exist, before it is too late,” Dr Carter said.

“Given that roads will be a pervasive challenge to tiger recovery in the future, we urge decision-makers to make sustainable road development a top priority.” − Climate News Network

London’s Kew Gardens teach respect for nature

This story originally appeared on CBS News, and is republished here as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

 

Kew Gardens in London are a cherished corner of the UK capital − with a life-giving lesson for humanity.

LONDON, 26 April, 2020 − Kew Gardens more formally the United Kingdom’s Royal Botanic Gardens, Kew in London have been a place of reflection and natural refuge for about 250 years, though now they sit empty because of the country’s coronavirus pandemic lockdown.

On April 22, as we celebrated the 50th anniversary of Earth Day, Kew Gardens’ director Richard Deverell warned that more “fundamental challenges” could lie ahead for humankind “unless we start to treat the natural world better.”

“It’s exceptionally beautiful, but it’s tragic to see these beautiful gardens, 330 acres here at Kew − a world heritage site − to see them empty,” he told CBS News’ Mark Phillips.

Deverell, who lives on the property, said he “hopes” the current situation could help people understand the importance of respecting nature.

“We’ve got a situation today where four and half billion people are in lockdown, that’s extraordinary,” he said. “So I hope, if nothing else, this Covid experience has given us a dose of humility… we are just one species of many, many millions.”

He added that we “need to play our role” alongside Earth’s other species “in a responsible way.”

“I hope, if nothing else, this Covid experience has given us a dose of humility… we are just one species of many, many millions”

“And I hope too, that we’ll realise that actually the cost of pre-empting a problem, of mitigating it, is a fraction of the cost of dealing with it when it engulfs you,” he said. “If you abuse the natural world, bad things happen, including bad things to people.”

Researchers at the gardens are already working on these mitigation efforts. With new specimens arriving from all over the world, scientists are studying ways to help plants cope with a warming globe.

Among other projects, researchers are studying how to deal with coffee beans that are not getting enough rain and getting too much sunshine. The team is working to find varieties that are more tolerant to the changing conditions.

“Perhaps some have greater heat tolerance or aridity tolerance that can be bred into the commercial crop to safeguard future supplies of coffee,” Deverell explained.

He highlighted the importance of keeping nature safe and intact, not just for the natural world, but for humanity itself.

“At the simplest level, of course, plants provide us with oxygen,” he said. “About a quarter of all cancer medicines derive from plants and fungi, so they deliver many, many beneficial things to humans.”

This story originally appeared on CBS News, and is republished here as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

 

Kew Gardens in London are a cherished corner of the UK capital − with a life-giving lesson for humanity.

LONDON, 26 April, 2020 − Kew Gardens more formally the United Kingdom’s Royal Botanic Gardens, Kew in London have been a place of reflection and natural refuge for about 250 years, though now they sit empty because of the country’s coronavirus pandemic lockdown.

On April 22, as we celebrated the 50th anniversary of Earth Day, Kew Gardens’ director Richard Deverell warned that more “fundamental challenges” could lie ahead for humankind “unless we start to treat the natural world better.”

“It’s exceptionally beautiful, but it’s tragic to see these beautiful gardens, 330 acres here at Kew − a world heritage site − to see them empty,” he told CBS News’ Mark Phillips.

Deverell, who lives on the property, said he “hopes” the current situation could help people understand the importance of respecting nature.

“We’ve got a situation today where four and half billion people are in lockdown, that’s extraordinary,” he said. “So I hope, if nothing else, this Covid experience has given us a dose of humility… we are just one species of many, many millions.”

He added that we “need to play our role” alongside Earth’s other species “in a responsible way.”

“I hope, if nothing else, this Covid experience has given us a dose of humility… we are just one species of many, many millions”

“And I hope too, that we’ll realise that actually the cost of pre-empting a problem, of mitigating it, is a fraction of the cost of dealing with it when it engulfs you,” he said. “If you abuse the natural world, bad things happen, including bad things to people.”

Researchers at the gardens are already working on these mitigation efforts. With new specimens arriving from all over the world, scientists are studying ways to help plants cope with a warming globe.

Among other projects, researchers are studying how to deal with coffee beans that are not getting enough rain and getting too much sunshine. The team is working to find varieties that are more tolerant to the changing conditions.

“Perhaps some have greater heat tolerance or aridity tolerance that can be bred into the commercial crop to safeguard future supplies of coffee,” Deverell explained.

He highlighted the importance of keeping nature safe and intact, not just for the natural world, but for humanity itself.

“At the simplest level, of course, plants provide us with oxygen,” he said. “About a quarter of all cancer medicines derive from plants and fungi, so they deliver many, many beneficial things to humans.”

Halve the farmland, save nature, feed the world

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

If we farm efficiently, scientists say, we can cut climate change, slow extinction and feed the world even as it asks for more.

LONDON, 21 April, 2020 – Forget about organic farming: get the best out of the best cropland, return the rest to nature and still feed the world. It could work, say researchers.

Once again, scientists have demonstrated that humans could restore roughly half the planet as a natural home for all the other wild things, while at the same time feeding a growing population and limiting climate change.

That doesn’t mean it will happen, or could be made to happen easily. But it does yet again address one of the enduring challenges of population growth and the potentially devastating loss of the biodiversity upon which all individual species – humans more than most – depend to survive.

The answer? Simply to farm more efficiently and more intensively, to maximise the yield from those tracts of land most suitable for crops, and let nature reclaim the no-longer so productive hectares.

Even more effective would be to release as much land as possible in those regions that ecologists and biologists like to call “biodiversity hotspots”, among them the forests where concentrations of species are at their peak.

European researchers argue, in a study in the journal Nature Sustainability, that as less land was cultivated, but more intensively, the greenhouse gas emissions from farming would be reduced: so too would water use.

“Cropland expansion is not inevitable and there is significant potential for improving present land use efficiency”

“The main questions we wanted to address were how much cropland could be spared if attainable crop yields were achieved globally and crops were grown where they are most productive,” said Christian Folberth, a scientist with the International Institute for Applied Systems Analysis (IIASA) in Austria, who led the study.

“In addition, we wanted to determine what the implications would be for other factors related to the agricultural sector, including fertiliser and irrigation water requirements, greenhouse gas emissions, carbon sequestration potential, and wildlife habitat for threatened species.”

The problem is enormous, and enormously complex. Cropland farming alone – forget about methane from cattle and sheep – accounts for 5% of all greenhouse gas emissions from human activity. Worldwide, about 70% of all the freshwater taken from rivers and aquifers goes into irrigation.

Human populations continue to soar, while cities continue to expand  across the countryside. By the end of this century, there could be more than 9bn people to be fed.

Global heating driven by fossil fuel investment continues to increase, and this in turn threatens to diminish harvest yields across a wide range of crops, along with the nutritive value of the staples themselves.

Nature under threat

At the same time, both climate change driven by global warming and the expansion of the cities and the surrounding farmlands continue to amplify the threat to natural habitats and the millions of species – many yet to be identified and named by science – that depend upon them.

And this in turn poses a threat to human economies and even human life: almost every resource – antibiotic medicines and drugs, food, waste disposal, fabrics, building materials and even fresh air and water – evolved in undisturbed ecosystems long before Homo sapiens arrived, and the services each element provides depend ultimately on the survival of those ecosystems.

So the challenge is to restore and return to nature around half the land humans already use, while at the same time feeding what could be an additional 2bn people, while reducing greenhouse gas emissions but still sustaining development in the poorest nations.

Dr Folberth and his colleagues from Slovakia, France, Belgium, Spain and the UK are not the first to argue that it can be done, and not just by changing the planetary lunch menu.

The scientists looked at the data for 16 major crop species around the world to calculate that at least in theory – with careful use of the right crops on the most suitable soils, and with high fertiliser use – about half of the present cropland now cultivated could still deliver the present output.

That is, the land humans occupy is not being managed efficiently. If it were, the other half could be returned to wilderness, and conserved as natural forest, grassland or wetland.

Climate benefits

If humans then thought about how best to slow biodiversity loss, they would do almost as well by abandoning farmland in those places where there was the greatest concentration of wild things – tropical rain forests, estuary floodplains and mangrove swamps, for instance. And just returning 20% of farmland to nature everywhere else would still reduce human farmland use by 40%.

In return, fertiliser use would remain about the same, but greenhouse gas emissions and water use would fall, while more land would become free to sequester atmospheric carbon.

There would be costs – nitrogen pollution would go up in some places, and many rural farmers would become even poorer – so more thinking needs to be done. The point the European researchers want to make is that, in principle, it should be possible to feed people, abandon farmland to the natural world and reduce emissions all at the same time.

“It shows that cropland expansion is not inevitable and there is significant potential for improving present land use efficiency,” said Michael Obersteiner, another author, now at the Environmental Change Institute at Oxford.

“If the right policies are implemented, measures such as improved production technologies can be just as effective as demand-side measures like dietary changes. However, in all cases, such a process would need to be steered by policies to avoid unwanted outcomes.” – Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

If we farm efficiently, scientists say, we can cut climate change, slow extinction and feed the world even as it asks for more.

LONDON, 21 April, 2020 – Forget about organic farming: get the best out of the best cropland, return the rest to nature and still feed the world. It could work, say researchers.

Once again, scientists have demonstrated that humans could restore roughly half the planet as a natural home for all the other wild things, while at the same time feeding a growing population and limiting climate change.

That doesn’t mean it will happen, or could be made to happen easily. But it does yet again address one of the enduring challenges of population growth and the potentially devastating loss of the biodiversity upon which all individual species – humans more than most – depend to survive.

The answer? Simply to farm more efficiently and more intensively, to maximise the yield from those tracts of land most suitable for crops, and let nature reclaim the no-longer so productive hectares.

Even more effective would be to release as much land as possible in those regions that ecologists and biologists like to call “biodiversity hotspots”, among them the forests where concentrations of species are at their peak.

European researchers argue, in a study in the journal Nature Sustainability, that as less land was cultivated, but more intensively, the greenhouse gas emissions from farming would be reduced: so too would water use.

“Cropland expansion is not inevitable and there is significant potential for improving present land use efficiency”

“The main questions we wanted to address were how much cropland could be spared if attainable crop yields were achieved globally and crops were grown where they are most productive,” said Christian Folberth, a scientist with the International Institute for Applied Systems Analysis (IIASA) in Austria, who led the study.

“In addition, we wanted to determine what the implications would be for other factors related to the agricultural sector, including fertiliser and irrigation water requirements, greenhouse gas emissions, carbon sequestration potential, and wildlife habitat for threatened species.”

The problem is enormous, and enormously complex. Cropland farming alone – forget about methane from cattle and sheep – accounts for 5% of all greenhouse gas emissions from human activity. Worldwide, about 70% of all the freshwater taken from rivers and aquifers goes into irrigation.

Human populations continue to soar, while cities continue to expand  across the countryside. By the end of this century, there could be more than 9bn people to be fed.

Global heating driven by fossil fuel investment continues to increase, and this in turn threatens to diminish harvest yields across a wide range of crops, along with the nutritive value of the staples themselves.

Nature under threat

At the same time, both climate change driven by global warming and the expansion of the cities and the surrounding farmlands continue to amplify the threat to natural habitats and the millions of species – many yet to be identified and named by science – that depend upon them.

And this in turn poses a threat to human economies and even human life: almost every resource – antibiotic medicines and drugs, food, waste disposal, fabrics, building materials and even fresh air and water – evolved in undisturbed ecosystems long before Homo sapiens arrived, and the services each element provides depend ultimately on the survival of those ecosystems.

So the challenge is to restore and return to nature around half the land humans already use, while at the same time feeding what could be an additional 2bn people, while reducing greenhouse gas emissions but still sustaining development in the poorest nations.

Dr Folberth and his colleagues from Slovakia, France, Belgium, Spain and the UK are not the first to argue that it can be done, and not just by changing the planetary lunch menu.

The scientists looked at the data for 16 major crop species around the world to calculate that at least in theory – with careful use of the right crops on the most suitable soils, and with high fertiliser use – about half of the present cropland now cultivated could still deliver the present output.

That is, the land humans occupy is not being managed efficiently. If it were, the other half could be returned to wilderness, and conserved as natural forest, grassland or wetland.

Climate benefits

If humans then thought about how best to slow biodiversity loss, they would do almost as well by abandoning farmland in those places where there was the greatest concentration of wild things – tropical rain forests, estuary floodplains and mangrove swamps, for instance. And just returning 20% of farmland to nature everywhere else would still reduce human farmland use by 40%.

In return, fertiliser use would remain about the same, but greenhouse gas emissions and water use would fall, while more land would become free to sequester atmospheric carbon.

There would be costs – nitrogen pollution would go up in some places, and many rural farmers would become even poorer – so more thinking needs to be done. The point the European researchers want to make is that, in principle, it should be possible to feed people, abandon farmland to the natural world and reduce emissions all at the same time.

“It shows that cropland expansion is not inevitable and there is significant potential for improving present land use efficiency,” said Michael Obersteiner, another author, now at the Environmental Change Institute at Oxford.

“If the right policies are implemented, measures such as improved production technologies can be just as effective as demand-side measures like dietary changes. However, in all cases, such a process would need to be steered by policies to avoid unwanted outcomes.” – Climate News Network

Entire wild systems at risk from rising global heat

Rising global heat raises risks to the creatures and ecosystems that sustain human society. Collapse could be sudden and near-total.

LONDON, 14 April, 2020 – Worldwide, entire ecosystems could collapse as the planetary thermometer soars: rising global heat could see the Earth’s average temperature rise by 4°C (right now the world is heading for a rise of more than three degrees).

And then one in six of the complex communities of plants and animals in wetlands, grasslands, forests or oceans could drastically alter or fail.

That is because at such temperatures more than one in five of the creatures in that network of co-dependencies would in the same decade experience temperatures beyond their normal tolerance levels.

The prediction is based on data that pinpoint the geographical ranges of 30,652 birds, mammals, reptiles, amphibians, fish and plants, and climate data from 1850 to 2005.

“We found that climate change risks to biodiversity don’t increase gradually,” said Alex Pigot of Imperial College London, in the UK, who led the research.

Abrupt change

“Instead, as the climate warms, within a certain area most species will be able to cope for a while, before crossing a temperature threshold, when a large proportion of the species will suddenly face conditions they’ve never experienced before.

“It’s not a slippery slope, but a series of cliff edges, hitting different areas at different times.”

The finding – published in the journal Nature – should come as no great surprise to the world’s zoologists, botanists, ecologists, foresters, marine scientists and conservationists.

They have repeatedly warned that as global temperatures rise, and climate patterns become increasingly unstable, in response to ever-higher greenhouse gas emissions from power stations and car exhausts, and forest destruction, both individual species and even whole habitats could be exposed to loss and species extinction.

Such threats can be prefigured even in subtle changes in species behaviour. Within this month, Spanish ornithologists who have studied the nightingale Luscinia megarhynchos since 1995 report in the journal The Auk: Ornithological Advances that in two decades, as Spanish summers became hotter and more parched, the wings of each new generation of birds have become progressively shorter.

“Our findings highlight the urgent need for climate change mitigation, by immediately and drastically reducing emissions, which could help save thousands of species from extinction”

A shorter wingspan in proportion to body length creates potential survival problems for a species that breeds in Europe but prefers to fly to sub-Saharan Africa for the winter.

And across the Atlantic, another species, the American robin Turdus migratorius now takes wing 12 days earlier each spring in Mexico and the US to fly to its summer breeding grounds in Canada and Alaska.

The ornithologists report in the journal Environmental Research Letters that GPS tracking of 55 individual birds confirms that the bird may be timing its migration to the snow melt and the first arrival of insects in the high latitudes nearer the fast-warming Arctic.

So far, the planet on average has warmed around only 1°C above the long-term average for most of human history. But Dr Pigot and colleagues in the US and South Africa wanted to look at the big picture of potential change in species everywhere as global heating reaches 2°C – the upper limits that the world’s nations promised in a key international agreement reached in Paris in 2015 – and then goes on soaring.

So they took their species data, and mapped it onto a global grid divided into 100-km-square cells, and then fine-tuned the temperature predicted by climate scientists to see where species and their habitats would experience ever-rising heat beyond their comfort zone.

Unprecedented ocean heat

Any ecosystem is a network of interdependencies: insects pollinate flowers, animals disperse seed and prey upon pests and each other in an intricate set of arrangements that have evolved over tens of thousands of years in a particular pattern of temperature and precipitation. Any disturbance ripples through the entire habitat.

The scientists’ atlas of potential ecological disruption included isolated bits of the world such as the Cayman Islands in the Caribbean and the Gobi Desert in Mongolia as well as the Amazon basin and the forests and clearings in the Congo, and one of the world’s richest marine habitats, the so-called Coral Triangle bounded by the Philippines, Malaysia, Papua New Guinea and the islands of the Western Pacific.

They found that if warming could be contained to 2°C or less, only about one community in 50 would be faced with exposure to such disruption: they warn however that even this 2% includes some of the richest habitats on the planet.

They also warn that by 2030, the tropical oceans will start to experience temperature regimes that have no precedent in human history. The tropical forests could be at risk by 2050. Ominously, almost three-fourths of all the species to face unprecedented temperatures before the end of this century will all do so more or less at the same time.

“Our findings highlight the urgent need for climate change mitigation, by immediately and drastically reducing emissions, which could help save thousands of species from extinction,” Dr Pigot said. – Climate News Network

Rising global heat raises risks to the creatures and ecosystems that sustain human society. Collapse could be sudden and near-total.

LONDON, 14 April, 2020 – Worldwide, entire ecosystems could collapse as the planetary thermometer soars: rising global heat could see the Earth’s average temperature rise by 4°C (right now the world is heading for a rise of more than three degrees).

And then one in six of the complex communities of plants and animals in wetlands, grasslands, forests or oceans could drastically alter or fail.

That is because at such temperatures more than one in five of the creatures in that network of co-dependencies would in the same decade experience temperatures beyond their normal tolerance levels.

The prediction is based on data that pinpoint the geographical ranges of 30,652 birds, mammals, reptiles, amphibians, fish and plants, and climate data from 1850 to 2005.

“We found that climate change risks to biodiversity don’t increase gradually,” said Alex Pigot of Imperial College London, in the UK, who led the research.

Abrupt change

“Instead, as the climate warms, within a certain area most species will be able to cope for a while, before crossing a temperature threshold, when a large proportion of the species will suddenly face conditions they’ve never experienced before.

“It’s not a slippery slope, but a series of cliff edges, hitting different areas at different times.”

The finding – published in the journal Nature – should come as no great surprise to the world’s zoologists, botanists, ecologists, foresters, marine scientists and conservationists.

They have repeatedly warned that as global temperatures rise, and climate patterns become increasingly unstable, in response to ever-higher greenhouse gas emissions from power stations and car exhausts, and forest destruction, both individual species and even whole habitats could be exposed to loss and species extinction.

Such threats can be prefigured even in subtle changes in species behaviour. Within this month, Spanish ornithologists who have studied the nightingale Luscinia megarhynchos since 1995 report in the journal The Auk: Ornithological Advances that in two decades, as Spanish summers became hotter and more parched, the wings of each new generation of birds have become progressively shorter.

“Our findings highlight the urgent need for climate change mitigation, by immediately and drastically reducing emissions, which could help save thousands of species from extinction”

A shorter wingspan in proportion to body length creates potential survival problems for a species that breeds in Europe but prefers to fly to sub-Saharan Africa for the winter.

And across the Atlantic, another species, the American robin Turdus migratorius now takes wing 12 days earlier each spring in Mexico and the US to fly to its summer breeding grounds in Canada and Alaska.

The ornithologists report in the journal Environmental Research Letters that GPS tracking of 55 individual birds confirms that the bird may be timing its migration to the snow melt and the first arrival of insects in the high latitudes nearer the fast-warming Arctic.

So far, the planet on average has warmed around only 1°C above the long-term average for most of human history. But Dr Pigot and colleagues in the US and South Africa wanted to look at the big picture of potential change in species everywhere as global heating reaches 2°C – the upper limits that the world’s nations promised in a key international agreement reached in Paris in 2015 – and then goes on soaring.

So they took their species data, and mapped it onto a global grid divided into 100-km-square cells, and then fine-tuned the temperature predicted by climate scientists to see where species and their habitats would experience ever-rising heat beyond their comfort zone.

Unprecedented ocean heat

Any ecosystem is a network of interdependencies: insects pollinate flowers, animals disperse seed and prey upon pests and each other in an intricate set of arrangements that have evolved over tens of thousands of years in a particular pattern of temperature and precipitation. Any disturbance ripples through the entire habitat.

The scientists’ atlas of potential ecological disruption included isolated bits of the world such as the Cayman Islands in the Caribbean and the Gobi Desert in Mongolia as well as the Amazon basin and the forests and clearings in the Congo, and one of the world’s richest marine habitats, the so-called Coral Triangle bounded by the Philippines, Malaysia, Papua New Guinea and the islands of the Western Pacific.

They found that if warming could be contained to 2°C or less, only about one community in 50 would be faced with exposure to such disruption: they warn however that even this 2% includes some of the richest habitats on the planet.

They also warn that by 2030, the tropical oceans will start to experience temperature regimes that have no precedent in human history. The tropical forests could be at risk by 2050. Ominously, almost three-fourths of all the species to face unprecedented temperatures before the end of this century will all do so more or less at the same time.

“Our findings highlight the urgent need for climate change mitigation, by immediately and drastically reducing emissions, which could help save thousands of species from extinction,” Dr Pigot said. – Climate News Network

Ancient ice-free polar forest could soon return

An ice-free polar forest once flourished, helped by enough heat and ample greenhouse gas. It could come back.

LONDON, 10 April, 2020 – Many millions of years ago, the southern continent wasn’t frozen at all, but basked in heat balmy enough for an ice-free polar forest to thrive. And ancient pre-history could repeat itself.

Climate scientists can tell you what the world could be like were today’s greenhouse gas concentrations to triple – which they could do if humans go on clearing tropical forests and burning fossil fuels.

They know because, 90 million years ago, the last time when carbon dioxide levels in the atmosphere went past the 1200 ppm (parts per million) mark, sea levels were 170 metres higher than today and the world was so warm that dense forests grew in what is now Antarctica.

At latitude 82 South, a region where the polar night lasts for four months, there was no icecap. Instead, the continental rocks were colonised by conifer forest, with a mix of tree ferns and an understorey of flowering shrubs.

Even though at that latitude the midday sun would have been relatively low in the sky, and the forests would have had to survive sustained winter darkness for a dozen weeks or more, average temperatures would have been that of modern day Tasmania, and a good 2C° warmer than modern Germany.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected”

German and British researchers report in the journal Nature that they took a closer look at a sequence of strangely-coloured mudstone in a core drilled 30 metres below the bottom of the sea floor, off West Antarctica.

The section of sediment had been preserved from the mid-Cretaceous, around 90 million years ago, in a world dominated by dinosaurs. By then, the first mammals may have evolved, the grasses were about to emerge, and seasonal flowering plants had begun to colonise a planet dominated for aeons by evergreens.

And in the preserved silt were pollens, spores, tangled roots and other plant material so well preserved that the researchers could not just identify the plant families, but even take a guess at parallels with modern forests. Before their eyes was evidence of something like the modern rainforests of New Zealand’s South Island, but deep inside the Antarctic Circle.

“The preservation of this 90 million-year-old forest is exceptional, but even more surprising is the world it reveals,” said Tina van de Flierdt, of Imperial College London.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected.”

British rain levels

Somewhere between 115 and 85 million years ago, the whole world was a lot hotter: in the tropics temperatures reached 35°C and the average temperature of that part of the Antarctic was 13°C. This is at least two degrees higher than the average temperature for modern Germany.

Average temperatures in summer went up to 18.5°C, and the water temperatures in the swamps and rivers tipped 20°C, only 900 kms from the then South Pole. Modern Antarctica is classed as desert, with minimal precipitation: then it would have seen 1120 mm a year. People from southwestern Scotland or parts of Wales would have felt at home.

It is an axiom of earth science that the present is key to the past: if such forests today can flourish at existing temperatures, then the same must have been true in the deep past.

So climate scientists from the start have taken a close interest in the evidence of intensely warm periods in the fossil record: a mix of plant and animal remains, the ratio of chemical isotopes preserved in rock, and even the air bubbles trapped in deep ice cores can help them reconstruct the temperatures, the composition of the atmosphere and the rainfall of, for example, the warmest periods of the Pliocene, when carbon dioxide levels in the atmosphere tipped the 1000 ppm mark, and average planetary temperatures rose by 9°C.

Prehistoric encore approaching?

In the past century, atmospheric CO2 levels have swollen from 285 ppm to more than 400 ppm, and the planetary thermometer has already crept up by 1°C above the level for most of human history. If human economies continue burning fossil fuels at an ever-increasing rate, the conditions that prevailed 56 million years ago could return by 2159.

The Cretaceous evidence will help climate scientists calibrate their models of a world in which greenhouse gas emissions go on rising.

“Before our study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1000 ppm,” said Johann Klages, of the Alfred Wegener Institute centre for polar and marine research in Germany, who led the study.

“But in our model-based experiments, it took concentration levels of 1120 to 1680 ppm to reach the average temperatures back then in Antarctica.” – Climate News Network

An ice-free polar forest once flourished, helped by enough heat and ample greenhouse gas. It could come back.

LONDON, 10 April, 2020 – Many millions of years ago, the southern continent wasn’t frozen at all, but basked in heat balmy enough for an ice-free polar forest to thrive. And ancient pre-history could repeat itself.

Climate scientists can tell you what the world could be like were today’s greenhouse gas concentrations to triple – which they could do if humans go on clearing tropical forests and burning fossil fuels.

They know because, 90 million years ago, the last time when carbon dioxide levels in the atmosphere went past the 1200 ppm (parts per million) mark, sea levels were 170 metres higher than today and the world was so warm that dense forests grew in what is now Antarctica.

At latitude 82 South, a region where the polar night lasts for four months, there was no icecap. Instead, the continental rocks were colonised by conifer forest, with a mix of tree ferns and an understorey of flowering shrubs.

Even though at that latitude the midday sun would have been relatively low in the sky, and the forests would have had to survive sustained winter darkness for a dozen weeks or more, average temperatures would have been that of modern day Tasmania, and a good 2C° warmer than modern Germany.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected”

German and British researchers report in the journal Nature that they took a closer look at a sequence of strangely-coloured mudstone in a core drilled 30 metres below the bottom of the sea floor, off West Antarctica.

The section of sediment had been preserved from the mid-Cretaceous, around 90 million years ago, in a world dominated by dinosaurs. By then, the first mammals may have evolved, the grasses were about to emerge, and seasonal flowering plants had begun to colonise a planet dominated for aeons by evergreens.

And in the preserved silt were pollens, spores, tangled roots and other plant material so well preserved that the researchers could not just identify the plant families, but even take a guess at parallels with modern forests. Before their eyes was evidence of something like the modern rainforests of New Zealand’s South Island, but deep inside the Antarctic Circle.

“The preservation of this 90 million-year-old forest is exceptional, but even more surprising is the world it reveals,” said Tina van de Flierdt, of Imperial College London.

“Even during months of darkness, swampy temperate forests were able to grow close to the South Pole, revealing an even warmer climate than we expected.”

British rain levels

Somewhere between 115 and 85 million years ago, the whole world was a lot hotter: in the tropics temperatures reached 35°C and the average temperature of that part of the Antarctic was 13°C. This is at least two degrees higher than the average temperature for modern Germany.

Average temperatures in summer went up to 18.5°C, and the water temperatures in the swamps and rivers tipped 20°C, only 900 kms from the then South Pole. Modern Antarctica is classed as desert, with minimal precipitation: then it would have seen 1120 mm a year. People from southwestern Scotland or parts of Wales would have felt at home.

It is an axiom of earth science that the present is key to the past: if such forests today can flourish at existing temperatures, then the same must have been true in the deep past.

So climate scientists from the start have taken a close interest in the evidence of intensely warm periods in the fossil record: a mix of plant and animal remains, the ratio of chemical isotopes preserved in rock, and even the air bubbles trapped in deep ice cores can help them reconstruct the temperatures, the composition of the atmosphere and the rainfall of, for example, the warmest periods of the Pliocene, when carbon dioxide levels in the atmosphere tipped the 1000 ppm mark, and average planetary temperatures rose by 9°C.

Prehistoric encore approaching?

In the past century, atmospheric CO2 levels have swollen from 285 ppm to more than 400 ppm, and the planetary thermometer has already crept up by 1°C above the level for most of human history. If human economies continue burning fossil fuels at an ever-increasing rate, the conditions that prevailed 56 million years ago could return by 2159.

The Cretaceous evidence will help climate scientists calibrate their models of a world in which greenhouse gas emissions go on rising.

“Before our study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1000 ppm,” said Johann Klages, of the Alfred Wegener Institute centre for polar and marine research in Germany, who led the study.

“But in our model-based experiments, it took concentration levels of 1120 to 1680 ppm to reach the average temperatures back then in Antarctica.” – Climate News Network

Tropical forests’ damage spreads catastrophically

Human inroads into tropical forests stretch far beyond oil plantations or the edge of cattle ranches and are a wider threat to conservation.

LONDON, 7 April, 2020 – Tropical forests are vital in the campaign to limit global heating. Here’s how to blunt them as a force – just put a clearing, or a plantation, a road or a ranch in the pristine wilderness. And then, as absorbers of atmospheric carbon, the trees up to 100 metres deep into the jungle will lose their edge.

Along that 100 metre width, the canopy height, leaf mass and phosphorus levels per square metre will begin to change. All three are measures of a tree’s capacity to grow vigorously and store carbon.

Researchers call this the edge effect. It matters. The world now has 1.2bn hectares of remaining tropical forest. This is an area far bigger than Canada.

But invasion of what, just one lifetime ago, were still unmapped wildernesses is now so aggressive that almost one fifth of the area of the world’s tropical forest is within 100 metres of a non-forest edge.

And about half of all the forest is within 500 metres of a ranch, road, settlement or plantation.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion”

Scientists from the US report in the Proceedings of the National Academy of Sciences that they mapped change in the forests of Malaysian Borneo, looking closely at the sites where forest and commercial palm oil plantation co-exist.

They report that the levels of carbon stored “above ground” – that is, in the trunk and canopy – fell by an average of 22% along the forest edges, to a depth of 100 metres. The older this forest edge, the greater the fall in stored carbon.

There are already reports that degradation of the rainforest in the Amazon and Congo, amplified by the impact of climate change in the form of extreme heat and drought, is so advanced that within a decade or two these forests could cease to be “sinks” for atmospheric carbon, and instead start adding to the world’s burden of greenhouse gases that threaten to accelerate climate change, with potentially catastrophic consequences.

The world’s forests are vital in the global plans to contain or limit climate change driven by profligate combustion of fossil fuels that release carbon dioxide and other greenhouse gases.

Research has repeatedly confirmed that undisturbed forest is an efficient absorber and permanent store of atmospheric carbon and that almost any human transgression could damage the capacity of the rainforest to absorb carbon.

Road web spreads

And yet all the signs are ominous: humans will go on making inroads into natural wilderness, in the most literal sense: by 2050, there could be 25 million km new road lanes, most of them in the developing world, to carry timber trucks, livestock and minerals through the world’s forests.

There is an argument that “smart” roads can limit the damage to the environment and society caused by indiscriminate engineering: one group advocating this approach is the Centre for Tropical Environmental and Sustainability Science (TESS), based at James Cook University in Australia.

But the threat to the remaining forests is now so pronounced that many researchers simply point out, in the kind of understatement that comes naturally to scientists, that such changes have “far-reaching implications” for the conservation of forest biodiversity and carbon stocks.

They see their research as a potential guide to government and local authorities on the management of the remaining wild woodland.

“Not all forest-agriculture boundaries are created equal, and most remaining forests change for many years following the original land conversion that takes place nearby,” said Greg Asner of Arizona State University, one of the researchers.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion.” – Climate News Network

Human inroads into tropical forests stretch far beyond oil plantations or the edge of cattle ranches and are a wider threat to conservation.

LONDON, 7 April, 2020 – Tropical forests are vital in the campaign to limit global heating. Here’s how to blunt them as a force – just put a clearing, or a plantation, a road or a ranch in the pristine wilderness. And then, as absorbers of atmospheric carbon, the trees up to 100 metres deep into the jungle will lose their edge.

Along that 100 metre width, the canopy height, leaf mass and phosphorus levels per square metre will begin to change. All three are measures of a tree’s capacity to grow vigorously and store carbon.

Researchers call this the edge effect. It matters. The world now has 1.2bn hectares of remaining tropical forest. This is an area far bigger than Canada.

But invasion of what, just one lifetime ago, were still unmapped wildernesses is now so aggressive that almost one fifth of the area of the world’s tropical forest is within 100 metres of a non-forest edge.

And about half of all the forest is within 500 metres of a ranch, road, settlement or plantation.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion”

Scientists from the US report in the Proceedings of the National Academy of Sciences that they mapped change in the forests of Malaysian Borneo, looking closely at the sites where forest and commercial palm oil plantation co-exist.

They report that the levels of carbon stored “above ground” – that is, in the trunk and canopy – fell by an average of 22% along the forest edges, to a depth of 100 metres. The older this forest edge, the greater the fall in stored carbon.

There are already reports that degradation of the rainforest in the Amazon and Congo, amplified by the impact of climate change in the form of extreme heat and drought, is so advanced that within a decade or two these forests could cease to be “sinks” for atmospheric carbon, and instead start adding to the world’s burden of greenhouse gases that threaten to accelerate climate change, with potentially catastrophic consequences.

The world’s forests are vital in the global plans to contain or limit climate change driven by profligate combustion of fossil fuels that release carbon dioxide and other greenhouse gases.

Research has repeatedly confirmed that undisturbed forest is an efficient absorber and permanent store of atmospheric carbon and that almost any human transgression could damage the capacity of the rainforest to absorb carbon.

Road web spreads

And yet all the signs are ominous: humans will go on making inroads into natural wilderness, in the most literal sense: by 2050, there could be 25 million km new road lanes, most of them in the developing world, to carry timber trucks, livestock and minerals through the world’s forests.

There is an argument that “smart” roads can limit the damage to the environment and society caused by indiscriminate engineering: one group advocating this approach is the Centre for Tropical Environmental and Sustainability Science (TESS), based at James Cook University in Australia.

But the threat to the remaining forests is now so pronounced that many researchers simply point out, in the kind of understatement that comes naturally to scientists, that such changes have “far-reaching implications” for the conservation of forest biodiversity and carbon stocks.

They see their research as a potential guide to government and local authorities on the management of the remaining wild woodland.

“Not all forest-agriculture boundaries are created equal, and most remaining forests change for many years following the original land conversion that takes place nearby,” said Greg Asner of Arizona State University, one of the researchers.

“The importance of this discovery trickles all the way down to how conservation managers work to mitigate biodiversity losses associated with agricultural expansion.” – Climate News Network

Vegetation holds key to climate control

New studies shine a light on the intricate relationship in which climate affects vegetation, which in turn impacts on the global climate.

LONDON, 23 March, 2020 − Here’s an easy way to warm the tropics even further: just fell some rainforest, and the local temperatures will soar by at least a degree Celsius, showing the role played by vegetation.

There is also a good way to temper the summer heat of temperate Europe: just abandon some farmland, leave it to go wild and leafy, and the thermometer will drop by perhaps as much as 1°C.

And, paradoxically, there is even a leafy way to warm the Arctic: burn lots of fossil fuels, precipitate a climate crisis, advance the growth of spring foliage by three weeks or so, and check the thermometer. The region will be even warmer, just because the Arctic has become greener.

These apparently contradictory findings are, more than anything else, a reminder that the pas de deux of vegetation and atmosphere is complex, intricate and finely balanced. Nor are they inconsistent, as each study simply takes the measure of vegetation change on local or regional climate.

Reducing heating

In sum, and for the time being, the big picture remains that forests absorb carbon, and more vigorous growth absorbs more carbon to significantly reduce the average rates of global heating across the entire planet.

In effect, all three studies demonstrate that vegetation moderates extremes of temperature in three climate zones.

Brazilian scientists report in the Public Library of Science journal
PLOS One that they subdivided a tract of the Atlantic rainforest in the southeast of the nation into 120-metre squares, measured those segments that had been part-felled or clear-felled, and read the local land surface temperatures.

If even one fourth of a hectare had been cleared, the local temperature went up by 1°C. If the entire hectare had been razed, the rise could be as high as 4°C.

Risk to trees

The Atlantic rainforest is one of the world’s richest ecosystems: it covers 15% of Brazil, but 72% of the population lives there. It holds seven of Brazil’s nine largest drainage basins, delivers water to 130 million people and its dams provide 60% of the nation’s hydroelectric power.

Between 2017 and 2018, around 113 square kilometres of this forest was cleared. As temperatures continue to rise, some tree species could be at risk.

“We don’t have enough data to predict how long it will take, but in the long run, rising temperatures in Atlantic rainforest fragments could certainly influence the survival of tree species in the forest, albeit some species more than others,” says one of the report’s authors, Carlos Joly, professor of plant biology at the University of Campinas in Brazil.

“The forest is extremely important to maintaining milder temperatures on the local and regional scale. Changes in its function could disrupt this type of ecosystem service.

“Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change”

“The Atlantic rainforest doesn’t produce water but it protects the springs and permits the storage of water in reservoirs for consumption, power generation, agricultural irrigation and fishing, among other activities.”

By contrast, Europeans have achieved a local 1°C cooling simply by abandoning farmland that was no longer sufficiently productive.

Between 1992 and 2014, the European Space Agency satellites compiled detailed maps of the continents, measuring the extents of evergreen needle-leaf forest, deciduous broadleaf woodland, open shrubland, crop fields, urban and built-up areas, wetlands, peatlands, grassland and mosaic areas of crops and wilderness.

In those 24 years – partly because of dramatic political changes that followed the collapse of the Soviet Union – around 25 million hectares of farmland was abandoned.

Drying wetlands

Although farmland was colonised elsewhere, the continent was left with 5 million hectares – an area the size of Switzerland – to be colonised by trees and other natural foliage, European scientists report in the journal Nature Communications.

Overall, the loss of cropland in Western Europe was associated with a drop of 1° in spring and summer. In eastern and northeastern Europe, however, temperatures rose by as much as 1°C, partly because what had once been wetlands began to dry.

“We are already at a mean warming of about 1.8°C on the land, and we will be about 3°C on the land even if we are successful at stabilising the average global temperature at 1.5°C,” says one of the report’s authors, Francesco Cherubini, director of the Industrial Ecology Programme at the Norwegian University of Science and Technology.

“That means we take action to adapt to a warming climate, and land use planning is one action that can bring local cooling benefits.”

The Arctic greens

“The message is quite clear. Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change. And by improving agricultural systems, we can free up land for multiple uses.”

But while Europe is changing, and forest in the tropics is being lost, the Arctic is becoming greener: as temperatures rise, vegetation has moved northwards and spring has arrived ever earlier, and growing seasons have lasted longer.

The science of measurement of seasonal change in plant and animal behaviour is called phenology. Chinese and US scientists report in Nature Climate Change that they looked at computer models of vegetation change and factored in the numbers: on average, in the last four decades, leaf-out has advanced by an average of more than four days a decade, and in some cases up to 12 days a decade.

That means snow-covered ground has retreated, and green leaves have moved northwards, and become denser.

Climate feedback

Snow reflects solar radiation, and darker colours absorb it. That means that local landscapes in the north have tended to become even warmer with each decade.

In the Canadian archipelago, the air has been measured at 0.7°C warmer, and parts of Siberia and the Tibetan plateau − far from any leafy canopy − have warmed by 0.4°C and 0.3°C respectively because advanced leaf-out further south means more water vapour, which moves north to change patterns of cloud cover and snowfall.

Climate scientists see this as positive feedback: climate change begets even faster climate change. Global heating tends to accelerate. Climate change affects vegetation, which in turn affects climate yet further.

“Positive feedback loops between climate and spring leaf phenology is likely to amplify in the northern high latitudes,” says Gensuo Jia, one of the researchers from the Chinese Academy of Sciences. “The impact of vegetation change on climate is profound in spring.” − Climate News Network

New studies shine a light on the intricate relationship in which climate affects vegetation, which in turn impacts on the global climate.

LONDON, 23 March, 2020 − Here’s an easy way to warm the tropics even further: just fell some rainforest, and the local temperatures will soar by at least a degree Celsius, showing the role played by vegetation.

There is also a good way to temper the summer heat of temperate Europe: just abandon some farmland, leave it to go wild and leafy, and the thermometer will drop by perhaps as much as 1°C.

And, paradoxically, there is even a leafy way to warm the Arctic: burn lots of fossil fuels, precipitate a climate crisis, advance the growth of spring foliage by three weeks or so, and check the thermometer. The region will be even warmer, just because the Arctic has become greener.

These apparently contradictory findings are, more than anything else, a reminder that the pas de deux of vegetation and atmosphere is complex, intricate and finely balanced. Nor are they inconsistent, as each study simply takes the measure of vegetation change on local or regional climate.

Reducing heating

In sum, and for the time being, the big picture remains that forests absorb carbon, and more vigorous growth absorbs more carbon to significantly reduce the average rates of global heating across the entire planet.

In effect, all three studies demonstrate that vegetation moderates extremes of temperature in three climate zones.

Brazilian scientists report in the Public Library of Science journal
PLOS One that they subdivided a tract of the Atlantic rainforest in the southeast of the nation into 120-metre squares, measured those segments that had been part-felled or clear-felled, and read the local land surface temperatures.

If even one fourth of a hectare had been cleared, the local temperature went up by 1°C. If the entire hectare had been razed, the rise could be as high as 4°C.

Risk to trees

The Atlantic rainforest is one of the world’s richest ecosystems: it covers 15% of Brazil, but 72% of the population lives there. It holds seven of Brazil’s nine largest drainage basins, delivers water to 130 million people and its dams provide 60% of the nation’s hydroelectric power.

Between 2017 and 2018, around 113 square kilometres of this forest was cleared. As temperatures continue to rise, some tree species could be at risk.

“We don’t have enough data to predict how long it will take, but in the long run, rising temperatures in Atlantic rainforest fragments could certainly influence the survival of tree species in the forest, albeit some species more than others,” says one of the report’s authors, Carlos Joly, professor of plant biology at the University of Campinas in Brazil.

“The forest is extremely important to maintaining milder temperatures on the local and regional scale. Changes in its function could disrupt this type of ecosystem service.

“Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change”

“The Atlantic rainforest doesn’t produce water but it protects the springs and permits the storage of water in reservoirs for consumption, power generation, agricultural irrigation and fishing, among other activities.”

By contrast, Europeans have achieved a local 1°C cooling simply by abandoning farmland that was no longer sufficiently productive.

Between 1992 and 2014, the European Space Agency satellites compiled detailed maps of the continents, measuring the extents of evergreen needle-leaf forest, deciduous broadleaf woodland, open shrubland, crop fields, urban and built-up areas, wetlands, peatlands, grassland and mosaic areas of crops and wilderness.

In those 24 years – partly because of dramatic political changes that followed the collapse of the Soviet Union – around 25 million hectares of farmland was abandoned.

Drying wetlands

Although farmland was colonised elsewhere, the continent was left with 5 million hectares – an area the size of Switzerland – to be colonised by trees and other natural foliage, European scientists report in the journal Nature Communications.

Overall, the loss of cropland in Western Europe was associated with a drop of 1° in spring and summer. In eastern and northeastern Europe, however, temperatures rose by as much as 1°C, partly because what had once been wetlands began to dry.

“We are already at a mean warming of about 1.8°C on the land, and we will be about 3°C on the land even if we are successful at stabilising the average global temperature at 1.5°C,” says one of the report’s authors, Francesco Cherubini, director of the Industrial Ecology Programme at the Norwegian University of Science and Technology.

“That means we take action to adapt to a warming climate, and land use planning is one action that can bring local cooling benefits.”

The Arctic greens

“The message is quite clear. Abandoned cropland – or land cover change more generally – and its role in regional climate can help us adapt to and mitigate the effects of climate change. And by improving agricultural systems, we can free up land for multiple uses.”

But while Europe is changing, and forest in the tropics is being lost, the Arctic is becoming greener: as temperatures rise, vegetation has moved northwards and spring has arrived ever earlier, and growing seasons have lasted longer.

The science of measurement of seasonal change in plant and animal behaviour is called phenology. Chinese and US scientists report in Nature Climate Change that they looked at computer models of vegetation change and factored in the numbers: on average, in the last four decades, leaf-out has advanced by an average of more than four days a decade, and in some cases up to 12 days a decade.

That means snow-covered ground has retreated, and green leaves have moved northwards, and become denser.

Climate feedback

Snow reflects solar radiation, and darker colours absorb it. That means that local landscapes in the north have tended to become even warmer with each decade.

In the Canadian archipelago, the air has been measured at 0.7°C warmer, and parts of Siberia and the Tibetan plateau − far from any leafy canopy − have warmed by 0.4°C and 0.3°C respectively because advanced leaf-out further south means more water vapour, which moves north to change patterns of cloud cover and snowfall.

Climate scientists see this as positive feedback: climate change begets even faster climate change. Global heating tends to accelerate. Climate change affects vegetation, which in turn affects climate yet further.

“Positive feedback loops between climate and spring leaf phenology is likely to amplify in the northern high latitudes,” says Gensuo Jia, one of the researchers from the Chinese Academy of Sciences. “The impact of vegetation change on climate is profound in spring.” − Climate News Network

Tropical forests may be heating Earth by 2035

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Climate change so far has meant more vigorous forest growth as greenhouse gases rise. The tropical forests may soon change that.

LONDON, 6 March, 2020 – Within about fifteen years, the great tropical forests of Amazonia and Africa could stop absorbing atmospheric carbon, and slowly start to release more carbon than growing trees can fix.

A team of scientists from 100 research institutions has looked at the evidence from pristine tracts of tropical forest to find that – overall – the foliage soaked up the most carbon, most efficiently, more than two decades ago.

Since then, the measured efficiency of the forests as a “sink” in which carbon is sequestered from the atmosphere has been dwindling. By the last decade, the ability of a tropical forest to absorb carbon had dropped by a third.

All plant growth is a balancing act based on sunshine and atmospheric carbon and rainfall. Plants absorb carbon dioxide as they grow, and surrender it as they die.

In a dense, undisturbed wilderness, fallen leaves and even fallen trees are slightly less likely to decompose completely: the atmospheric carbon in leaf and wood form has a better chance of being preserved in flooded forests as peat, or being buried before it can completely decompose.

The forest becomes a bank vault, repository or sink of the extra carbon that humans are now spilling into the atmosphere from car exhausts, factory chimneys and power station furnaces.

Theory and practice

And in theory, as more and more carbon dioxide gets into the atmosphere, plants respond to the more generous fertilisation by growing more vigorously, and absorbing more carbon.

But as more carbon gets into the atmosphere, the temperature rises and weather patterns begin to become more extreme. Summers get hotter, rainfall more capricious. Then trees become vulnerable to drought, forest fire and invasive diseases, and die more often, and decompose more completely.

Wannes Hubau, once of the University of Leeds in the UK and now at the Royal Museum for Central Africa in Belgium, and more than 100 colleagues from around the world, report in the journal Nature that they assembled 30 years of measurement from more than 300,000 trees in 244 undisturbed plots of forest in 11 countries in Africa, and from 321 plots of forest in Amazonia, and did the sums.

In the 1990s, intact tropical forests removed around 46 billion tonnes of carbon dioxide from the atmosphere. By the 2010s, the uptake had fallen to around 25 billion tonnes. This means that 21 billion tons of greenhouse gas that might otherwise have been turned into timber and root had been added to the atmosphere.

This is pretty much what the UK, France, Germany and Canada together spilled into the atmosphere from fossil fuel combustion over a 10-year period.

“We’ve found one of the most worrying impacts of climate change has already begun. This is decades ahead of even the most pessimistic climate models”

“Extra carbon boosts tree growth, but every year this effect is being increasingly countered by the negative impacts of higher temperatures and droughts which slow growth and can kill trees,” said Dr Hubau.

“Our modeling shows a long-term decline in the African sink and that the Amazon sink will continue to rapidly weaken, which we predict will become a carbon source in the mid-2030s.”

Tropical forests are an integral factor in the planetary carbon budget – a crude accounting system that climate scientists rely upon to model the choice of futures that face humankind as the world heats up.

Around half of Earth’s carbon is stored in terrestrial vegetation and the tropical forests account for about a third of the planet’s primary productivity. So how forests respond to a warmer world is vital.

Because the Amazon region is being hit by higher temperatures, and more frequent and prolonged droughts than forests in tropical Africa, Amazonia is weakening at a faster rate.

But decline has also begun in Africa. In the 1990s, the undisturbed tropical forests alone inhaled 17% of human-made carbon dioxide emissions. In the decade just ended, this proportion fell to 6%.

Catastrophic prospect

In roughly the same period, the area of intact forest fell by 19%, and global carbon dioxide emissions rose by 46%. Even so, the tropical forests store 250 billion tonnes of carbon in their trees alone: 90 years of fossil fuel emissions at the present rate. So their sustained loss would be catastrophic.

“Intact tropical forests remain a vital carbon sink but this research reveals that unless policies are put in place to stabilise the Earth’s climate, it is only a matter of time until they are no longer able to sequester carbon,” said Simon Lewis, a geographer at the University of Leeds, and one of the authors.

“One big concern for the future of humanity is when carbon-cycle feedbacks really kick in, with nature switching from slowing climate change to accelerating it.

“After years of work deep in the Congo and Amazon rainforests, we’ve found one of the most worrying impacts of climate change has already begun.

“This is decades ahead of even the most pessimistic climate models. There is no time to lose in tackling climate change.” – Climate News Network

Rare trees saved from Australia’s wildfires

This story originally appeared in the Bulletin of the Atomic Scientists and is republished here as part of Covering Climate Now, a global journalism collaboration to strengthen coverage of the climate story.

Buried amid the horrific news from Australia about climate change and out-of-control wildfire was a positive story: the saving of rare trees.

CHICAGO, 5 February, 2020 − An Associated Press story  titled Firefighters in Australia save unique prehistoric trees brought a scarce gleam of hope: “Firefighters winched from helicopters to reach the cluster of fewer than 200 Wollemi Pines in a remote gorge in the Blue Mountains a week before a massive wildfire bore down… the firefighters set up an irrigation system to keep the so-called dinosaur trees moist, and pumped water daily from the gorge as the blaze that had burned out of control for two months edged closer.”

This news had particular significance to me for a number of reasons. For one thing, the successful protection of this endangered species could hint at things to come − if we play our cards right.

For another, I know the Blue Mountains of New South Wales (though I have not been to that grove of trees − whose exact location has been kept a secret by botanists ever since it was first discovered in 1994.)

I spent four years down-under, first as an American researcher on a Fulbright grant to see what we in the States could learn from looking at the Australian experience, and then as a roving foreign correspondent for science-related US magazines such as International Wildlife, Scientific American, and the journal Science, among others.

My job was to travel over the land down-under, reporting on natural history, the environment, and science in the Great South Land for publications back home in the States − as well as magazines like Australian Geographic.

Easy to miss

Which was how I became acquainted with the Blue Mountains, a lesser-known area about 120 miles west of Sydney. They’re a surprisingly steep, thickly wooded, and easily overlooked mountain chain, much like an Aussie version of our Appalachians. And much like the Appalachians, their deep ravines held up westward exploration and expansion for a long time. But there the parallels end.

Walking in Australia’s Blue Mountains is an unworldly experience. There are no squirrels or chipmunks; instead, parrots occupy that ecological niche. My edition of the Field Guide to the Birds of Australia lists 23 different species of parrots alone.

Just a short list of the formal names of some of the individual species gives an idea of the colorful diversity you can see: Blue-winged, Orange-bellied, Golden-shouldered, Scarlet-chested, Red-rumped, and Turquoise parrots. Not to mention Elegant, Paradise, Superb, and King parrots.

And instead of smelling pine trees, your nose registers the scent of eucalypts. Look up at the stars at night, and there’s not a single familiar constellation; instead you see celestial objects like the Jewel Box Cluster − while hearing the mocking laugh of kookaburras.

Even the food tastes different − in place of pepperoni or sausage, toppings at the Australian Pizza Kitchen in Canberra include emu and kangaroo (I prefer the kangaroo).

“These trees are descendants of individuals that had survived since the era of the dinosaurs”

And some of the trees in parts of the Blueys − as they’re called − resemble nothing so much as short stumps with ferns popping out of their sides willy-nilly; everything looks so primeval you half-expect to see escapees from Jurassic Park poking their snouts out.

Indeed, in far-north Queensland I and my parents were to be stalked by a full-grown, adult male cassowary, defending his mate. We took shelter behind a large tropical tree, trying to keep the trunk between us and the approximately 200-pound, 6-foot-tall creature as it circled around.

This pervasive feeling of encounters with the primeval is appropriate. Australia is a very ancient land, which used to be part of what geologists call Gondwana − when most of the world’s landmasses were linked together in the distant past.

But while the other landforms went on to become continents such as South America and Africa, Australia remained a giant island continent, cut off from the rest of the planet. And species that died out elsewhere continued to thrive, and evolve, here.

(Just why species do so well on islands, and why evolution seems to speed up on them, is something that kept Charles Darwin busy. An entire field of island biogeography has sprung up to delve into its mysteries.)

Human rarities

Even now, some parts of Australia are so isolated that the wildlife has seldom seen humans. So far as researchers can tell, no Aborigines, Melanesians, Micronesians, Polynesians, or Caucasians ever settled on Australia’s Lord Howe Island until 1834; consequently, the wildlife never learned to be afraid of humans.

When I went there, you could stand at the foot of Lord Howe’s tallest mountain, call up to the providence petrels nesting as much as a hundred feet above, and watch the birds glide down to land at your feet. If you’re really good, you may be able to touch them, or at least have one land on your outstretched arm.

Due to these vagaries of isolation, ancient and unique species seem to abound in Australia − though they can be easily overlooked. Drive along the highway outside Shark Bay in the state of Western Australia, and you’ll spot weird dark, mushroom-shaped, rock-like structures in the shallows of the hyper-salty water; they’re actually living mats of blue-green algae known as stromatolites − Greek for “layered rock.”

Stromatolites are one of the oldest forms of life that we know of, essentially unchanged since their ancestors flourished 3.5 billion years ago. They were previously known to us only from fossils, until first discovered in this region in the 1980s.

So it’s not entirely surprising that Wollemi Pines should survive in the wild, undetected, a relatively short drive from Sydney for so many years; after all, these trees are descendants of individuals that had survived since the era of the dinosaurs − though they now exist in the wild in only one place in the world, with fewer than 100 adult specimens known.

Survivors for sale

What was surprising was that these wild specimens were saved from the wildfires, in a complex operation that involved firefighters being lowered from helicopters into the narrow steep-sided ridges where the trees dwell, along with planes strategically bombing the advancing firefront with fire retardant.

And well in advance of events these past months, authorities had covered their bets by doing all they could to increase the species’ chance of survival. Since 2006, a propagation program has made these trees available to botanical gardens so their numbers could be increased; I’ve subsequently run across Aussies who have grown the plants from seeds in their living rooms. (In Australia, seedlings can even be ordered online,  and the Royal Botanic Gardens Sydney offer information on Wollemi care, conservation, and research.)

More than that, when it looked like the wildfires were in imminent danger of destroying the only existing stand of these trees in the wild, leaders had the foresight to rely on the recommendations of scientists, firefighters, and other experts as to how to proceed. They then worked out a plan and put it into action − actively dealing with the problem rather than denying it existed.

In short, in the time since the Wollemi Pines were discovered, government agencies, nonprofit organisations, private enterprise and volunteer efforts successfully worked together over decades to protect the trees from extinction.

Which makes one wonder, once again, what we in the States could learn from observing the Australian experience. − Climate News Network

This story originally appeared in the Bulletin of the Atomic Scientists and is republished here as part of Covering Climate Now, a global journalism collaboration to strengthen coverage of the climate story.

Buried amid the horrific news from Australia about climate change and out-of-control wildfire was a positive story: the saving of rare trees.

CHICAGO, 5 February, 2020 − An Associated Press story  titled Firefighters in Australia save unique prehistoric trees brought a scarce gleam of hope: “Firefighters winched from helicopters to reach the cluster of fewer than 200 Wollemi Pines in a remote gorge in the Blue Mountains a week before a massive wildfire bore down… the firefighters set up an irrigation system to keep the so-called dinosaur trees moist, and pumped water daily from the gorge as the blaze that had burned out of control for two months edged closer.”

This news had particular significance to me for a number of reasons. For one thing, the successful protection of this endangered species could hint at things to come − if we play our cards right.

For another, I know the Blue Mountains of New South Wales (though I have not been to that grove of trees − whose exact location has been kept a secret by botanists ever since it was first discovered in 1994.)

I spent four years down-under, first as an American researcher on a Fulbright grant to see what we in the States could learn from looking at the Australian experience, and then as a roving foreign correspondent for science-related US magazines such as International Wildlife, Scientific American, and the journal Science, among others.

My job was to travel over the land down-under, reporting on natural history, the environment, and science in the Great South Land for publications back home in the States − as well as magazines like Australian Geographic.

Easy to miss

Which was how I became acquainted with the Blue Mountains, a lesser-known area about 120 miles west of Sydney. They’re a surprisingly steep, thickly wooded, and easily overlooked mountain chain, much like an Aussie version of our Appalachians. And much like the Appalachians, their deep ravines held up westward exploration and expansion for a long time. But there the parallels end.

Walking in Australia’s Blue Mountains is an unworldly experience. There are no squirrels or chipmunks; instead, parrots occupy that ecological niche. My edition of the Field Guide to the Birds of Australia lists 23 different species of parrots alone.

Just a short list of the formal names of some of the individual species gives an idea of the colorful diversity you can see: Blue-winged, Orange-bellied, Golden-shouldered, Scarlet-chested, Red-rumped, and Turquoise parrots. Not to mention Elegant, Paradise, Superb, and King parrots.

And instead of smelling pine trees, your nose registers the scent of eucalypts. Look up at the stars at night, and there’s not a single familiar constellation; instead you see celestial objects like the Jewel Box Cluster − while hearing the mocking laugh of kookaburras.

Even the food tastes different − in place of pepperoni or sausage, toppings at the Australian Pizza Kitchen in Canberra include emu and kangaroo (I prefer the kangaroo).

“These trees are descendants of individuals that had survived since the era of the dinosaurs”

And some of the trees in parts of the Blueys − as they’re called − resemble nothing so much as short stumps with ferns popping out of their sides willy-nilly; everything looks so primeval you half-expect to see escapees from Jurassic Park poking their snouts out.

Indeed, in far-north Queensland I and my parents were to be stalked by a full-grown, adult male cassowary, defending his mate. We took shelter behind a large tropical tree, trying to keep the trunk between us and the approximately 200-pound, 6-foot-tall creature as it circled around.

This pervasive feeling of encounters with the primeval is appropriate. Australia is a very ancient land, which used to be part of what geologists call Gondwana − when most of the world’s landmasses were linked together in the distant past.

But while the other landforms went on to become continents such as South America and Africa, Australia remained a giant island continent, cut off from the rest of the planet. And species that died out elsewhere continued to thrive, and evolve, here.

(Just why species do so well on islands, and why evolution seems to speed up on them, is something that kept Charles Darwin busy. An entire field of island biogeography has sprung up to delve into its mysteries.)

Human rarities

Even now, some parts of Australia are so isolated that the wildlife has seldom seen humans. So far as researchers can tell, no Aborigines, Melanesians, Micronesians, Polynesians, or Caucasians ever settled on Australia’s Lord Howe Island until 1834; consequently, the wildlife never learned to be afraid of humans.

When I went there, you could stand at the foot of Lord Howe’s tallest mountain, call up to the providence petrels nesting as much as a hundred feet above, and watch the birds glide down to land at your feet. If you’re really good, you may be able to touch them, or at least have one land on your outstretched arm.

Due to these vagaries of isolation, ancient and unique species seem to abound in Australia − though they can be easily overlooked. Drive along the highway outside Shark Bay in the state of Western Australia, and you’ll spot weird dark, mushroom-shaped, rock-like structures in the shallows of the hyper-salty water; they’re actually living mats of blue-green algae known as stromatolites − Greek for “layered rock.”

Stromatolites are one of the oldest forms of life that we know of, essentially unchanged since their ancestors flourished 3.5 billion years ago. They were previously known to us only from fossils, until first discovered in this region in the 1980s.

So it’s not entirely surprising that Wollemi Pines should survive in the wild, undetected, a relatively short drive from Sydney for so many years; after all, these trees are descendants of individuals that had survived since the era of the dinosaurs − though they now exist in the wild in only one place in the world, with fewer than 100 adult specimens known.

Survivors for sale

What was surprising was that these wild specimens were saved from the wildfires, in a complex operation that involved firefighters being lowered from helicopters into the narrow steep-sided ridges where the trees dwell, along with planes strategically bombing the advancing firefront with fire retardant.

And well in advance of events these past months, authorities had covered their bets by doing all they could to increase the species’ chance of survival. Since 2006, a propagation program has made these trees available to botanical gardens so their numbers could be increased; I’ve subsequently run across Aussies who have grown the plants from seeds in their living rooms. (In Australia, seedlings can even be ordered online,  and the Royal Botanic Gardens Sydney offer information on Wollemi care, conservation, and research.)

More than that, when it looked like the wildfires were in imminent danger of destroying the only existing stand of these trees in the wild, leaders had the foresight to rely on the recommendations of scientists, firefighters, and other experts as to how to proceed. They then worked out a plan and put it into action − actively dealing with the problem rather than denying it existed.

In short, in the time since the Wollemi Pines were discovered, government agencies, nonprofit organisations, private enterprise and volunteer efforts successfully worked together over decades to protect the trees from extinction.

Which makes one wonder, once again, what we in the States could learn from observing the Australian experience. − Climate News Network