Tag Archives: fossil fuels

How to save economy and climate together

There’s growing agreement by economists and scientists: Covid-19 needs the world to rescue both economy and climate together.

LONDON, 7 May, 2020 − The warnings are stark. With the Covid-19 crisis wreaking global havoc and the overheating atmosphere threatening far worse in the long term, especially if governments rely on the same old carbon-intensive ways, both economy and climate will sink or swim together.

“There are reasons to fear that we will leap from the Covid-19 frying pan into the climate fire”, says a new report, Will Covid-19 fiscal recovery packages accelerate or retard progress on Climate Change? Published by the Smith School of Enterprise and Environment at the University of Oxford, UK, it says now is the time for governments to restructure their economies and act decisively to tackle climate change.

“The climate emergency is like the Covid-19 emergency, just in slow motion and much graver”, says the study, written by a team of economic and climate change heavyweights including Joseph Stiglitz, Cameron Hepburn and Nicholas Stern.

Economic recovery packages emerging in the coming months will have a significant impact on whether globally agreed climate goals are met, says the report.

“The recovery packages can either kill two birds with one stone – setting the global economy on a pathway to net-zero emissions – or lock us into a fossil system from which it will be nearly impossible to escape.”

“In the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments”

The study’s authors talked to economists, finance officials and central banks around the world.

They say that putting policies aimed at tackling climate change at the centre of recovery plans makes economic as well as environmental sense.

“… Green projects create more jobs, deliver higher short-term returns per dollar spend and lead to increased long term-term cost saving, by comparison with traditional fiscal stimulus”, says the report.

“Examples include investment in renewable energy production, such as wind or solar.

“As previous research has shown, in the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments.”

Fundamental change coming

Covid-19 is causing great suffering and considerable economic hardship around the world. But it has also resulted in cleaner air and waterways, a quieter environment and far less commuting to and from work, with people in the developed countries doing more work from home.

The International Energy Agency (IEA) said in a recent survey that Covid-19 and other factors were bringing about a fundamental change in the global energy market, with the use of climate-changing fossil fuels falling sharply and prices of oil, coal and gas plummeting. The IEA also projected that global emissions of greenhouses gases would fall by 8% in 2020, more than any other year on record.

The Oxford report says that with the implementation of the right policies, these positive changes can be sustained: by tackling climate change, many economic and other problems will be solved.

Sceptics have often said that public resistance to changes in lifestyle will prevent governments from taking any substantial action on the climate issue. The study begs to differ: “The (Covid-19) crisis has also demonstrated that governments can intervene decisively once the scale of an emergency is clear and public support is present.”

Economists and finance experts are calling for the UK to play a decisive role in ensuring that economies around the world do not return to the old, high-carbon ways but instead implement green recovery packages.

Climate conference

The UK is president and co-host of COP-26, the round of UN climate talks originally due to take place in November this year but now, due to Covid, postponed to early 2021.

The round is seen as a vital part of efforts to prevent catastrophic climate change.

Mark Carney, the former governor of the Bank of England, now a finance adviser to the British prime minister for COP-26, says the UK has the opportunity to bring about fundamental changes in order to combat a warming world.

“The UK’s global leadership in financial services provides a unique opportunity to address climate change by transforming the financial system”, he says.

“To seize it, all financial decisions need to take into account the risks from climate change and the opportunities from the transition to a net zero economy.” − Climate News Network

There’s growing agreement by economists and scientists: Covid-19 needs the world to rescue both economy and climate together.

LONDON, 7 May, 2020 − The warnings are stark. With the Covid-19 crisis wreaking global havoc and the overheating atmosphere threatening far worse in the long term, especially if governments rely on the same old carbon-intensive ways, both economy and climate will sink or swim together.

“There are reasons to fear that we will leap from the Covid-19 frying pan into the climate fire”, says a new report, Will Covid-19 fiscal recovery packages accelerate or retard progress on Climate Change? Published by the Smith School of Enterprise and Environment at the University of Oxford, UK, it says now is the time for governments to restructure their economies and act decisively to tackle climate change.

“The climate emergency is like the Covid-19 emergency, just in slow motion and much graver”, says the study, written by a team of economic and climate change heavyweights including Joseph Stiglitz, Cameron Hepburn and Nicholas Stern.

Economic recovery packages emerging in the coming months will have a significant impact on whether globally agreed climate goals are met, says the report.

“The recovery packages can either kill two birds with one stone – setting the global economy on a pathway to net-zero emissions – or lock us into a fossil system from which it will be nearly impossible to escape.”

“In the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments”

The study’s authors talked to economists, finance officials and central banks around the world.

They say that putting policies aimed at tackling climate change at the centre of recovery plans makes economic as well as environmental sense.

“… Green projects create more jobs, deliver higher short-term returns per dollar spend and lead to increased long term-term cost saving, by comparison with traditional fiscal stimulus”, says the report.

“Examples include investment in renewable energy production, such as wind or solar.

“As previous research has shown, in the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments.”

Fundamental change coming

Covid-19 is causing great suffering and considerable economic hardship around the world. But it has also resulted in cleaner air and waterways, a quieter environment and far less commuting to and from work, with people in the developed countries doing more work from home.

The International Energy Agency (IEA) said in a recent survey that Covid-19 and other factors were bringing about a fundamental change in the global energy market, with the use of climate-changing fossil fuels falling sharply and prices of oil, coal and gas plummeting. The IEA also projected that global emissions of greenhouses gases would fall by 8% in 2020, more than any other year on record.

The Oxford report says that with the implementation of the right policies, these positive changes can be sustained: by tackling climate change, many economic and other problems will be solved.

Sceptics have often said that public resistance to changes in lifestyle will prevent governments from taking any substantial action on the climate issue. The study begs to differ: “The (Covid-19) crisis has also demonstrated that governments can intervene decisively once the scale of an emergency is clear and public support is present.”

Economists and finance experts are calling for the UK to play a decisive role in ensuring that economies around the world do not return to the old, high-carbon ways but instead implement green recovery packages.

Climate conference

The UK is president and co-host of COP-26, the round of UN climate talks originally due to take place in November this year but now, due to Covid, postponed to early 2021.

The round is seen as a vital part of efforts to prevent catastrophic climate change.

Mark Carney, the former governor of the Bank of England, now a finance adviser to the British prime minister for COP-26, says the UK has the opportunity to bring about fundamental changes in order to combat a warming world.

“The UK’s global leadership in financial services provides a unique opportunity to address climate change by transforming the financial system”, he says.

“To seize it, all financial decisions need to take into account the risks from climate change and the opportunities from the transition to a net zero economy.” − Climate News Network

Sir John Houghton: UK climate science pioneer

A towering figure in tackling global heating, the UK climate science pioneer Sir John Houghton has died at 88.

LONDON, 5 May, 2020 − One of the many victims of the coronavirus pandemic has been the 88-year-old British climate change expert and meteorologist Sir John Houghton, who died on 15 April.

During the final quarter of the twentieth century he  was amongst the handful of key scientific figures who moved concern about the threat of climate change from being something dismissed as a cranky theory to its current political acceptance as one of the most important issues facing the world. Memorably, he was the scientist who persuaded the UK government to take climate change seriously.

Educated at Rhyl Grammar School, he won a scholarship to Jesus College, Oxford, where he held a fellowship between 1960 and 1983, the last seven of these as professor of atmospheric physics. He became a Fellow of the Royal Society, the United Kingdom’s national academy of sciences, in 1972, was appointed a CBE in 1983, and was given a knighthood by the then prime minister, John Major, in 1991.

He chaired the scientific committee of the World Climate Research Programme between 1981 and 1983 and the Earth Observation Advisory Committee from 1982, moving on to chair the initial scientific assessment panel of the newly formed Intergovernmental  Panel on Climate Change (IPCC) from 1988 to 2001 − still the foremost international science organisation concerned with climate change.

“Fundamentally a rather shy and diffident man, his obvious academic prowess and his probity meant that his was the voice that always carried real authority”

He was lead editor of the IPCC’s first three assessments of the science of global climate change; his books include Global Warming: The Complete Briefing, aimed at the non-scientific reader and now in its fifth edition.

In an unprecedented move, the IPCC has announced that the scientific section of its forthcoming Sixth Assessment Report, due in early 2022, is to be formally dedicated to Sir John’s memory.

He set up the Met Office’s Hadley Centre, published many outstanding papers on atmospherics, and became the most frequent scientific broadcaster and lecturer on climate change issues.

He had moved from academia to become the chief executive of the Met Office in Bracknell, near London, in 1983, where my stepfather, the late Michael Blackwell (holder of the Polar Medal), was a senior fellow-scientist. I recall being at my parents’ house just outside Bracknell that year, and first meeting John Houghton at a dinner party there.

Because I had recently launched the Association for the Conservation of Energy, he talked to me at length about his work on what was then called the Greenhouse Effect, and the impact that excessive consumption of fuels (they were practically all fossil-based then) was having upon average temperatures worldwide.

Stressing the benefits

In Sir John’s view, reducing unnecessary energy consumption was the most effective way to combat this threat. He urged me to campaign  stressing this beneficial aspect, rather more than the employment, health and economic arguments I had been pursuing,

He was influential in ensuring the House of Commons environment select committee, under the late (and also lamented) Sir Hugh Rossi MP, who died the day before him, on 14 April, became the first major UK institution to examine the potential of this policy solution for ameliorating the threat of climate change.

Later in that decade, in 1989, both privately and publicly he was key to persuading the then prime minister Margaret Thatcher (a former chemist) to make her seminal Royal Society speech on global warming, a speech that still provides the intellectual leitmotif for greening the Conservative Party.

Just after that speech Mrs Thatcher arranged for Sir John to organise a full day briefing for the entire Cabinet on the threat of climate change, an event recalled by Ken Clarke in his autobiography Kind of Blue as an occasion of distinctly confused ennui for almost all attendees (with the possible exceptions of two sympathetic senior Conservative MPs, Chris Patten and John Gummer): it was certainly very unfamiliar political territory then. Around that time he was appointed as scientific chair of the newly formed IPCC: the rest is history.

Providing moral support

Some 13 years after we first met I coincided with him in a broadcasting studio. To my surprise, he recalled well that first meeting, and congratulated me for being amongst those who really had listened in detail to what he had been saying.

I recall in 1999 (somewhat to my surprise) being invited myself to give a lecture at the Royal Society, always quintessentially his territory, and being very flattered to find he had popped into the back of the room when I started as he put it, to give me moral support.

A very devout Christian, his overt sincerity has triumphed over the cynicism, lies and self-interest that the purveyors of pollution always employ, to try to colour the climate change debate. Fundamentally a rather shy and diffident man, his obvious academic prowess and his probity meant that his was the voice that always carried real authority.

Everyone concerned to combat the threat of climate change will always owe an unpayable debt to John Theodore Houghton. − Climate News Network

* * * * *

Andrew Warren was director of the Association for the Conservation of Energy between 1981 and 2014. He now chairs the British Energy Efficiency Federation.

A towering figure in tackling global heating, the UK climate science pioneer Sir John Houghton has died at 88.

LONDON, 5 May, 2020 − One of the many victims of the coronavirus pandemic has been the 88-year-old British climate change expert and meteorologist Sir John Houghton, who died on 15 April.

During the final quarter of the twentieth century he  was amongst the handful of key scientific figures who moved concern about the threat of climate change from being something dismissed as a cranky theory to its current political acceptance as one of the most important issues facing the world. Memorably, he was the scientist who persuaded the UK government to take climate change seriously.

Educated at Rhyl Grammar School, he won a scholarship to Jesus College, Oxford, where he held a fellowship between 1960 and 1983, the last seven of these as professor of atmospheric physics. He became a Fellow of the Royal Society, the United Kingdom’s national academy of sciences, in 1972, was appointed a CBE in 1983, and was given a knighthood by the then prime minister, John Major, in 1991.

He chaired the scientific committee of the World Climate Research Programme between 1981 and 1983 and the Earth Observation Advisory Committee from 1982, moving on to chair the initial scientific assessment panel of the newly formed Intergovernmental  Panel on Climate Change (IPCC) from 1988 to 2001 − still the foremost international science organisation concerned with climate change.

“Fundamentally a rather shy and diffident man, his obvious academic prowess and his probity meant that his was the voice that always carried real authority”

He was lead editor of the IPCC’s first three assessments of the science of global climate change; his books include Global Warming: The Complete Briefing, aimed at the non-scientific reader and now in its fifth edition.

In an unprecedented move, the IPCC has announced that the scientific section of its forthcoming Sixth Assessment Report, due in early 2022, is to be formally dedicated to Sir John’s memory.

He set up the Met Office’s Hadley Centre, published many outstanding papers on atmospherics, and became the most frequent scientific broadcaster and lecturer on climate change issues.

He had moved from academia to become the chief executive of the Met Office in Bracknell, near London, in 1983, where my stepfather, the late Michael Blackwell (holder of the Polar Medal), was a senior fellow-scientist. I recall being at my parents’ house just outside Bracknell that year, and first meeting John Houghton at a dinner party there.

Because I had recently launched the Association for the Conservation of Energy, he talked to me at length about his work on what was then called the Greenhouse Effect, and the impact that excessive consumption of fuels (they were practically all fossil-based then) was having upon average temperatures worldwide.

Stressing the benefits

In Sir John’s view, reducing unnecessary energy consumption was the most effective way to combat this threat. He urged me to campaign  stressing this beneficial aspect, rather more than the employment, health and economic arguments I had been pursuing,

He was influential in ensuring the House of Commons environment select committee, under the late (and also lamented) Sir Hugh Rossi MP, who died the day before him, on 14 April, became the first major UK institution to examine the potential of this policy solution for ameliorating the threat of climate change.

Later in that decade, in 1989, both privately and publicly he was key to persuading the then prime minister Margaret Thatcher (a former chemist) to make her seminal Royal Society speech on global warming, a speech that still provides the intellectual leitmotif for greening the Conservative Party.

Just after that speech Mrs Thatcher arranged for Sir John to organise a full day briefing for the entire Cabinet on the threat of climate change, an event recalled by Ken Clarke in his autobiography Kind of Blue as an occasion of distinctly confused ennui for almost all attendees (with the possible exceptions of two sympathetic senior Conservative MPs, Chris Patten and John Gummer): it was certainly very unfamiliar political territory then. Around that time he was appointed as scientific chair of the newly formed IPCC: the rest is history.

Providing moral support

Some 13 years after we first met I coincided with him in a broadcasting studio. To my surprise, he recalled well that first meeting, and congratulated me for being amongst those who really had listened in detail to what he had been saying.

I recall in 1999 (somewhat to my surprise) being invited myself to give a lecture at the Royal Society, always quintessentially his territory, and being very flattered to find he had popped into the back of the room when I started as he put it, to give me moral support.

A very devout Christian, his overt sincerity has triumphed over the cynicism, lies and self-interest that the purveyors of pollution always employ, to try to colour the climate change debate. Fundamentally a rather shy and diffident man, his obvious academic prowess and his probity meant that his was the voice that always carried real authority.

Everyone concerned to combat the threat of climate change will always owe an unpayable debt to John Theodore Houghton. − Climate News Network

* * * * *

Andrew Warren was director of the Association for the Conservation of Energy between 1981 and 2014. He now chairs the British Energy Efficiency Federation.

Global fossil fuel demand’s ‘staggering’ fall

The world’s energy markets are in upheaval, as experts report an historic fall in global fossil fuel demand.

LONDON, 1 May, 2020 − One of the pillars of industrial society is tottering: global fossil fuel demand is buckling, with only renewable energy expected to show any growth this year.

Oil prices are going through the floor. The market for coal and gas is shrinking fast. And global emissions of climate-changing greenhouse gases are set to fall in 2020 by 8%, the largest annual decrease in emissions ever recorded.

The latest report by the International Energy Agency (IEA), the global energy watchdog, will make sobering reading for those involved in the fossil fuel industry – and hearten those fighting against a warming world.

The Covid-19 pandemic has brought death, pain and suffering around the world and is causing widespread economic and financial hardship.

But it’s become clear that the Covid crisis has done something that years of climate change negotiations have failed to do – it has not only forced us to change the way we live our lives, but also dramatically altered the way we use the planet’s resources, in particular its energy supplies.

‘Unheard-of slump’

“This is a historic shock to the entire energy world”, says Dr Fatih Birol, the IEA’s executive director.

“Amid today’s unparalleled health and economic crises, the plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas.

“Only renewables are holding up during the previously unheard-of slump in electricity use”, says Dr Birol.

The IEA report, its Global Energy Review 2020, looks at likely energy trends over the coming months and analyses data accumulated over the first Covid-influenced 100 days of this year.

Overall world energy demand in 2020 is set to fall by 6% − a drop seven times greater than the decline recorded in the wake of the 2008/2009 global financial crash.

“The plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas. Only renewables are holding up”

That fall is equivalent to losing the entire annual energy demand of India − or the combined yearly demand of the UK, France, Germany and Italy.

Oil demand, says the report, is expected to decline by 9% over the present year, its biggest annual drop in a quarter of a century. Demand for gas – which has consistently expanded over recent times − is expected to fall by 5%.

The economic disruption caused by the Covid pandemic is likely to hit the coal industry – already in decline − particularly hard. The IEA forecasts coal demand to drop this year by 8% compared with 2019, its biggest year-on-year decline since the end of WWII.

“It is still too early to determine the longer-term impacts, but the energy industry that emerges from this crisis will be significantly different from the one that came before”, says the report.

The study says renewable energy is the one segment of the sector that will see growth over the present year.

Decline already begun

The dominant role of fossil fuels in the energy market was already in decline before the Covid crisis. This trend is likely to continue as low operating costs and flexible access to electricity grids make renewables ever more competitive.

Moves in many countries towards cleaner energy and more climate change-related regulations will see an overall growth of 5% in renewable electricity generation in 2020.

The IEA is generally seen as a conservative body, careful not to offend powerful interests in the global energy industry.

It says the resilience of renewable energy in the midst of a global crisis could encourage fossil fuel companies to switch to generating more clean energy.

There is the possibility that countries will revert to the old ways, with fossil fuel use climbing again as economies recover.

‘Inescapable’ challenge ahead

The IEA urges governments to put clean energy at the centre of their economic recovery plans and prioritise clean energy technologies including batteries, hydrogen and carbon capture.

In an article last month Dr Birol talked of the impact the Covid crisis was having on people’s health and economic activity.

“Although they may be severe, the effects are likely to be temporary”, he wrote.

“Meanwhile the threat posed by climate change, which requires us to reduce global emissions significantly this decade, will remain.

“We should not allow today’s crisis to compromise our efforts to tackle the world’s inescapable challenge.” − Climate News Network

The world’s energy markets are in upheaval, as experts report an historic fall in global fossil fuel demand.

LONDON, 1 May, 2020 − One of the pillars of industrial society is tottering: global fossil fuel demand is buckling, with only renewable energy expected to show any growth this year.

Oil prices are going through the floor. The market for coal and gas is shrinking fast. And global emissions of climate-changing greenhouse gases are set to fall in 2020 by 8%, the largest annual decrease in emissions ever recorded.

The latest report by the International Energy Agency (IEA), the global energy watchdog, will make sobering reading for those involved in the fossil fuel industry – and hearten those fighting against a warming world.

The Covid-19 pandemic has brought death, pain and suffering around the world and is causing widespread economic and financial hardship.

But it’s become clear that the Covid crisis has done something that years of climate change negotiations have failed to do – it has not only forced us to change the way we live our lives, but also dramatically altered the way we use the planet’s resources, in particular its energy supplies.

‘Unheard-of slump’

“This is a historic shock to the entire energy world”, says Dr Fatih Birol, the IEA’s executive director.

“Amid today’s unparalleled health and economic crises, the plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas.

“Only renewables are holding up during the previously unheard-of slump in electricity use”, says Dr Birol.

The IEA report, its Global Energy Review 2020, looks at likely energy trends over the coming months and analyses data accumulated over the first Covid-influenced 100 days of this year.

Overall world energy demand in 2020 is set to fall by 6% − a drop seven times greater than the decline recorded in the wake of the 2008/2009 global financial crash.

“The plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas. Only renewables are holding up”

That fall is equivalent to losing the entire annual energy demand of India − or the combined yearly demand of the UK, France, Germany and Italy.

Oil demand, says the report, is expected to decline by 9% over the present year, its biggest annual drop in a quarter of a century. Demand for gas – which has consistently expanded over recent times − is expected to fall by 5%.

The economic disruption caused by the Covid pandemic is likely to hit the coal industry – already in decline − particularly hard. The IEA forecasts coal demand to drop this year by 8% compared with 2019, its biggest year-on-year decline since the end of WWII.

“It is still too early to determine the longer-term impacts, but the energy industry that emerges from this crisis will be significantly different from the one that came before”, says the report.

The study says renewable energy is the one segment of the sector that will see growth over the present year.

Decline already begun

The dominant role of fossil fuels in the energy market was already in decline before the Covid crisis. This trend is likely to continue as low operating costs and flexible access to electricity grids make renewables ever more competitive.

Moves in many countries towards cleaner energy and more climate change-related regulations will see an overall growth of 5% in renewable electricity generation in 2020.

The IEA is generally seen as a conservative body, careful not to offend powerful interests in the global energy industry.

It says the resilience of renewable energy in the midst of a global crisis could encourage fossil fuel companies to switch to generating more clean energy.

There is the possibility that countries will revert to the old ways, with fossil fuel use climbing again as economies recover.

‘Inescapable’ challenge ahead

The IEA urges governments to put clean energy at the centre of their economic recovery plans and prioritise clean energy technologies including batteries, hydrogen and carbon capture.

In an article last month Dr Birol talked of the impact the Covid crisis was having on people’s health and economic activity.

“Although they may be severe, the effects are likely to be temporary”, he wrote.

“Meanwhile the threat posed by climate change, which requires us to reduce global emissions significantly this decade, will remain.

“We should not allow today’s crisis to compromise our efforts to tackle the world’s inescapable challenge.” − Climate News Network

It’s a galloping goodbye to Europe’s coal

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

Europe’s coal has powered it for centuries. But with gathering speed it is now turning its back on the fuel.

LONDON, 26 April, 2020 – The energy that has powered a continent for several hundred years, driving its industry, fighting its wars and keeping its people warm, is on the way out, fast: Europe’s coal is in rapid decline.

Coal is far and away the most polluting of fossil fuels and is a major factor in the build-up of climate-changing greenhouse gases in the atmosphere.

But, according to a recent report by two of Europe’s leading energy analyst groups, the use of coal for power generation among the 27 countries of the European Union fell by a record 24% last year.

The report, by the Germany-based Agora Energiewende group and Ember, an independent London climate think-tank focused on speeding up the global electricity transition, will make stark reading for Europe’s coal lobbyists.

Renewables are on the rise across most of Europe, while coal use is in sharp decline. In 2019 wind and solar power together accounted for 18% of the EU’s power generation, while coal produced 15%. That’s the first time renewables have trumped coal in Europe’s energy generation mix.

“Europe is leading the world on rapidly replacing coal generation with wind and solar and, as a result, power sector CO2 emissions have never fallen so quickly”, says Dave Jones, an electricity specialist at Ember.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too.”

Total phase-out soon

The report says that greenhouse gas emissions from the EU’s power sector have fallen by more than 30% since 2012, with a year-on-year drop of 12% in 2019.

A number of European countries have already said goodbye to coal. In 2016 Belgium closed its last coal-fired energy plant. In April this year both Austria and Sweden followed suit.

The report highlights the way in which many EU countries have sharply reduced coal use in recent years: most plan to totally eliminate it as an energy source in the near future.

Eight years ago more than 30% of the power generated in the UK came from coal-fired power plants. Last year only 2% of power was derived from coal. The UK plans to stop using it for energy generation in four years’ time.

Germany has traditionally been one of the EU’s biggest coal users. In 2013 coal fuelled 45% of the country’s power generation: last year that figure fell to 28%.

Germany says it will eliminate coal from its power mix by 2038, though government critics say this is not nearly fast enough to meet EU-wide emission reduction targets.

A number of factors are behind coal’s decline. Economics has played a big role.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too”

In the wake of the 2008 financial crash industrial activity slowed and Europe’s coal use dropped.

The power sector became more efficient: although in recent years – before the Covid-19 pandemic – industrial activity picked up, the EU’s total electricity consumption was 4% lower in 2019 than a decade earlier.

Falling installation and operating costs for solar and wind power plants have resulted in renewable energy becoming ever more competitive: the price of natural gas – a less polluting fossil fuel than coal – has also been declining, while reforms in the European carbon trading scheme resulting in higher charges being levied on polluters have driven up the cost of coal.

All is not clean air and clear blue skies in Europe, however. Coal is still a significant source of power in Poland, the Czech Republic and Bulgaria. And while Germany has reduced its reliance on coal, it still burns large amounts of lignite or brown coal, the dirtiest form of the fuel.

Pollution and climate change do not recognise borders. Many states surrounding the EU are still reliant on coal and have plans for expanding coal-fired power plants.

China is helping Serbia to expand its coal-fired power capacity. Kosovo, which has some of the biggest reserves of lignite in the world, is also building more coal-fired power plants.

The World Bank says Kosovo has some of the worst air pollution in Europe, with emissions from its lignite-fuelled power stations causing many premature deaths each year. – Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

Europe’s coal has powered it for centuries. But with gathering speed it is now turning its back on the fuel.

LONDON, 26 April, 2020 – The energy that has powered a continent for several hundred years, driving its industry, fighting its wars and keeping its people warm, is on the way out, fast: Europe’s coal is in rapid decline.

Coal is far and away the most polluting of fossil fuels and is a major factor in the build-up of climate-changing greenhouse gases in the atmosphere.

But, according to a recent report by two of Europe’s leading energy analyst groups, the use of coal for power generation among the 27 countries of the European Union fell by a record 24% last year.

The report, by the Germany-based Agora Energiewende group and Ember, an independent London climate think-tank focused on speeding up the global electricity transition, will make stark reading for Europe’s coal lobbyists.

Renewables are on the rise across most of Europe, while coal use is in sharp decline. In 2019 wind and solar power together accounted for 18% of the EU’s power generation, while coal produced 15%. That’s the first time renewables have trumped coal in Europe’s energy generation mix.

“Europe is leading the world on rapidly replacing coal generation with wind and solar and, as a result, power sector CO2 emissions have never fallen so quickly”, says Dave Jones, an electricity specialist at Ember.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too.”

Total phase-out soon

The report says that greenhouse gas emissions from the EU’s power sector have fallen by more than 30% since 2012, with a year-on-year drop of 12% in 2019.

A number of European countries have already said goodbye to coal. In 2016 Belgium closed its last coal-fired energy plant. In April this year both Austria and Sweden followed suit.

The report highlights the way in which many EU countries have sharply reduced coal use in recent years: most plan to totally eliminate it as an energy source in the near future.

Eight years ago more than 30% of the power generated in the UK came from coal-fired power plants. Last year only 2% of power was derived from coal. The UK plans to stop using it for energy generation in four years’ time.

Germany has traditionally been one of the EU’s biggest coal users. In 2013 coal fuelled 45% of the country’s power generation: last year that figure fell to 28%.

Germany says it will eliminate coal from its power mix by 2038, though government critics say this is not nearly fast enough to meet EU-wide emission reduction targets.

A number of factors are behind coal’s decline. Economics has played a big role.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too”

In the wake of the 2008 financial crash industrial activity slowed and Europe’s coal use dropped.

The power sector became more efficient: although in recent years – before the Covid-19 pandemic – industrial activity picked up, the EU’s total electricity consumption was 4% lower in 2019 than a decade earlier.

Falling installation and operating costs for solar and wind power plants have resulted in renewable energy becoming ever more competitive: the price of natural gas – a less polluting fossil fuel than coal – has also been declining, while reforms in the European carbon trading scheme resulting in higher charges being levied on polluters have driven up the cost of coal.

All is not clean air and clear blue skies in Europe, however. Coal is still a significant source of power in Poland, the Czech Republic and Bulgaria. And while Germany has reduced its reliance on coal, it still burns large amounts of lignite or brown coal, the dirtiest form of the fuel.

Pollution and climate change do not recognise borders. Many states surrounding the EU are still reliant on coal and have plans for expanding coal-fired power plants.

China is helping Serbia to expand its coal-fired power capacity. Kosovo, which has some of the biggest reserves of lignite in the world, is also building more coal-fired power plants.

The World Bank says Kosovo has some of the worst air pollution in Europe, with emissions from its lignite-fuelled power stations causing many premature deaths each year. – Climate News Network

Fossil fuels add to world’s marine dead zones

Air pollution from burning fossil fuels is adding to fertiliser run-off and sewage to kill marine life in global dead zones.

LONDON, 6 April, 2020 − Cutting out coal-burning and other sources of nitrogen oxides (NOx) from heavy industry, electricity production and traffic will reduce the size of the world’s dead zones along coasts where all fish life is vanishing because of a lack of oxygen.

Researchers in Hong Kong report in the journal Environmental Science & Technology that cutting fossil fuel use in China would benefit not only the climate but also the fisheries along all the country’s coasts.

The finding is significant because many countries concerned about the loss of their coastal and lake fisheries caused by dead zones have been concentrating only on reducing agricultural fertiliser run-off from fields and sewage discharges, which are known to load the rivers with nutrients.

When the nutrients reach lakes or the open sea they feed algae, which rapidly grow into huge green masses. When these so-called algal blooms die they sink to the bottom and decompose, using up nearly all the oxygen in the water.

This process, known as eutrophication, leads to hypoxia, a level of oxygen that is too low for most organisms to survive. Fish usually swim away to healthier waters, but life forms which cannot easily move simply die.

“I hope our study brings more attention to the potential benefit of reducing fossil fuel burning on human and ecosystem health, but also on local economic activities like fisheries”

NOx emissions from fossil fuel burning and fertiliser manufacture lead to the formation of ground-level ozone, smog and acid rain, and contribute to global warming through the greenhouse effect.

What the new research shows is that while fertiliser and sewage are very important in creating dead zones, the aerial input of NOx makes a bad situation far worse.

The report’s lead author, Yu Yan Yau, an MPhil student at the University of Hong Kong’s Swire Institute of Marine Science (SWIMS), and her colleagues studied the South China, East China, Yellow and Bohai Seas.

They found that the atmospheric deposition of nutrients from fossil fuel burning on the mainland increased the amount of organic matter decomposing at the bottom of the sea by 15%, and increased the dead zones by 5%. The South China Sea was the most sensitive to fossil fuel burning.

Investigation needed

The good news in their research was that cutting this burning would considerably reduce the size of the dead zones.

Yu Yan Yau said: “I hope our study brings more attention to the potential benefit of reducing fossil fuel burning on human and ecosystem health, but also on local economic activities like fisheries, which are severely affected by hypoxia.”

Her supervisor, Dr Benoit Thibodeau, added: “Low levels of oxygen are observed in many coastal seas around the world and it is important to find better ways to tackle this problem.

“While we understand that sewage and nutrient input from the Pearl River drive most of the hypoxia in the Greater Bay Area, we observe low levels of oxygen in regions that are not directly under the influence of these sources. Thus it is important to investigate the impact of atmospheric deposition more locally.”

These findings will be important to many countries that are trying to rescue their coastal fisheries from dead zones. There are about 400 of these globally, including parts of Europe’s Baltic Sea.

Industrial impact

The largest is in the Arabian Sea, covering about 63,000 square miles, and the second largest a vast area in the Gulf of Mexico next to the Mississippi Delta, where a dead zone devoid of marine life develops every summer.

Every year winter rains wash fertiliser from fields in the US corn belt into the river. Combined with sewage overflows, this creates a huge quantity of nutrients that sweep down the river into the sea.

Depending on the size of the winter floods, scientists try to predict the extent of the resultant dead zone. However, the banks of the lower river are also crowded with heavy industrial sites, many burning large quantities of fossil fuels and creating large amounts of NOx, something that previously has not been taken into account.

If the Hong Kong research is correct, then cutting the pollution from these industries will also reduce the size of the Mississippi’s dead zone. − Climate News Network

Air pollution from burning fossil fuels is adding to fertiliser run-off and sewage to kill marine life in global dead zones.

LONDON, 6 April, 2020 − Cutting out coal-burning and other sources of nitrogen oxides (NOx) from heavy industry, electricity production and traffic will reduce the size of the world’s dead zones along coasts where all fish life is vanishing because of a lack of oxygen.

Researchers in Hong Kong report in the journal Environmental Science & Technology that cutting fossil fuel use in China would benefit not only the climate but also the fisheries along all the country’s coasts.

The finding is significant because many countries concerned about the loss of their coastal and lake fisheries caused by dead zones have been concentrating only on reducing agricultural fertiliser run-off from fields and sewage discharges, which are known to load the rivers with nutrients.

When the nutrients reach lakes or the open sea they feed algae, which rapidly grow into huge green masses. When these so-called algal blooms die they sink to the bottom and decompose, using up nearly all the oxygen in the water.

This process, known as eutrophication, leads to hypoxia, a level of oxygen that is too low for most organisms to survive. Fish usually swim away to healthier waters, but life forms which cannot easily move simply die.

“I hope our study brings more attention to the potential benefit of reducing fossil fuel burning on human and ecosystem health, but also on local economic activities like fisheries”

NOx emissions from fossil fuel burning and fertiliser manufacture lead to the formation of ground-level ozone, smog and acid rain, and contribute to global warming through the greenhouse effect.

What the new research shows is that while fertiliser and sewage are very important in creating dead zones, the aerial input of NOx makes a bad situation far worse.

The report’s lead author, Yu Yan Yau, an MPhil student at the University of Hong Kong’s Swire Institute of Marine Science (SWIMS), and her colleagues studied the South China, East China, Yellow and Bohai Seas.

They found that the atmospheric deposition of nutrients from fossil fuel burning on the mainland increased the amount of organic matter decomposing at the bottom of the sea by 15%, and increased the dead zones by 5%. The South China Sea was the most sensitive to fossil fuel burning.

Investigation needed

The good news in their research was that cutting this burning would considerably reduce the size of the dead zones.

Yu Yan Yau said: “I hope our study brings more attention to the potential benefit of reducing fossil fuel burning on human and ecosystem health, but also on local economic activities like fisheries, which are severely affected by hypoxia.”

Her supervisor, Dr Benoit Thibodeau, added: “Low levels of oxygen are observed in many coastal seas around the world and it is important to find better ways to tackle this problem.

“While we understand that sewage and nutrient input from the Pearl River drive most of the hypoxia in the Greater Bay Area, we observe low levels of oxygen in regions that are not directly under the influence of these sources. Thus it is important to investigate the impact of atmospheric deposition more locally.”

These findings will be important to many countries that are trying to rescue their coastal fisheries from dead zones. There are about 400 of these globally, including parts of Europe’s Baltic Sea.

Industrial impact

The largest is in the Arabian Sea, covering about 63,000 square miles, and the second largest a vast area in the Gulf of Mexico next to the Mississippi Delta, where a dead zone devoid of marine life develops every summer.

Every year winter rains wash fertiliser from fields in the US corn belt into the river. Combined with sewage overflows, this creates a huge quantity of nutrients that sweep down the river into the sea.

Depending on the size of the winter floods, scientists try to predict the extent of the resultant dead zone. However, the banks of the lower river are also crowded with heavy industrial sites, many burning large quantities of fossil fuels and creating large amounts of NOx, something that previously has not been taken into account.

If the Hong Kong research is correct, then cutting the pollution from these industries will also reduce the size of the Mississippi’s dead zone. − Climate News Network

Blue energy revolution comes of age

With green energy from wind and solar out-competing fossil fuels, governments now hope for another boost − blue energy from the oceans.

LONDON, 31 March, 2020 − The amount of energy generated by tides and waves in the last decade has increased 10-fold. Now governments around the world are planning to scale up these ventures to tap into the oceans’ vast store of blue energy.

Although in 2019 the total amount of energy produced by “blue power” would have been enough to provide electricity to only one city the size of Paris, even that was a vast increase on the tiny experiments being carried out 10 years earlier.

Now countries across the world with access to the sea are beginning to exploit all sorts of new technologies and intending to scale them up to bolster their attempts to go carbon-neutral.

Blue energy takes many forms. One of the most difficult technically is harnessing the energy of waves with devices that produce electricity. After several false starts many successful prototypes are now being trialled for commercial use. Other experiments exploit the tidal range – using the power of rapidly rising and falling tidal streams to push water through turbines.

The most commercially successful strategies so far use underwater turbines, similar to wind turbines, to exploit the tidal currents in coastal regions.

More ambitious but along the same lines are attempts to capture the energy from the immense ocean currents that move vast quantities of water round the planet.

“Our latest report underlines the considerable international support for the marine renewable sector. The start of this new decade carries considerable promise for ocean energy”

Also included in blue energy is ocean thermal energy conversion, which exploits the temperature differences between solar energy stored as heat in the upper ocean layers and colder seawater, generally at a depth below 1000 metres.

A variation on this is to use salinity gradients, the difference between the salt content of the sea and fresh water entering from a large river system. Some of these schemes are being used to produce fresh drinking water for dry regions rather than electricity.

The potential from all these energy sources is so great that an organisation called Ocean Energy Systems (OES), an offshoot of the International Energy Agency, is pooling all the research in a bid to achieve large-scale deployment.

There are now 24 countries in the OES, including China, India, the US, most European nations with a coastline, Japan, Australia and South Africa. Most of them have already deployed some blue energy schemes and are hoping to scale them up to full commercial use in the next decade.

As with wind and solar when they were being widely developed ten years ago, energy from the oceans is currently more expensive than fossil fuels. But as the technologies are refined the costs are coming down.

Profiting already

Already China has encouraged tidal stream energy by offering a feed-in tariff three times the price of fossil fuels, similar to the rate used in many countries to launch solar and wind power. One Chinese company is already finding this incentive enough to feed power into the grid and make a profit.

Among the leading countries developing these technologies are Canada and the United Kingdom, the two countries with the highest tides in the world. Canada has a number of tidal energy schemes on its Atlantic coast in Nova Scotia, with several competing companies testing different prototypes.

Scotland, which has enormous potential because of its many islands and tidal currents, has the largest tidal array of underwater turbines in the world. The turbine output has exceeded expectations, and the MeyGen company is planning to vastly increase the number of installations.

But this is only one of more than 20 projects in the UK, some still in the research and development stage, but many already being scaled up for deployment at special testing grounds in Scotland’s Orkney islands and the West of England.

OES chairman Henry Jeffrey, from the University of Edinburgh, said the group’s new annual report communicates the sizeable global effort to identify commercialisation pathways for ocean energy technologies.

Both Canada and the US can now see big potential, and political leaders across Europe have identified ocean energy as an essential component in meeting decarbonisation targets, fostering economic growth and creating future employment opportunities.

Lower costs essential

“Our latest report underlines the considerable international support for the marine renewable sector as leading global powers attempt to rebalance energy usage and limit global warming. The start of this new decade carries considerable promise for ocean energy,” he said.

However, Jeffrey warned that while the sector continued to take huge strides forward, there were several challenges ahead “centred around affordability, reliability, installability, operability, funding availability, capacity building and standardisation.

“In particular, significant cost reductions are required for ocean energy technologies to compete with other low-carbon technologies.”

Currently the cost of wind power, taking into account construction costs over the turbines’ lifetime, is being quoted as around €0.8-10 (one eighth to one tenth of a Euro, about £0.07-9 or US$0.9-11) per kilowatt hour, but this is still going down.

The European target is to get tidal stream energy down to €0.10 by 2030 and wave power down to €0.15, which would also make them competitive with fossil fuels if gas and coal were obliged to pay for capturing and storing the carbon dioxide they produce. − Climate News Network

With green energy from wind and solar out-competing fossil fuels, governments now hope for another boost − blue energy from the oceans.

LONDON, 31 March, 2020 − The amount of energy generated by tides and waves in the last decade has increased 10-fold. Now governments around the world are planning to scale up these ventures to tap into the oceans’ vast store of blue energy.

Although in 2019 the total amount of energy produced by “blue power” would have been enough to provide electricity to only one city the size of Paris, even that was a vast increase on the tiny experiments being carried out 10 years earlier.

Now countries across the world with access to the sea are beginning to exploit all sorts of new technologies and intending to scale them up to bolster their attempts to go carbon-neutral.

Blue energy takes many forms. One of the most difficult technically is harnessing the energy of waves with devices that produce electricity. After several false starts many successful prototypes are now being trialled for commercial use. Other experiments exploit the tidal range – using the power of rapidly rising and falling tidal streams to push water through turbines.

The most commercially successful strategies so far use underwater turbines, similar to wind turbines, to exploit the tidal currents in coastal regions.

More ambitious but along the same lines are attempts to capture the energy from the immense ocean currents that move vast quantities of water round the planet.

“Our latest report underlines the considerable international support for the marine renewable sector. The start of this new decade carries considerable promise for ocean energy”

Also included in blue energy is ocean thermal energy conversion, which exploits the temperature differences between solar energy stored as heat in the upper ocean layers and colder seawater, generally at a depth below 1000 metres.

A variation on this is to use salinity gradients, the difference between the salt content of the sea and fresh water entering from a large river system. Some of these schemes are being used to produce fresh drinking water for dry regions rather than electricity.

The potential from all these energy sources is so great that an organisation called Ocean Energy Systems (OES), an offshoot of the International Energy Agency, is pooling all the research in a bid to achieve large-scale deployment.

There are now 24 countries in the OES, including China, India, the US, most European nations with a coastline, Japan, Australia and South Africa. Most of them have already deployed some blue energy schemes and are hoping to scale them up to full commercial use in the next decade.

As with wind and solar when they were being widely developed ten years ago, energy from the oceans is currently more expensive than fossil fuels. But as the technologies are refined the costs are coming down.

Profiting already

Already China has encouraged tidal stream energy by offering a feed-in tariff three times the price of fossil fuels, similar to the rate used in many countries to launch solar and wind power. One Chinese company is already finding this incentive enough to feed power into the grid and make a profit.

Among the leading countries developing these technologies are Canada and the United Kingdom, the two countries with the highest tides in the world. Canada has a number of tidal energy schemes on its Atlantic coast in Nova Scotia, with several competing companies testing different prototypes.

Scotland, which has enormous potential because of its many islands and tidal currents, has the largest tidal array of underwater turbines in the world. The turbine output has exceeded expectations, and the MeyGen company is planning to vastly increase the number of installations.

But this is only one of more than 20 projects in the UK, some still in the research and development stage, but many already being scaled up for deployment at special testing grounds in Scotland’s Orkney islands and the West of England.

OES chairman Henry Jeffrey, from the University of Edinburgh, said the group’s new annual report communicates the sizeable global effort to identify commercialisation pathways for ocean energy technologies.

Both Canada and the US can now see big potential, and political leaders across Europe have identified ocean energy as an essential component in meeting decarbonisation targets, fostering economic growth and creating future employment opportunities.

Lower costs essential

“Our latest report underlines the considerable international support for the marine renewable sector as leading global powers attempt to rebalance energy usage and limit global warming. The start of this new decade carries considerable promise for ocean energy,” he said.

However, Jeffrey warned that while the sector continued to take huge strides forward, there were several challenges ahead “centred around affordability, reliability, installability, operability, funding availability, capacity building and standardisation.

“In particular, significant cost reductions are required for ocean energy technologies to compete with other low-carbon technologies.”

Currently the cost of wind power, taking into account construction costs over the turbines’ lifetime, is being quoted as around €0.8-10 (one eighth to one tenth of a Euro, about £0.07-9 or US$0.9-11) per kilowatt hour, but this is still going down.

The European target is to get tidal stream energy down to €0.10 by 2030 and wave power down to €0.15, which would also make them competitive with fossil fuels if gas and coal were obliged to pay for capturing and storing the carbon dioxide they produce. − Climate News Network

Coal exit will benefit health, wealth and nature

Human economies still depend on hydrocarbon fuels. But there are ways to achieve a coal exit, cut emissions and protect health.

LONDON, 30 March, 2020 − A fast coal exit and a switch away from all fossil fuels will offer multiple global benefits. In almost all circumstances, electric cars will be more climate-friendly than petrol-driven machines, even when that electricity is generated by coal combustion.

And nations that so far rely on coal will save substantially on health costs and environmental damage if they close the pits and convert to renewable energy.

The making and use of concrete – a big source of greenhouse gas emissions into the atmosphere – remains an obdurate source of global warming. But even so there are ways to cut the climate and health damage costs of cement and mortar by more than 40%.

Each of these three studies is a reminder that there is for the moment no way to stop all carbon emissions in human economies. But each also confirms that a switch away from fossil fuels continues to make economic sense.

Clear reduction

Almost one fourth of all the fossil fuel combustion emissions that threaten a climate crisis come from passenger road transport and household heating. It takes energy to manufacture an electric car, or a heat pump, and it takes energy to generate the electricity to make them function.

Dutch and British researchers report in the journal Nature Sustainability that they considered the challenge in 59 regions of the globe and found that in 53 of their studies the switch to electric meant a clear reduction in climate-damaging emissions.

By 2050, half of all cars on the road could be electric. This would cut global emissions by up to 1.5 billion tonnes of carbon dioxide a year. This is about what Russia puts into the atmosphere now.

The switch from homes heated by gas, coal or oil to electric pumps could save 800 million tonnes. This is about the same as Germany’s current greenhouse gas emissions.

Mythical increase

Lifetime emissions from electric cars in Sweden and France − which already get most of their electricity from renewables or nuclear power − would be up to 70% lower than from petrol-driven cars, and 30% lower in the UK.

“The answer is clear: to reduce carbon emissions, we should choose electric cars and household heat pumps over fossil-fuel alternatives,” said Florian Knobloch, of Radboud University in the Netherlands and Cambridge in the UK.

“In other words, the idea that electric vehicles or electric heat pumps could increase emissions is a myth. We’ve seen a lot of discussion of this recently, with lots of disinformation going around. Here is a definitive study that can dispel those myths.”

The 53 regions in the study represent 95% of world transport and heating demand. The scientists took into account energy use from the production chain at the beginning of a car’s or a heating system’s life, and the waste processing at the end, to find that the only exceptions were in places like Poland, which is still heavily dependent on coal.

“We decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far”

In 2015, the world’s nations agreed at an historic Paris meeting to attempt to limit average planetary warming to “well below” 2°C by the century’s end. Right now, by 2100 global temperatures could rise by a catastrophic 3°C.

A new study in Nature Climate Change confirms that to get to the 2°C target it doesn’t just make climate sense to shut the mines and close down the coal-burning power stations: it would save money as well, just in terms of reducing the health hazards associated with pollution and the damage to ecosystems and the loss of wildlife.

“We’re well into the 21st century now and still rely heavily on burning coal, making it one of the biggest threats to our climate, our health and our environment.

“That’s why we decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far,” said Sebastian Rauner of the Potsdam Institute for Climate Impact Research, who led the study.

Concrete burden

And his colleague Gunnar Luderer added: “Benefits from reduced health and ecosystem impacts clearly overcompensate the direct economic costs of a coal exit – they amount to a net saving of about 1.5% of global economic output by 2050. That is, $370 (£300) for every human on Earth in 2050.”

Around 8% of all greenhouse gases come from the concrete industry: it too is a source of air pollution and environmental destruction. Cement has to be baked from stone, and aggregate has to be gathered, hauled and brought to building sites, and the two have to be mixed.

US researchers report in Nature Climate Change that they quantified the costs in terms of climate, death and illness from the industry and arrived at damages of about $335bn a year.

They looked at ways of cleaner combustion in kiln fuel, the more efficient use of mineral additions that might replace cement, and the applications of clean energy: all of them available now.

Neglect of health

Methods to capture and store carbon emissions from the process are not yet ready: these could reduce climate damage costs by 50% to 65%.

If manufacturers used a fuel that burned more efficiently, they could reduce health damages by 14%. A mix of already available methods could, together, reduce climate and health damage by 44%.

“There is a high emissions burden associated with the production of concrete because there is so much demand for it,” said Sabbie Miller of the University of California Davis, who led the study.

“We clearly care a great deal about greenhouse gas emissions. But we haven’t paid as much attention to health burdens, which are also driven in large part by this demand.” − Climate News Network

Human economies still depend on hydrocarbon fuels. But there are ways to achieve a coal exit, cut emissions and protect health.

LONDON, 30 March, 2020 − A fast coal exit and a switch away from all fossil fuels will offer multiple global benefits. In almost all circumstances, electric cars will be more climate-friendly than petrol-driven machines, even when that electricity is generated by coal combustion.

And nations that so far rely on coal will save substantially on health costs and environmental damage if they close the pits and convert to renewable energy.

The making and use of concrete – a big source of greenhouse gas emissions into the atmosphere – remains an obdurate source of global warming. But even so there are ways to cut the climate and health damage costs of cement and mortar by more than 40%.

Each of these three studies is a reminder that there is for the moment no way to stop all carbon emissions in human economies. But each also confirms that a switch away from fossil fuels continues to make economic sense.

Clear reduction

Almost one fourth of all the fossil fuel combustion emissions that threaten a climate crisis come from passenger road transport and household heating. It takes energy to manufacture an electric car, or a heat pump, and it takes energy to generate the electricity to make them function.

Dutch and British researchers report in the journal Nature Sustainability that they considered the challenge in 59 regions of the globe and found that in 53 of their studies the switch to electric meant a clear reduction in climate-damaging emissions.

By 2050, half of all cars on the road could be electric. This would cut global emissions by up to 1.5 billion tonnes of carbon dioxide a year. This is about what Russia puts into the atmosphere now.

The switch from homes heated by gas, coal or oil to electric pumps could save 800 million tonnes. This is about the same as Germany’s current greenhouse gas emissions.

Mythical increase

Lifetime emissions from electric cars in Sweden and France − which already get most of their electricity from renewables or nuclear power − would be up to 70% lower than from petrol-driven cars, and 30% lower in the UK.

“The answer is clear: to reduce carbon emissions, we should choose electric cars and household heat pumps over fossil-fuel alternatives,” said Florian Knobloch, of Radboud University in the Netherlands and Cambridge in the UK.

“In other words, the idea that electric vehicles or electric heat pumps could increase emissions is a myth. We’ve seen a lot of discussion of this recently, with lots of disinformation going around. Here is a definitive study that can dispel those myths.”

The 53 regions in the study represent 95% of world transport and heating demand. The scientists took into account energy use from the production chain at the beginning of a car’s or a heating system’s life, and the waste processing at the end, to find that the only exceptions were in places like Poland, which is still heavily dependent on coal.

“We decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far”

In 2015, the world’s nations agreed at an historic Paris meeting to attempt to limit average planetary warming to “well below” 2°C by the century’s end. Right now, by 2100 global temperatures could rise by a catastrophic 3°C.

A new study in Nature Climate Change confirms that to get to the 2°C target it doesn’t just make climate sense to shut the mines and close down the coal-burning power stations: it would save money as well, just in terms of reducing the health hazards associated with pollution and the damage to ecosystems and the loss of wildlife.

“We’re well into the 21st century now and still rely heavily on burning coal, making it one of the biggest threats to our climate, our health and our environment.

“That’s why we decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far,” said Sebastian Rauner of the Potsdam Institute for Climate Impact Research, who led the study.

Concrete burden

And his colleague Gunnar Luderer added: “Benefits from reduced health and ecosystem impacts clearly overcompensate the direct economic costs of a coal exit – they amount to a net saving of about 1.5% of global economic output by 2050. That is, $370 (£300) for every human on Earth in 2050.”

Around 8% of all greenhouse gases come from the concrete industry: it too is a source of air pollution and environmental destruction. Cement has to be baked from stone, and aggregate has to be gathered, hauled and brought to building sites, and the two have to be mixed.

US researchers report in Nature Climate Change that they quantified the costs in terms of climate, death and illness from the industry and arrived at damages of about $335bn a year.

They looked at ways of cleaner combustion in kiln fuel, the more efficient use of mineral additions that might replace cement, and the applications of clean energy: all of them available now.

Neglect of health

Methods to capture and store carbon emissions from the process are not yet ready: these could reduce climate damage costs by 50% to 65%.

If manufacturers used a fuel that burned more efficiently, they could reduce health damages by 14%. A mix of already available methods could, together, reduce climate and health damage by 44%.

“There is a high emissions burden associated with the production of concrete because there is so much demand for it,” said Sabbie Miller of the University of California Davis, who led the study.

“We clearly care a great deal about greenhouse gas emissions. But we haven’t paid as much attention to health burdens, which are also driven in large part by this demand.” − Climate News Network

Extreme summer heat puts millions at risk

heat

Summer on much of the planet could get too hot for comfort by the end of the century, with more than a billion people seriously affected by extreme heat.

LONDON, 20 March, 2020 – As many as 1.2 billion people could be at risk of serious medical stress by the year 2100 simply on the basis of the extreme summer temperatures forecast if greenhouse gas emissions continue to rise, according to new research.

The finding is, in essence, a confirmation of earlier studies: researchers looked closely at the threat to health and, indeed, to life in a globally-heating world have already made a calculation that “more than a billion” could be at risk not just from soaring summer temperatures over longer periods, but also from heightened humidity.

Urgent question

One study found that heat extremes can kill in up to 27 different ways. And lethal heat waves in Europe in 2003, Russia in 2010 and Australia in 2012/2013 have confirmed this in the most unwelcome way possible.

But a study published in Environmental Research Letters journal takes a simple statistical approach to this increasingly urgent question and settles on a notional temperature that factors in not just how high the mercury rises but also how much water vapour might be in the air.

This is known to meteorologists as a “wet bulb” temperature. And the consensus is that, for fit, healthy, acclimatised people, a wet bulb temperature of 33°C is about the limit of tolerance – putting the very young, the very old, and the already ill at risk.

“Every bit of global warming makes hot, humid days more frequent and intense”

Humans can survive much higher thermometer readings in dry climates, but are designed to shed surplus body heat through perspiration – something that becomes increasingly difficult as atmospheric humidity begins to rise. Then the risks of heat rash, heat cramps, heat exhaustion and heat stroke begin to multiply.

So researchers in the US looked at how heat and humidity will increase in a warming planet, for the existing population, and played with 40 climate simulations to build up a picture of probabilities as humans burned more fossil fuels, stoked levels of greenhouse gases in the atmosphere, and turned up the planetary thermostat.

They calculated that, by 2100, the numbers at risk of sweltering, gasping and sickening heat extremes will have multiplied.

The planet is already around 1.2°C warmer than it was at the start of the Industrial Revolution. If the temperature notches up to 1.5°C above the long-term average for most of human history, then every year an estimated 500 million could be exposed to unsafe extremes.

If the temperature rises by 2°C – the upper limit the world set itself in an historic Paris climate meeting in 2015 – the numbers at risk would reach 800 million.

And if the planetary average annual temperature rise was by 3°C – and right now the planet is on course to exceed even that figure – then an estimated 1.2 billion would at least once a year be at risk of extended spells of dangerous heat and humidity.

Research leader Dawei Li, once of Rutgers University and now postdoctoral associate in the Department of Geosciences at the University of Massachusetts, says: “Every bit of global warming makes hot, humid days more frequent and intense.

“In New York City, for example, the hottest, most humid day in a typical year already occurs about 11 times more frequently than it would have done in the 19th century.” Climate News Network

Summer on much of the planet could get too hot for comfort by the end of the century, with more than a billion people seriously affected by extreme heat.

LONDON, 20 March, 2020 – As many as 1.2 billion people could be at risk of serious medical stress by the year 2100 simply on the basis of the extreme summer temperatures forecast if greenhouse gas emissions continue to rise, according to new research.

The finding is, in essence, a confirmation of earlier studies: researchers looked closely at the threat to health and, indeed, to life in a globally-heating world have already made a calculation that “more than a billion” could be at risk not just from soaring summer temperatures over longer periods, but also from heightened humidity.

Urgent question

One study found that heat extremes can kill in up to 27 different ways. And lethal heat waves in Europe in 2003, Russia in 2010 and Australia in 2012/2013 have confirmed this in the most unwelcome way possible.

But a study published in Environmental Research Letters journal takes a simple statistical approach to this increasingly urgent question and settles on a notional temperature that factors in not just how high the mercury rises but also how much water vapour might be in the air.

This is known to meteorologists as a “wet bulb” temperature. And the consensus is that, for fit, healthy, acclimatised people, a wet bulb temperature of 33°C is about the limit of tolerance – putting the very young, the very old, and the already ill at risk.

“Every bit of global warming makes hot, humid days more frequent and intense”

Humans can survive much higher thermometer readings in dry climates, but are designed to shed surplus body heat through perspiration – something that becomes increasingly difficult as atmospheric humidity begins to rise. Then the risks of heat rash, heat cramps, heat exhaustion and heat stroke begin to multiply.

So researchers in the US looked at how heat and humidity will increase in a warming planet, for the existing population, and played with 40 climate simulations to build up a picture of probabilities as humans burned more fossil fuels, stoked levels of greenhouse gases in the atmosphere, and turned up the planetary thermostat.

They calculated that, by 2100, the numbers at risk of sweltering, gasping and sickening heat extremes will have multiplied.

The planet is already around 1.2°C warmer than it was at the start of the Industrial Revolution. If the temperature notches up to 1.5°C above the long-term average for most of human history, then every year an estimated 500 million could be exposed to unsafe extremes.

If the temperature rises by 2°C – the upper limit the world set itself in an historic Paris climate meeting in 2015 – the numbers at risk would reach 800 million.

And if the planetary average annual temperature rise was by 3°C – and right now the planet is on course to exceed even that figure – then an estimated 1.2 billion would at least once a year be at risk of extended spells of dangerous heat and humidity.

Research leader Dawei Li, once of Rutgers University and now postdoctoral associate in the Department of Geosciences at the University of Massachusetts, says: “Every bit of global warming makes hot, humid days more frequent and intense.

“In New York City, for example, the hottest, most humid day in a typical year already occurs about 11 times more frequently than it would have done in the 19th century.” Climate News Network

India finally takes climate crisis seriously

India

With financial losses and a heavy death toll from climate-related disasters constantly rising, India is at last focusing on the dangers of global warming.

NEW DELHI, 18 March, 2020 – After decades of concentrating on economic development and insisting that global warming was mainly a problem for the more industrially-developed countries to solve, Indian industry is at last facing up to dangers posed to its own future by climate change.

More than 40 organisations – including major industrial corporations such as Tata, Godrej, Mahindra and Wipro through their various philanthropic organisations, plus academic thinktanks, business schools, aid agencies, and the government’s scientific advisers – have come together to co-operate on climate solutions.

The umbrella organisation, called the India Climate Collaborative (ICC), also includes international institutions such as Bloomberg Philanthropies and the MacArthur Foundation.

Climate disasters

Although there have been many individual initiatives in India on climate change, and there has been government support for renewables, particularly solar power, efforts so far have been fragmented.

State and national governments, individual departments, businesses, non-governmental organisations, and academics have all worked separately, and sometimes in opposition to each other.

The scale of the task facing India is underlined by the fact it has taken two years to get the ICC up and running. However, with India ranked fifth in the Global Climate Risk Index 2019 and facing one climate disaster after another – sometimes simultaneous extreme weather events – these organisations have agreed that the issue can no longer be ignored.

“It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own.”

Commenting on the launch, Anand Mahindra, chairman of the Mahindra Group, said: “It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own. Business, government and philanthropy must collaborate within and among themselves themselves to drive results quickly and at scale. The India Climate Collaborative can make this happen.”

The ICC has identified three critical risk factors for India:

The first is that an astonishing 700 million people are still dependent on agriculture and they are the most vulnerable to an erratic climate.

The second is that around the country’s approximately 7,500 km coastline are several major cities. Many of these important economic hubs, which include all the country’s main ports, are a metre or less above current sea level.

Third, even with the increasingly rigorous focus on renewable energy, there is continued heavy reliance on fossil fuels for producing electricity, which is still in short supply.

According to the India Philanthropy Report 2019, private funds in India, mostly raised through non-government philanthropy, provided about Rs 70,000 crore ($9.5 billion) in 2018 for the social sector, mostly focusing on key aspects such as health, education and agriculture.

However, only a small proportion was spent on climate change, and so the ICC aims to raise the current spending of about 7 % to at least 20 %.

Another hindrance to India’s many plans for adaptation or mitigation is the lack of capacity among government departments. Something as basic as preparing workable proposals for funding action is a tough task for many state governments.

The ICC plans to conduct technical training as “there are gaps to be filled to take care of the talent shortfall, and there is overall lack of capacity.”

One of the first training exercises is planned for state-level bureaucrats from Rajasthan, Madhya Pradesh, Chhattisgarh, Maharashtra, and in the western state of Rajasthan.

Cross-purposes

There is some concern that while the India government is represented on the ICC by Prof K. VijayRaghavan, its Principal Scientific Adviser, there is no representation from the Ministry of Environment, Forests & Climate Change (MoEFCC), which represents the country at the climate talks.

Critics claim that this is particularly worrying because the various government departments are already seen as not working together, or often working at cross-purposes.

There are also fears that there is lack of community involvement, particularly the farmers, who are the largest single group most affected by adverse weather conditions caused by climate change.

However, Shloka Nath, executive director of the ICC and head of Sustainability and Special Projects at the Tata Trust, says the ICC plans to work with the MoEFCC to reach representatives of civil society and bring them into the process.

“It is through them [the ministry] that we plan to reach out to the community,” she says. “The people will be very much involved.”

Despite these shortcomings, Chandra Bhushan, President and CEO of the International Forum for Environment, Sustainability and Technology (iFOREST), welcomes the idea. He says: “It is for the first time that Indian companies are understanding climate change and willing to invest in it.” – Climate News Network

With financial losses and a heavy death toll from climate-related disasters constantly rising, India is at last focusing on the dangers of global warming.

NEW DELHI, 18 March, 2020 – After decades of concentrating on economic development and insisting that global warming was mainly a problem for the more industrially-developed countries to solve, Indian industry is at last facing up to dangers posed to its own future by climate change.

More than 40 organisations – including major industrial corporations such as Tata, Godrej, Mahindra and Wipro through their various philanthropic organisations, plus academic thinktanks, business schools, aid agencies, and the government’s scientific advisers – have come together to co-operate on climate solutions.

The umbrella organisation, called the India Climate Collaborative (ICC), also includes international institutions such as Bloomberg Philanthropies and the MacArthur Foundation.

Climate disasters

Although there have been many individual initiatives in India on climate change, and there has been government support for renewables, particularly solar power, efforts so far have been fragmented.

State and national governments, individual departments, businesses, non-governmental organisations, and academics have all worked separately, and sometimes in opposition to each other.

The scale of the task facing India is underlined by the fact it has taken two years to get the ICC up and running. However, with India ranked fifth in the Global Climate Risk Index 2019 and facing one climate disaster after another – sometimes simultaneous extreme weather events – these organisations have agreed that the issue can no longer be ignored.

“It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own.”

Commenting on the launch, Anand Mahindra, chairman of the Mahindra Group, said: “It is clear that the world cannot continue to pursue a business-as-usual approach, and nobody can solve the problem on their own. Business, government and philanthropy must collaborate within and among themselves themselves to drive results quickly and at scale. The India Climate Collaborative can make this happen.”

The ICC has identified three critical risk factors for India:

The first is that an astonishing 700 million people are still dependent on agriculture and they are the most vulnerable to an erratic climate.

The second is that around the country’s approximately 7,500 km coastline are several major cities. Many of these important economic hubs, which include all the country’s main ports, are a metre or less above current sea level.

Third, even with the increasingly rigorous focus on renewable energy, there is continued heavy reliance on fossil fuels for producing electricity, which is still in short supply.

According to the India Philanthropy Report 2019, private funds in India, mostly raised through non-government philanthropy, provided about Rs 70,000 crore ($9.5 billion) in 2018 for the social sector, mostly focusing on key aspects such as health, education and agriculture.

However, only a small proportion was spent on climate change, and so the ICC aims to raise the current spending of about 7 % to at least 20 %.

Another hindrance to India’s many plans for adaptation or mitigation is the lack of capacity among government departments. Something as basic as preparing workable proposals for funding action is a tough task for many state governments.

The ICC plans to conduct technical training as “there are gaps to be filled to take care of the talent shortfall, and there is overall lack of capacity.”

One of the first training exercises is planned for state-level bureaucrats from Rajasthan, Madhya Pradesh, Chhattisgarh, Maharashtra, and in the western state of Rajasthan.

Cross-purposes

There is some concern that while the India government is represented on the ICC by Prof K. VijayRaghavan, its Principal Scientific Adviser, there is no representation from the Ministry of Environment, Forests & Climate Change (MoEFCC), which represents the country at the climate talks.

Critics claim that this is particularly worrying because the various government departments are already seen as not working together, or often working at cross-purposes.

There are also fears that there is lack of community involvement, particularly the farmers, who are the largest single group most affected by adverse weather conditions caused by climate change.

However, Shloka Nath, executive director of the ICC and head of Sustainability and Special Projects at the Tata Trust, says the ICC plans to work with the MoEFCC to reach representatives of civil society and bring them into the process.

“It is through them [the ministry] that we plan to reach out to the community,” she says. “The people will be very much involved.”

Despite these shortcomings, Chandra Bhushan, President and CEO of the International Forum for Environment, Sustainability and Technology (iFOREST), welcomes the idea. He says: “It is for the first time that Indian companies are understanding climate change and willing to invest in it.” – Climate News Network

US state plans fossil fuel tax to fund schooling

The US state of Maryland is proposing a fossil fuel tax to pay for pre-school education and to promote electric cars.

LONDON, 27 February, 2020 − Maryland, an eastern US state badly hit by climate change, wants to introduce a fossil fuel tax on polluting industries and gas-guzzling cars in order to fund improvements to its education system worth $350 million (£271m) a year.

The Climate Crisis and Education Bill is currently being considered by the Maryland General Assembly’s 2020 session. With a strong Democrat majority in both upper and lower houses of the state’s legislature, it could soon become law – even though the ideas behind it are extremely radical by US standards.

The bill would establish a Climate Crisis Council to develop an energy policy that reduces statewide greenhouse gas emissions by 70% by 2030, and 100% by 2040 – and trusts in achieving net negative emissions after that, using 2006 as a baseline.

There has been widespread concern in Maryland about falling education standards compared with other states, and an inquiry, the Kirwan Commission, has called for $350m a year to be invested in improvements.

These include extra funding for teacher salaries, additional counselling and career preparation, stronger health programmes, and money for pre-school activities.

“We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does”

The bill would introduce a gradually escalating fossil fuel fee, starting at $15 a ton for non-transport sources and $10 a ton for vehicles.

There would also be a graduated registration fee on new cars and light trucks that are gas guzzlers, revenues from which would be used to provide rebates to electric vehicle (EV) purchasers and to pay for the installation of statewide EV charging points.

Maryland has suffered more than most of the US from climate change and is severely threatened by sea level rise on the shores of Chesapeake Bay. Some small towns are already losing the battle against the sea.

The frequency of street flooding in the state capital, Annapolis, and larger cities like Baltimore has increased about ten-fold since the early 1960s.

Salt feeds concerns

Salinisation of farmland on the Eastern Shore is also a concern, as the salt water has begun intruding into the water table. Across the state the frequency of extreme weather events continues to increase, including events like flash flooding, heavy thunderstorms, extreme heat and droughts.

Delegate David Fraser-Hidalgo, the leading General Assembly supporter of the bill, said the state’s taxpayers had already been paying for damage caused by the climate crisis: “In the 2019 session, we passed an emergency appropriation in the General Assembly for one million dollars to mitigate flooding in Annapolis.

“That’s just one city in the entire state − one million dollars. Why should the taxpayers pay for that when fossil fuel companies make $400 million a day in profits?”

Emphasising the urgency of the situation and the need for immediate action, the bill’s Senate sponsor, Senator Benjamin F. Kramer, said: “We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does.

“And the legislation is a win, win, win. It’s a win for our health, it’s a win for the environment, and it’s a win for education.”

Support detected

Both men are conscious that despite the concern of Democrats about the climate crisis, and the fact that the party has a large overall majority, their bill is radical and may meet some resistance. However, recent polling suggests that the public supports action on the crisis.

The bill is also up against legislators who favour other ways of paying for the education reforms, including taxes on gambling, alcohol and digital commerce.

In order to allay fears about new taxes on fossil fuels the provisions of the bill insist that the carbon taxes protect low- and moderate-income households, as well as “energy-intensive, trade-exposed businesses”, and help fossil fuel workers who may lose their jobs to find new ones in the clean economy.

There are also clauses that specifically prevent the fossil fuel companies from passing the cost of carbon taxes on to Maryland consumers. − Climate News Network

The US state of Maryland is proposing a fossil fuel tax to pay for pre-school education and to promote electric cars.

LONDON, 27 February, 2020 − Maryland, an eastern US state badly hit by climate change, wants to introduce a fossil fuel tax on polluting industries and gas-guzzling cars in order to fund improvements to its education system worth $350 million (£271m) a year.

The Climate Crisis and Education Bill is currently being considered by the Maryland General Assembly’s 2020 session. With a strong Democrat majority in both upper and lower houses of the state’s legislature, it could soon become law – even though the ideas behind it are extremely radical by US standards.

The bill would establish a Climate Crisis Council to develop an energy policy that reduces statewide greenhouse gas emissions by 70% by 2030, and 100% by 2040 – and trusts in achieving net negative emissions after that, using 2006 as a baseline.

There has been widespread concern in Maryland about falling education standards compared with other states, and an inquiry, the Kirwan Commission, has called for $350m a year to be invested in improvements.

These include extra funding for teacher salaries, additional counselling and career preparation, stronger health programmes, and money for pre-school activities.

“We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does”

The bill would introduce a gradually escalating fossil fuel fee, starting at $15 a ton for non-transport sources and $10 a ton for vehicles.

There would also be a graduated registration fee on new cars and light trucks that are gas guzzlers, revenues from which would be used to provide rebates to electric vehicle (EV) purchasers and to pay for the installation of statewide EV charging points.

Maryland has suffered more than most of the US from climate change and is severely threatened by sea level rise on the shores of Chesapeake Bay. Some small towns are already losing the battle against the sea.

The frequency of street flooding in the state capital, Annapolis, and larger cities like Baltimore has increased about ten-fold since the early 1960s.

Salt feeds concerns

Salinisation of farmland on the Eastern Shore is also a concern, as the salt water has begun intruding into the water table. Across the state the frequency of extreme weather events continues to increase, including events like flash flooding, heavy thunderstorms, extreme heat and droughts.

Delegate David Fraser-Hidalgo, the leading General Assembly supporter of the bill, said the state’s taxpayers had already been paying for damage caused by the climate crisis: “In the 2019 session, we passed an emergency appropriation in the General Assembly for one million dollars to mitigate flooding in Annapolis.

“That’s just one city in the entire state − one million dollars. Why should the taxpayers pay for that when fossil fuel companies make $400 million a day in profits?”

Emphasising the urgency of the situation and the need for immediate action, the bill’s Senate sponsor, Senator Benjamin F. Kramer, said: “We have a climate crisis. It’s not a concern, it’s a crisis, and we must begin to address it, and that’s exactly what this legislation does.

“And the legislation is a win, win, win. It’s a win for our health, it’s a win for the environment, and it’s a win for education.”

Support detected

Both men are conscious that despite the concern of Democrats about the climate crisis, and the fact that the party has a large overall majority, their bill is radical and may meet some resistance. However, recent polling suggests that the public supports action on the crisis.

The bill is also up against legislators who favour other ways of paying for the education reforms, including taxes on gambling, alcohol and digital commerce.

In order to allay fears about new taxes on fossil fuels the provisions of the bill insist that the carbon taxes protect low- and moderate-income households, as well as “energy-intensive, trade-exposed businesses”, and help fossil fuel workers who may lose their jobs to find new ones in the clean economy.

There are also clauses that specifically prevent the fossil fuel companies from passing the cost of carbon taxes on to Maryland consumers. − Climate News Network