Tag Archives: Glaciers

Alpine plants face risk from growing climate heat

Like many mountainous regions, the European Alps are warming fast. Alpine plants will suffer – and life below ground as well.

LONDON, 1 March, 2021 – The early melting of snow in the Alps is not just bad news for ardent skiers and for those who are dependent on the money they earn during the winter sports season: Alpine plants are in danger too.

Rising temperatures due to climate change are also having a negative impact deep below the surface of the ground.

New research by scientists at the University of Manchester in the UK demonstrates that warming in the area is threatening microbes which live in the Alpine soils.

The microbes play a critical role in supporting life forms above ground, recycling key nutrients upon which animals, plants – and humans – depend.

“More extreme advances in snowmelt timing are forecast for the end of the century”

The microbes also control the amount of carbon stored in the soil: if the cycle of microbial activity is disrupted, then more carbon is released into the atmosphere, resulting in further global warming.

Arthur Broadbent, lead author of a research paper in the ISME Journal,  says climate change is having an alarming impact on microbial communities in Alpine soils.

“Using a high-alpine experiment in the Austrian Alps, we discovered that spring snowmelt triggers an abrupt seasonal transition in soil microbial communities, which is closely linked to rapid shifts in carbon and nitrogen cycling”, he said.

During the winter, microbes in the Alpine soils depend on snow to act as an insulating blanket, allowing them to continue to work throughout the cold months.

Himalayan disaster

The researchers say that climate change in the Alps is taking place at double the rate of the global average. Separate research indicates that profound changes are happening in the Alps and in many other mountainous regions around the world.

In February a flash flood in Uttarakhand in northern India killed nearly 70 people, with 136 more missing and now presumed dead. Most scientists believe the warming climate was the cause of the glacier melt which triggered the disaster.

There are predictions that over the next 80 years more than 90% of glacier ice in the Alpine region will be lost due to ever-rising temperatures.

“Snowmelt is predicted to occur 50 to 130 days earlier in alpine regions due to climate change by the end of the century”, says Dr Broadbent.

Increased warming

“Using experimental manipulations, we demonstrated that earlier snowmelt, of even just 10 days, leads to an earlier seasonal transition in microbial communities and biogeochemical cycling.”

The research paper says that changes in the microbial cycle caused by snow melt will result in less carbon being retained in the soil and so have a negative impact on the growth and productivity of plants.

“This would negatively affect agricultural production and disrupt natural ecosystems. It will also alter annual carbon fluxes in these ecosystems with the potential to cause further climate warming.”

The authors conclude with a clear warning: “More extreme advances in snowmelt timing are forecast for the end of the century.” – Climate News Network

Like many mountainous regions, the European Alps are warming fast. Alpine plants will suffer – and life below ground as well.

LONDON, 1 March, 2021 – The early melting of snow in the Alps is not just bad news for ardent skiers and for those who are dependent on the money they earn during the winter sports season: Alpine plants are in danger too.

Rising temperatures due to climate change are also having a negative impact deep below the surface of the ground.

New research by scientists at the University of Manchester in the UK demonstrates that warming in the area is threatening microbes which live in the Alpine soils.

The microbes play a critical role in supporting life forms above ground, recycling key nutrients upon which animals, plants – and humans – depend.

“More extreme advances in snowmelt timing are forecast for the end of the century”

The microbes also control the amount of carbon stored in the soil: if the cycle of microbial activity is disrupted, then more carbon is released into the atmosphere, resulting in further global warming.

Arthur Broadbent, lead author of a research paper in the ISME Journal,  says climate change is having an alarming impact on microbial communities in Alpine soils.

“Using a high-alpine experiment in the Austrian Alps, we discovered that spring snowmelt triggers an abrupt seasonal transition in soil microbial communities, which is closely linked to rapid shifts in carbon and nitrogen cycling”, he said.

During the winter, microbes in the Alpine soils depend on snow to act as an insulating blanket, allowing them to continue to work throughout the cold months.

Himalayan disaster

The researchers say that climate change in the Alps is taking place at double the rate of the global average. Separate research indicates that profound changes are happening in the Alps and in many other mountainous regions around the world.

In February a flash flood in Uttarakhand in northern India killed nearly 70 people, with 136 more missing and now presumed dead. Most scientists believe the warming climate was the cause of the glacier melt which triggered the disaster.

There are predictions that over the next 80 years more than 90% of glacier ice in the Alpine region will be lost due to ever-rising temperatures.

“Snowmelt is predicted to occur 50 to 130 days earlier in alpine regions due to climate change by the end of the century”, says Dr Broadbent.

Increased warming

“Using experimental manipulations, we demonstrated that earlier snowmelt, of even just 10 days, leads to an earlier seasonal transition in microbial communities and biogeochemical cycling.”

The research paper says that changes in the microbial cycle caused by snow melt will result in less carbon being retained in the soil and so have a negative impact on the growth and productivity of plants.

“This would negatively affect agricultural production and disrupt natural ecosystems. It will also alter annual carbon fluxes in these ecosystems with the potential to cause further climate warming.”

The authors conclude with a clear warning: “More extreme advances in snowmelt timing are forecast for the end of the century.” – Climate News Network

Wild flowers and bees contend with climate heat

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoides, Artemisia genipi, Cardamine resedifolia, Leucanthemopsis alpina, Gnaphalium supinum, Sedum alpestre, Minuartia sedoides, Sempervivum arachnoideum, Hieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoides, Artemisia genipi, Cardamine resedifolia, Leucanthemopsis alpina, Gnaphalium supinum, Sedum alpestre, Minuartia sedoides, Sempervivum arachnoideum, Hieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network

Scientists say world’s huge ice loss is speeding up

The frozen world is shrinking at a “staggering” rate. New research takes a measure of the world’s huge ice loss.

LONDON, 27 January, 2021 − Planet Earth is losing its frozen mantle faster than ever as the world’s huge ice loss intensifies. Between 1994 and 2017, the polar regions and the mountain glaciers said farewell to a total of 28 million million tonnes of ice. This is a quantity large enough to conceal the entire United Kingdom under an ice sheet 100 metres thick.

More alarmingly, scientists warn, the rate of loss has been accelerating. Over the course of the 23-year survey of the planet’s ice budget, there has been a 65% increase in the flow of meltwater from the glaciers, ice shelves and ice sheets.

Early in the last decade of the last century, ice loss was counted at 0.8 trillion tonnes a year. By 2017, this had increased to 1.3 trillion tonnes a year, says a new study in the journal The Cryosphere.

The finding should come as no great surprise. Thanks to profligate combustion of fossil fuels and the clearance of forests and grasslands, the planet is warming: 2020 has been awarded the unwelcome title of equal place as warmest year ever recorded, and the last six years have been the six warmest since records began.

“The vast majority of Earth’s ice loss is a direct consequence of climate warming.”

Researchers warned last year that the melting rate of Greenland’s ice sheet − the biggest in the northern hemisphere − would soon hit a 12,000 year high. A second group warned in the same month that ice loss from Antarctica would soon become irreversible.

The latest research, based on satellite data, confirms all fears. “Although every region we studied lost ice, losses from the Antarctic and Greenland ice sheets have accelerated the most,” said Thomas Slater, of the University of Leeds in the UK, who led the research.

“The ice sheets are now following the worst case climate warning scenarios set out by the Intergovernmental Panel on Climate Change. Sea level rise on this scale will have very serious impacts on coastal communities this century.”

The scientists measured loss from the land-based ice sheets of Greenland and Antarctica, from the shelf ice around Antarctica and from the drifting sea ice in the Arctic and Southern Oceans, as well as the retreat of 215,000 mountain glaciers worldwide.

‘Staggering’ loss

During the 23-year-survey, thanks to rising air and ocean temperatures, the Arctic Ocean lost 7.6 trillion tonnes, the Antarctic ice shelves 6.5 trillion tonnes. Melting sea ice will not affect sea levels, but it will expose greater areas of ocean to radiation, which would otherwise be reflected back into space. So the loss of sea ice can only lead to even more warming.

The researchers claim theirs is the first full global survey, but they also concede it can only be incomplete: they did not take the measure of fallen snow on land, nor of the icy soils of the permafrost, and they did not try to measure the loss of winter ice on lakes and rivers − but they note that the duration of ice on lakes has fallen by 12 days in the last two centuries, thanks to atmospheric warming.

However, they could put a measure on ice losses from land − 6.1 trillion tonnes from mountain glaciers worldwide, 3.8 trillion tonnes from the Greenland ice sheet, 2.5 trillion tonnes from the Antarctic surface − enough to raise global sea levels by 35mm.

Scientific studies tend to be presented without emotive language. But the researchers call their total of lost ice “staggering”. And they warn: “There can be little doubt that the vast majority of Earth’s ice loss is a direct consequence of climate warming.” − Climate News Network

The frozen world is shrinking at a “staggering” rate. New research takes a measure of the world’s huge ice loss.

LONDON, 27 January, 2021 − Planet Earth is losing its frozen mantle faster than ever as the world’s huge ice loss intensifies. Between 1994 and 2017, the polar regions and the mountain glaciers said farewell to a total of 28 million million tonnes of ice. This is a quantity large enough to conceal the entire United Kingdom under an ice sheet 100 metres thick.

More alarmingly, scientists warn, the rate of loss has been accelerating. Over the course of the 23-year survey of the planet’s ice budget, there has been a 65% increase in the flow of meltwater from the glaciers, ice shelves and ice sheets.

Early in the last decade of the last century, ice loss was counted at 0.8 trillion tonnes a year. By 2017, this had increased to 1.3 trillion tonnes a year, says a new study in the journal The Cryosphere.

The finding should come as no great surprise. Thanks to profligate combustion of fossil fuels and the clearance of forests and grasslands, the planet is warming: 2020 has been awarded the unwelcome title of equal place as warmest year ever recorded, and the last six years have been the six warmest since records began.

“The vast majority of Earth’s ice loss is a direct consequence of climate warming.”

Researchers warned last year that the melting rate of Greenland’s ice sheet − the biggest in the northern hemisphere − would soon hit a 12,000 year high. A second group warned in the same month that ice loss from Antarctica would soon become irreversible.

The latest research, based on satellite data, confirms all fears. “Although every region we studied lost ice, losses from the Antarctic and Greenland ice sheets have accelerated the most,” said Thomas Slater, of the University of Leeds in the UK, who led the research.

“The ice sheets are now following the worst case climate warning scenarios set out by the Intergovernmental Panel on Climate Change. Sea level rise on this scale will have very serious impacts on coastal communities this century.”

The scientists measured loss from the land-based ice sheets of Greenland and Antarctica, from the shelf ice around Antarctica and from the drifting sea ice in the Arctic and Southern Oceans, as well as the retreat of 215,000 mountain glaciers worldwide.

‘Staggering’ loss

During the 23-year-survey, thanks to rising air and ocean temperatures, the Arctic Ocean lost 7.6 trillion tonnes, the Antarctic ice shelves 6.5 trillion tonnes. Melting sea ice will not affect sea levels, but it will expose greater areas of ocean to radiation, which would otherwise be reflected back into space. So the loss of sea ice can only lead to even more warming.

The researchers claim theirs is the first full global survey, but they also concede it can only be incomplete: they did not take the measure of fallen snow on land, nor of the icy soils of the permafrost, and they did not try to measure the loss of winter ice on lakes and rivers − but they note that the duration of ice on lakes has fallen by 12 days in the last two centuries, thanks to atmospheric warming.

However, they could put a measure on ice losses from land − 6.1 trillion tonnes from mountain glaciers worldwide, 3.8 trillion tonnes from the Greenland ice sheet, 2.5 trillion tonnes from the Antarctic surface − enough to raise global sea levels by 35mm.

Scientific studies tend to be presented without emotive language. But the researchers call their total of lost ice “staggering”. And they warn: “There can be little doubt that the vast majority of Earth’s ice loss is a direct consequence of climate warming.” − Climate News Network

Antarctic depths warm far beyond oceanic average

Heat from factories and car exhausts must go somewhere. A surprising amount is now sunk in the remote Antarctic depths.

LONDON, 28 October, 2020 − Thanks to global heating, a vital part of the Southern Ocean is warming at a rate five times faster than the average for the Blue Planet as a whole, in the far Antarctic depths: 2000 metres or more below the surface of the Weddell Sea.

It is happening because at that depth the Weddell Sea has absorbed five times as much atmospheric heat − fuelled by greenhouse gas emissions from human fossil fuel combustion − as the average for the rest of the ocean. But what happens out of sight and far below the surface may not stay invisible. The Weddell Sea is where vast volumes of water circulate.

The fear is that such dramatic warming at depth could end up weakening a powerful current that encircles Antarctica, according to a new study in the Journal of Climate.

The evidence comes from 30 years of temperature and salinity samples, taken at the same spot and through the entire water column, with exquisite accuracy, by scientists aboard the German research icebreaker Polarstern.

“Our time series confirms the pivotal role of the Southern Ocean and especially the Weddell Sea in terms of storing heat in the depths of the world’s oceans”

“Our data shows a clear division in the water column of the Weddell Sea. While the water in the upper 700 metres has hardly warmed at all, in the deeper regions we’re seeing a consistent temperature rise of 0.0021 to 0.0024 degrees Celsius per year,” said Volker Strass, of the Alfred Wegener Institute in Bremerhaven in Germany.

“Since the ocean has roughly 1,000 times the heat capacity of the atmosphere, these numbers represent an enormous scale of heat absorption. By using the temperature rise to calculate the warming rate in watts per square metre, you can see that over the past 30 years, at depths of over 2,000 metres, the Weddell Sea has absorbed five times as much heat as the rest of the ocean on average.”

The global ocean is the great absorber of atmospheric shock. The deep blue sea has so far absorbed more than nine-tenths of the heat trapped by greenhouse gas emissions in the atmosphere.

The Weddell Sea begins at the extreme south of the Atlantic Ocean: it is roughly 10 times the size of Europe’s North Sea. Here tremendous volumes of water cool down. As sea ice forms on the surface the remaining waters become more salty, and because they have become colder, and denser, sink to the bottom, to spread at depth to drive deep sea flow into the oceans.

Ocean circulation risk

This act of overturning − the sinking of surface waters for thousands of metres into the Antarctic depths − is part of the machinery of ocean circulation that drives and modifies the world’s weather systems, and the climate.

The problem is that if the bottom waters are warming − and are therefore less dense − then this could weaken or stall the mechanism for ocean circulation. In the past 30 years the prevailing winds have shifted and intensified, and the flow speed of ocean water has increased to deliver more heat to the Weddell Sea with each decade.

Warming ocean waters have already been implicated in the loss of sea ice  cover that normally slows the flow of Antarctica’s continental glaciers. And warming in the Arctic has already triggered worries about the future of the “Atlantic Conveyer,” that enormous circulation of water that distributes heat from the Equator to the Poles and keeps northern Europe much warmer than its latitudes would dictate.

“Our time series confirms the pivotal role of the Southern Ocean and especially the Weddell Sea in terms of storing heat in the depths of the world’s oceans,” said Dr Strass. − Climate News Network

Heat from factories and car exhausts must go somewhere. A surprising amount is now sunk in the remote Antarctic depths.

LONDON, 28 October, 2020 − Thanks to global heating, a vital part of the Southern Ocean is warming at a rate five times faster than the average for the Blue Planet as a whole, in the far Antarctic depths: 2000 metres or more below the surface of the Weddell Sea.

It is happening because at that depth the Weddell Sea has absorbed five times as much atmospheric heat − fuelled by greenhouse gas emissions from human fossil fuel combustion − as the average for the rest of the ocean. But what happens out of sight and far below the surface may not stay invisible. The Weddell Sea is where vast volumes of water circulate.

The fear is that such dramatic warming at depth could end up weakening a powerful current that encircles Antarctica, according to a new study in the Journal of Climate.

The evidence comes from 30 years of temperature and salinity samples, taken at the same spot and through the entire water column, with exquisite accuracy, by scientists aboard the German research icebreaker Polarstern.

“Our time series confirms the pivotal role of the Southern Ocean and especially the Weddell Sea in terms of storing heat in the depths of the world’s oceans”

“Our data shows a clear division in the water column of the Weddell Sea. While the water in the upper 700 metres has hardly warmed at all, in the deeper regions we’re seeing a consistent temperature rise of 0.0021 to 0.0024 degrees Celsius per year,” said Volker Strass, of the Alfred Wegener Institute in Bremerhaven in Germany.

“Since the ocean has roughly 1,000 times the heat capacity of the atmosphere, these numbers represent an enormous scale of heat absorption. By using the temperature rise to calculate the warming rate in watts per square metre, you can see that over the past 30 years, at depths of over 2,000 metres, the Weddell Sea has absorbed five times as much heat as the rest of the ocean on average.”

The global ocean is the great absorber of atmospheric shock. The deep blue sea has so far absorbed more than nine-tenths of the heat trapped by greenhouse gas emissions in the atmosphere.

The Weddell Sea begins at the extreme south of the Atlantic Ocean: it is roughly 10 times the size of Europe’s North Sea. Here tremendous volumes of water cool down. As sea ice forms on the surface the remaining waters become more salty, and because they have become colder, and denser, sink to the bottom, to spread at depth to drive deep sea flow into the oceans.

Ocean circulation risk

This act of overturning − the sinking of surface waters for thousands of metres into the Antarctic depths − is part of the machinery of ocean circulation that drives and modifies the world’s weather systems, and the climate.

The problem is that if the bottom waters are warming − and are therefore less dense − then this could weaken or stall the mechanism for ocean circulation. In the past 30 years the prevailing winds have shifted and intensified, and the flow speed of ocean water has increased to deliver more heat to the Weddell Sea with each decade.

Warming ocean waters have already been implicated in the loss of sea ice  cover that normally slows the flow of Antarctica’s continental glaciers. And warming in the Arctic has already triggered worries about the future of the “Atlantic Conveyer,” that enormous circulation of water that distributes heat from the Equator to the Poles and keeps northern Europe much warmer than its latitudes would dictate.

“Our time series confirms the pivotal role of the Southern Ocean and especially the Weddell Sea in terms of storing heat in the depths of the world’s oceans,” said Dr Strass. − Climate News Network

China’s climate lead offers the planet new hope

Beijing’s plan to cut greenhouse gases could mean a global expansion of green industries following China’s climate lead.

LONDON, 19 October, 2020 – Whatever mixture of motives lies behind the announcement by President Xi Jinping that his country’s carbon dioxide emissions will peak before 2030, resulting in carbon neutrality before 2060, China’s climate lead offers the prospect of a new era in world affairs.

It alters the face of international negotiations to tackle the climate crisis and boosts hopes that catastrophic global heating can still be avoided.

It is not quite a month since the president took everyone by surprise by making the announcement at the United Nations. Cynics immediately began to question his motives.

Was he trying to corner the vast market in renewables, was he trying to upstage climate-denying and coal-loving President Trump, was he trying to divert attention from internal human rights issues and Hong Kong, or from accusations against China over the Covid crisis? Was he trying re-cast himself as a world leader on environmental matters?

Few seemed generous enough to accept that President Xi was making the announcement because he was genuinely concerned about the effects of climate change on China and the rest of the planet.

Either way, the President’s new targets were certainly a remarkable turnaround. Although there have been more positive statements recently, for more than a decade at successive climate talks China, along with the rest of the developing world, regarded climate change as the developed nations’ problem.

“China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025”

The old industrial countries of the EU, the US and Japan had caused global heating by burning fossil fuels, they argued, so it was up to them to solve the crisis. The immediate job for the developing world’s leaders was to raise their citizens’ living standards, and to worry about their domestic carbon emissions later.

But this was never the whole story. Chinese scientists had long pointed out to its leaders that the country’s future was as bleak as any other nation’s in the world if climate change was not controlled – and quickly.

The major rivers that feed Chinese agriculture will dry up as the glaciers on the Himalayas and the Tibetan plateau disappear; typhoons will regularly threaten the populous south; and the deserts of the north will grow.

And more recently fast-accelerating sea level rise has begun to threaten the economic powerhouse of Shanghai and much of the low-lying coast with inundation.

In addition, since the Beijing Olympics in 2008 it has been clear that air pollution from coal-burning and traffic fumes is a serious economic and health issue in China, while some drastic measures have succeeded in improving air quality.

On 12 October 18 Chinese think tanks combined to put some flesh on the bare bones of President Xi’s bold announcement. In a report published by the Institute of Climate Change and Sustainable Development at Tsinghua University, Beijing, they said immediate carbon cuts were required to keep temperature increases within 1.5°C by 2050.

Globally significant

Reuters news agency reported that a seminar held in Beijing to launch the Institute ’s report was attended by China’s top officials responsible for shaping the country’s energy policy.

One of the report’s contributors, He Jiankun, vice-director of the National Expert Committee on Climate Change, told the meeting: “China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025 and even realise negative growth.

“China is still expected to see the growth of natural gas consumption in 2026-2030, so the growth of carbon emissions from gas use should be offset by the reduction from the coal sector.”

The report also called for China to cut its carbon intensity – the amount of carbon dioxide emissions per GDP unit – by 65% by 2030 from 2015 levels, and to raise non-fossil fuel consumption to 25% by 2030.

This is way above anything that the Chinese government has committed to in the annual UN climate talks and would mean a drastic change in direction, since new coal power stations are still being constructed in large numbers to meet an ever-growing energy demand.

Whatever the motives behind these reduction targets, they matter hugely to the rest of the world. China is currently the world’s largest carbon emitter, with about 29% of the total. This is mainly due to massive coal burning for electricity and for major heavy industries like steel-making, which have moved there from Europe and the US. Switching away from coal would make an immediate difference.

Eye on exports

While critics, particularly climate deniers and right-wing think tanks in the US and Europe, constantly remind the world of Chinese coal-burning habits, they often neglect to mention that the country is a world leader in on-shore wind energy and solar power.

China is also aiming to soon have the largest off-shore wind market, overtaking the United Kingdom.

This might be the key to the President’s thinking. China has a massive domestic demand for renewables, but with wind and solar being the two fastest-growing industries in the world the export market is a great prize.

With President Trump firmly stuck in the fossil fuel age, China has an opportunity to become the lead provider of the technology that many countries in the world need to meet their climate targets.

Depending on who wins the US election on 3 November, President Xi may consolidate his renewables lead at leisure, or be in a race against the Democrat contender, Joe Biden, who has pledged to turn America from a climate laggard to a world leader.

If Biden does win he may find President Xi is already a lap ahead, and hard to overtake. – Climate News Network

Beijing’s plan to cut greenhouse gases could mean a global expansion of green industries following China’s climate lead.

LONDON, 19 October, 2020 – Whatever mixture of motives lies behind the announcement by President Xi Jinping that his country’s carbon dioxide emissions will peak before 2030, resulting in carbon neutrality before 2060, China’s climate lead offers the prospect of a new era in world affairs.

It alters the face of international negotiations to tackle the climate crisis and boosts hopes that catastrophic global heating can still be avoided.

It is not quite a month since the president took everyone by surprise by making the announcement at the United Nations. Cynics immediately began to question his motives.

Was he trying to corner the vast market in renewables, was he trying to upstage climate-denying and coal-loving President Trump, was he trying to divert attention from internal human rights issues and Hong Kong, or from accusations against China over the Covid crisis? Was he trying re-cast himself as a world leader on environmental matters?

Few seemed generous enough to accept that President Xi was making the announcement because he was genuinely concerned about the effects of climate change on China and the rest of the planet.

Either way, the President’s new targets were certainly a remarkable turnaround. Although there have been more positive statements recently, for more than a decade at successive climate talks China, along with the rest of the developing world, regarded climate change as the developed nations’ problem.

“China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025”

The old industrial countries of the EU, the US and Japan had caused global heating by burning fossil fuels, they argued, so it was up to them to solve the crisis. The immediate job for the developing world’s leaders was to raise their citizens’ living standards, and to worry about their domestic carbon emissions later.

But this was never the whole story. Chinese scientists had long pointed out to its leaders that the country’s future was as bleak as any other nation’s in the world if climate change was not controlled – and quickly.

The major rivers that feed Chinese agriculture will dry up as the glaciers on the Himalayas and the Tibetan plateau disappear; typhoons will regularly threaten the populous south; and the deserts of the north will grow.

And more recently fast-accelerating sea level rise has begun to threaten the economic powerhouse of Shanghai and much of the low-lying coast with inundation.

In addition, since the Beijing Olympics in 2008 it has been clear that air pollution from coal-burning and traffic fumes is a serious economic and health issue in China, while some drastic measures have succeeded in improving air quality.

On 12 October 18 Chinese think tanks combined to put some flesh on the bare bones of President Xi’s bold announcement. In a report published by the Institute of Climate Change and Sustainable Development at Tsinghua University, Beijing, they said immediate carbon cuts were required to keep temperature increases within 1.5°C by 2050.

Globally significant

Reuters news agency reported that a seminar held in Beijing to launch the Institute ’s report was attended by China’s top officials responsible for shaping the country’s energy policy.

One of the report’s contributors, He Jiankun, vice-director of the National Expert Committee on Climate Change, told the meeting: “China should strictly control coal consumption and the expansion of coal-fired power capacity in the next five years, aiming to cap carbon emissions from coal sectors by 2025 and even realise negative growth.

“China is still expected to see the growth of natural gas consumption in 2026-2030, so the growth of carbon emissions from gas use should be offset by the reduction from the coal sector.”

The report also called for China to cut its carbon intensity – the amount of carbon dioxide emissions per GDP unit – by 65% by 2030 from 2015 levels, and to raise non-fossil fuel consumption to 25% by 2030.

This is way above anything that the Chinese government has committed to in the annual UN climate talks and would mean a drastic change in direction, since new coal power stations are still being constructed in large numbers to meet an ever-growing energy demand.

Whatever the motives behind these reduction targets, they matter hugely to the rest of the world. China is currently the world’s largest carbon emitter, with about 29% of the total. This is mainly due to massive coal burning for electricity and for major heavy industries like steel-making, which have moved there from Europe and the US. Switching away from coal would make an immediate difference.

Eye on exports

While critics, particularly climate deniers and right-wing think tanks in the US and Europe, constantly remind the world of Chinese coal-burning habits, they often neglect to mention that the country is a world leader in on-shore wind energy and solar power.

China is also aiming to soon have the largest off-shore wind market, overtaking the United Kingdom.

This might be the key to the President’s thinking. China has a massive domestic demand for renewables, but with wind and solar being the two fastest-growing industries in the world the export market is a great prize.

With President Trump firmly stuck in the fossil fuel age, China has an opportunity to become the lead provider of the technology that many countries in the world need to meet their climate targets.

Depending on who wins the US election on 3 November, President Xi may consolidate his renewables lead at leisure, or be in a race against the Democrat contender, Joe Biden, who has pledged to turn America from a climate laggard to a world leader.

If Biden does win he may find President Xi is already a lap ahead, and hard to overtake. – Climate News Network

Antarctica’s ice loss could soon be irreversible

Global heating means the southern ice will melt. Antarctica’s ice loss could then be permanent, drowning many great cities.

LONDON, 2 October, 2020 – The greatest mass of ice on the planet is growing steadily more unstable, and that means Antarctica’s ice loss may before long be inexorable.

New studies show that right now, just one degree of warming must mean an eventual sea level rise of 1.3 metres, simply from the flow of melting ice from the continent of Antarctica.

If the annual average temperature of the planet goes beyond 2°C, then the Antarctic melting rate will double. And when global heating really steps up to 6°C or beyond, melting accelerates to the almost unimaginable level of 10 metres for every single degree rise in planetary average temperatures.

And, the researchers say, there is no way back. Even if the world’s nations stick to a promise made in Paris in 2015, to keep global heating to “well below” 2°C by the end of the century, the losses of the southern polar ice sheet cannot be restored: the process of melting, once triggered by global temperature rise, becomes inexorable.

European and US researchers report in the journal Nature that they worked through ice core records of long-ago change in Antarctica and employed a million hours of computer simulation time to build up a reliable picture of change on the Antarctic continent, in response to ever-higher planetary average temperatures, driven by ever more profligate use of fossil fuels to generate ever-higher atmospheric ratios of greenhouse gases.

Their word for the state they wanted to study is hysteresis: this can be interpreted as the way altered conditions might commit a state to further change.

“If we give up the Paris Agreement, we give up Hamburg, Tokyo and New York”

The planet’s climate has oscillated many times over many millions of years. What this climate shift does to the polar regions can literally change the map of the planet. Antarctica is an enormous continent, the size of the US, Mexico and India together, and the ice it bears would, if it all were to melt, raise global sea levels by 58 metres.

“Antarctica holds more than half of Earth’s fresh water, frozen in a vast ice-sheet which is nearly five kilometres thick. As the surrounding ocean water and atmosphere warm due to human greenhouse gas emissions, the white cap on the South Pole loses mass and eventually becomes unstable,” said Ricarda Winkelmann, of the Potsdam Institute for Climate Impact Research.

“Because of its sheer magnitude, Antarctica’s potential for sea level contribution is enormous. We find that already at two degrees of warming, melting and the accelerated ice flow into the ocean will, eventually, entail 2.5 metres of global sea level rise just from Antarctica alone. At four degrees, it will be 6.5 metres and at six degrees almost 12 metres, if these temperature levels would be sustained long enough.”

That loss of ice would be slow – it would take many thousands of years – but the point the researchers make is that the continent may already be nearing a tipping point, after which the slide towards ever-higher sea levels would be unstoppable.

Since the great ice sheets of Greenland and Antarctica are part of the planetary cooling system – their whiteness reflects solar radiation back into space, so that the ice becomes its own insulation – their loss would inevitably trigger the process of further and faster warming.

Scientists from all nations have been warning for more than a decade that the continent is losing its protective screen of seaborne shelf ice, which in turn would make glacier flow towards the sea ever faster, and that the rate of loss of ice has begun to accelerate.

No going back

“In the end, it is our burning of coal and oil that determines ongoing and future greenhouse gas emissions and, therefore, if and when critical temperature thresholds in Antarctica are crossed.

“And even if the ice loss happens on long time scales, the respective carbon dioxide levels can already be reached in the near future,” said Professor Winkelmann.

“We decide now whether we manage to halt the warming. So Antarctica’s fate really lies in our hands – and with it that of our cities and cultural sites across the globe, from Rio de Janeiro’s Copacabana to Sydney’s Opera House. Thus this study really is another exclamation mark behind the importance of the Paris Climate Accord: Keep global warming below two degrees.”

And her Potsdam co-author Anders Levermann reinforced the argument. “Our simulations show that once it’s melted, it does not regrow to its initial state even if temperatures eventually sank again.

“Indeed, temperatures would have to go back to pre-industrial levels to allow its full recovery – a highly unlikely scenario. In other words: what we lose of Antarctica now is lost forever.”

And he warned: “If we give up the Paris Agreement, we give up Hamburg, Tokyo and New York.” – Climate News Network

Global heating means the southern ice will melt. Antarctica’s ice loss could then be permanent, drowning many great cities.

LONDON, 2 October, 2020 – The greatest mass of ice on the planet is growing steadily more unstable, and that means Antarctica’s ice loss may before long be inexorable.

New studies show that right now, just one degree of warming must mean an eventual sea level rise of 1.3 metres, simply from the flow of melting ice from the continent of Antarctica.

If the annual average temperature of the planet goes beyond 2°C, then the Antarctic melting rate will double. And when global heating really steps up to 6°C or beyond, melting accelerates to the almost unimaginable level of 10 metres for every single degree rise in planetary average temperatures.

And, the researchers say, there is no way back. Even if the world’s nations stick to a promise made in Paris in 2015, to keep global heating to “well below” 2°C by the end of the century, the losses of the southern polar ice sheet cannot be restored: the process of melting, once triggered by global temperature rise, becomes inexorable.

European and US researchers report in the journal Nature that they worked through ice core records of long-ago change in Antarctica and employed a million hours of computer simulation time to build up a reliable picture of change on the Antarctic continent, in response to ever-higher planetary average temperatures, driven by ever more profligate use of fossil fuels to generate ever-higher atmospheric ratios of greenhouse gases.

Their word for the state they wanted to study is hysteresis: this can be interpreted as the way altered conditions might commit a state to further change.

“If we give up the Paris Agreement, we give up Hamburg, Tokyo and New York”

The planet’s climate has oscillated many times over many millions of years. What this climate shift does to the polar regions can literally change the map of the planet. Antarctica is an enormous continent, the size of the US, Mexico and India together, and the ice it bears would, if it all were to melt, raise global sea levels by 58 metres.

“Antarctica holds more than half of Earth’s fresh water, frozen in a vast ice-sheet which is nearly five kilometres thick. As the surrounding ocean water and atmosphere warm due to human greenhouse gas emissions, the white cap on the South Pole loses mass and eventually becomes unstable,” said Ricarda Winkelmann, of the Potsdam Institute for Climate Impact Research.

“Because of its sheer magnitude, Antarctica’s potential for sea level contribution is enormous. We find that already at two degrees of warming, melting and the accelerated ice flow into the ocean will, eventually, entail 2.5 metres of global sea level rise just from Antarctica alone. At four degrees, it will be 6.5 metres and at six degrees almost 12 metres, if these temperature levels would be sustained long enough.”

That loss of ice would be slow – it would take many thousands of years – but the point the researchers make is that the continent may already be nearing a tipping point, after which the slide towards ever-higher sea levels would be unstoppable.

Since the great ice sheets of Greenland and Antarctica are part of the planetary cooling system – their whiteness reflects solar radiation back into space, so that the ice becomes its own insulation – their loss would inevitably trigger the process of further and faster warming.

Scientists from all nations have been warning for more than a decade that the continent is losing its protective screen of seaborne shelf ice, which in turn would make glacier flow towards the sea ever faster, and that the rate of loss of ice has begun to accelerate.

No going back

“In the end, it is our burning of coal and oil that determines ongoing and future greenhouse gas emissions and, therefore, if and when critical temperature thresholds in Antarctica are crossed.

“And even if the ice loss happens on long time scales, the respective carbon dioxide levels can already be reached in the near future,” said Professor Winkelmann.

“We decide now whether we manage to halt the warming. So Antarctica’s fate really lies in our hands – and with it that of our cities and cultural sites across the globe, from Rio de Janeiro’s Copacabana to Sydney’s Opera House. Thus this study really is another exclamation mark behind the importance of the Paris Climate Accord: Keep global warming below two degrees.”

And her Potsdam co-author Anders Levermann reinforced the argument. “Our simulations show that once it’s melted, it does not regrow to its initial state even if temperatures eventually sank again.

“Indeed, temperatures would have to go back to pre-industrial levels to allow its full recovery – a highly unlikely scenario. In other words: what we lose of Antarctica now is lost forever.”

And he warned: “If we give up the Paris Agreement, we give up Hamburg, Tokyo and New York.” – Climate News Network

Pandemic’s impacts are damaging climate research

Climate research is suffering permanent damage from some of the Covid-19 pandemic’s impacts, a UN report says.

LONDON, 9 September, 2020 − Whatever else the coronavirus onslaught is doing to humankind, some of the pandemic’s impacts are clear. It is making it harder for researchers to establish just what effect climate change is having on the planet.

A group of United Nations and other agencies is today launching a report, United in Science 2020, (webcast at 1600 hours New York time) which it calls “a high-level compilation of the latest climate science information”. It is being launched by the UN secretary-general, António Guterres, with a virtual link to his counterpart at the World Meteorological Organisation,  Petteri Taalas, in Geneva.

Much of what the report says will already be familiar, but its detailed finding that the pandemic is causing long-term damage to climate change monitoring is sobering.

Science advances by combining knowledge of the past with experience of the present and then combining them to forecast the probable future. That is how climate scientists have been able very recently to state that their earlier worst case scenario isn’t just an awful warning, but describes what is happening right now.

Several contenders have vied to be identified as the one who wrote: “You cannot manage what you cannot measure.” Which of them − if any − really did write that may not matter much. But it certainly matters for today’s researchers to know where the biosphere came from and where it is now if they are to have any idea where we shall all be in a few years.

Recalled to port

So it’s alarming that United in Science 2020, in its section on earth system observations, says: “The Covid-19 pandemic has produced significant impacts on the global observing systems, which in turn have affected the quality of forecasts and other weather, climate and ocean-related services.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models. Since June, there has been only a slight recovery. Observations at manually-operated weather stations, especially in Africa and South America, have also been badly disrupted.”

In March this year, it says, nearly all oceanographic research vessels were recalled to home ports. Commercial ships have been unable to contribute vital ocean and weather observations, and ocean buoys and other systems could not be maintained.

Four “valuable” full-depth ocean surveys of variables such as carbon, temperature, salinity, and water alkalinity, completed only once every decade, have been cancelled. Surface carbon measurements from ships, which cast light on the evolution of greenhouse gases, also effectively stopped.

The impacts on climate change monitoring are long-term. They are likely to prevent or restrict measurement of glaciers and the thickness of permafrost, usually conducted at the end of the thawing period.

In an ominous warning the report notes that the overall disruption of observations will introduce gaps in the historical time series of Essential Climate Variables, vital for understanding what is happening to the planetary climate.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models”

The report’s authors are also concerned about climate and water, where they expect the pandemic’s impacts to intensify existing problems. By 2050, they say, the number of people at risk of floods will increase from 1.2 billion now to 1.6 bn.

In the early to mid-2010s, 1.9 bn people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to between 2.7 and 3.2 bn people.

It is estimated that central Europe and the Caucasus have already reached peak water, and that the Tibetan Plateau region will do so between 2030 and 2050.

Runoff from snow cover, permafrost and glaciers in this region provides up to 45% of the total river flow, so a decrease would affect water availability for 1.7 bn people.

United in Science 2020 also says the world is a very long way from living up to its promises, with the targets of the Paris Agreement on climate change nowhere near being met.

The UN’s Emissions Gap Report 2019 compares “where we are likely to be and where we need to be” on cutting emissions of greenhouse gases (GHGs). The annual series of Gap Reports use gigatonnes (Gt) as units of measurement: one gigatonne is a billion metric tons.

Record emissions

Another frequent formula is GtCO2e, an abbreviation for “gigatonnes of equivalent carbon dioxide”. That’s a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect.

The 2019 Report says GHG emissions reached a record high of 55.3 GtCO2e in 2018. It continues: “There is no sign of GHG emissions peaking in the next few years; every year of postponed peaking means that deeper and faster cuts will be required.

“By 2030, emissions would need to be 25% and 55% lower than in 2018 to put the world on the least-cost pathway to limiting global warming to below 2 ̊C and 1.5°C respectively” [the two Paris Agreement targets].

The Gap in 2030 is estimated at 12-15 gigatonnes if the world is to limit global warming to below 2 °C. For the 1.5 °C goal, it is estimated at 29-32 Gt, roughly equivalent to the combined emissions of the world’s six largest emitters.

That’s an awful lot of GHGs which, as things stand, are going to be adding their heat to a torrid world a decade from now. − Climate News Network

Climate research is suffering permanent damage from some of the Covid-19 pandemic’s impacts, a UN report says.

LONDON, 9 September, 2020 − Whatever else the coronavirus onslaught is doing to humankind, some of the pandemic’s impacts are clear. It is making it harder for researchers to establish just what effect climate change is having on the planet.

A group of United Nations and other agencies is today launching a report, United in Science 2020, (webcast at 1600 hours New York time) which it calls “a high-level compilation of the latest climate science information”. It is being launched by the UN secretary-general, António Guterres, with a virtual link to his counterpart at the World Meteorological Organisation,  Petteri Taalas, in Geneva.

Much of what the report says will already be familiar, but its detailed finding that the pandemic is causing long-term damage to climate change monitoring is sobering.

Science advances by combining knowledge of the past with experience of the present and then combining them to forecast the probable future. That is how climate scientists have been able very recently to state that their earlier worst case scenario isn’t just an awful warning, but describes what is happening right now.

Several contenders have vied to be identified as the one who wrote: “You cannot manage what you cannot measure.” Which of them − if any − really did write that may not matter much. But it certainly matters for today’s researchers to know where the biosphere came from and where it is now if they are to have any idea where we shall all be in a few years.

Recalled to port

So it’s alarming that United in Science 2020, in its section on earth system observations, says: “The Covid-19 pandemic has produced significant impacts on the global observing systems, which in turn have affected the quality of forecasts and other weather, climate and ocean-related services.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models. Since June, there has been only a slight recovery. Observations at manually-operated weather stations, especially in Africa and South America, have also been badly disrupted.”

In March this year, it says, nearly all oceanographic research vessels were recalled to home ports. Commercial ships have been unable to contribute vital ocean and weather observations, and ocean buoys and other systems could not be maintained.

Four “valuable” full-depth ocean surveys of variables such as carbon, temperature, salinity, and water alkalinity, completed only once every decade, have been cancelled. Surface carbon measurements from ships, which cast light on the evolution of greenhouse gases, also effectively stopped.

The impacts on climate change monitoring are long-term. They are likely to prevent or restrict measurement of glaciers and the thickness of permafrost, usually conducted at the end of the thawing period.

In an ominous warning the report notes that the overall disruption of observations will introduce gaps in the historical time series of Essential Climate Variables, vital for understanding what is happening to the planetary climate.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models”

The report’s authors are also concerned about climate and water, where they expect the pandemic’s impacts to intensify existing problems. By 2050, they say, the number of people at risk of floods will increase from 1.2 billion now to 1.6 bn.

In the early to mid-2010s, 1.9 bn people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to between 2.7 and 3.2 bn people.

It is estimated that central Europe and the Caucasus have already reached peak water, and that the Tibetan Plateau region will do so between 2030 and 2050.

Runoff from snow cover, permafrost and glaciers in this region provides up to 45% of the total river flow, so a decrease would affect water availability for 1.7 bn people.

United in Science 2020 also says the world is a very long way from living up to its promises, with the targets of the Paris Agreement on climate change nowhere near being met.

The UN’s Emissions Gap Report 2019 compares “where we are likely to be and where we need to be” on cutting emissions of greenhouse gases (GHGs). The annual series of Gap Reports use gigatonnes (Gt) as units of measurement: one gigatonne is a billion metric tons.

Record emissions

Another frequent formula is GtCO2e, an abbreviation for “gigatonnes of equivalent carbon dioxide”. That’s a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect.

The 2019 Report says GHG emissions reached a record high of 55.3 GtCO2e in 2018. It continues: “There is no sign of GHG emissions peaking in the next few years; every year of postponed peaking means that deeper and faster cuts will be required.

“By 2030, emissions would need to be 25% and 55% lower than in 2018 to put the world on the least-cost pathway to limiting global warming to below 2 ̊C and 1.5°C respectively” [the two Paris Agreement targets].

The Gap in 2030 is estimated at 12-15 gigatonnes if the world is to limit global warming to below 2 °C. For the 1.5 °C goal, it is estimated at 29-32 Gt, roughly equivalent to the combined emissions of the world’s six largest emitters.

That’s an awful lot of GHGs which, as things stand, are going to be adding their heat to a torrid world a decade from now. − Climate News Network

In Arctic heat Greenland’s ice loss grows faster still

Greenland’s ice loss tipped a new record last year. This ominous milestone is just the latest in a run of alarming news.

LONDON, 24 August, 2020 – Its icecap is now smaller than at any time since measurements began: Greenland’s ice loss means it lost mass in 2019 at a record rate.

By the close of the year, thanks to high summer melt and low snowfall, the northern hemisphere’s biggest reservoir of ice had shed 532 billion tonnes into the sea – raising global sea levels by around 1.5mm in a year.

The previous record loss for Greenland was in 2012. In that year, the island lost 464 billion tonnes, according to studies of satellite data published by European scientists in the journal Communications Earth and Environment.

Greenland’s ice cap has been shrinking, if unsteadily, for many years. In 2017 and 2018, the losses continued, but only at around 100bn tonnes a year.

“After a two-year breather, the mass loss increased steeply and exceeded all annual losses since 1948, and probably for more than 100 years,” said Ingo Sasgen of the Alfred Wegener Institute in Bremerhaven, Germany, who led the study.

“There are increasingly frequent, stable high-pressure areas over the ice sheet, which promote the influx of warm air from the middle latitudes. We saw a similar pattern in the previous record year, 2012.”

“The ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now”

He and colleagues made their calculations from data delivered by two Nasa satellites, GRACE and GRACE-FO, that measure changes in the surface gravity of the planet: a way of calculating the mass of water stored as ice, or in aquifers, and observing sea level change.

The finding is the latest in a succession of polar climate alarms. It follows closely on a warning from US scientists that ice loss from Greenland may  have reached the point of no return.

And it also follows a sober calculation of the alarming rate of planetary temperature rise in response to ever-higher use of fossil fuels that trigger ever-higher measures of greenhouse gases in the atmosphere.

And that in turn followed a warning that the entire Arctic was now warming so swiftly that the Arctic sea ice might be all but gone in the summer of 2035.

And that was only days after another research team, looking at the big picture of climate change, warned that the scenario climate forecasters liked to use as an example of their “worst case” was now a simple description of what was already happening.

“It is devastating that 2019 was another record year of ice loss. In 2012, it had been about 150 years since the ice sheet had experienced similar melt extent, and then a further 600-plus years back to find another similar event,” said Twila Moon, of the University of Colorado at Boulder, who was not involved in the research.

Damage off the scale

“We have now had record-breaking ice loss twice in less than 10 years, and the ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now.”

The implications of continued loss of Greenland ice have been explored repeatedly: the run-off of fresh water from the ice cap to the sea is now so great that the North Atlantic is now “fresher” than at any time in the last 100 years.

And this change in water temperature and chemistry could – on the evidence of the distant past – possibly slow or switch off the circulation of the North Atlantic current, which for most of the history of human civilisation has kept the United Kingdom and north-western Europe from five to 10°C warmer than similar latitudes elsewhere.

“This tipping point in the climate system is one of the potential climate disasters facing us,” said Stuart Cunningham of the Scottish Association for Marine Science, commenting on the study.

“To transform the way we power, finance and run the world in the way we know we should is proving entirely beyond us,” said Chris Rapley, now a climate scientist at University College London, but once director of the British Antarctic Survey.

“Torpor, incompetence and indifference at the top may kill people in a health crisis, and torpedo the careers of young students in an education crisis; but the damage they are generating in the pipeline from climate change is on another scale.” – Climate News Network

Greenland’s ice loss tipped a new record last year. This ominous milestone is just the latest in a run of alarming news.

LONDON, 24 August, 2020 – Its icecap is now smaller than at any time since measurements began: Greenland’s ice loss means it lost mass in 2019 at a record rate.

By the close of the year, thanks to high summer melt and low snowfall, the northern hemisphere’s biggest reservoir of ice had shed 532 billion tonnes into the sea – raising global sea levels by around 1.5mm in a year.

The previous record loss for Greenland was in 2012. In that year, the island lost 464 billion tonnes, according to studies of satellite data published by European scientists in the journal Communications Earth and Environment.

Greenland’s ice cap has been shrinking, if unsteadily, for many years. In 2017 and 2018, the losses continued, but only at around 100bn tonnes a year.

“After a two-year breather, the mass loss increased steeply and exceeded all annual losses since 1948, and probably for more than 100 years,” said Ingo Sasgen of the Alfred Wegener Institute in Bremerhaven, Germany, who led the study.

“There are increasingly frequent, stable high-pressure areas over the ice sheet, which promote the influx of warm air from the middle latitudes. We saw a similar pattern in the previous record year, 2012.”

“The ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now”

He and colleagues made their calculations from data delivered by two Nasa satellites, GRACE and GRACE-FO, that measure changes in the surface gravity of the planet: a way of calculating the mass of water stored as ice, or in aquifers, and observing sea level change.

The finding is the latest in a succession of polar climate alarms. It follows closely on a warning from US scientists that ice loss from Greenland may  have reached the point of no return.

And it also follows a sober calculation of the alarming rate of planetary temperature rise in response to ever-higher use of fossil fuels that trigger ever-higher measures of greenhouse gases in the atmosphere.

And that in turn followed a warning that the entire Arctic was now warming so swiftly that the Arctic sea ice might be all but gone in the summer of 2035.

And that was only days after another research team, looking at the big picture of climate change, warned that the scenario climate forecasters liked to use as an example of their “worst case” was now a simple description of what was already happening.

“It is devastating that 2019 was another record year of ice loss. In 2012, it had been about 150 years since the ice sheet had experienced similar melt extent, and then a further 600-plus years back to find another similar event,” said Twila Moon, of the University of Colorado at Boulder, who was not involved in the research.

Damage off the scale

“We have now had record-breaking ice loss twice in less than 10 years, and the ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now.”

The implications of continued loss of Greenland ice have been explored repeatedly: the run-off of fresh water from the ice cap to the sea is now so great that the North Atlantic is now “fresher” than at any time in the last 100 years.

And this change in water temperature and chemistry could – on the evidence of the distant past – possibly slow or switch off the circulation of the North Atlantic current, which for most of the history of human civilisation has kept the United Kingdom and north-western Europe from five to 10°C warmer than similar latitudes elsewhere.

“This tipping point in the climate system is one of the potential climate disasters facing us,” said Stuart Cunningham of the Scottish Association for Marine Science, commenting on the study.

“To transform the way we power, finance and run the world in the way we know we should is proving entirely beyond us,” said Chris Rapley, now a climate scientist at University College London, but once director of the British Antarctic Survey.

“Torpor, incompetence and indifference at the top may kill people in a health crisis, and torpedo the careers of young students in an education crisis; but the damage they are generating in the pipeline from climate change is on another scale.” – Climate News Network

Greenland is losing more ice than it gains annually

The ice lost to the sea annually off Greenland is now more than the snow falling on the island. This is a tipping point.

LONDON, 18 August, 2020 – The loss of ice from Greenland may have reached the point of no return. The island’s glaciers have dwindled and retreated so much that annual snowfall can no longer replace the lost ice.

New studies confirm that between 1980 and the year 2000, the island – the biggest single store of ice in the northern hemisphere – lost on average 450 billion tonnes of ice each year from its glaciers. This is about what falls as snow and stays on the island’s surface each year.

And then 20 years ago the rate of melt – already speeding up – accelerated again. The glaciers are now spilling more than 500 billion tonnes of ice into the seas. But snowfall has not increased.

And US scientists warn, in the normally guarded language of science, of a “switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt.”

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss”

The scientists base their new conclusions on a careful re-examination of 40 years of satellite observations to check the rates of snowfall and ice loss. “What we’ve found is that the ice that’s discharging into the ocean is far surpassing the snow that’s accumulating on the surface of the ice sheet,” said Michalea King of Ohio State University, who led the research. .

The news, in the journal Nature Communications Earth and Environment, is alarming but hardly surprising. In December researchers warned that – even to begin to arrest the melting of a store of ice big enough to raise global sea levels by up to seven metres the world would have to take immediate and drastic steps to halt global heating.

Researchers have found that surface melting is at a rate that has begun to make the glaciers more unstable. They have confirmed that the rate of melt is accelerating so swiftly that the bedrock beneath the weight of ice has begun to rise, while a range of other climate change triggers has begun to darken the ice cover in ways that can only increase the absorption of heat and step up the rate of melt.

The latest evidence is that the world has passed a tipping point of sorts: once such things happen, there is no way back.

Glaciers gather speed

All icecaps melt in summer, and all icecaps are drained by glaciers, rivers of ice that make slow progress to the sea. In a stable climate, annual precipitation and annual glacier calving remain more or less in balance, and the icecap functions as its own refrigerant. The whiteness of the ice reflects sunlight back into space and insulates itself against significant loss.

But as the air and oceans warm in response to ever higher levels of greenhouse gases pumped into the atmosphere as nations continue to burn ever more coal, oil and gas, the rates of melt became more dramatic and the glaciers began to flow ever faster: one of them was clocked at 45 metres a day.

The message of the latest research is that, even if somehow humans could immediately halt climate change, the ice likely to be lost as the glaciers reach the sea would still be greater than the accumulation of ice on the surface each winter.

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss,” said Ian Howat, a co-author at Ohio State University. “Even if the climate were to stay the same or get a little colder, the ice sheet would still be losing mass.” – Climate News Network

The ice lost to the sea annually off Greenland is now more than the snow falling on the island. This is a tipping point.

LONDON, 18 August, 2020 – The loss of ice from Greenland may have reached the point of no return. The island’s glaciers have dwindled and retreated so much that annual snowfall can no longer replace the lost ice.

New studies confirm that between 1980 and the year 2000, the island – the biggest single store of ice in the northern hemisphere – lost on average 450 billion tonnes of ice each year from its glaciers. This is about what falls as snow and stays on the island’s surface each year.

And then 20 years ago the rate of melt – already speeding up – accelerated again. The glaciers are now spilling more than 500 billion tonnes of ice into the seas. But snowfall has not increased.

And US scientists warn, in the normally guarded language of science, of a “switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt.”

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss”

The scientists base their new conclusions on a careful re-examination of 40 years of satellite observations to check the rates of snowfall and ice loss. “What we’ve found is that the ice that’s discharging into the ocean is far surpassing the snow that’s accumulating on the surface of the ice sheet,” said Michalea King of Ohio State University, who led the research. .

The news, in the journal Nature Communications Earth and Environment, is alarming but hardly surprising. In December researchers warned that – even to begin to arrest the melting of a store of ice big enough to raise global sea levels by up to seven metres the world would have to take immediate and drastic steps to halt global heating.

Researchers have found that surface melting is at a rate that has begun to make the glaciers more unstable. They have confirmed that the rate of melt is accelerating so swiftly that the bedrock beneath the weight of ice has begun to rise, while a range of other climate change triggers has begun to darken the ice cover in ways that can only increase the absorption of heat and step up the rate of melt.

The latest evidence is that the world has passed a tipping point of sorts: once such things happen, there is no way back.

Glaciers gather speed

All icecaps melt in summer, and all icecaps are drained by glaciers, rivers of ice that make slow progress to the sea. In a stable climate, annual precipitation and annual glacier calving remain more or less in balance, and the icecap functions as its own refrigerant. The whiteness of the ice reflects sunlight back into space and insulates itself against significant loss.

But as the air and oceans warm in response to ever higher levels of greenhouse gases pumped into the atmosphere as nations continue to burn ever more coal, oil and gas, the rates of melt became more dramatic and the glaciers began to flow ever faster: one of them was clocked at 45 metres a day.

The message of the latest research is that, even if somehow humans could immediately halt climate change, the ice likely to be lost as the glaciers reach the sea would still be greater than the accumulation of ice on the surface each winter.

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss,” said Ian Howat, a co-author at Ohio State University. “Even if the climate were to stay the same or get a little colder, the ice sheet would still be losing mass.” – Climate News Network

Cloudless skies hasten Greenland’s ice loss

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The bad news about Greenland’s ice loss has just got even worse. Blame it on mischief by blue skies all day long.

LONDON, 22 April, 2020 – Greenland’s ice loss reached record levels in 2019, and scientists think they’ve identified the culprit: the good weather which normally brings the snow-bearing clouds to the High Arctic.

The huge island, the biggest bank of ice in the northern hemisphere, has been losing ice at an ever-increasing rate in a rapidly warming world. Last year it shed more ice than ever, and this time because the skies were unusually clear.

There is enough ice on Greenland to raise global sea levels by more than seven metres. A recent study established that in the years between 1992 and 2018, rates of polar ice loss have risen six-fold, and so much water has flowed off the Greenland ice surface that sea levels have risen by more than 10mm everywhere.

Now a new study by US and Belgian scientists in the journal The Cryosphere confirms that 2019 was even worse. Because of good weather and cloudless skies, only enough snow fell to deposit 50 billion tonnes of ice into the island’s profit-and-loss ice account. The average annual deposit between 1981 and 2010 was about 375bn tonnes.

But glaciers still flowed towards the sea at an ever-increasing rate, summer snow melt continued to flow off the ice sheet, and icebergs continued to calve, so on balance the island lost 600 billion tonnes of ice: enough to raise global sea levels by 1.5mm. This is the biggest overall loss of ice since records in Greenland began in 1948.

“These atmospheric conditions are becoming more and more frequent over the past few decades. It is very likely that this is due to the waviness of the jet stream”

The cause: unusual spells of high atmospheric pressure over the island for unusually long periods of time. That stopped the formation of clouds, and that meant less precipitation, in the form of snow. Snow reflects solar radiation more effectively than ice, so the surface absorbed more heat and melting also accelerated.

The pattern of warm moist clouds trapped over northern Greenland by the heat that would normally radiate off the ice, instead of releasing snow, also emitted their own heat, to make things worse. The worst year for surface melting remains 2012, but the summer of 2019 was a good second.

The implication is that things could get worse, and losses of Greenland ice could accelerate.

“These atmospheric conditions are becoming more and more frequent over the past few decades,” said Marco Tedesco, of the Lamont-Doherty Earth Observatory at the University of Columbia in the US, the lead author.

“It is very likely that this is due to the waviness of the jet stream, which we think is related to, among other things, the disappearance of snow cover in Siberia, the disappearance of sea ice, and the difference in the rate at which temperature is increasing in the Arctic versus the mid-latitudes.” – Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The bad news about Greenland’s ice loss has just got even worse. Blame it on mischief by blue skies all day long.

LONDON, 22 April, 2020 – Greenland’s ice loss reached record levels in 2019, and scientists think they’ve identified the culprit: the good weather which normally brings the snow-bearing clouds to the High Arctic.

The huge island, the biggest bank of ice in the northern hemisphere, has been losing ice at an ever-increasing rate in a rapidly warming world. Last year it shed more ice than ever, and this time because the skies were unusually clear.

There is enough ice on Greenland to raise global sea levels by more than seven metres. A recent study established that in the years between 1992 and 2018, rates of polar ice loss have risen six-fold, and so much water has flowed off the Greenland ice surface that sea levels have risen by more than 10mm everywhere.

Now a new study by US and Belgian scientists in the journal The Cryosphere confirms that 2019 was even worse. Because of good weather and cloudless skies, only enough snow fell to deposit 50 billion tonnes of ice into the island’s profit-and-loss ice account. The average annual deposit between 1981 and 2010 was about 375bn tonnes.

But glaciers still flowed towards the sea at an ever-increasing rate, summer snow melt continued to flow off the ice sheet, and icebergs continued to calve, so on balance the island lost 600 billion tonnes of ice: enough to raise global sea levels by 1.5mm. This is the biggest overall loss of ice since records in Greenland began in 1948.

“These atmospheric conditions are becoming more and more frequent over the past few decades. It is very likely that this is due to the waviness of the jet stream”

The cause: unusual spells of high atmospheric pressure over the island for unusually long periods of time. That stopped the formation of clouds, and that meant less precipitation, in the form of snow. Snow reflects solar radiation more effectively than ice, so the surface absorbed more heat and melting also accelerated.

The pattern of warm moist clouds trapped over northern Greenland by the heat that would normally radiate off the ice, instead of releasing snow, also emitted their own heat, to make things worse. The worst year for surface melting remains 2012, but the summer of 2019 was a good second.

The implication is that things could get worse, and losses of Greenland ice could accelerate.

“These atmospheric conditions are becoming more and more frequent over the past few decades,” said Marco Tedesco, of the Lamont-Doherty Earth Observatory at the University of Columbia in the US, the lead author.

“It is very likely that this is due to the waviness of the jet stream, which we think is related to, among other things, the disappearance of snow cover in Siberia, the disappearance of sea ice, and the difference in the rate at which temperature is increasing in the Arctic versus the mid-latitudes.” – Climate News Network