Tag Archives: Glaciers

Pandemic’s impacts are damaging climate research

Climate research is suffering permanent damage from some of the Covid-19 pandemic’s impacts, a UN report says.

LONDON, 9 September, 2020 − Whatever else the coronavirus onslaught is doing to humankind, some of the pandemic’s impacts are clear. It is making it harder for researchers to establish just what effect climate change is having on the planet.

A group of United Nations and other agencies is today launching a report, United in Science 2020, (webcast at 1600 hours New York time) which it calls “a high-level compilation of the latest climate science information”. It is being launched by the UN secretary-general, António Guterres, with a virtual link to his counterpart at the World Meteorological Organisation,  Petteri Taalas, in Geneva.

Much of what the report says will already be familiar, but its detailed finding that the pandemic is causing long-term damage to climate change monitoring is sobering.

Science advances by combining knowledge of the past with experience of the present and then combining them to forecast the probable future. That is how climate scientists have been able very recently to state that their earlier worst case scenario isn’t just an awful warning, but describes what is happening right now.

Several contenders have vied to be identified as the one who wrote: “You cannot manage what you cannot measure.” Which of them − if any − really did write that may not matter much. But it certainly matters for today’s researchers to know where the biosphere came from and where it is now if they are to have any idea where we shall all be in a few years.

Recalled to port

So it’s alarming that United in Science 2020, in its section on earth system observations, says: “The Covid-19 pandemic has produced significant impacts on the global observing systems, which in turn have affected the quality of forecasts and other weather, climate and ocean-related services.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models. Since June, there has been only a slight recovery. Observations at manually-operated weather stations, especially in Africa and South America, have also been badly disrupted.”

In March this year, it says, nearly all oceanographic research vessels were recalled to home ports. Commercial ships have been unable to contribute vital ocean and weather observations, and ocean buoys and other systems could not be maintained.

Four “valuable” full-depth ocean surveys of variables such as carbon, temperature, salinity, and water alkalinity, completed only once every decade, have been cancelled. Surface carbon measurements from ships, which cast light on the evolution of greenhouse gases, also effectively stopped.

The impacts on climate change monitoring are long-term. They are likely to prevent or restrict measurement of glaciers and the thickness of permafrost, usually conducted at the end of the thawing period.

In an ominous warning the report notes that the overall disruption of observations will introduce gaps in the historical time series of Essential Climate Variables, vital for understanding what is happening to the planetary climate.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models”

The report’s authors are also concerned about climate and water, where they expect the pandemic’s impacts to intensify existing problems. By 2050, they say, the number of people at risk of floods will increase from 1.2 billion now to 1.6 bn.

In the early to mid-2010s, 1.9 bn people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to between 2.7 and 3.2 bn people.

It is estimated that central Europe and the Caucasus have already reached peak water, and that the Tibetan Plateau region will do so between 2030 and 2050.

Runoff from snow cover, permafrost and glaciers in this region provides up to 45% of the total river flow, so a decrease would affect water availability for 1.7 bn people.

United in Science 2020 also says the world is a very long way from living up to its promises, with the targets of the Paris Agreement on climate change nowhere near being met.

The UN’s Emissions Gap Report 2019 compares “where we are likely to be and where we need to be” on cutting emissions of greenhouse gases (GHGs). The annual series of Gap Reports use gigatonnes (Gt) as units of measurement: one gigatonne is a billion metric tons.

Record emissions

Another frequent formula is GtCO2e, an abbreviation for “gigatonnes of equivalent carbon dioxide”. That’s a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect.

The 2019 Report says GHG emissions reached a record high of 55.3 GtCO2e in 2018. It continues: “There is no sign of GHG emissions peaking in the next few years; every year of postponed peaking means that deeper and faster cuts will be required.

“By 2030, emissions would need to be 25% and 55% lower than in 2018 to put the world on the least-cost pathway to limiting global warming to below 2 ̊C and 1.5°C respectively” [the two Paris Agreement targets].

The Gap in 2030 is estimated at 12-15 gigatonnes if the world is to limit global warming to below 2 °C. For the 1.5 °C goal, it is estimated at 29-32 Gt, roughly equivalent to the combined emissions of the world’s six largest emitters.

That’s an awful lot of GHGs which, as things stand, are going to be adding their heat to a torrid world a decade from now. − Climate News Network

Climate research is suffering permanent damage from some of the Covid-19 pandemic’s impacts, a UN report says.

LONDON, 9 September, 2020 − Whatever else the coronavirus onslaught is doing to humankind, some of the pandemic’s impacts are clear. It is making it harder for researchers to establish just what effect climate change is having on the planet.

A group of United Nations and other agencies is today launching a report, United in Science 2020, (webcast at 1600 hours New York time) which it calls “a high-level compilation of the latest climate science information”. It is being launched by the UN secretary-general, António Guterres, with a virtual link to his counterpart at the World Meteorological Organisation,  Petteri Taalas, in Geneva.

Much of what the report says will already be familiar, but its detailed finding that the pandemic is causing long-term damage to climate change monitoring is sobering.

Science advances by combining knowledge of the past with experience of the present and then combining them to forecast the probable future. That is how climate scientists have been able very recently to state that their earlier worst case scenario isn’t just an awful warning, but describes what is happening right now.

Several contenders have vied to be identified as the one who wrote: “You cannot manage what you cannot measure.” Which of them − if any − really did write that may not matter much. But it certainly matters for today’s researchers to know where the biosphere came from and where it is now if they are to have any idea where we shall all be in a few years.

Recalled to port

So it’s alarming that United in Science 2020, in its section on earth system observations, says: “The Covid-19 pandemic has produced significant impacts on the global observing systems, which in turn have affected the quality of forecasts and other weather, climate and ocean-related services.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models. Since June, there has been only a slight recovery. Observations at manually-operated weather stations, especially in Africa and South America, have also been badly disrupted.”

In March this year, it says, nearly all oceanographic research vessels were recalled to home ports. Commercial ships have been unable to contribute vital ocean and weather observations, and ocean buoys and other systems could not be maintained.

Four “valuable” full-depth ocean surveys of variables such as carbon, temperature, salinity, and water alkalinity, completed only once every decade, have been cancelled. Surface carbon measurements from ships, which cast light on the evolution of greenhouse gases, also effectively stopped.

The impacts on climate change monitoring are long-term. They are likely to prevent or restrict measurement of glaciers and the thickness of permafrost, usually conducted at the end of the thawing period.

In an ominous warning the report notes that the overall disruption of observations will introduce gaps in the historical time series of Essential Climate Variables, vital for understanding what is happening to the planetary climate.

“The reduction of aircraft-based observations by an average of 75% to 80% in March and April degraded the forecast skills of weather models”

The report’s authors are also concerned about climate and water, where they expect the pandemic’s impacts to intensify existing problems. By 2050, they say, the number of people at risk of floods will increase from 1.2 billion now to 1.6 bn.

In the early to mid-2010s, 1.9 bn people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to between 2.7 and 3.2 bn people.

It is estimated that central Europe and the Caucasus have already reached peak water, and that the Tibetan Plateau region will do so between 2030 and 2050.

Runoff from snow cover, permafrost and glaciers in this region provides up to 45% of the total river flow, so a decrease would affect water availability for 1.7 bn people.

United in Science 2020 also says the world is a very long way from living up to its promises, with the targets of the Paris Agreement on climate change nowhere near being met.

The UN’s Emissions Gap Report 2019 compares “where we are likely to be and where we need to be” on cutting emissions of greenhouse gases (GHGs). The annual series of Gap Reports use gigatonnes (Gt) as units of measurement: one gigatonne is a billion metric tons.

Record emissions

Another frequent formula is GtCO2e, an abbreviation for “gigatonnes of equivalent carbon dioxide”. That’s a simplified way to put emissions of various GHGs on a common footing by expressing them in terms of the amount of carbon dioxide that would have the same global warming effect.

The 2019 Report says GHG emissions reached a record high of 55.3 GtCO2e in 2018. It continues: “There is no sign of GHG emissions peaking in the next few years; every year of postponed peaking means that deeper and faster cuts will be required.

“By 2030, emissions would need to be 25% and 55% lower than in 2018 to put the world on the least-cost pathway to limiting global warming to below 2 ̊C and 1.5°C respectively” [the two Paris Agreement targets].

The Gap in 2030 is estimated at 12-15 gigatonnes if the world is to limit global warming to below 2 °C. For the 1.5 °C goal, it is estimated at 29-32 Gt, roughly equivalent to the combined emissions of the world’s six largest emitters.

That’s an awful lot of GHGs which, as things stand, are going to be adding their heat to a torrid world a decade from now. − Climate News Network

In Arctic heat Greenland’s ice loss grows faster still

Greenland’s ice loss tipped a new record last year. This ominous milestone is just the latest in a run of alarming news.

LONDON, 24 August, 2020 – Its icecap is now smaller than at any time since measurements began: Greenland’s ice loss means it lost mass in 2019 at a record rate.

By the close of the year, thanks to high summer melt and low snowfall, the northern hemisphere’s biggest reservoir of ice had shed 532 billion tonnes into the sea – raising global sea levels by around 1.5mm in a year.

The previous record loss for Greenland was in 2012. In that year, the island lost 464 billion tonnes, according to studies of satellite data published by European scientists in the journal Communications Earth and Environment.

Greenland’s ice cap has been shrinking, if unsteadily, for many years. In 2017 and 2018, the losses continued, but only at around 100bn tonnes a year.

“After a two-year breather, the mass loss increased steeply and exceeded all annual losses since 1948, and probably for more than 100 years,” said Ingo Sasgen of the Alfred Wegener Institute in Bremerhaven, Germany, who led the study.

“There are increasingly frequent, stable high-pressure areas over the ice sheet, which promote the influx of warm air from the middle latitudes. We saw a similar pattern in the previous record year, 2012.”

“The ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now”

He and colleagues made their calculations from data delivered by two Nasa satellites, GRACE and GRACE-FO, that measure changes in the surface gravity of the planet: a way of calculating the mass of water stored as ice, or in aquifers, and observing sea level change.

The finding is the latest in a succession of polar climate alarms. It follows closely on a warning from US scientists that ice loss from Greenland may  have reached the point of no return.

And it also follows a sober calculation of the alarming rate of planetary temperature rise in response to ever-higher use of fossil fuels that trigger ever-higher measures of greenhouse gases in the atmosphere.

And that in turn followed a warning that the entire Arctic was now warming so swiftly that the Arctic sea ice might be all but gone in the summer of 2035.

And that was only days after another research team, looking at the big picture of climate change, warned that the scenario climate forecasters liked to use as an example of their “worst case” was now a simple description of what was already happening.

“It is devastating that 2019 was another record year of ice loss. In 2012, it had been about 150 years since the ice sheet had experienced similar melt extent, and then a further 600-plus years back to find another similar event,” said Twila Moon, of the University of Colorado at Boulder, who was not involved in the research.

Damage off the scale

“We have now had record-breaking ice loss twice in less than 10 years, and the ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now.”

The implications of continued loss of Greenland ice have been explored repeatedly: the run-off of fresh water from the ice cap to the sea is now so great that the North Atlantic is now “fresher” than at any time in the last 100 years.

And this change in water temperature and chemistry could – on the evidence of the distant past – possibly slow or switch off the circulation of the North Atlantic current, which for most of the history of human civilisation has kept the United Kingdom and north-western Europe from five to 10°C warmer than similar latitudes elsewhere.

“This tipping point in the climate system is one of the potential climate disasters facing us,” said Stuart Cunningham of the Scottish Association for Marine Science, commenting on the study.

“To transform the way we power, finance and run the world in the way we know we should is proving entirely beyond us,” said Chris Rapley, now a climate scientist at University College London, but once director of the British Antarctic Survey.

“Torpor, incompetence and indifference at the top may kill people in a health crisis, and torpedo the careers of young students in an education crisis; but the damage they are generating in the pipeline from climate change is on another scale.” – Climate News Network

Greenland’s ice loss tipped a new record last year. This ominous milestone is just the latest in a run of alarming news.

LONDON, 24 August, 2020 – Its icecap is now smaller than at any time since measurements began: Greenland’s ice loss means it lost mass in 2019 at a record rate.

By the close of the year, thanks to high summer melt and low snowfall, the northern hemisphere’s biggest reservoir of ice had shed 532 billion tonnes into the sea – raising global sea levels by around 1.5mm in a year.

The previous record loss for Greenland was in 2012. In that year, the island lost 464 billion tonnes, according to studies of satellite data published by European scientists in the journal Communications Earth and Environment.

Greenland’s ice cap has been shrinking, if unsteadily, for many years. In 2017 and 2018, the losses continued, but only at around 100bn tonnes a year.

“After a two-year breather, the mass loss increased steeply and exceeded all annual losses since 1948, and probably for more than 100 years,” said Ingo Sasgen of the Alfred Wegener Institute in Bremerhaven, Germany, who led the study.

“There are increasingly frequent, stable high-pressure areas over the ice sheet, which promote the influx of warm air from the middle latitudes. We saw a similar pattern in the previous record year, 2012.”

“The ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now”

He and colleagues made their calculations from data delivered by two Nasa satellites, GRACE and GRACE-FO, that measure changes in the surface gravity of the planet: a way of calculating the mass of water stored as ice, or in aquifers, and observing sea level change.

The finding is the latest in a succession of polar climate alarms. It follows closely on a warning from US scientists that ice loss from Greenland may  have reached the point of no return.

And it also follows a sober calculation of the alarming rate of planetary temperature rise in response to ever-higher use of fossil fuels that trigger ever-higher measures of greenhouse gases in the atmosphere.

And that in turn followed a warning that the entire Arctic was now warming so swiftly that the Arctic sea ice might be all but gone in the summer of 2035.

And that was only days after another research team, looking at the big picture of climate change, warned that the scenario climate forecasters liked to use as an example of their “worst case” was now a simple description of what was already happening.

“It is devastating that 2019 was another record year of ice loss. In 2012, it had been about 150 years since the ice sheet had experienced similar melt extent, and then a further 600-plus years back to find another similar event,” said Twila Moon, of the University of Colorado at Boulder, who was not involved in the research.

Damage off the scale

“We have now had record-breaking ice loss twice in less than 10 years, and the ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now.”

The implications of continued loss of Greenland ice have been explored repeatedly: the run-off of fresh water from the ice cap to the sea is now so great that the North Atlantic is now “fresher” than at any time in the last 100 years.

And this change in water temperature and chemistry could – on the evidence of the distant past – possibly slow or switch off the circulation of the North Atlantic current, which for most of the history of human civilisation has kept the United Kingdom and north-western Europe from five to 10°C warmer than similar latitudes elsewhere.

“This tipping point in the climate system is one of the potential climate disasters facing us,” said Stuart Cunningham of the Scottish Association for Marine Science, commenting on the study.

“To transform the way we power, finance and run the world in the way we know we should is proving entirely beyond us,” said Chris Rapley, now a climate scientist at University College London, but once director of the British Antarctic Survey.

“Torpor, incompetence and indifference at the top may kill people in a health crisis, and torpedo the careers of young students in an education crisis; but the damage they are generating in the pipeline from climate change is on another scale.” – Climate News Network

Greenland is losing more ice than it gains annually

The ice lost to the sea annually off Greenland is now more than the snow falling on the island. This is a tipping point.

LONDON, 18 August, 2020 – The loss of ice from Greenland may have reached the point of no return. The island’s glaciers have dwindled and retreated so much that annual snowfall can no longer replace the lost ice.

New studies confirm that between 1980 and the year 2000, the island – the biggest single store of ice in the northern hemisphere – lost on average 450 billion tonnes of ice each year from its glaciers. This is about what falls as snow and stays on the island’s surface each year.

And then 20 years ago the rate of melt – already speeding up – accelerated again. The glaciers are now spilling more than 500 billion tonnes of ice into the seas. But snowfall has not increased.

And US scientists warn, in the normally guarded language of science, of a “switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt.”

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss”

The scientists base their new conclusions on a careful re-examination of 40 years of satellite observations to check the rates of snowfall and ice loss. “What we’ve found is that the ice that’s discharging into the ocean is far surpassing the snow that’s accumulating on the surface of the ice sheet,” said Michalea King of Ohio State University, who led the research. .

The news, in the journal Nature Communications Earth and Environment, is alarming but hardly surprising. In December researchers warned that – even to begin to arrest the melting of a store of ice big enough to raise global sea levels by up to seven metres the world would have to take immediate and drastic steps to halt global heating.

Researchers have found that surface melting is at a rate that has begun to make the glaciers more unstable. They have confirmed that the rate of melt is accelerating so swiftly that the bedrock beneath the weight of ice has begun to rise, while a range of other climate change triggers has begun to darken the ice cover in ways that can only increase the absorption of heat and step up the rate of melt.

The latest evidence is that the world has passed a tipping point of sorts: once such things happen, there is no way back.

Glaciers gather speed

All icecaps melt in summer, and all icecaps are drained by glaciers, rivers of ice that make slow progress to the sea. In a stable climate, annual precipitation and annual glacier calving remain more or less in balance, and the icecap functions as its own refrigerant. The whiteness of the ice reflects sunlight back into space and insulates itself against significant loss.

But as the air and oceans warm in response to ever higher levels of greenhouse gases pumped into the atmosphere as nations continue to burn ever more coal, oil and gas, the rates of melt became more dramatic and the glaciers began to flow ever faster: one of them was clocked at 45 metres a day.

The message of the latest research is that, even if somehow humans could immediately halt climate change, the ice likely to be lost as the glaciers reach the sea would still be greater than the accumulation of ice on the surface each winter.

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss,” said Ian Howat, a co-author at Ohio State University. “Even if the climate were to stay the same or get a little colder, the ice sheet would still be losing mass.” – Climate News Network

The ice lost to the sea annually off Greenland is now more than the snow falling on the island. This is a tipping point.

LONDON, 18 August, 2020 – The loss of ice from Greenland may have reached the point of no return. The island’s glaciers have dwindled and retreated so much that annual snowfall can no longer replace the lost ice.

New studies confirm that between 1980 and the year 2000, the island – the biggest single store of ice in the northern hemisphere – lost on average 450 billion tonnes of ice each year from its glaciers. This is about what falls as snow and stays on the island’s surface each year.

And then 20 years ago the rate of melt – already speeding up – accelerated again. The glaciers are now spilling more than 500 billion tonnes of ice into the seas. But snowfall has not increased.

And US scientists warn, in the normally guarded language of science, of a “switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt.”

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss”

The scientists base their new conclusions on a careful re-examination of 40 years of satellite observations to check the rates of snowfall and ice loss. “What we’ve found is that the ice that’s discharging into the ocean is far surpassing the snow that’s accumulating on the surface of the ice sheet,” said Michalea King of Ohio State University, who led the research. .

The news, in the journal Nature Communications Earth and Environment, is alarming but hardly surprising. In December researchers warned that – even to begin to arrest the melting of a store of ice big enough to raise global sea levels by up to seven metres the world would have to take immediate and drastic steps to halt global heating.

Researchers have found that surface melting is at a rate that has begun to make the glaciers more unstable. They have confirmed that the rate of melt is accelerating so swiftly that the bedrock beneath the weight of ice has begun to rise, while a range of other climate change triggers has begun to darken the ice cover in ways that can only increase the absorption of heat and step up the rate of melt.

The latest evidence is that the world has passed a tipping point of sorts: once such things happen, there is no way back.

Glaciers gather speed

All icecaps melt in summer, and all icecaps are drained by glaciers, rivers of ice that make slow progress to the sea. In a stable climate, annual precipitation and annual glacier calving remain more or less in balance, and the icecap functions as its own refrigerant. The whiteness of the ice reflects sunlight back into space and insulates itself against significant loss.

But as the air and oceans warm in response to ever higher levels of greenhouse gases pumped into the atmosphere as nations continue to burn ever more coal, oil and gas, the rates of melt became more dramatic and the glaciers began to flow ever faster: one of them was clocked at 45 metres a day.

The message of the latest research is that, even if somehow humans could immediately halt climate change, the ice likely to be lost as the glaciers reach the sea would still be greater than the accumulation of ice on the surface each winter.

“Glacier retreat has knocked the dynamics of the whole ice sheet into a constant state of loss,” said Ian Howat, a co-author at Ohio State University. “Even if the climate were to stay the same or get a little colder, the ice sheet would still be losing mass.” – Climate News Network

Cloudless skies hasten Greenland’s ice loss

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The bad news about Greenland’s ice loss has just got even worse. Blame it on mischief by blue skies all day long.

LONDON, 22 April, 2020 – Greenland’s ice loss reached record levels in 2019, and scientists think they’ve identified the culprit: the good weather which normally brings the snow-bearing clouds to the High Arctic.

The huge island, the biggest bank of ice in the northern hemisphere, has been losing ice at an ever-increasing rate in a rapidly warming world. Last year it shed more ice than ever, and this time because the skies were unusually clear.

There is enough ice on Greenland to raise global sea levels by more than seven metres. A recent study established that in the years between 1992 and 2018, rates of polar ice loss have risen six-fold, and so much water has flowed off the Greenland ice surface that sea levels have risen by more than 10mm everywhere.

Now a new study by US and Belgian scientists in the journal The Cryosphere confirms that 2019 was even worse. Because of good weather and cloudless skies, only enough snow fell to deposit 50 billion tonnes of ice into the island’s profit-and-loss ice account. The average annual deposit between 1981 and 2010 was about 375bn tonnes.

But glaciers still flowed towards the sea at an ever-increasing rate, summer snow melt continued to flow off the ice sheet, and icebergs continued to calve, so on balance the island lost 600 billion tonnes of ice: enough to raise global sea levels by 1.5mm. This is the biggest overall loss of ice since records in Greenland began in 1948.

“These atmospheric conditions are becoming more and more frequent over the past few decades. It is very likely that this is due to the waviness of the jet stream”

The cause: unusual spells of high atmospheric pressure over the island for unusually long periods of time. That stopped the formation of clouds, and that meant less precipitation, in the form of snow. Snow reflects solar radiation more effectively than ice, so the surface absorbed more heat and melting also accelerated.

The pattern of warm moist clouds trapped over northern Greenland by the heat that would normally radiate off the ice, instead of releasing snow, also emitted their own heat, to make things worse. The worst year for surface melting remains 2012, but the summer of 2019 was a good second.

The implication is that things could get worse, and losses of Greenland ice could accelerate.

“These atmospheric conditions are becoming more and more frequent over the past few decades,” said Marco Tedesco, of the Lamont-Doherty Earth Observatory at the University of Columbia in the US, the lead author.

“It is very likely that this is due to the waviness of the jet stream, which we think is related to, among other things, the disappearance of snow cover in Siberia, the disappearance of sea ice, and the difference in the rate at which temperature is increasing in the Arctic versus the mid-latitudes.” – Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The bad news about Greenland’s ice loss has just got even worse. Blame it on mischief by blue skies all day long.

LONDON, 22 April, 2020 – Greenland’s ice loss reached record levels in 2019, and scientists think they’ve identified the culprit: the good weather which normally brings the snow-bearing clouds to the High Arctic.

The huge island, the biggest bank of ice in the northern hemisphere, has been losing ice at an ever-increasing rate in a rapidly warming world. Last year it shed more ice than ever, and this time because the skies were unusually clear.

There is enough ice on Greenland to raise global sea levels by more than seven metres. A recent study established that in the years between 1992 and 2018, rates of polar ice loss have risen six-fold, and so much water has flowed off the Greenland ice surface that sea levels have risen by more than 10mm everywhere.

Now a new study by US and Belgian scientists in the journal The Cryosphere confirms that 2019 was even worse. Because of good weather and cloudless skies, only enough snow fell to deposit 50 billion tonnes of ice into the island’s profit-and-loss ice account. The average annual deposit between 1981 and 2010 was about 375bn tonnes.

But glaciers still flowed towards the sea at an ever-increasing rate, summer snow melt continued to flow off the ice sheet, and icebergs continued to calve, so on balance the island lost 600 billion tonnes of ice: enough to raise global sea levels by 1.5mm. This is the biggest overall loss of ice since records in Greenland began in 1948.

“These atmospheric conditions are becoming more and more frequent over the past few decades. It is very likely that this is due to the waviness of the jet stream”

The cause: unusual spells of high atmospheric pressure over the island for unusually long periods of time. That stopped the formation of clouds, and that meant less precipitation, in the form of snow. Snow reflects solar radiation more effectively than ice, so the surface absorbed more heat and melting also accelerated.

The pattern of warm moist clouds trapped over northern Greenland by the heat that would normally radiate off the ice, instead of releasing snow, also emitted their own heat, to make things worse. The worst year for surface melting remains 2012, but the summer of 2019 was a good second.

The implication is that things could get worse, and losses of Greenland ice could accelerate.

“These atmospheric conditions are becoming more and more frequent over the past few decades,” said Marco Tedesco, of the Lamont-Doherty Earth Observatory at the University of Columbia in the US, the lead author.

“It is very likely that this is due to the waviness of the jet stream, which we think is related to, among other things, the disappearance of snow cover in Siberia, the disappearance of sea ice, and the difference in the rate at which temperature is increasing in the Arctic versus the mid-latitudes.” – Climate News Network

Record Antarctic temperatures fuel sea level worry


Sea levels may threaten coastal cities sooner than expected, scientists say, as ice loss speeds up and Antarctic temperatures rise.

LONDON, 20 February, 2020 − Across the world, people now alive in coastal areas may face dangerously rising seas within their lifetimes, as record Antarctic temperatures and rapid melting of the continent’s ice drive global sea levels upwards.

Temperatures on the Antarctic Peninsula reached more than 20°C for the first time in history earlier this month, the Guardian reported: “The 20.75C logged by Brazilian scientists at Seymour Island on 9 February was almost a full degree higher than the previous record of 19.8C, taken on Signy Island in January 1982.”

The Antarctic Peninsula has warmed by almost 3°C since the start of the Industrial Revolution around 200 years ago − faster than almost anywhere else on Earth. But scientists are increasingly concerned not only about the Peninsula, but with the possibility that the entire southern continent may be heating up much faster than current estimates suggest.

Among evidence of increasing scientific effort to determine what is happening is a joint UK-US collaboration, due to report in 2023 on the chances of the collapse of the huge Thwaites glacier in West Antarctica, where from 1992 to 2017 the annual rate of ice loss rose threefold.

Big speed-up

Now a study by scientists co-ordinated by Germany’s Potsdam Institute for Climate Impact Research (PIK) says sea level rise caused by Antarctica’s ice loss could become a major risk for coastal protection in the near future.

After what they call “an exceptionally comprehensive comparison of state-of-the-art computer models from around the world”, they conclude that Antarctica alone could cause global sea level to rise by 2100 by up to three times more than it did in the last century.

“The ‘Antarctica Factor’ turns out to be the greatest risk, and also the greatest uncertainty, for sea levels around the globe,” says the lead author, Anders Levermann of PIK and Columbia University’s Lamont-Doherty Earth Observatory (LDEO) in New York.

“While we saw about 19 centimetres of sea level rise in the past 100 years, Antarctic ice loss could lead to up to 58 centimetres within this century”, he said.

“We know for certain that not stopping the burning of coal, oil and gas will drive up the risks for coastal metropolises from New York to Mumbai, Hamburg and Shanghai”

“Coastal planning cannot merely rely on the best guess. It requires a risk analysis. Our study provides exactly that. The sea level contribution of Antarctica is very likely not going to be more than 58 centimetres.”

Thermal expansion of the oceans by global warming and the melting of glaciers, which so far have been the most important factors in sea level rise, will add to the contribution from Antarctic ice loss, making the overall sea level rise risk even bigger. But the ‘Antarctica Factor’ is about to become the most important element, according to the study, published in the journal Earth System Dynamics.

The range of sea-level rise estimates the scientists have come up with is fairly large. Assuming that humanity keeps on emitting greenhouse gases as before, they say, the range they call “very likely” to describe the future is between 6 and 58 cms for this century.

If greenhouse gas emissions were reduced rapidly, it would be between 4 and 37 cms. Importantly, the difference between a business-as-usual scenario and one of emissions reductions becomes substantially greater as time passes.

More robust insights

Sixteen ice sheet modelling groups consisting of 36 researchers from 27 institutes contributed to the new study. A similar study six years ago had to rely on the output of only five ice sheet models.

“The more computer simulation models we use, all of them with slightly different dynamic representations of the Antarctic ice sheet, the wider the range of results that we yield − but also the more robust the insights that we gain”, said co-author Sophie Nowicki of the NASA Goddard Space Flight Center.

“There are still large uncertainties, but we are constantly improving our understanding of the largest ice sheet on Earth. Comparing model outputs is a forceful tool to provide society with the necessary information for rational decisions.”

Over the long term, the Antarctic ice sheet has the potential ultimately to raise sea levels by many tens of metres. “What we know for certain”, said Professor Levermann, “is that not stopping the burning of coal, oil and gas will drive up the risks for coastal metropolises from New York to Mumbai, Hamburg and Shanghai.” − Climate News Network


Sea levels may threaten coastal cities sooner than expected, scientists say, as ice loss speeds up and Antarctic temperatures rise.

LONDON, 20 February, 2020 − Across the world, people now alive in coastal areas may face dangerously rising seas within their lifetimes, as record Antarctic temperatures and rapid melting of the continent’s ice drive global sea levels upwards.

Temperatures on the Antarctic Peninsula reached more than 20°C for the first time in history earlier this month, the Guardian reported: “The 20.75C logged by Brazilian scientists at Seymour Island on 9 February was almost a full degree higher than the previous record of 19.8C, taken on Signy Island in January 1982.”

The Antarctic Peninsula has warmed by almost 3°C since the start of the Industrial Revolution around 200 years ago − faster than almost anywhere else on Earth. But scientists are increasingly concerned not only about the Peninsula, but with the possibility that the entire southern continent may be heating up much faster than current estimates suggest.

Among evidence of increasing scientific effort to determine what is happening is a joint UK-US collaboration, due to report in 2023 on the chances of the collapse of the huge Thwaites glacier in West Antarctica, where from 1992 to 2017 the annual rate of ice loss rose threefold.

Big speed-up

Now a study by scientists co-ordinated by Germany’s Potsdam Institute for Climate Impact Research (PIK) says sea level rise caused by Antarctica’s ice loss could become a major risk for coastal protection in the near future.

After what they call “an exceptionally comprehensive comparison of state-of-the-art computer models from around the world”, they conclude that Antarctica alone could cause global sea level to rise by 2100 by up to three times more than it did in the last century.

“The ‘Antarctica Factor’ turns out to be the greatest risk, and also the greatest uncertainty, for sea levels around the globe,” says the lead author, Anders Levermann of PIK and Columbia University’s Lamont-Doherty Earth Observatory (LDEO) in New York.

“While we saw about 19 centimetres of sea level rise in the past 100 years, Antarctic ice loss could lead to up to 58 centimetres within this century”, he said.

“We know for certain that not stopping the burning of coal, oil and gas will drive up the risks for coastal metropolises from New York to Mumbai, Hamburg and Shanghai”

“Coastal planning cannot merely rely on the best guess. It requires a risk analysis. Our study provides exactly that. The sea level contribution of Antarctica is very likely not going to be more than 58 centimetres.”

Thermal expansion of the oceans by global warming and the melting of glaciers, which so far have been the most important factors in sea level rise, will add to the contribution from Antarctic ice loss, making the overall sea level rise risk even bigger. But the ‘Antarctica Factor’ is about to become the most important element, according to the study, published in the journal Earth System Dynamics.

The range of sea-level rise estimates the scientists have come up with is fairly large. Assuming that humanity keeps on emitting greenhouse gases as before, they say, the range they call “very likely” to describe the future is between 6 and 58 cms for this century.

If greenhouse gas emissions were reduced rapidly, it would be between 4 and 37 cms. Importantly, the difference between a business-as-usual scenario and one of emissions reductions becomes substantially greater as time passes.

More robust insights

Sixteen ice sheet modelling groups consisting of 36 researchers from 27 institutes contributed to the new study. A similar study six years ago had to rely on the output of only five ice sheet models.

“The more computer simulation models we use, all of them with slightly different dynamic representations of the Antarctic ice sheet, the wider the range of results that we yield − but also the more robust the insights that we gain”, said co-author Sophie Nowicki of the NASA Goddard Space Flight Center.

“There are still large uncertainties, but we are constantly improving our understanding of the largest ice sheet on Earth. Comparing model outputs is a forceful tool to provide society with the necessary information for rational decisions.”

Over the long term, the Antarctic ice sheet has the potential ultimately to raise sea levels by many tens of metres. “What we know for certain”, said Professor Levermann, “is that not stopping the burning of coal, oil and gas will drive up the risks for coastal metropolises from New York to Mumbai, Hamburg and Shanghai.” − Climate News Network

Speeding sea level rise threatens nuclear plants

With sea level rise accelerating faster than thought, the risk is growing for coastal cities − and for nuclear power stations.

LONDON, 14 February, 2020 − The latest science shows how the pace of sea level rise is speeding up, fuelling fears that not only millions of homes will be under threat, but that vulnerable installations like docks and power plants will be overwhelmed by the waves.

New research using satellite data over a 30-year period shows that around the year 2000 sea level rise was 2mm a year, by 2010 it was 3mm and now it is at 4mm, with the pace of change still increasing.

The calculations were made by a research student, Tadea Veng, at the Technical University of Denmark, which has a special interest in Greenland, where the icecap is melting fast. That, combined with accelerating melting in Antarctica and further warming of the oceans, is raising sea levels across the globe.

The report coincides with a European Environment Agency (EEA) study whose maps show large areas of the shorelines of countries with coastlines on the North Sea will go under water unless heavily defended against sea level rise.

Based on the maps, newspapers like The Guardian in London have predicted that more than half of one key UK east coast provincial port − Hull − will be swamped. Ironically, Hull is the base for making giant wind turbine blades for use in the North Sea.

“It’s not just the height of the rise in sea level that is important for the protection of nuclear facilities, it’s also the likely increase in storm surges”

The argument about how much the sea level will rise this century has been raging in scientific circles since the 1990s. At the start, predictions of sea level rise took into account only two possible causes: the expansion of seawater as it warmed, and the melting of mountain glaciers away from the poles.

In the early Intergovernmental Panel on Climate Change reports back then, the melting of the polar ice caps was not included, because scientists could not agree whether greater snowfall on the top of the ice caps in winter might balance out summer melting. Many of them also thought Antarctica would not melt at all, or not for centuries, because it was too cold.

Both the extra snow theory and the “too cold to melt” idea have now been discounted. In Antarctica this is partly because the sea has warmed up so much that it is melting the glaciers’ ice from beneath – something the scientists had not foreseen.

Alarm about sea level rise elsewhere has been increasing outside the scientific community, partly because many nuclear power plants are on coasts. Even those that are nearing the end of their working lives will be radio-active for another century, and many have highly dangerous spent fuel on site in storage ponds with no disposal route organised.

Perhaps most alarmed are British residents, whose government is currently planning a number of new seaside nuclear stations in low-lying coastal areas. Some will be under water this century according to the EEA, particularly one planned for Sizewell in eastern England.

Hard to tell

The Agency’s report says estimates of sea level rise by 2100 vary, with an upper limit of one metre generally accepted, but up to 2.5 metres predicted by some scientists. The latest research by Danish scientists suggests judiciously that with the speed of sea level rise continuing to accelerate, it is impossible to be sure.

A report by campaigners who oppose building nuclear power stations on Britain’s vulnerable coast expresses extreme alarm, saying both nuclear regulators and the giant French energy company EDF are too complacent about the problem.

The report says: “Polar ice caps appear to be melting faster than expected, and what is particularly worrying is that the rate of melting seems to be increasing. Some researchers say sea levels could rise by as much as six metres or more by 2100, even if the 2°C Paris targethttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement is met.

“But it’s not just the height of the rise in sea level that is important for the protection of nuclear facilities, it’s also the likely increase in storm surges. An increase in sea level of 50cm would mean the storm that used to come every thousand years will now come every 100 years. If you increase that to a metre, then that millennial storm is likely to come once a decade.

“Bearing in mind that there will probably be nuclear waste on the Hinkley Point C site [home to the new twin reactors being built by EDF in the West of England] until at least 2150, the question neither the Office of Nuclear Regulation nor EDF seem to be asking is whether further flood protection measures can be put in place fast enough to deal with unexpected and unpredicted storm surges.” − Climate News Network

With sea level rise accelerating faster than thought, the risk is growing for coastal cities − and for nuclear power stations.

LONDON, 14 February, 2020 − The latest science shows how the pace of sea level rise is speeding up, fuelling fears that not only millions of homes will be under threat, but that vulnerable installations like docks and power plants will be overwhelmed by the waves.

New research using satellite data over a 30-year period shows that around the year 2000 sea level rise was 2mm a year, by 2010 it was 3mm and now it is at 4mm, with the pace of change still increasing.

The calculations were made by a research student, Tadea Veng, at the Technical University of Denmark, which has a special interest in Greenland, where the icecap is melting fast. That, combined with accelerating melting in Antarctica and further warming of the oceans, is raising sea levels across the globe.

The report coincides with a European Environment Agency (EEA) study whose maps show large areas of the shorelines of countries with coastlines on the North Sea will go under water unless heavily defended against sea level rise.

Based on the maps, newspapers like The Guardian in London have predicted that more than half of one key UK east coast provincial port − Hull − will be swamped. Ironically, Hull is the base for making giant wind turbine blades for use in the North Sea.

“It’s not just the height of the rise in sea level that is important for the protection of nuclear facilities, it’s also the likely increase in storm surges”

The argument about how much the sea level will rise this century has been raging in scientific circles since the 1990s. At the start, predictions of sea level rise took into account only two possible causes: the expansion of seawater as it warmed, and the melting of mountain glaciers away from the poles.

In the early Intergovernmental Panel on Climate Change reports back then, the melting of the polar ice caps was not included, because scientists could not agree whether greater snowfall on the top of the ice caps in winter might balance out summer melting. Many of them also thought Antarctica would not melt at all, or not for centuries, because it was too cold.

Both the extra snow theory and the “too cold to melt” idea have now been discounted. In Antarctica this is partly because the sea has warmed up so much that it is melting the glaciers’ ice from beneath – something the scientists had not foreseen.

Alarm about sea level rise elsewhere has been increasing outside the scientific community, partly because many nuclear power plants are on coasts. Even those that are nearing the end of their working lives will be radio-active for another century, and many have highly dangerous spent fuel on site in storage ponds with no disposal route organised.

Perhaps most alarmed are British residents, whose government is currently planning a number of new seaside nuclear stations in low-lying coastal areas. Some will be under water this century according to the EEA, particularly one planned for Sizewell in eastern England.

Hard to tell

The Agency’s report says estimates of sea level rise by 2100 vary, with an upper limit of one metre generally accepted, but up to 2.5 metres predicted by some scientists. The latest research by Danish scientists suggests judiciously that with the speed of sea level rise continuing to accelerate, it is impossible to be sure.

A report by campaigners who oppose building nuclear power stations on Britain’s vulnerable coast expresses extreme alarm, saying both nuclear regulators and the giant French energy company EDF are too complacent about the problem.

The report says: “Polar ice caps appear to be melting faster than expected, and what is particularly worrying is that the rate of melting seems to be increasing. Some researchers say sea levels could rise by as much as six metres or more by 2100, even if the 2°C Paris targethttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement is met.

“But it’s not just the height of the rise in sea level that is important for the protection of nuclear facilities, it’s also the likely increase in storm surges. An increase in sea level of 50cm would mean the storm that used to come every thousand years will now come every 100 years. If you increase that to a metre, then that millennial storm is likely to come once a decade.

“Bearing in mind that there will probably be nuclear waste on the Hinkley Point C site [home to the new twin reactors being built by EDF in the West of England] until at least 2150, the question neither the Office of Nuclear Regulation nor EDF seem to be asking is whether further flood protection measures can be put in place fast enough to deal with unexpected and unpredicted storm surges.” − Climate News Network

Little time left to arrest Greenland’s melting

Humans may still have time to stop Greenland’s melting, preventing Arctic ice sheet collapse and devastating sea level rise. But the time left may be short.

LONDON, 30 December, 2019 – It’s still possible, but it’s far from certain: stopping Greenland’s melting can be done, but it must be done soon.

Norwegian and US scientists have taken a close look at the ice age history of Greenland and come to a grim conclusion. All it takes to set the island’s ice cap melting away is a mean sea surface temperature higher than seven degrees Celsius. And the present mean sea surface temperature is already 7.7°C.

Greenland is the northern hemisphere’s single richest store of frozen water: the island’s bedrock holds enough to raise global sea levels by seven metres and drown or wash away the world’s coastal communities, including the great cities of New York and Miami, Shanghai and Kolkata, Amsterdam and London.

And the pattern of geological evidence – outlined in the Proceedings of the National Academy of Sciences – combined with climate models suggests that any sustained temperature rise could trigger an irreversible melt of the entire southern Greenland ice sheet.

The scientists suggest that the threshold for this calamity could be between 0.8°C above the post-Ice Age norm, and 3.2°C.

“The critical temperature threshold for past Greenland ice sheet decay will likely be surpassed this century”

In fact, because of profligate use of fossil fuels and the release of greenhouse gases into the atmosphere, the planet has already warmed by around 1°C above the level for most of human history, and warming of at least 3.2°C by the end of this century now seems almost certain.

Researchers publish their conclusions with the intention that they should be examined, tested, challenged and perhaps overturned. But widespread alarm at the rate of melt and mass loss in Greenland has been consistent and increasing with the years.

Researchers have repeatedly established that melting each summer is increasing the rate at which glaciers flow and deliver ice to increasingly warmer northern seas, and that this rate of melting has itself begun to accelerate.

So Nil Irvali of the University of Bergen and colleagues took a closer look at the story told by microfossils within cores from the ice and the ocean floor during four interglacial periods over the last 450,000 years.

During those warm spells ocean levels rose dramatically, and in two episodes Greenland’s vanishing ice could have contributed more than five metres in one case, and up to seven metres of sea level rise in the other.

Triggers identified

And in all four of those interglacials, conditions reached temperatures higher than they are right now.

Concern about the stability of the Greenland icecap is no surprise: the Arctic is already warming faster than anywhere else on the planet, thanks to profligate use of fossil fuels and the destruction of the rainforests, and researchers worldwide have begun to identify triggers that feed back into further warming: rain, for instance, in winter; the loss of cloud cover in summer; and the deposits of soot from polar wildfires that darken the snows and enhance the absorption of the sun’s rays.

Years ago, the phrase “at a glacial pace” ceased to be a valid cliché: US scientists clocked one river of ice moving at a rate of 46 metres a day.

So the new study simply confirms fears that already are widespread. What remains to be settled is the point at which the decline of the ice sheet becomes irreversible, the Bergen scientists say. As the ocean warms, this feeds back into the process of melting and triggers longer-term feedbacks.

“The exact point at which these feedbacks are triggered remains equivocal,” say Dr Irvali and her co-authors. “Notably, the critical temperature threshold for past Greenland ice sheet decay will likely be surpassed this century. The duration for which this threshold is exceeded will determine Greenland’s fate.” – Climate News Network

Humans may still have time to stop Greenland’s melting, preventing Arctic ice sheet collapse and devastating sea level rise. But the time left may be short.

LONDON, 30 December, 2019 – It’s still possible, but it’s far from certain: stopping Greenland’s melting can be done, but it must be done soon.

Norwegian and US scientists have taken a close look at the ice age history of Greenland and come to a grim conclusion. All it takes to set the island’s ice cap melting away is a mean sea surface temperature higher than seven degrees Celsius. And the present mean sea surface temperature is already 7.7°C.

Greenland is the northern hemisphere’s single richest store of frozen water: the island’s bedrock holds enough to raise global sea levels by seven metres and drown or wash away the world’s coastal communities, including the great cities of New York and Miami, Shanghai and Kolkata, Amsterdam and London.

And the pattern of geological evidence – outlined in the Proceedings of the National Academy of Sciences – combined with climate models suggests that any sustained temperature rise could trigger an irreversible melt of the entire southern Greenland ice sheet.

The scientists suggest that the threshold for this calamity could be between 0.8°C above the post-Ice Age norm, and 3.2°C.

“The critical temperature threshold for past Greenland ice sheet decay will likely be surpassed this century”

In fact, because of profligate use of fossil fuels and the release of greenhouse gases into the atmosphere, the planet has already warmed by around 1°C above the level for most of human history, and warming of at least 3.2°C by the end of this century now seems almost certain.

Researchers publish their conclusions with the intention that they should be examined, tested, challenged and perhaps overturned. But widespread alarm at the rate of melt and mass loss in Greenland has been consistent and increasing with the years.

Researchers have repeatedly established that melting each summer is increasing the rate at which glaciers flow and deliver ice to increasingly warmer northern seas, and that this rate of melting has itself begun to accelerate.

So Nil Irvali of the University of Bergen and colleagues took a closer look at the story told by microfossils within cores from the ice and the ocean floor during four interglacial periods over the last 450,000 years.

During those warm spells ocean levels rose dramatically, and in two episodes Greenland’s vanishing ice could have contributed more than five metres in one case, and up to seven metres of sea level rise in the other.

Triggers identified

And in all four of those interglacials, conditions reached temperatures higher than they are right now.

Concern about the stability of the Greenland icecap is no surprise: the Arctic is already warming faster than anywhere else on the planet, thanks to profligate use of fossil fuels and the destruction of the rainforests, and researchers worldwide have begun to identify triggers that feed back into further warming: rain, for instance, in winter; the loss of cloud cover in summer; and the deposits of soot from polar wildfires that darken the snows and enhance the absorption of the sun’s rays.

Years ago, the phrase “at a glacial pace” ceased to be a valid cliché: US scientists clocked one river of ice moving at a rate of 46 metres a day.

So the new study simply confirms fears that already are widespread. What remains to be settled is the point at which the decline of the ice sheet becomes irreversible, the Bergen scientists say. As the ocean warms, this feeds back into the process of melting and triggers longer-term feedbacks.

“The exact point at which these feedbacks are triggered remains equivocal,” say Dr Irvali and her co-authors. “Notably, the critical temperature threshold for past Greenland ice sheet decay will likely be surpassed this century. The duration for which this threshold is exceeded will determine Greenland’s fate.” – Climate News Network

Heat the Arctic to cool the Earth, scientists say

If we seriously want to tackle the climate crisis, here’s a drastic idea: we could heat the Arctic to cool the planet.

LONDON, 19 December, 2019 − With politicians failing to cut greenhouse gas emissions far and fast enough, the only hope may be to find a different way to cool the planet. One group of researchers has put forward an idea so different that critics may regard it as outlandish: heat the Arctic.

To heat the Arctic so much that the sea ice disappears even in the winter sounds like a weird idea. But the researchers believe it would have the beneficial effect of cooling the planet down.

They argue that with the Arctic ice already expected to disappear during the summer months within the next 30 years, and large increases in temperature and changes in the polar climate already certain, we should turn this radical shift to our advantage.

Their point is that since, at the current rate of progress, politicians seem unlikely to cut greenhouse gas emissions enough to prevent drastic temperature rise, humankind must find other ways to cool the Earth if it is to survive.

“Climate change is a major issue and all options should be considered when dealing with it”

Heating the planet in order to cool it is certainly counter-intuitive. But, whether or not the scheme could ever work, it shows the ingenuity and enterprise now being poured into stabilising global temperatures close to their historic level.

It also, of course, shows how horribly late we have left it to rein in the climate crisis, when wise and determined action 30 years ago could have achieved so much.

The idea proposed is, in principle, simple enough: to ensure that the warm currents of the Gulf Stream, known by science as the North Atlantic Oscillation (NAO) continue northwards across the Arctic Circle the whole year round. This would release massive amounts of heat from the ocean into the atmosphere and beyond that into space, so cooling the sea and ultimately the Earth.

“The Arctic Ocean ice cover works as a strong insulator, impeding the heat from the ocean below to warm up the atmosphere above. If this ice layer were however removed, the atmosphere would increase in temperature by around 20°C during the winter.

More heat escapes

“This increase in temperature would in turn increase the heat irradiated into space, thus cooling down the oceans,” explains the lead author of the study which details the proposal, published in the journal SN Applied Sciences. He is Julian Hunt, a postdoctoral research scholar at IIASA, the International Institute for Applied Systems Analysis.

The problem that needs to be overcome is that very cold and only mildly salty water currently floats on the surface of the Arctic Ocean, freezing in the winter and capturing the warmth of the water in the ocean depths.

The authors say the main factor helping to maintain the Arctic sea ice cover is the fact that the top 100 metres of the ocean is less saline than the Atlantic, preventing the Atlantic from flowing above the cold Arctic waters. Increasing the salinity of the Arctic Ocean’s surface, they say, would let the warmer and less salty North Atlantic current flow over it, warming the atmosphere considerably and releasing the ocean heat trapped under the ice.

They suggest three ways to keep fresh water out of the Arctic. The first would divert the big rivers of North America and Siberia southwards to prevent them draining into the polar ocean. The second would place submerged obstructions in front of the rapidly melting Greenland glaciers, to slow the speed of the ice sheets’ melting, while the third would use a solar- and wind-powered icebreaker to pump cold, near-fresh water deeper into the ocean to mix with the saltier water below, allowing the warmer currents to sweep in from the south.

Unknown consequences

Dr Hunt and his colleagues say there could be terrific benefits. Shipping could navigate the ice-free Arctic Ocean all year round, cutting journey times between Asia, Europe and North America. The need for heating homes in the northern hemisphere during the winter would be drastically reduced, because their plan would raise air temperatures by as much as 20°C.

But the massive interference with natural systems in the Arctic would also have its downside. The rapid year-round rise in temperature would dramatically increase the melting of Greenland and therefore of sea level rise the world over. The effect on the northern hemisphere climate, particularly much increased rainfall with a warmer sea and atmosphere, is impossible to predict.

But Dr Hunt says that while there are clearly huge risks, the world is already heading for uncharted waters, so humans must do something drastic. “Although it is important to mitigate the impacts from climate change with the reduction in CO2 emissions, we should also think of ways to adapt the world to the new climate conditions to avoid uncontrollable, unpredictable and destructive climate change resulting in socio-economic and environmental collapse.

“Climate change is a major issue and all options should be considered when dealing with it.” − Climate News Network

If we seriously want to tackle the climate crisis, here’s a drastic idea: we could heat the Arctic to cool the planet.

LONDON, 19 December, 2019 − With politicians failing to cut greenhouse gas emissions far and fast enough, the only hope may be to find a different way to cool the planet. One group of researchers has put forward an idea so different that critics may regard it as outlandish: heat the Arctic.

To heat the Arctic so much that the sea ice disappears even in the winter sounds like a weird idea. But the researchers believe it would have the beneficial effect of cooling the planet down.

They argue that with the Arctic ice already expected to disappear during the summer months within the next 30 years, and large increases in temperature and changes in the polar climate already certain, we should turn this radical shift to our advantage.

Their point is that since, at the current rate of progress, politicians seem unlikely to cut greenhouse gas emissions enough to prevent drastic temperature rise, humankind must find other ways to cool the Earth if it is to survive.

“Climate change is a major issue and all options should be considered when dealing with it”

Heating the planet in order to cool it is certainly counter-intuitive. But, whether or not the scheme could ever work, it shows the ingenuity and enterprise now being poured into stabilising global temperatures close to their historic level.

It also, of course, shows how horribly late we have left it to rein in the climate crisis, when wise and determined action 30 years ago could have achieved so much.

The idea proposed is, in principle, simple enough: to ensure that the warm currents of the Gulf Stream, known by science as the North Atlantic Oscillation (NAO) continue northwards across the Arctic Circle the whole year round. This would release massive amounts of heat from the ocean into the atmosphere and beyond that into space, so cooling the sea and ultimately the Earth.

“The Arctic Ocean ice cover works as a strong insulator, impeding the heat from the ocean below to warm up the atmosphere above. If this ice layer were however removed, the atmosphere would increase in temperature by around 20°C during the winter.

More heat escapes

“This increase in temperature would in turn increase the heat irradiated into space, thus cooling down the oceans,” explains the lead author of the study which details the proposal, published in the journal SN Applied Sciences. He is Julian Hunt, a postdoctoral research scholar at IIASA, the International Institute for Applied Systems Analysis.

The problem that needs to be overcome is that very cold and only mildly salty water currently floats on the surface of the Arctic Ocean, freezing in the winter and capturing the warmth of the water in the ocean depths.

The authors say the main factor helping to maintain the Arctic sea ice cover is the fact that the top 100 metres of the ocean is less saline than the Atlantic, preventing the Atlantic from flowing above the cold Arctic waters. Increasing the salinity of the Arctic Ocean’s surface, they say, would let the warmer and less salty North Atlantic current flow over it, warming the atmosphere considerably and releasing the ocean heat trapped under the ice.

They suggest three ways to keep fresh water out of the Arctic. The first would divert the big rivers of North America and Siberia southwards to prevent them draining into the polar ocean. The second would place submerged obstructions in front of the rapidly melting Greenland glaciers, to slow the speed of the ice sheets’ melting, while the third would use a solar- and wind-powered icebreaker to pump cold, near-fresh water deeper into the ocean to mix with the saltier water below, allowing the warmer currents to sweep in from the south.

Unknown consequences

Dr Hunt and his colleagues say there could be terrific benefits. Shipping could navigate the ice-free Arctic Ocean all year round, cutting journey times between Asia, Europe and North America. The need for heating homes in the northern hemisphere during the winter would be drastically reduced, because their plan would raise air temperatures by as much as 20°C.

But the massive interference with natural systems in the Arctic would also have its downside. The rapid year-round rise in temperature would dramatically increase the melting of Greenland and therefore of sea level rise the world over. The effect on the northern hemisphere climate, particularly much increased rainfall with a warmer sea and atmosphere, is impossible to predict.

But Dr Hunt says that while there are clearly huge risks, the world is already heading for uncharted waters, so humans must do something drastic. “Although it is important to mitigate the impacts from climate change with the reduction in CO2 emissions, we should also think of ways to adapt the world to the new climate conditions to avoid uncontrollable, unpredictable and destructive climate change resulting in socio-economic and environmental collapse.

“Climate change is a major issue and all options should be considered when dealing with it.” − Climate News Network

Glacial melt creates Andes time bomb

The speed of glacial melt in parts of Latin America is threatening water supplies – and life and limb in cities downstream.

LONDON, 16 December, 2019 – Rising regional temperatures in the Andes and the warming of waters in the Pacific Ocean, off Latin America’s west coast, are driving the mountains’ glacial melt to alarming new speeds.

Long-term water supplies to many millions of people are under threat. Capital cities like Lima in Peru and La Paz in Bolivia, largely dependent on water from glacier melt flows, face an uncertain future.

The prospects for agriculture – a mainstay of the economies of countries in the region – will be imperilled as land dries up.

There is another, potentially lethal consequence of the melting of the Andes’ glaciers. In 1941, large chunks of ice breaking off a glacier and falling into Lake Palcacocha, more than 4,500 metres up in the Cordillera Blanca mountain range in the Peruvian Andes, are said to have triggered what’s known as a glacial lake outburst flood (GLOF).

“As temperatures in the region continue to rise, the danger level increases”

The sudden influx of ice caused the lake to burst, its waters racing down a canyon to burst another glacial lake below and then on to flood the city of Huarez, more than 20 kilometres away. It’s estimated that more than 4,000 people – about a third of the city’s population at the time – were killed.

Rising temperatures caused by climate change in mountain ranges around the world are leading to an ever-increasing number of GLOF incidents. Mountainous countries like Peru and Nepal, in the Himalayas, are particularly vulnerable to the sudden flooding caused when glacial lakes burst.

In the aftermath of the 1941 flood, a dam was built on Lake Palcacocha: at first the lake slowly refilled, but in recent years the process accelerated due to increased temperatures and more glacial melt.

Flexible pipes have been used to siphon waters off from the lake but experts say it’s only a matter of time before Lake Palcacocha again bursts its banks. The dam, they say, will be swept away. The consequences would be devastating as a wave up to 30 metres tall is unleashed.

Increased population

The city of Huarez has become a big tourist destination and its population has grown to more than 120,000. Large numbers of farmers have moved onto lands below Lake Palcacocha. Mine workers are also active in the area, searching for valuable minerals in ground uncovered by the melting of the glaciers.

Various safety measures are being installed. After years of wrangling and bureaucratic delays, a flood early warning system is about to be activated in the area.

Installation of the system has also been subject to sabotage by local farmers who say that the introduction of the technology has somehow interfered with natural weather patterns.

Monitoring systems have improved – with often daily glacial avalanches being recorded. Inaigem, the national research institute on glaciers and mountain ecosystems, provides a live video of Lake Palcacocha water flows. But as temperatures in the region continue to rise, the danger level increases. – Climate News Network

The speed of glacial melt in parts of Latin America is threatening water supplies – and life and limb in cities downstream.

LONDON, 16 December, 2019 – Rising regional temperatures in the Andes and the warming of waters in the Pacific Ocean, off Latin America’s west coast, are driving the mountains’ glacial melt to alarming new speeds.

Long-term water supplies to many millions of people are under threat. Capital cities like Lima in Peru and La Paz in Bolivia, largely dependent on water from glacier melt flows, face an uncertain future.

The prospects for agriculture – a mainstay of the economies of countries in the region – will be imperilled as land dries up.

There is another, potentially lethal consequence of the melting of the Andes’ glaciers. In 1941, large chunks of ice breaking off a glacier and falling into Lake Palcacocha, more than 4,500 metres up in the Cordillera Blanca mountain range in the Peruvian Andes, are said to have triggered what’s known as a glacial lake outburst flood (GLOF).

“As temperatures in the region continue to rise, the danger level increases”

The sudden influx of ice caused the lake to burst, its waters racing down a canyon to burst another glacial lake below and then on to flood the city of Huarez, more than 20 kilometres away. It’s estimated that more than 4,000 people – about a third of the city’s population at the time – were killed.

Rising temperatures caused by climate change in mountain ranges around the world are leading to an ever-increasing number of GLOF incidents. Mountainous countries like Peru and Nepal, in the Himalayas, are particularly vulnerable to the sudden flooding caused when glacial lakes burst.

In the aftermath of the 1941 flood, a dam was built on Lake Palcacocha: at first the lake slowly refilled, but in recent years the process accelerated due to increased temperatures and more glacial melt.

Flexible pipes have been used to siphon waters off from the lake but experts say it’s only a matter of time before Lake Palcacocha again bursts its banks. The dam, they say, will be swept away. The consequences would be devastating as a wave up to 30 metres tall is unleashed.

Increased population

The city of Huarez has become a big tourist destination and its population has grown to more than 120,000. Large numbers of farmers have moved onto lands below Lake Palcacocha. Mine workers are also active in the area, searching for valuable minerals in ground uncovered by the melting of the glaciers.

Various safety measures are being installed. After years of wrangling and bureaucratic delays, a flood early warning system is about to be activated in the area.

Installation of the system has also been subject to sabotage by local farmers who say that the introduction of the technology has somehow interfered with natural weather patterns.

Monitoring systems have improved – with often daily glacial avalanches being recorded. Inaigem, the national research institute on glaciers and mountain ecosystems, provides a live video of Lake Palcacocha water flows. But as temperatures in the region continue to rise, the danger level increases. – Climate News Network

Racing ice loss strips Greenland of mass

Greenland is shrinking, losing ice seven times faster than a generation ago. Scientists have taken a new and ominous measure of polar loss.

LONDON, 11 December, 2019 – Greenland – the largest body of frozen water in the northern hemisphere – is now losing ice seven times faster than it did during the last decade of the 20th century.

From 1990 to 1999, the Greenland ice sheet spilled an average of 33 billion tonnes of ice into the oceans every year. In the last decade the rate of loss has accelerated to an average of 254 billion tonnes a year.

Altogether, the Greenland ice cap has surrendered 3.8 trillion tonnes of ice since 1992. This alone is enough to raise global sea levels by 10.6 millimetres.

Glaciers and icecaps are in retreat in two hemispheres, and on every continent, as a consequence of profligate human combustion of fossil fuels, to drive up greenhouse gas levels in the atmosphere, and accelerate global heating.

Devastating

“As a rule of thumb, for every centimetre rise in global sea level another six million people are exposed to coastal flooding around the planet”, said Andrew Shepherd of the University of Leeds in the UK.

“On current trends, Greenland ice melting will cause 100 million people to be flooded each year by the end of the century, so 400 million in total due to all sea level rise. These are not unlikely events of small impacts; they are happening and will be devastating for coastal communities.”

Professor Shepherd is one of 96 polar scientists from 50 international organisations in a partnership known by the cumbrous name IMBIE, which stands for Ice Sheet Mass Balance Intercomparison Exercise. They made this assessment, based on data from 11 satellite missions and 26 separate surveys between 1992 and 2018, and published their conclusions in the journal Nature.

Greenland is not just the largest ice mass in the Arctic, it is probably the polar landscape studied for the longest time, and the most intensively.
Researchers have monitored the rate of summer melt, tried to match increases with other phenomena – for instance the darkening of snow by sub-Arctic wildfires – and tried to explore the mechanisms by which volumes of water that might in the past have frozen again each winter now accelerate glacier melt and escape into the ocean.

No surprise

The icecap is so big that – were it all to melt, which would take centuries – it would raise sea levels by as much as seven metres.

The news of a dramatic increase in rates of melting is not a surprise, and certainly not to the people who live in Greenland.

In 2013, the Intergovernmental Panel on Climate Change warned that global sea levels would rise by 60 cms by 2100. What matters about the latest survey is that it confirms the worst fears of many climate scientists and suggests that sea level rise is heading for the high end of the 2013 projections.

That is, by the end of this century, seas could have risen by nearer 70 cms. Around 100 million people already live at levels below the highest tides: the numbers increasingly at risk may be much higher.

The same study also explores the rates of change. Although the warmest years ever recorded have happened in the last century, as fossil fuel emissions and rainforest losses have continued to increase, the impact of global heating has been uneven.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale”

The greatest loss of Greenland ice in any one year was in 2011, when the island lost 335 billion tonnes. Nor does the survey include all the data from 2019, and researchers could yet find that this summer’s ice loss has set new records.

Greenland’s loss of ice has been mirrored by continued loss of sea ice during successive Arctic summers, and since the world’s seasonal weather patterns have – for most of human history – been driven by the temperature difference between tropics and poles, the continued loss of ice will almost certainly impose worldwide costs in harvest losses, freak storms, droughts, wildfires and of course coastal flooding.

And ultimately, the study is a test of computer simulations of change in the northern hemisphere. Climate models have consistently predicted polar ice loss and sea level rise. But the latest study is a confirmation that such loss is real, and beyond argument.

“While computer simulation allows us to make projections from climate change scenarios, the satellite measurements provide prima facie, rather irrefutable evidence,” said Erik Ivins of Nasa’s Jet Propulsion Laboratory in California, and a co-author.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale.” – Climate News Network

Greenland is shrinking, losing ice seven times faster than a generation ago. Scientists have taken a new and ominous measure of polar loss.

LONDON, 11 December, 2019 – Greenland – the largest body of frozen water in the northern hemisphere – is now losing ice seven times faster than it did during the last decade of the 20th century.

From 1990 to 1999, the Greenland ice sheet spilled an average of 33 billion tonnes of ice into the oceans every year. In the last decade the rate of loss has accelerated to an average of 254 billion tonnes a year.

Altogether, the Greenland ice cap has surrendered 3.8 trillion tonnes of ice since 1992. This alone is enough to raise global sea levels by 10.6 millimetres.

Glaciers and icecaps are in retreat in two hemispheres, and on every continent, as a consequence of profligate human combustion of fossil fuels, to drive up greenhouse gas levels in the atmosphere, and accelerate global heating.

Devastating

“As a rule of thumb, for every centimetre rise in global sea level another six million people are exposed to coastal flooding around the planet”, said Andrew Shepherd of the University of Leeds in the UK.

“On current trends, Greenland ice melting will cause 100 million people to be flooded each year by the end of the century, so 400 million in total due to all sea level rise. These are not unlikely events of small impacts; they are happening and will be devastating for coastal communities.”

Professor Shepherd is one of 96 polar scientists from 50 international organisations in a partnership known by the cumbrous name IMBIE, which stands for Ice Sheet Mass Balance Intercomparison Exercise. They made this assessment, based on data from 11 satellite missions and 26 separate surveys between 1992 and 2018, and published their conclusions in the journal Nature.

Greenland is not just the largest ice mass in the Arctic, it is probably the polar landscape studied for the longest time, and the most intensively.
Researchers have monitored the rate of summer melt, tried to match increases with other phenomena – for instance the darkening of snow by sub-Arctic wildfires – and tried to explore the mechanisms by which volumes of water that might in the past have frozen again each winter now accelerate glacier melt and escape into the ocean.

No surprise

The icecap is so big that – were it all to melt, which would take centuries – it would raise sea levels by as much as seven metres.

The news of a dramatic increase in rates of melting is not a surprise, and certainly not to the people who live in Greenland.

In 2013, the Intergovernmental Panel on Climate Change warned that global sea levels would rise by 60 cms by 2100. What matters about the latest survey is that it confirms the worst fears of many climate scientists and suggests that sea level rise is heading for the high end of the 2013 projections.

That is, by the end of this century, seas could have risen by nearer 70 cms. Around 100 million people already live at levels below the highest tides: the numbers increasingly at risk may be much higher.

The same study also explores the rates of change. Although the warmest years ever recorded have happened in the last century, as fossil fuel emissions and rainforest losses have continued to increase, the impact of global heating has been uneven.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale”

The greatest loss of Greenland ice in any one year was in 2011, when the island lost 335 billion tonnes. Nor does the survey include all the data from 2019, and researchers could yet find that this summer’s ice loss has set new records.

Greenland’s loss of ice has been mirrored by continued loss of sea ice during successive Arctic summers, and since the world’s seasonal weather patterns have – for most of human history – been driven by the temperature difference between tropics and poles, the continued loss of ice will almost certainly impose worldwide costs in harvest losses, freak storms, droughts, wildfires and of course coastal flooding.

And ultimately, the study is a test of computer simulations of change in the northern hemisphere. Climate models have consistently predicted polar ice loss and sea level rise. But the latest study is a confirmation that such loss is real, and beyond argument.

“While computer simulation allows us to make projections from climate change scenarios, the satellite measurements provide prima facie, rather irrefutable evidence,” said Erik Ivins of Nasa’s Jet Propulsion Laboratory in California, and a co-author.

“Our project is a great example of the importance of international collaboration to tackle problems that are global in scale.” – Climate News Network