Tag Archives: Global threats

Ultra-fast computers could avert global disaster

The world can be saved. It needs global co-operation, careful research and the building of ultra-fast computers.

LONDON, 13 December, 2019 – The way to steer the planet safely away from overwhelming climate crisis may sound familiar, though it’s staggeringly ambitious: just use incredibly powerful and ultra-fast computers.

Studies in two separate journals have called for new thinking about global change. One warns that only a genuine accommodation with nature can save humankind from catastrophic change. The other argues that present understanding of the trajectories of global heating is so uncertain that what is needed is a global co-operation to deliver what scientists call exascale supercomputer climate modelling: exascale means calculations at rates of a billion billion operations a second.

There’s a snag: nobody has yet built a working exascale computer, though several groups hope to succeed within a few years. But when it’s done it could transform the prospects of life on Earth.

“We cannot save the planet – and ourselves – until we understand how tightly woven people and the natural benefits that allow us to survive are,” said Jianguo Liu of Michigan State University, one of the authors of a paper in the journal Science.

“We have learned new ways to understand these connections, even as they spread across the globe. This strategy has given us the power to understand the full scope of the problem, which allows us to find true solutions.”

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”

And Tim Palmer of Oxford University, an author of a perspective paper in the Proceedings of the National Academy of Sciences, has called for a new and international investment in sophisticated climate modelling, exploiting a new generation of computers, in much the same way that physicists at CERN in Geneva co-operated to explore the sequence of events in the first microsecond of creation.

“By comparison with new particle colliders or space telescopes, the amount needed, maybe around $100 million a year, is very modest indeed. In addition, the benefit/cost ratio to society of having a much clearer picture of the dangers we are facing in the coming decades by our ongoing actions, seems extraordinarily large,” he said.

“To be honest, all is needed is the will to work together across nations, on such a project. Then it will happen.”

The point made by authors of the Science study is that humankind depends acutely on the natural world for at least 18 direct benefits: these include pollination and the dispersal of seeds, the regulation of clean air, and of climate, and of fresh water, the protection of topsoils, the control of potential pests and diseases, the supplies of energy, food and animal fodder, the supplies of materials and fabrics and yields of new medicines and biochemical compounds.

Massive change

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”, the authors warn.

“Human actions have directly altered at least 70% of land surface; 66% of ocean surface is experiencing cumulative impacts; around 85% of wetland area has been lost since the 1700s and 77% of rivers longer than 1000 km no longer flow freely from source to sea.”

There was a need for “transformative action” on a global scale to address root economic, social and technological causes and to avert catastrophic decline of the living world. “Although the challenge is formidable, every delay will make the task harder”, they warn.

But in a world of rapid change – with species at increasing risk of extinction and global heating about to trigger catastrophic climate change – there is still the challenge of working out what the implications of any change might be.

The argument is that human society must change, and so too must the scientific community. Climate modelling might deliver broad answers, but researchers would still need to be sure what might work best in any particular circumstances, and that would require new and vastly more complex levels of mathematical calculation and data interpretation.

Space-race urgency

Professor Palmer and his colleague Bjorn Stevens of the Max Planck Institute for Meteorology in Hamburg call for better understanding of the need for change.

“What is needed is the urgency of the space race aimed, not at the Moon or Mars, but rather toward harnessing the promise of exascale supercomputing to reliably simulate Earth’s regional climate (and associated extremes) globally”, they argue.

“This will only be possible if the broader climate science community begins to articulate its dissatisfaction with business as usual – not just among themselves, but externally to those who seek to use the models for business, policy, or humanitarian reasons.

“Failing to do so becomes an ethical issue in that it saddles us with the status quo: a strategy that hopes, against all evidence, to surmount the abyss between scientific capability and societal needs.” – Climate News Network

The world can be saved. It needs global co-operation, careful research and the building of ultra-fast computers.

LONDON, 13 December, 2019 – The way to steer the planet safely away from overwhelming climate crisis may sound familiar, though it’s staggeringly ambitious: just use incredibly powerful and ultra-fast computers.

Studies in two separate journals have called for new thinking about global change. One warns that only a genuine accommodation with nature can save humankind from catastrophic change. The other argues that present understanding of the trajectories of global heating is so uncertain that what is needed is a global co-operation to deliver what scientists call exascale supercomputer climate modelling: exascale means calculations at rates of a billion billion operations a second.

There’s a snag: nobody has yet built a working exascale computer, though several groups hope to succeed within a few years. But when it’s done it could transform the prospects of life on Earth.

“We cannot save the planet – and ourselves – until we understand how tightly woven people and the natural benefits that allow us to survive are,” said Jianguo Liu of Michigan State University, one of the authors of a paper in the journal Science.

“We have learned new ways to understand these connections, even as they spread across the globe. This strategy has given us the power to understand the full scope of the problem, which allows us to find true solutions.”

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”

And Tim Palmer of Oxford University, an author of a perspective paper in the Proceedings of the National Academy of Sciences, has called for a new and international investment in sophisticated climate modelling, exploiting a new generation of computers, in much the same way that physicists at CERN in Geneva co-operated to explore the sequence of events in the first microsecond of creation.

“By comparison with new particle colliders or space telescopes, the amount needed, maybe around $100 million a year, is very modest indeed. In addition, the benefit/cost ratio to society of having a much clearer picture of the dangers we are facing in the coming decades by our ongoing actions, seems extraordinarily large,” he said.

“To be honest, all is needed is the will to work together across nations, on such a project. Then it will happen.”

The point made by authors of the Science study is that humankind depends acutely on the natural world for at least 18 direct benefits: these include pollination and the dispersal of seeds, the regulation of clean air, and of climate, and of fresh water, the protection of topsoils, the control of potential pests and diseases, the supplies of energy, food and animal fodder, the supplies of materials and fabrics and yields of new medicines and biochemical compounds.

Massive change

“Human actions are causing the fabric of life to unravel, posing serious risks for the quality of life of people”, the authors warn.

“Human actions have directly altered at least 70% of land surface; 66% of ocean surface is experiencing cumulative impacts; around 85% of wetland area has been lost since the 1700s and 77% of rivers longer than 1000 km no longer flow freely from source to sea.”

There was a need for “transformative action” on a global scale to address root economic, social and technological causes and to avert catastrophic decline of the living world. “Although the challenge is formidable, every delay will make the task harder”, they warn.

But in a world of rapid change – with species at increasing risk of extinction and global heating about to trigger catastrophic climate change – there is still the challenge of working out what the implications of any change might be.

The argument is that human society must change, and so too must the scientific community. Climate modelling might deliver broad answers, but researchers would still need to be sure what might work best in any particular circumstances, and that would require new and vastly more complex levels of mathematical calculation and data interpretation.

Space-race urgency

Professor Palmer and his colleague Bjorn Stevens of the Max Planck Institute for Meteorology in Hamburg call for better understanding of the need for change.

“What is needed is the urgency of the space race aimed, not at the Moon or Mars, but rather toward harnessing the promise of exascale supercomputing to reliably simulate Earth’s regional climate (and associated extremes) globally”, they argue.

“This will only be possible if the broader climate science community begins to articulate its dissatisfaction with business as usual – not just among themselves, but externally to those who seek to use the models for business, policy, or humanitarian reasons.

“Failing to do so becomes an ethical issue in that it saddles us with the status quo: a strategy that hopes, against all evidence, to surmount the abyss between scientific capability and societal needs.” – Climate News Network

Earth nears irreversible tipping points

Changes afoot now in at least nine areas could drastically alter the Earth’s climate. There’s no time left to act on these tipping points.

LONDON, 28 November, 2019 – On the eve of a global climate summit in Madrid, seven distinguished climate scientists have issued an urgent warning of approaching planetary tipping points: within a few years, they say, humankind could enter a state of potentially catastrophic climate change on a new “hothouse” Earth.

They warn that dramatic changes to planetary stability may already be happening in nine vulnerable ecosystems. As these changes happen, they could reinforce each other and at the same time amplify planetary temperature rise, commit the oceans to inexorable sea level rise of around 10 metres, and threaten the existence of human civilisations.

Their warning is issued in a commentary in the journal Nature. Their conclusions are not – and perhaps cannot be – confirmed by direct evidence or the consensus of other scientists. They present an opinion, not a set of facts that can be scrutinised and challenged or endorsed by their peers.

And the seven researchers recognise that although such changes are happening at speed, some of the consequences of those changes will follow more slowly. Their point is that the risks of irreversible change are too great not to act – and to act now.

Happening now

But the fact that they have chosen to issue such an alarm at all is a measure of the concern raised by the rapid retreat of the Arctic ice, the steady loss of the Greenland ice cap, the damage to the boreal forests, the thaw of the polar permafrost, the slowing of a great ocean current, the loss of tropical corals and the collapse of ice sheets in East and West Antarctica.

Each of these happenings – and many more – was identified more than a decade ago as a potential “tipping point”: an irreversible change that would amplify global heating and trigger a cascade of other climate changes.

“Now we see evidence that over half of them have been activated,” said Tim Lenton of the University of Exeter, UK. “The growing threat of rapid, irreversible changes means it is no longer responsible to wait and see.”

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this”

The idea of a climate tipping point – a threshold beyond which dramatic climate change would be irreversible – is an old one. Two decades ago the Intergovernmental Panel on Climate Change examined the idea and proposed that, were the planet to warm by 5°C above the long-term average for most of human history, then it could tip into a new climate regime.

But in the last few decades, carbon dioxide concentrations in the atmosphere have gone from around 280 parts per million to more than 400 ppm, and global average temperatures have risen by more than 1°C. And the rate of change, driven by profligate use of fossil fuels that deposit greenhouse gases into the atmosphere, has been alarming.

“It is not only human pressures on Earth that continue rising to unprecedented levels. It is also that, as science advances, we must admit that we have underestimated the risks of unleashing irreversible changes, where the planet self-amplifies global warming. This is what we are seeing already at 1°C global warming,” said Johan Rockström, who directs the Potsdam Institute for Climate Impact Research in Germany, and who is another signatory.

“Scientifically, this provides strong evidence for declaring a state of planetary emergency, to unleash world action that accelerates the path towards a world that can continue evolving on a stable planet.”

Inadequate pledges

In 2015, at a climate summit in Paris, 195 nations promised to contain planetary heating to “well below” 2°C, and ideally to 1.5°C, by 2100. But the Nature signatories point at that even if the pledges those nations made are implemented – a “big if”, they warn – then they will ensure only that the world is committed to at least 3°C warming.

The scientists believe there is still time to act – but their dangerous tipping points are now dangerously close.

The arguments go like this. In West Antarctica, ice may already be retreating beyond the “grounding line” where ice, ocean and bedrock meet. If so, then the rest of the West Antarctic ice sheet could collapse, and sea levels could rise by three metres.

New evidence suggests the East Antarctic ice sheet could be similarly unstable, and precipitate further sea level rise of up to four metres. Hundreds of millions are already at risk from coastal flooding.

Timescale controlled

The Greenland ice sheet is melting at an accelerating rate, and once past a critical threshold could lose enough water to raise sea levels by seven metres. Even a 1.5°C warming might condemn Greenland to irreversible melting – and on present form the world could warm by 1.5°C by 2030.

“Thus we might have already committed future generations to living with sea level rises of around 10m over thousands of years. But the timescale is still under our control,” the authors warn.

They also warn that a “staggering 99% of tropical corals” could be lost if the planet heats by even 2°C – at a profound cost to both marine sea life and human economies.

They say 17% of the Amazon rainforest has been lost since 1970: a loss of somewhere between 20% and 40% could tip the entire rainforest into a destabilised state, increasingly at risk from drought and fire.

Risks multiply

In the boreal forests of northern Asia, Europe and Canada, insect outbreaks, fire and dieback could turn some regions into sources of more carbon, rather than sinks that soak up the extra carbon dioxide.

Permafrost thaw could release ever-greater volumes of stored methane, a greenhouse gas 30 times more potent, over a century, than carbon dioxide, and so on. The dangers multiply, and each one amplifies planetary heating.

“If damaging tipping cascades can occur and a global tipping point cannot be ruled out, then this is an existential threat to civilisation,” the authors warn.

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this.” – Climate News Network

Changes afoot now in at least nine areas could drastically alter the Earth’s climate. There’s no time left to act on these tipping points.

LONDON, 28 November, 2019 – On the eve of a global climate summit in Madrid, seven distinguished climate scientists have issued an urgent warning of approaching planetary tipping points: within a few years, they say, humankind could enter a state of potentially catastrophic climate change on a new “hothouse” Earth.

They warn that dramatic changes to planetary stability may already be happening in nine vulnerable ecosystems. As these changes happen, they could reinforce each other and at the same time amplify planetary temperature rise, commit the oceans to inexorable sea level rise of around 10 metres, and threaten the existence of human civilisations.

Their warning is issued in a commentary in the journal Nature. Their conclusions are not – and perhaps cannot be – confirmed by direct evidence or the consensus of other scientists. They present an opinion, not a set of facts that can be scrutinised and challenged or endorsed by their peers.

And the seven researchers recognise that although such changes are happening at speed, some of the consequences of those changes will follow more slowly. Their point is that the risks of irreversible change are too great not to act – and to act now.

Happening now

But the fact that they have chosen to issue such an alarm at all is a measure of the concern raised by the rapid retreat of the Arctic ice, the steady loss of the Greenland ice cap, the damage to the boreal forests, the thaw of the polar permafrost, the slowing of a great ocean current, the loss of tropical corals and the collapse of ice sheets in East and West Antarctica.

Each of these happenings – and many more – was identified more than a decade ago as a potential “tipping point”: an irreversible change that would amplify global heating and trigger a cascade of other climate changes.

“Now we see evidence that over half of them have been activated,” said Tim Lenton of the University of Exeter, UK. “The growing threat of rapid, irreversible changes means it is no longer responsible to wait and see.”

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this”

The idea of a climate tipping point – a threshold beyond which dramatic climate change would be irreversible – is an old one. Two decades ago the Intergovernmental Panel on Climate Change examined the idea and proposed that, were the planet to warm by 5°C above the long-term average for most of human history, then it could tip into a new climate regime.

But in the last few decades, carbon dioxide concentrations in the atmosphere have gone from around 280 parts per million to more than 400 ppm, and global average temperatures have risen by more than 1°C. And the rate of change, driven by profligate use of fossil fuels that deposit greenhouse gases into the atmosphere, has been alarming.

“It is not only human pressures on Earth that continue rising to unprecedented levels. It is also that, as science advances, we must admit that we have underestimated the risks of unleashing irreversible changes, where the planet self-amplifies global warming. This is what we are seeing already at 1°C global warming,” said Johan Rockström, who directs the Potsdam Institute for Climate Impact Research in Germany, and who is another signatory.

“Scientifically, this provides strong evidence for declaring a state of planetary emergency, to unleash world action that accelerates the path towards a world that can continue evolving on a stable planet.”

Inadequate pledges

In 2015, at a climate summit in Paris, 195 nations promised to contain planetary heating to “well below” 2°C, and ideally to 1.5°C, by 2100. But the Nature signatories point at that even if the pledges those nations made are implemented – a “big if”, they warn – then they will ensure only that the world is committed to at least 3°C warming.

The scientists believe there is still time to act – but their dangerous tipping points are now dangerously close.

The arguments go like this. In West Antarctica, ice may already be retreating beyond the “grounding line” where ice, ocean and bedrock meet. If so, then the rest of the West Antarctic ice sheet could collapse, and sea levels could rise by three metres.

New evidence suggests the East Antarctic ice sheet could be similarly unstable, and precipitate further sea level rise of up to four metres. Hundreds of millions are already at risk from coastal flooding.

Timescale controlled

The Greenland ice sheet is melting at an accelerating rate, and once past a critical threshold could lose enough water to raise sea levels by seven metres. Even a 1.5°C warming might condemn Greenland to irreversible melting – and on present form the world could warm by 1.5°C by 2030.

“Thus we might have already committed future generations to living with sea level rises of around 10m over thousands of years. But the timescale is still under our control,” the authors warn.

They also warn that a “staggering 99% of tropical corals” could be lost if the planet heats by even 2°C – at a profound cost to both marine sea life and human economies.

They say 17% of the Amazon rainforest has been lost since 1970: a loss of somewhere between 20% and 40% could tip the entire rainforest into a destabilised state, increasingly at risk from drought and fire.

Risks multiply

In the boreal forests of northern Asia, Europe and Canada, insect outbreaks, fire and dieback could turn some regions into sources of more carbon, rather than sinks that soak up the extra carbon dioxide.

Permafrost thaw could release ever-greater volumes of stored methane, a greenhouse gas 30 times more potent, over a century, than carbon dioxide, and so on. The dangers multiply, and each one amplifies planetary heating.

“If damaging tipping cascades can occur and a global tipping point cannot be ruled out, then this is an existential threat to civilisation,” the authors warn.

“The stability and resilience of our planet is in peril. International action – not just words – must reflect this.” – Climate News Network

Our children await a radioactive legacy

We are leaving our children a radioactive legacy, the lethal waste that current governments still cannot make safe.

LONDON, 26 November, 2019 − After 70 years of building and operating nuclear power plants across the world, governments are bequeathing to future generations a radioactive legacy.

They remain unable to deal with the huge quantities of highly radioactive spent fuel they produce, says a group of independent experts − and as more reactors are reaching the end of their lives, the situation is worsening fast.

That is the conclusion of the first World Nuclear Waste Report (WNWR), produced by a group which says there are ever-growing challenges in waste management and no sustainable long-term solutions. They include two British academics: the economist Professor Gordon MacKerron, of the University of Sussex, and the independent radiation biologist Dr Ian Fairlie.

“Despite many plans and declared political intentions, huge uncertainties remain, and much of the costs and the challenges will fall onto future generations,” the report says.

Persistent risk

The waste, which can remain dangerous for more than 100,000 years, constitutes a continuous health hazard because of the routine release of radioactive gas and liquid waste into the environment. Yet it is likely to be another century before the problem is solved, the WNWR report says.

It notes: “The continued practice of storing spent nuclear fuel for long periods in pools at nuclear power plants (wet storage) constitutes a major risk to the public and to the environment.” There are now an estimated 250,000 tons of spent fuel in storage in 14 countries.

Despite its stark findings, the report makes no comment on the ethics of continuing to build nuclear stations when there is no way to get rid of the wastes they create.

The authors do not even quote the sixth report of the UK Royal Commission on Environmental Pollution from 1976, only 20 years after the dawn of the nuclear age, chaired by the physicist Sir Brian Flowers.

Beyond reasonable doubt

That said: “There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future.”

Successive British governments, along with the rest of the world, ignored Flowers. 40 years on, there are massive stockpiles of radioactive waste in every nuclear nation across the planet.

However, because the problem is now so vast, this latest report concentrates on describing the issues faced in the democracies of Europe where there is a lot of official information available. Even here, governments have failed to properly estimate the true cost of dealing with the waste, and most are many decades away from finding any solutions.

Finland is the only country in the world currently building a permanent repository for its high-level waste. Many other countries have tried and failed, either because the geology proved unsuitable or because of objections from those affected.

“There should be no commitment to a large programme of nuclear fission power until a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future”

As a result, spent fuel from reactors and other highly dangerous waste is in interim storage that carries severe safety risks, not least from loss of cooling water or terrorist attack. There are 60,000 tons of spent fuel in store in Europe alone.

The bill for dealing with the waste is huge, but no government has yet calculated accurately what it is, nor has any put aside enough funds to deal with it. By mid-2019 there were 181 closed nuclear reactors globally, but only 19 had been fully decommissioned, with just 10 restored as greenfield sites.

The report does not comment on governments’ competence or honesty, but it does make it clear they are not facing up to reality. For example, the UK has more than 100 tons of stored plutonium, for which it has no use − but it refuses to class plutonium as a waste. The report says it will cost at least £3 billion ($3.8bn) “to manage” whatever decision is reached to deal with it.

Each of the countries in Europe that has nuclear power stations is studied in the report. Spent fuel is the single most dangerous source of highly radioactive waste, and all 16 countries in Europe with highly irradiated fuel have yet to deal with it. France has the highest number of spent fuel rods with 13,990 tons in cooling ponds, Germany 8,485, the UK 7,700.

Information withheld

France has the largest unresolved stockpile of all categories of nuclear waste, plus the legacy of a uranium mining industry. The cost of decommissioning and waste management was put at €43.7 billion ($60.3bn) in 2014, but this is almost certainly an underestimate, the report says.

Looking outside Europe, the US probably has the largest and most complex volumes of nuclear waste in the world, the experts say. Yet it has no plans for dealing with it, and vast quantities of all types of waste are in temporary storage.

The authors admit that, despite their year-long study, the report cannot be comprehensive. This is because information from some countries, for example Russia and China, is not available. But they add that across the world all governments are failing to face up to the size of the task and its costs.

Although some countries had set notional dates for dealing with their wastes as far into the future as 2060, others had no idea at all. The authors promise to produce updated reports in future years. − Climate News Network

We are leaving our children a radioactive legacy, the lethal waste that current governments still cannot make safe.

LONDON, 26 November, 2019 − After 70 years of building and operating nuclear power plants across the world, governments are bequeathing to future generations a radioactive legacy.

They remain unable to deal with the huge quantities of highly radioactive spent fuel they produce, says a group of independent experts − and as more reactors are reaching the end of their lives, the situation is worsening fast.

That is the conclusion of the first World Nuclear Waste Report (WNWR), produced by a group which says there are ever-growing challenges in waste management and no sustainable long-term solutions. They include two British academics: the economist Professor Gordon MacKerron, of the University of Sussex, and the independent radiation biologist Dr Ian Fairlie.

“Despite many plans and declared political intentions, huge uncertainties remain, and much of the costs and the challenges will fall onto future generations,” the report says.

Persistent risk

The waste, which can remain dangerous for more than 100,000 years, constitutes a continuous health hazard because of the routine release of radioactive gas and liquid waste into the environment. Yet it is likely to be another century before the problem is solved, the WNWR report says.

It notes: “The continued practice of storing spent nuclear fuel for long periods in pools at nuclear power plants (wet storage) constitutes a major risk to the public and to the environment.” There are now an estimated 250,000 tons of spent fuel in storage in 14 countries.

Despite its stark findings, the report makes no comment on the ethics of continuing to build nuclear stations when there is no way to get rid of the wastes they create.

The authors do not even quote the sixth report of the UK Royal Commission on Environmental Pollution from 1976, only 20 years after the dawn of the nuclear age, chaired by the physicist Sir Brian Flowers.

Beyond reasonable doubt

That said: “There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future.”

Successive British governments, along with the rest of the world, ignored Flowers. 40 years on, there are massive stockpiles of radioactive waste in every nuclear nation across the planet.

However, because the problem is now so vast, this latest report concentrates on describing the issues faced in the democracies of Europe where there is a lot of official information available. Even here, governments have failed to properly estimate the true cost of dealing with the waste, and most are many decades away from finding any solutions.

Finland is the only country in the world currently building a permanent repository for its high-level waste. Many other countries have tried and failed, either because the geology proved unsuitable or because of objections from those affected.

“There should be no commitment to a large programme of nuclear fission power until a method exists to ensure the safe containment of long-lived, highly radioactive waste for the indefinite future”

As a result, spent fuel from reactors and other highly dangerous waste is in interim storage that carries severe safety risks, not least from loss of cooling water or terrorist attack. There are 60,000 tons of spent fuel in store in Europe alone.

The bill for dealing with the waste is huge, but no government has yet calculated accurately what it is, nor has any put aside enough funds to deal with it. By mid-2019 there were 181 closed nuclear reactors globally, but only 19 had been fully decommissioned, with just 10 restored as greenfield sites.

The report does not comment on governments’ competence or honesty, but it does make it clear they are not facing up to reality. For example, the UK has more than 100 tons of stored plutonium, for which it has no use − but it refuses to class plutonium as a waste. The report says it will cost at least £3 billion ($3.8bn) “to manage” whatever decision is reached to deal with it.

Each of the countries in Europe that has nuclear power stations is studied in the report. Spent fuel is the single most dangerous source of highly radioactive waste, and all 16 countries in Europe with highly irradiated fuel have yet to deal with it. France has the highest number of spent fuel rods with 13,990 tons in cooling ponds, Germany 8,485, the UK 7,700.

Information withheld

France has the largest unresolved stockpile of all categories of nuclear waste, plus the legacy of a uranium mining industry. The cost of decommissioning and waste management was put at €43.7 billion ($60.3bn) in 2014, but this is almost certainly an underestimate, the report says.

Looking outside Europe, the US probably has the largest and most complex volumes of nuclear waste in the world, the experts say. Yet it has no plans for dealing with it, and vast quantities of all types of waste are in temporary storage.

The authors admit that, despite their year-long study, the report cannot be comprehensive. This is because information from some countries, for example Russia and China, is not available. But they add that across the world all governments are failing to face up to the size of the task and its costs.

Although some countries had set notional dates for dealing with their wastes as far into the future as 2060, others had no idea at all. The authors promise to produce updated reports in future years. − Climate News Network

New-borns face multiple climate health risks

Multiple climate health risks threaten today’s babies. They may grow up hungrier, more diseased and facing more pollution and danger. But there’s hope.

LONDON,15 November, 2018 – Today’s world is not a welcoming place for babies, who – across the globe – face multiple climate health risks.

On present trends, any new-born today is likely to live in a world 4°C hotter than it has been all through human history.

On present trends, climate change will affect infant health by reducing the yield and nutritional value of maize, wheat, soybean and rice, to stunt growth and weaken immune systems.

Older children will be at increasing risk from climate-related diseases such as cholera and dengue fever, and adolescents will be at increasing risk from toxic air, driven by fossil fuel combustion and ever-higher temperatures.

And then throughout their lives, today’s newly-borns will be at hazard from increasingly severe floods, prolonged droughts and wildfires.

“This year, the accelerating impacts of climate change have become clearer than ever,” said Hugh Montgomery, who directs the Institute for Human Health and Performance at University College London.

“The world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation”

“The highest recorded temperatures in Western Europe and wildfires in Siberia, Queensland and California triggered asthma, respiratory infections and heat stroke. Sea levels are now rising at an ever-concerning rate. Our children recognise this climate emergency and demand action to protect them. We must listen, and respond.”

Professor Montgomery is a co-chair of the Lancet Countdown, which has assessed research from 120 experts in 35 global institutions on health damage from climate change and the lifelong health consequences of rising temperatures.

The Lancet is one of the world’s oldest and most distinguished medical journals and has already published three important studies of the  challenge of climate change in terms of nutrition, diet and the effect of extreme temperatures on human health.

The latest study compares a world in which governments everywhere fulfil a promise made in Paris in 2015 and contain global heating by the century’s end to a rise of “well below” 2°C, or follow the notorious “business as usual” scenario in which developing economies burn ever more fossil fuels and ratchet up global temperatures to potentially catastrophic levels.

The new study looks at the available indicators and warns that climate change driven by global heating is already damaging the health of the world’s children and will shape the wellbeing of an entire generation unless the Paris targets are met.

Targets receding

Right now, average planetary temperatures have already risen by 1°C in the last century and the latest analysis of national plans to reduce fossil fuel use suggest that the Paris targets will not be met.

And climate change has begun to take its toll. In the last 30 years the average global yield potential of maize has shrunk by 4%, of winter wheat by 6%, of soybean by 3% and rice by 4%: this alone makes more infants vulnerable to malnutrition and rising food prices.

Eight of the ten hottest years ever recorded have happened in the last decade, and this heating has been driven by fossil fuel use: every second the world burns 171,000 kg of coal, 186,000 litres of oil and 11,600,000 litres of gas.

Nine of the 10 most suitable years for the transmission of dengue fever – carried by the mosquito – have happened since the turn of the century. Last year was the second most suitable year on record for the spread of the bacteria that cause diarrhoeal disease and wound infection.

In 2016, deaths from outdoor air pollution were set at around 2.9 million; of these, 440,000 were from coal alone. The share of global energy from coal actually rose by 1.7% between 2016 and 2018.

Better future possible

And the journal also records a rise in extreme weather events: out of 196 countries, 152 experienced an increase in citizens exposed to wildfires since the first four years of the century; and a record 220 million more citizens over the age of 65 were exposed to heatwaves in 2018, compared with 2000. This is an increase of 63m just on 2017.

In 2018, compared with 2000, heat extremes cost the world’s economies a potential 45 billion hours of additional work: in the hottest month, outdoor agricultural workers and construction teams lost as much as 20% of potential daylight working hours.

But, the Lancet Countdown experts say, if the world did fulfil its Paris Agreement promise, then any child born today would grow up on a planet that had reached net zero carbon emissions by their 31st birthday: there would be a healthier future for coming generations.

“The climate crisis is one of the greatest threats to the health of humanity today, but the world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation,” said Richard Horton, editor-in-chief of the Lancet.

“With the full force of the Paris Agreement due to be implemented, we can’t afford this level of disengagement. The clinical, global health and research community needs to come together now and challenge our leaders.” – Climate News Network

Multiple climate health risks threaten today’s babies. They may grow up hungrier, more diseased and facing more pollution and danger. But there’s hope.

LONDON,15 November, 2018 – Today’s world is not a welcoming place for babies, who – across the globe – face multiple climate health risks.

On present trends, any new-born today is likely to live in a world 4°C hotter than it has been all through human history.

On present trends, climate change will affect infant health by reducing the yield and nutritional value of maize, wheat, soybean and rice, to stunt growth and weaken immune systems.

Older children will be at increasing risk from climate-related diseases such as cholera and dengue fever, and adolescents will be at increasing risk from toxic air, driven by fossil fuel combustion and ever-higher temperatures.

And then throughout their lives, today’s newly-borns will be at hazard from increasingly severe floods, prolonged droughts and wildfires.

“This year, the accelerating impacts of climate change have become clearer than ever,” said Hugh Montgomery, who directs the Institute for Human Health and Performance at University College London.

“The world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation”

“The highest recorded temperatures in Western Europe and wildfires in Siberia, Queensland and California triggered asthma, respiratory infections and heat stroke. Sea levels are now rising at an ever-concerning rate. Our children recognise this climate emergency and demand action to protect them. We must listen, and respond.”

Professor Montgomery is a co-chair of the Lancet Countdown, which has assessed research from 120 experts in 35 global institutions on health damage from climate change and the lifelong health consequences of rising temperatures.

The Lancet is one of the world’s oldest and most distinguished medical journals and has already published three important studies of the  challenge of climate change in terms of nutrition, diet and the effect of extreme temperatures on human health.

The latest study compares a world in which governments everywhere fulfil a promise made in Paris in 2015 and contain global heating by the century’s end to a rise of “well below” 2°C, or follow the notorious “business as usual” scenario in which developing economies burn ever more fossil fuels and ratchet up global temperatures to potentially catastrophic levels.

The new study looks at the available indicators and warns that climate change driven by global heating is already damaging the health of the world’s children and will shape the wellbeing of an entire generation unless the Paris targets are met.

Targets receding

Right now, average planetary temperatures have already risen by 1°C in the last century and the latest analysis of national plans to reduce fossil fuel use suggest that the Paris targets will not be met.

And climate change has begun to take its toll. In the last 30 years the average global yield potential of maize has shrunk by 4%, of winter wheat by 6%, of soybean by 3% and rice by 4%: this alone makes more infants vulnerable to malnutrition and rising food prices.

Eight of the ten hottest years ever recorded have happened in the last decade, and this heating has been driven by fossil fuel use: every second the world burns 171,000 kg of coal, 186,000 litres of oil and 11,600,000 litres of gas.

Nine of the 10 most suitable years for the transmission of dengue fever – carried by the mosquito – have happened since the turn of the century. Last year was the second most suitable year on record for the spread of the bacteria that cause diarrhoeal disease and wound infection.

In 2016, deaths from outdoor air pollution were set at around 2.9 million; of these, 440,000 were from coal alone. The share of global energy from coal actually rose by 1.7% between 2016 and 2018.

Better future possible

And the journal also records a rise in extreme weather events: out of 196 countries, 152 experienced an increase in citizens exposed to wildfires since the first four years of the century; and a record 220 million more citizens over the age of 65 were exposed to heatwaves in 2018, compared with 2000. This is an increase of 63m just on 2017.

In 2018, compared with 2000, heat extremes cost the world’s economies a potential 45 billion hours of additional work: in the hottest month, outdoor agricultural workers and construction teams lost as much as 20% of potential daylight working hours.

But, the Lancet Countdown experts say, if the world did fulfil its Paris Agreement promise, then any child born today would grow up on a planet that had reached net zero carbon emissions by their 31st birthday: there would be a healthier future for coming generations.

“The climate crisis is one of the greatest threats to the health of humanity today, but the world has yet to see a response from governments that matches the unprecedented scale of the challenge facing the next generation,” said Richard Horton, editor-in-chief of the Lancet.

“With the full force of the Paris Agreement due to be implemented, we can’t afford this level of disengagement. The clinical, global health and research community needs to come together now and challenge our leaders.” – Climate News Network

Global climate treaty is not working

Three out of four nations have yet to start to honour the global climate treaty. The world waits, the seas go on rising – and greenhouse gases too.

LONDON, 13 November, 2019 – Three nations in every four that vowed in the global climate treaty, the Paris Agreement, to contain global heating to “well below” 2°C by the century’s end have failed to deliver pledges that will reduce emissions by even 40% by 2030.

In Paris in 2015, a total of 195 nations agreed that action was vital. Since then only 36 countries have taken steps to meet the targets they agreed, according to a new study by the Universal Ecological Fund. And one nation has announced that it will withdraw altogether from the agreement.

“The comprehensive examination found that with few exceptions, the pledges of the rich, middle income and poor countries are insufficient to address climate change,” said Sir Robert Watson, once chair of the Intergovernmental Panel on Climate Change, which was present at the Paris meeting, and co-author of the study. “Simply, the pledges are far too little, too late.

“Even if all climate pledges, which are voluntary, are fully implemented, they will cover less than half of what is needed to limit the acceleration of climate change in the next decade.”

“The more carbon we release now the more sea level rise we are locking in for the future”

What happens now will affect the planetary climate and its ocean systems for much longer than that for at least the next two centuries. Researchers report in the Proceedings of the National Academy of Sciences that they looked at the impact to come even if all nations were to honour all the pledges made in Paris.

They agree that the global emissions of greenhouse gases since Paris and by 2030 would alone be enough to raise global sea levels by 20 cms: half of that from China, the US, the EU, India and Russia, the top five emitters. But they add a much more ominous long-term warning

“Our results show that what we do today will have a huge effect in 2300. 20 cms is very significant; it is basically as much sea-level rise as we’ve observed over the entire 20th century. To cause that with only 15 years of emissions is quite staggering”, said Alexander Nauels, of Climate Analytics, who led the study.

“The true consequences of our emissions on sea level rise unfold over centuries, due to the slow pace at which the ocean, polar ice sheets and glaciers respond to global warming. The more carbon we release now the more sea level rise we are locking in for the future.”

And as if to add force to the need for drastic action, a new US and German study has warned that even if nations honour their pledges by 2030, sea levels around the world will go on rising, and stay at higher levels for thousands of years.

Leaking permafrost

As the polar ice retreats, and rising tides batter the shores of the Arctic Ocean, vast volumes of carbon dioxide so far imprisoned  in the permafrost of the polar coasts – 34% of all the world’s coastlines  – could escape to accelerate further warming and of course yet greater sea level rise.

Climate scientists have been wrestling for decades with what they call the carbon budget – the accounting of all the ways in which carbon dioxide gets into the atmosphere and out of it again – and missed another potentially dangerous source of the greenhouse gas.

As glaciers retreat and the frozen coasts and soils thaw, this could begin to seep into the atmosphere. Laboratory experiments suggest it will seep even faster as sea levels rise and waves grow more powerful. For every gram, dry weight, of eroded permafrost, more than 4 grams of carbon dioxide would escape into the atmosphere.

“Carbon budgets and climate simulations have so far missed coastal erosion in their equations even though it might be a substantial source of carbon dioxide,” says George Tanski of Vrije Universiteit Amsterdam, the lead author.

“Our research found that the erosion of permafrost coastlines can lead to the rapid release of significant quantities of CO2, which can be expected to increase as coastal erosion accelerates, temperatures increase, sea ice diminishes and stronger storms batter Arctic coasts.”

Early warning

That the Paris Agreement was backed up by pledges that might fail to contain global warning to an ideal target of 1.5°C was clear from the start, and scientists who looked at the promises made at the time warned that unless they were increased, they committed the world to a warming of at least 3°C above the long term average for most of human history.

The latest study from the Universal Ecological Fund now finds that not only are the pledges not enough; some are not being honoured. China and India pledged to reduce the intensity of their emissions relative to gross domestic product, but since their economies continue to grow, so will their emissions.

China already contributes more than 26% of all global emissions, India 7%. The US, which contributes 13% of all greenhouse emissions, is to quit the Paris Agreement in 2020, and has in any case reversed much of its climate legislation. Russia, which contributes 4.6% of all atmospheric carbon dioxide, has submitted no pledges.

Europe’s 28 nations, and seven others, have promised to reduce emissions by 40% by 2040. Of the remaining 152 nations, responsible for more than 36% of all emissions, 127 have submitted conditional plans, but rely upon technical assistance and funding from the wealthy nations to execute these. But the US and Australia have stopped making contributions to such funding.

Almost 70% of emissions are from fossil fuels: successful action would require the closure of 2,400 coal-fired power stations. In fact, 250 new coal-fired power stations are now under construction. The message is that governments are doing too little, too slowly, leaving horrendous future consequences. – Climate News Network

Three out of four nations have yet to start to honour the global climate treaty. The world waits, the seas go on rising – and greenhouse gases too.

LONDON, 13 November, 2019 – Three nations in every four that vowed in the global climate treaty, the Paris Agreement, to contain global heating to “well below” 2°C by the century’s end have failed to deliver pledges that will reduce emissions by even 40% by 2030.

In Paris in 2015, a total of 195 nations agreed that action was vital. Since then only 36 countries have taken steps to meet the targets they agreed, according to a new study by the Universal Ecological Fund. And one nation has announced that it will withdraw altogether from the agreement.

“The comprehensive examination found that with few exceptions, the pledges of the rich, middle income and poor countries are insufficient to address climate change,” said Sir Robert Watson, once chair of the Intergovernmental Panel on Climate Change, which was present at the Paris meeting, and co-author of the study. “Simply, the pledges are far too little, too late.

“Even if all climate pledges, which are voluntary, are fully implemented, they will cover less than half of what is needed to limit the acceleration of climate change in the next decade.”

“The more carbon we release now the more sea level rise we are locking in for the future”

What happens now will affect the planetary climate and its ocean systems for much longer than that for at least the next two centuries. Researchers report in the Proceedings of the National Academy of Sciences that they looked at the impact to come even if all nations were to honour all the pledges made in Paris.

They agree that the global emissions of greenhouse gases since Paris and by 2030 would alone be enough to raise global sea levels by 20 cms: half of that from China, the US, the EU, India and Russia, the top five emitters. But they add a much more ominous long-term warning

“Our results show that what we do today will have a huge effect in 2300. 20 cms is very significant; it is basically as much sea-level rise as we’ve observed over the entire 20th century. To cause that with only 15 years of emissions is quite staggering”, said Alexander Nauels, of Climate Analytics, who led the study.

“The true consequences of our emissions on sea level rise unfold over centuries, due to the slow pace at which the ocean, polar ice sheets and glaciers respond to global warming. The more carbon we release now the more sea level rise we are locking in for the future.”

And as if to add force to the need for drastic action, a new US and German study has warned that even if nations honour their pledges by 2030, sea levels around the world will go on rising, and stay at higher levels for thousands of years.

Leaking permafrost

As the polar ice retreats, and rising tides batter the shores of the Arctic Ocean, vast volumes of carbon dioxide so far imprisoned  in the permafrost of the polar coasts – 34% of all the world’s coastlines  – could escape to accelerate further warming and of course yet greater sea level rise.

Climate scientists have been wrestling for decades with what they call the carbon budget – the accounting of all the ways in which carbon dioxide gets into the atmosphere and out of it again – and missed another potentially dangerous source of the greenhouse gas.

As glaciers retreat and the frozen coasts and soils thaw, this could begin to seep into the atmosphere. Laboratory experiments suggest it will seep even faster as sea levels rise and waves grow more powerful. For every gram, dry weight, of eroded permafrost, more than 4 grams of carbon dioxide would escape into the atmosphere.

“Carbon budgets and climate simulations have so far missed coastal erosion in their equations even though it might be a substantial source of carbon dioxide,” says George Tanski of Vrije Universiteit Amsterdam, the lead author.

“Our research found that the erosion of permafrost coastlines can lead to the rapid release of significant quantities of CO2, which can be expected to increase as coastal erosion accelerates, temperatures increase, sea ice diminishes and stronger storms batter Arctic coasts.”

Early warning

That the Paris Agreement was backed up by pledges that might fail to contain global warning to an ideal target of 1.5°C was clear from the start, and scientists who looked at the promises made at the time warned that unless they were increased, they committed the world to a warming of at least 3°C above the long term average for most of human history.

The latest study from the Universal Ecological Fund now finds that not only are the pledges not enough; some are not being honoured. China and India pledged to reduce the intensity of their emissions relative to gross domestic product, but since their economies continue to grow, so will their emissions.

China already contributes more than 26% of all global emissions, India 7%. The US, which contributes 13% of all greenhouse emissions, is to quit the Paris Agreement in 2020, and has in any case reversed much of its climate legislation. Russia, which contributes 4.6% of all atmospheric carbon dioxide, has submitted no pledges.

Europe’s 28 nations, and seven others, have promised to reduce emissions by 40% by 2040. Of the remaining 152 nations, responsible for more than 36% of all emissions, 127 have submitted conditional plans, but rely upon technical assistance and funding from the wealthy nations to execute these. But the US and Australia have stopped making contributions to such funding.

Almost 70% of emissions are from fossil fuels: successful action would require the closure of 2,400 coal-fired power stations. In fact, 250 new coal-fired power stations are now under construction. The message is that governments are doing too little, too slowly, leaving horrendous future consequences. – Climate News Network

‘Untold suffering’ lies ahead in hotter world

Global heating could bring “untold suffering” for humans. It could also mean less fresh water and less rice, though tasting more of arsenic.

LONDON, 11 November, 2019 – In an unprecedented step, more than 11,000 scientists from 153 nations have united to warn the world that, without deep and lasting change, the climate emergency promises  humankind unavoidable “untold suffering”.

And as if to underline that message, a US research group has predicted that – on the basis of experiments so far – global heating could reduce rice yields by 40% by the end of the century, and at the same time intensify levels of arsenic in the cereal that provides the staple food for almost half the planet.

And in the same few days a second US group has forecast that changes to the world’s vegetation in an atmosphere increasingly rich in carbon dioxide could mean that – even though rainfall might increase – there could be less fresh water on tap for many of the peoples of Europe, Asia and North America.

Warnings of climate hazard that could threaten political stability and precipitate mass starvation are not new: individuals, research groups, academies and intergovernmental agencies have been making the same point, and with increasing urgency, for more than two decades.

New analysis

The only argument has been about in what form, how badly, and just when the emergency will take its greatest toll.

But the 11,000 signatories to the statement in the journal BioScience report that their conclusions are based on the new analysis of 40 years of data covering energy use, surface temperature, population growth, land clearance, deforestation, polar ice melt, fertility rates, gross domestic product and carbon emissions.

The scientists list six steps that the world’s nations could take to avert the coming catastrophe: abandon fossil fuel use, reduce atmospheric pollution, restore natural ecosystems, shift from animal-based to plant diets, contain economic growth and the pursuit of affluence, and stabilise the human population.

Their warning appeared on the 40th anniversary of the first world climate congress, in Geneva in 1979.

Surprising rice impact

“Despite 40 years of major global negotiations, we have continued to conduct business as usual and have failed to address this crisis,” said William Ripple of Oregon State University, one of the leaders of the coalition. “Climate change has arrived and is accelerating faster than many scientists expected.”

Both the warning of catastrophic climate change and the steps to avoid it are familiar. But researchers at Stanford University in the US say they really did not expect the impact of world temperature rise on the rice crop – the staple for two billion people now, and perhaps 5 bn by 2100 – to be so severe.

Other groups have already warned that changes in seasonal temperature and rainfall could reduce both the yields of wheat, fruit and vegetables, and the nutritional values of rice and other staples.

The Stanford group report in the journal Nature Communications that they looked more closely at what climate change could do to rice crops. Most soils contain some arsenic. Rice is grown in flooded paddy fields that tend to loosen the poison from the soil particles. But higher temperatures combined with more intense rainfall show that, in experiments, rice plants absorb more arsenic, which in turn inhibits nutrient absorption and reduces plant development. Not only did the grains contain twice the level of arsenic, the yield fell by two-fifths.

“We have continued to conduct business as usual and have failed to address this crisis. Climate change has arrived and is accelerating faster than many scientists expected”

“By the time we get to 2100, we’re estimated to have approximately 10bn people, so that would mean we have 5 billion people dependent on rice, and 2bn who would not have access to the calories they would normally need,” said Scott Fendorf, an earth system scientist at Stanford.

“I didn’t expect the magnitude of impact on rice yield we observed. What I missed was how much the soil biogeochemistry would respond to increased temperature, how that would amplify plant-available arsenic and then – coupled with temperature stress – how that would really impact the plant.”

And while the rice croplands expect heavier rains, great tracts of the northern hemisphere could see vegetation changes that could have paradoxical consequences. In a wetter, warmer world plants could grow more vigorously. The stomata on the leaves through which plants breathe are more likely to close in a world of higher levels of atmospheric carbon dioxide, meaning less water loss through foliage.

And while this should mean more run-off and a moister tropical world, a team at Dartmouth College in the US report in the journal Nature Geoscience that in the mid-latitudes plant response to climate change could actually make the land drier instead of wetter.

Water consumption rises

“Approximately 60% of the global water flux from the land to the atmosphere goes through plants, called transpiration. Plants are like the atmosphere’s straw, dominating how water flows from the land to the atmosphere. So vegetation is a massive determinant of what water is left on land for people,” said Justin Mankin, a geographer at Dartmouth.

“The question we’re asking here is, how do the combined effects of carbon dioxide and warming change the size of that straw?”

The calculations are complex. First, as temperatures soar, so will evaporation: more humidity means more rain – in some places. As atmospheric carbon dioxide levels soar, driven by fossil fuel combustion, plants need less water to photosynthesise, so the land gets more water. As the planet warms, growing seasons become extended and warmer, so plants grow for a longer period and consume more water, and will grow more vigorously because of the fertility effect of higher carbon dioxide concentrations.

The calculations suggest that forests, grasslands and other ecosystems will consume more water for longer periods, thus drying the soil and reducing ground water, and the run-off to the rivers, in parts of Europe, Asia and the US.

Avoiding the worst

And that in turn would mean lower levels of water available for human consumption, agriculture, hydropower and industry.

Both studies are indicators of possible hazard, to be confirmed or challenged by other scientific groups. But both exemplify the complexity of the challenge presented by temperature rises of at least the 2°C set by 195 nations in Paris in 2015 as the limit by the century’s end; or the 3°C that seems increasingly likely as those same nations fail to take the drastic action prescribed.

The world has already warmed by almost 1°C above the long-term average for most of human history. So both papers shore up the reasoning of the 11,000 signatories to the latest warning of planetary disaster. But that same warning contains some steps humankind could take to avert the worst.

“While things are bad, all is not hopeless,” said Thomas Newsome, of the University of Sydney, Australia, and one of the signatories. “We can take steps to address the climate emergency.” – Climate News Network

Global heating could bring “untold suffering” for humans. It could also mean less fresh water and less rice, though tasting more of arsenic.

LONDON, 11 November, 2019 – In an unprecedented step, more than 11,000 scientists from 153 nations have united to warn the world that, without deep and lasting change, the climate emergency promises  humankind unavoidable “untold suffering”.

And as if to underline that message, a US research group has predicted that – on the basis of experiments so far – global heating could reduce rice yields by 40% by the end of the century, and at the same time intensify levels of arsenic in the cereal that provides the staple food for almost half the planet.

And in the same few days a second US group has forecast that changes to the world’s vegetation in an atmosphere increasingly rich in carbon dioxide could mean that – even though rainfall might increase – there could be less fresh water on tap for many of the peoples of Europe, Asia and North America.

Warnings of climate hazard that could threaten political stability and precipitate mass starvation are not new: individuals, research groups, academies and intergovernmental agencies have been making the same point, and with increasing urgency, for more than two decades.

New analysis

The only argument has been about in what form, how badly, and just when the emergency will take its greatest toll.

But the 11,000 signatories to the statement in the journal BioScience report that their conclusions are based on the new analysis of 40 years of data covering energy use, surface temperature, population growth, land clearance, deforestation, polar ice melt, fertility rates, gross domestic product and carbon emissions.

The scientists list six steps that the world’s nations could take to avert the coming catastrophe: abandon fossil fuel use, reduce atmospheric pollution, restore natural ecosystems, shift from animal-based to plant diets, contain economic growth and the pursuit of affluence, and stabilise the human population.

Their warning appeared on the 40th anniversary of the first world climate congress, in Geneva in 1979.

Surprising rice impact

“Despite 40 years of major global negotiations, we have continued to conduct business as usual and have failed to address this crisis,” said William Ripple of Oregon State University, one of the leaders of the coalition. “Climate change has arrived and is accelerating faster than many scientists expected.”

Both the warning of catastrophic climate change and the steps to avoid it are familiar. But researchers at Stanford University in the US say they really did not expect the impact of world temperature rise on the rice crop – the staple for two billion people now, and perhaps 5 bn by 2100 – to be so severe.

Other groups have already warned that changes in seasonal temperature and rainfall could reduce both the yields of wheat, fruit and vegetables, and the nutritional values of rice and other staples.

The Stanford group report in the journal Nature Communications that they looked more closely at what climate change could do to rice crops. Most soils contain some arsenic. Rice is grown in flooded paddy fields that tend to loosen the poison from the soil particles. But higher temperatures combined with more intense rainfall show that, in experiments, rice plants absorb more arsenic, which in turn inhibits nutrient absorption and reduces plant development. Not only did the grains contain twice the level of arsenic, the yield fell by two-fifths.

“We have continued to conduct business as usual and have failed to address this crisis. Climate change has arrived and is accelerating faster than many scientists expected”

“By the time we get to 2100, we’re estimated to have approximately 10bn people, so that would mean we have 5 billion people dependent on rice, and 2bn who would not have access to the calories they would normally need,” said Scott Fendorf, an earth system scientist at Stanford.

“I didn’t expect the magnitude of impact on rice yield we observed. What I missed was how much the soil biogeochemistry would respond to increased temperature, how that would amplify plant-available arsenic and then – coupled with temperature stress – how that would really impact the plant.”

And while the rice croplands expect heavier rains, great tracts of the northern hemisphere could see vegetation changes that could have paradoxical consequences. In a wetter, warmer world plants could grow more vigorously. The stomata on the leaves through which plants breathe are more likely to close in a world of higher levels of atmospheric carbon dioxide, meaning less water loss through foliage.

And while this should mean more run-off and a moister tropical world, a team at Dartmouth College in the US report in the journal Nature Geoscience that in the mid-latitudes plant response to climate change could actually make the land drier instead of wetter.

Water consumption rises

“Approximately 60% of the global water flux from the land to the atmosphere goes through plants, called transpiration. Plants are like the atmosphere’s straw, dominating how water flows from the land to the atmosphere. So vegetation is a massive determinant of what water is left on land for people,” said Justin Mankin, a geographer at Dartmouth.

“The question we’re asking here is, how do the combined effects of carbon dioxide and warming change the size of that straw?”

The calculations are complex. First, as temperatures soar, so will evaporation: more humidity means more rain – in some places. As atmospheric carbon dioxide levels soar, driven by fossil fuel combustion, plants need less water to photosynthesise, so the land gets more water. As the planet warms, growing seasons become extended and warmer, so plants grow for a longer period and consume more water, and will grow more vigorously because of the fertility effect of higher carbon dioxide concentrations.

The calculations suggest that forests, grasslands and other ecosystems will consume more water for longer periods, thus drying the soil and reducing ground water, and the run-off to the rivers, in parts of Europe, Asia and the US.

Avoiding the worst

And that in turn would mean lower levels of water available for human consumption, agriculture, hydropower and industry.

Both studies are indicators of possible hazard, to be confirmed or challenged by other scientific groups. But both exemplify the complexity of the challenge presented by temperature rises of at least the 2°C set by 195 nations in Paris in 2015 as the limit by the century’s end; or the 3°C that seems increasingly likely as those same nations fail to take the drastic action prescribed.

The world has already warmed by almost 1°C above the long-term average for most of human history. So both papers shore up the reasoning of the 11,000 signatories to the latest warning of planetary disaster. But that same warning contains some steps humankind could take to avert the worst.

“While things are bad, all is not hopeless,” said Thomas Newsome, of the University of Sydney, Australia, and one of the signatories. “We can take steps to address the climate emergency.” – Climate News Network

Rising heat drives hungry people to hospital

When the heat is on, hospital admissions rise for already undernourished and hungry people. As the mercury rises, so do the case loads.

LONDON, 6 November, 2019 – Australian and Chinese scientists have identified a new hazard in the summer heat waves – more undernourished and hungry people are driven into hospitals.

They combed the records of Brazil’s hospitals, matched them against temperature readings and found that for every 1°C increase in temperature, there was a 2.5% increase in hospital admissions for undernutrition.

Undernutrition is defined as “inadequate intake of energy and nutrients to meet an individual’s needs to maintain good health.” That is: with extremes of heat come the ravages of hunger. The researchers also found that the very young and the very old were the most vulnerable.

Undernutrition is a global public health concern, especially in the low- and middle-income nations. In 2016, around 420 million adults of 20 years and more, and 192 million children and adolescents between 5 and 19, were underweight.

Of children under 5 years of age, 150 million were stunted, and 52 million were wasted. Around 45% of deaths of children under 5 were associated with undernutrition.

“The malnourished are more often from the poorest communities: they cannot stay indoors with the air-conditioning switched on”

And now the climate emergency, which brings with it ever greater extremes of heat, could make a global problem even worse.

Quite how dangerous heat and dangerous hunger are linked is uncertain, but the researchers report in the Public Library of Science journal PLOS Medicine that they have confirmed that the link is a real one.

Yuming Guo of Monash University in Australia and colleagues gathered data from the 5,570 cities in Brazil’s unified health system from January 2000 to December 2015. However, they included data only from the 1,814 cities – with more than 78% of Brazil’s population, in five regions – that could produce 16 complete years of records.

They had already established that hospital admissions rose with the thermometer. This time they established that one in six of the hospitalisations for undernutrition – that is, 37,129 cases – could be attributed to heat exposure. This proportion had risen from 14% in 2000 to 17.5% in 2015, during which time average temperatures rose by 1.1°C.

Spreading heat extremes

The links between heat and health have been repeatedly confirmed. Heat extremes, driven by global average temperature rises, in turn powered by profligate fossil fuel use, are on the increase: by the end of the century, they will be more intense, more frequent and more prolonged. And by the end of the century, three-fourths of the world could be at potentially lethal risk from the baking days and sweltering nights.

Researchers have repeatedly established that extremes of heat can affect harvest yields, and that high growing season temperatures, driven by ever higher levels of atmospheric carbon dioxide, can reduce protein and vital nutrient levels in crops, to amplify global hunger and malnourishment. One research group even catalogued 27 ways in which heat extremes could kill.

These are long-term consequences. What the latest study does is put a measure to the short-term effect of heat upon illness linked to undernourishment. How the connection works is – the scientists concede – “not well understood.”

They suggest that high temperatures could reduce appetites, provoke more alcohol consumption, or reduce motivation to shop and cook, which would make any existing under-nutrition even worse. They also think that the sweltering heat could worsen already-impaired digestion and increase the frequencies of gastroenteritis.

Less healthy targeted

And, of course, those already undernourished are less healthy and less able to naturally regulate their own body temperatures. Finally, the malnourished are more often from the poorest communities: they cannot stay indoors with the air-conditioning switched on.

There could be many factors. But one thing is clear: heatwaves most harm those already less healthy because of undernutrition. By 2050, climate change could reduce global food supplies by more than 3% and cause around 30,000 underweight-related deaths.

But, the researchers warn, this now looks like an under-estimate, because it does not take into account the short-term and direct effects of temperature rise on future undernutrition-related morbidity and mortality.

“This direct, short-term effect will be increasingly important with global warning,” the scientists warn. – Climate News Network

When the heat is on, hospital admissions rise for already undernourished and hungry people. As the mercury rises, so do the case loads.

LONDON, 6 November, 2019 – Australian and Chinese scientists have identified a new hazard in the summer heat waves – more undernourished and hungry people are driven into hospitals.

They combed the records of Brazil’s hospitals, matched them against temperature readings and found that for every 1°C increase in temperature, there was a 2.5% increase in hospital admissions for undernutrition.

Undernutrition is defined as “inadequate intake of energy and nutrients to meet an individual’s needs to maintain good health.” That is: with extremes of heat come the ravages of hunger. The researchers also found that the very young and the very old were the most vulnerable.

Undernutrition is a global public health concern, especially in the low- and middle-income nations. In 2016, around 420 million adults of 20 years and more, and 192 million children and adolescents between 5 and 19, were underweight.

Of children under 5 years of age, 150 million were stunted, and 52 million were wasted. Around 45% of deaths of children under 5 were associated with undernutrition.

“The malnourished are more often from the poorest communities: they cannot stay indoors with the air-conditioning switched on”

And now the climate emergency, which brings with it ever greater extremes of heat, could make a global problem even worse.

Quite how dangerous heat and dangerous hunger are linked is uncertain, but the researchers report in the Public Library of Science journal PLOS Medicine that they have confirmed that the link is a real one.

Yuming Guo of Monash University in Australia and colleagues gathered data from the 5,570 cities in Brazil’s unified health system from January 2000 to December 2015. However, they included data only from the 1,814 cities – with more than 78% of Brazil’s population, in five regions – that could produce 16 complete years of records.

They had already established that hospital admissions rose with the thermometer. This time they established that one in six of the hospitalisations for undernutrition – that is, 37,129 cases – could be attributed to heat exposure. This proportion had risen from 14% in 2000 to 17.5% in 2015, during which time average temperatures rose by 1.1°C.

Spreading heat extremes

The links between heat and health have been repeatedly confirmed. Heat extremes, driven by global average temperature rises, in turn powered by profligate fossil fuel use, are on the increase: by the end of the century, they will be more intense, more frequent and more prolonged. And by the end of the century, three-fourths of the world could be at potentially lethal risk from the baking days and sweltering nights.

Researchers have repeatedly established that extremes of heat can affect harvest yields, and that high growing season temperatures, driven by ever higher levels of atmospheric carbon dioxide, can reduce protein and vital nutrient levels in crops, to amplify global hunger and malnourishment. One research group even catalogued 27 ways in which heat extremes could kill.

These are long-term consequences. What the latest study does is put a measure to the short-term effect of heat upon illness linked to undernourishment. How the connection works is – the scientists concede – “not well understood.”

They suggest that high temperatures could reduce appetites, provoke more alcohol consumption, or reduce motivation to shop and cook, which would make any existing under-nutrition even worse. They also think that the sweltering heat could worsen already-impaired digestion and increase the frequencies of gastroenteritis.

Less healthy targeted

And, of course, those already undernourished are less healthy and less able to naturally regulate their own body temperatures. Finally, the malnourished are more often from the poorest communities: they cannot stay indoors with the air-conditioning switched on.

There could be many factors. But one thing is clear: heatwaves most harm those already less healthy because of undernutrition. By 2050, climate change could reduce global food supplies by more than 3% and cause around 30,000 underweight-related deaths.

But, the researchers warn, this now looks like an under-estimate, because it does not take into account the short-term and direct effects of temperature rise on future undernutrition-related morbidity and mortality.

“This direct, short-term effect will be increasingly important with global warning,” the scientists warn. – Climate News Network

World’s species numbers stay much the same

Life is on the move. Everywhere, the mix of creatures is changing for better and worse. The world’s species remain diverse. But for how long?

LONDON, 30 October, 2019 – Biodiversity – that vital mix of the world’s species, insects, worms, birds, mammals, fish, amphibians, microbes, plants and fungi that make up an ecosystem – is being reorganised. Change is happening almost everywhere on land and much faster in the seas that cover seven-tenths of the globe.

But when an international team of researchers looked at 239 studies that catalogued 50,000 changes in the living world over the decades, they arrived at a paradoxical puzzle.

The composition of an ecosystem is being altered, and altered sometimes at speed, by rising temperatures driven by human use of fossil fuels, by human colonisation of the grasslands, forests and wetlands, and by human disturbance of coral reefs, sea meadows, mangrove swamps and other submarine habitats.

But on average, the richness of life – the sheer numbers of species – in the world’s more closely studied ecosystems has remained much the same: that is, as some creatures or growths vanish from a cloud forest or an estuarine mudbank, the space they occupied is colonised by newcomers more comfortable with change.

Mixed picture

“Our study shows that biodiversity is changing everywhere, but we are not losing biodiversity everywhere. Some places are recovering and adapting,” says Maria Dornelas of the University of St Andrews in the UK.

“When biodiversity is in the news these days, it is often because the Amazon is on fire, or there is a global mass mortality event in coral reefs,  and rightly so, because this is terrifying news.

“However there is a lot of recovery taking place silently in the background, and many places where not much is happening. Our study puts these things on the map and shows they are not contradictory.”

The finding seems to question two decades of scientific orthodoxy: that because of human action, species are being extinguished at an accelerated rate. Extinction is a part of evolution, but biologists calculate that it is now happening at least a thousand times faster than the average rate for the past 500 million years.

“A sixth mass extinction could still be happening while local scale richness shows little change”

And humans are to blame for the “sixth mass extinction” which threatens perhaps a million species and is likely to be made worse by global heating and the climate emergency. Species are vanishing from ecosystems at the local level, and globally.

The latest study, in the journal Science, suggests that the big picture is more complicated: as environments change, so does the mix of local species. Some migrate, some adapt, some invade. Overall, the richness of the local population may not change a lot.

But this finding may not be inconsistent with global alarm about species loss on a massive scale as human numbers go on rising, and levels of greenhouse gas continue to soar. Change is happening faster in the tropics, those regions with the greatest variety of life. The dangers have not evaporated.

Philip Martin, an ecologist at the University of Cambridge, who was not involved in the research, tells Climate News Network that any finding that, on average, 28% of species were being replaced each decade should be a worry.

Excluding complacency

It might be that local species with narrow ranges were being replaced by more resilient plants or animals capable of surviving a much wider range of conditions: if so, the numbers of species in any local ecosystem might remain stable but the variety of life overall could still be diminished.

“As such, a sixth mass extinction could still be happening while local scale richness shows little change,” he warns.

And the paper’s authors make a parallel point: there is no case for complacency. “If these trends are maintained, this could lead to a dramatic restructuring of biodiversity, with potentially severe consequences for ecosystem functioning,” says Shane Blowes of the Centre for Integrative Biodiversity Research at Halle-Jena-Leipzig in Germany.

And Andrew Gonzalez of McGill University in Canada says: “The Earth is going through a great geographic reorganisation of its biodiversity in response to human activities and climate change. Given what we know it is likely this will continue for decades to come.” – Climate News Network

Life is on the move. Everywhere, the mix of creatures is changing for better and worse. The world’s species remain diverse. But for how long?

LONDON, 30 October, 2019 – Biodiversity – that vital mix of the world’s species, insects, worms, birds, mammals, fish, amphibians, microbes, plants and fungi that make up an ecosystem – is being reorganised. Change is happening almost everywhere on land and much faster in the seas that cover seven-tenths of the globe.

But when an international team of researchers looked at 239 studies that catalogued 50,000 changes in the living world over the decades, they arrived at a paradoxical puzzle.

The composition of an ecosystem is being altered, and altered sometimes at speed, by rising temperatures driven by human use of fossil fuels, by human colonisation of the grasslands, forests and wetlands, and by human disturbance of coral reefs, sea meadows, mangrove swamps and other submarine habitats.

But on average, the richness of life – the sheer numbers of species – in the world’s more closely studied ecosystems has remained much the same: that is, as some creatures or growths vanish from a cloud forest or an estuarine mudbank, the space they occupied is colonised by newcomers more comfortable with change.

Mixed picture

“Our study shows that biodiversity is changing everywhere, but we are not losing biodiversity everywhere. Some places are recovering and adapting,” says Maria Dornelas of the University of St Andrews in the UK.

“When biodiversity is in the news these days, it is often because the Amazon is on fire, or there is a global mass mortality event in coral reefs,  and rightly so, because this is terrifying news.

“However there is a lot of recovery taking place silently in the background, and many places where not much is happening. Our study puts these things on the map and shows they are not contradictory.”

The finding seems to question two decades of scientific orthodoxy: that because of human action, species are being extinguished at an accelerated rate. Extinction is a part of evolution, but biologists calculate that it is now happening at least a thousand times faster than the average rate for the past 500 million years.

“A sixth mass extinction could still be happening while local scale richness shows little change”

And humans are to blame for the “sixth mass extinction” which threatens perhaps a million species and is likely to be made worse by global heating and the climate emergency. Species are vanishing from ecosystems at the local level, and globally.

The latest study, in the journal Science, suggests that the big picture is more complicated: as environments change, so does the mix of local species. Some migrate, some adapt, some invade. Overall, the richness of the local population may not change a lot.

But this finding may not be inconsistent with global alarm about species loss on a massive scale as human numbers go on rising, and levels of greenhouse gas continue to soar. Change is happening faster in the tropics, those regions with the greatest variety of life. The dangers have not evaporated.

Philip Martin, an ecologist at the University of Cambridge, who was not involved in the research, tells Climate News Network that any finding that, on average, 28% of species were being replaced each decade should be a worry.

Excluding complacency

It might be that local species with narrow ranges were being replaced by more resilient plants or animals capable of surviving a much wider range of conditions: if so, the numbers of species in any local ecosystem might remain stable but the variety of life overall could still be diminished.

“As such, a sixth mass extinction could still be happening while local scale richness shows little change,” he warns.

And the paper’s authors make a parallel point: there is no case for complacency. “If these trends are maintained, this could lead to a dramatic restructuring of biodiversity, with potentially severe consequences for ecosystem functioning,” says Shane Blowes of the Centre for Integrative Biodiversity Research at Halle-Jena-Leipzig in Germany.

And Andrew Gonzalez of McGill University in Canada says: “The Earth is going through a great geographic reorganisation of its biodiversity in response to human activities and climate change. Given what we know it is likely this will continue for decades to come.” – Climate News Network

Nuclear war could ruin Earth and leave only losers

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

Starvation may force nations to war

Unless nations act now to halt the spread of deserts, they may face wars over food shortages and starvation by mid-century, the UN says.

DELHI, 26 September, 2019 − A stark warning that the exposure of more and more people to water scarcity, hunger and outright starvation may lead to the “failure of fragile states and regional conflicts” has been given by the United Nations as it attempts to galvanise governments into halting the spread of deserts before more cropland is lost.

The climate summit in New York was presented with a plan to try to halt the annual loss of 12 million hectares (30mn acres) of productive land caused by the nations which are parties to the UN’s Convention to Combat Desertification (UNCCD), which recently ended a high-level meeting here.

The plan was the list of actions nations agreed at the meeting of more than 190 countries to attempt to reverse the spread of land degradation that the UN estimates will displace 135 million people by 2045. The battle to halt the spread of deserts is seen by the UN as an integral part of the international effort to halt climate change.

How successful the new plans will be remains to be seen, as although  the Convention, like the Climate Change Convention, has been in existence since the last century, the problems continue to get worse. However, all the countries involved now have national plans to halt land degradation and restore croplands and forests.

One of the key new promises made at the Delhi meeting, which ended on 13 September, was to grant land tenure to groups to give them an incentive to protect soils and the ability of the land to grow crops.

“Land restoration is the cheapest solution to climate change and biodiversity loss”

Delegates also agreed to improve the rights of women, promote land restoration and reduce land-related carbon emissions, both from poor soil management and the destruction of trees. New ways of financing these schemes from government and private sources were proposed.

The scale of the problem is enormous. Close to a quarter of global land is almost unusable, and by the middle of the century humans will need to produce twice as much grain as they do today to keep up with global population growth, the UNCCD says.

At the closing session Ibrahim Thiaw, executive secretary of the UNCCD, said: “Land restoration is the cheapest solution to climate change and biodiversity loss; land restoration makes business sense if we have regulations and incentives to reward investment.”

In addition, he said, preparing for the increasing number of droughts and coping with them are critical in the face of climate change. He emphasised the need to involve young people and women and to secure land rights.

However, despite the adoption of the New Delhi Declaration, in which ministers and delegates expressed support for new initiatives or coalitions aiming to improve human health and well-being and the health of ecosystems, and to advance peace and security, there were dissenting voices at the conference.

Dilution and omissions

The Centre for Science and Environment (CSE) said in a statement: “The New Delhi Declaration has diluted the role of international funding bodies in combating desertification. It has also sidestepped the contentious issue of tenure rights to land.”

The CSE said the statement had removed any mention of the Green Climate Fund, the Global Environment Facility and the Adaptation Fund  from the Declaration and there were no mentions of specific measures that could be used for adaptation nor, in fact, the word “adaptation” itself. Countries were left to develop their own plans.

Local politics also plays an important part in creating the problem. For example, across South Asia severe drought areas are used for water-guzzling crops such as sugarcane, or for very large monoculture plantations for palm oil or rubber.

Some speakers felt it was going to be an uphill struggle for poorer countries to get funding for restoring degraded land.

Early warning systems, climate-resilient infrastructure, improved dry land agriculture, mangrove protection and investments in making water resources more resilient were all vital. Adapting to land degradation and climate change was in everyone’s strong economic self-interest, Thiaw said. − Climate News Network

Unless nations act now to halt the spread of deserts, they may face wars over food shortages and starvation by mid-century, the UN says.

DELHI, 26 September, 2019 − A stark warning that the exposure of more and more people to water scarcity, hunger and outright starvation may lead to the “failure of fragile states and regional conflicts” has been given by the United Nations as it attempts to galvanise governments into halting the spread of deserts before more cropland is lost.

The climate summit in New York was presented with a plan to try to halt the annual loss of 12 million hectares (30mn acres) of productive land caused by the nations which are parties to the UN’s Convention to Combat Desertification (UNCCD), which recently ended a high-level meeting here.

The plan was the list of actions nations agreed at the meeting of more than 190 countries to attempt to reverse the spread of land degradation that the UN estimates will displace 135 million people by 2045. The battle to halt the spread of deserts is seen by the UN as an integral part of the international effort to halt climate change.

How successful the new plans will be remains to be seen, as although  the Convention, like the Climate Change Convention, has been in existence since the last century, the problems continue to get worse. However, all the countries involved now have national plans to halt land degradation and restore croplands and forests.

One of the key new promises made at the Delhi meeting, which ended on 13 September, was to grant land tenure to groups to give them an incentive to protect soils and the ability of the land to grow crops.

“Land restoration is the cheapest solution to climate change and biodiversity loss”

Delegates also agreed to improve the rights of women, promote land restoration and reduce land-related carbon emissions, both from poor soil management and the destruction of trees. New ways of financing these schemes from government and private sources were proposed.

The scale of the problem is enormous. Close to a quarter of global land is almost unusable, and by the middle of the century humans will need to produce twice as much grain as they do today to keep up with global population growth, the UNCCD says.

At the closing session Ibrahim Thiaw, executive secretary of the UNCCD, said: “Land restoration is the cheapest solution to climate change and biodiversity loss; land restoration makes business sense if we have regulations and incentives to reward investment.”

In addition, he said, preparing for the increasing number of droughts and coping with them are critical in the face of climate change. He emphasised the need to involve young people and women and to secure land rights.

However, despite the adoption of the New Delhi Declaration, in which ministers and delegates expressed support for new initiatives or coalitions aiming to improve human health and well-being and the health of ecosystems, and to advance peace and security, there were dissenting voices at the conference.

Dilution and omissions

The Centre for Science and Environment (CSE) said in a statement: “The New Delhi Declaration has diluted the role of international funding bodies in combating desertification. It has also sidestepped the contentious issue of tenure rights to land.”

The CSE said the statement had removed any mention of the Green Climate Fund, the Global Environment Facility and the Adaptation Fund  from the Declaration and there were no mentions of specific measures that could be used for adaptation nor, in fact, the word “adaptation” itself. Countries were left to develop their own plans.

Local politics also plays an important part in creating the problem. For example, across South Asia severe drought areas are used for water-guzzling crops such as sugarcane, or for very large monoculture plantations for palm oil or rubber.

Some speakers felt it was going to be an uphill struggle for poorer countries to get funding for restoring degraded land.

Early warning systems, climate-resilient infrastructure, improved dry land agriculture, mangrove protection and investments in making water resources more resilient were all vital. Adapting to land degradation and climate change was in everyone’s strong economic self-interest, Thiaw said. − Climate News Network