Tag Archives: Greenhouse Gases

Covid-19’s viral lessons for climate heating

In the midst of the coronavirus epidemic, Covid-19’s viral lessons offer a warning of what may lie ahead.

LONDON, 2 April, 2020 − There are some glimmers of hope discernible in the loss, confusion and misery that’s spreading worldwide, and one is that Covid-19’s viral lessons could help to equip us all to tackle the climate crisis that’s remorselessly building up.

A major side effect of the battle against the spread of the corona virus, for example, has been a significant reduction in the amount of climate-changing greenhouse gas being pumped into the atmosphere.

Power plants and factories in China and elsewhere have been shut down: the use of fossil fuels, particularly oil, has plummeted.

As a result of this reduced pollution, millions of people in cities and regions across the world are breathing fresher, cleaner air.

The epidemic has had other environmental consequences: residents of Venice in northern Italy say they have never seen such clear water in the city’s canals, mainly due to the dramatic drop in tourist numbers.

With several countries in lockdown, car and truck traffic no longer clogs up the roads and motorways.

“Covid 19 is a test of how the world copes with crisis. Climate change will present a much greater challenge”

Starved of passengers, many airlines have grounded planes. One of the big problems facing oil companies now is what to do with vast amounts of unsold jet fuel: some are resorting to storing it in tankers at sea.

Of course, whenever the virus is finally banished, industrial production could be ramped up again and fossil fuel emissions return to former levels.

But maybe, just maybe, some lessons are being learned as a result of the epidemic. One is obvious – that we are all in this together.

Covid-19, like climate change, knows no boundaries, respects no borders. It has become clear that nations cannot retreat to their bunkers and fight the virus alone. As with the battle against climate change, international action and cooperation are vital.

Another lesson is that science – painstaking analysis and the collection of data, both locally and at an international level – is essential if Covid-19 and other associated epidemics that might arise in the future are to be defeated.

Warnings ignored

Epidemiologists have constantly warned of the likelihood of the worldwide spread of a virus, saying it is not a case of if, but when. For the most part, they have been ignored.

In the same way, climate scientists have been warning for decades of the catastrophe threatened by global heating. Covid-19 shows how vital it is to listen to the science. Perhaps the epidemic will prompt a more urgent approach to climate change.

Covid-19 also reinforces the difficult-to-get-hold-of concept that nothing is normal any more. Suddenly the world has been turned into a very uncertain place. Behaviour which many of us have taken for granted, such as international travel, is, for now at least, no longer acceptable, or good for our health.

Scientists say climate change will mean even greater and more sustained adjustments to our lives. Rising seas will result in the displacement of millions of coastal dwellers. Floods and droughts will cause agricultural havoc and severe food shortages. People will have to adjust to a new – and constantly changing – reality.

Leadership and a clarity of policy – again, both at a national and international level – have been shown to be essential in fighting the coronavirus. After initial failings, China and South Korea moved to impose a strict and comprehensive regime to control the epidemic.

Specialists in those and several other countries have shared their experience and data with other nations.

‘Fantasy’ virus

Unfortunately, others − in particular Donald Trump in the US and Jair Bolsonaro in Brazil − have not acted in the same way, or shown a willingness to take strong, decisive action.

In the US, President Trump has in the past dismissed global warming as a hoax and withdrawn the US from the Paris Agreement on climate change. At the start of the Covid-19 outbreak, the virus was dismissed by the White House in similar terms.

Though Trump has since adjusted his message, valuable time has been lost. As the infection rate and death toll rise, the World Health Organisation is warning that the US is now in danger of becoming the world epicentre of Covid-19.

In Brazil, Bolsonaro – he refuses to believe in climate change − describes Covid-19 as a fantasy, suggesting it’s all a plot by China to weaken the country’s economy. Opposition to Bolsonaro’s lack of action on the pandemic is growing.

Covid 19 is a test of how the world – and its leaders – copes with crisis. Climate change, rapidly galloping down the tracks, will present a much greater challenge. − Climate News Network

In the midst of the coronavirus epidemic, Covid-19’s viral lessons offer a warning of what may lie ahead.

LONDON, 2 April, 2020 − There are some glimmers of hope discernible in the loss, confusion and misery that’s spreading worldwide, and one is that Covid-19’s viral lessons could help to equip us all to tackle the climate crisis that’s remorselessly building up.

A major side effect of the battle against the spread of the corona virus, for example, has been a significant reduction in the amount of climate-changing greenhouse gas being pumped into the atmosphere.

Power plants and factories in China and elsewhere have been shut down: the use of fossil fuels, particularly oil, has plummeted.

As a result of this reduced pollution, millions of people in cities and regions across the world are breathing fresher, cleaner air.

The epidemic has had other environmental consequences: residents of Venice in northern Italy say they have never seen such clear water in the city’s canals, mainly due to the dramatic drop in tourist numbers.

With several countries in lockdown, car and truck traffic no longer clogs up the roads and motorways.

“Covid 19 is a test of how the world copes with crisis. Climate change will present a much greater challenge”

Starved of passengers, many airlines have grounded planes. One of the big problems facing oil companies now is what to do with vast amounts of unsold jet fuel: some are resorting to storing it in tankers at sea.

Of course, whenever the virus is finally banished, industrial production could be ramped up again and fossil fuel emissions return to former levels.

But maybe, just maybe, some lessons are being learned as a result of the epidemic. One is obvious – that we are all in this together.

Covid-19, like climate change, knows no boundaries, respects no borders. It has become clear that nations cannot retreat to their bunkers and fight the virus alone. As with the battle against climate change, international action and cooperation are vital.

Another lesson is that science – painstaking analysis and the collection of data, both locally and at an international level – is essential if Covid-19 and other associated epidemics that might arise in the future are to be defeated.

Warnings ignored

Epidemiologists have constantly warned of the likelihood of the worldwide spread of a virus, saying it is not a case of if, but when. For the most part, they have been ignored.

In the same way, climate scientists have been warning for decades of the catastrophe threatened by global heating. Covid-19 shows how vital it is to listen to the science. Perhaps the epidemic will prompt a more urgent approach to climate change.

Covid-19 also reinforces the difficult-to-get-hold-of concept that nothing is normal any more. Suddenly the world has been turned into a very uncertain place. Behaviour which many of us have taken for granted, such as international travel, is, for now at least, no longer acceptable, or good for our health.

Scientists say climate change will mean even greater and more sustained adjustments to our lives. Rising seas will result in the displacement of millions of coastal dwellers. Floods and droughts will cause agricultural havoc and severe food shortages. People will have to adjust to a new – and constantly changing – reality.

Leadership and a clarity of policy – again, both at a national and international level – have been shown to be essential in fighting the coronavirus. After initial failings, China and South Korea moved to impose a strict and comprehensive regime to control the epidemic.

Specialists in those and several other countries have shared their experience and data with other nations.

‘Fantasy’ virus

Unfortunately, others − in particular Donald Trump in the US and Jair Bolsonaro in Brazil − have not acted in the same way, or shown a willingness to take strong, decisive action.

In the US, President Trump has in the past dismissed global warming as a hoax and withdrawn the US from the Paris Agreement on climate change. At the start of the Covid-19 outbreak, the virus was dismissed by the White House in similar terms.

Though Trump has since adjusted his message, valuable time has been lost. As the infection rate and death toll rise, the World Health Organisation is warning that the US is now in danger of becoming the world epicentre of Covid-19.

In Brazil, Bolsonaro – he refuses to believe in climate change − describes Covid-19 as a fantasy, suggesting it’s all a plot by China to weaken the country’s economy. Opposition to Bolsonaro’s lack of action on the pandemic is growing.

Covid 19 is a test of how the world – and its leaders – copes with crisis. Climate change, rapidly galloping down the tracks, will present a much greater challenge. − Climate News Network

Coal exit will benefit health, wealth and nature

Human economies still depend on hydrocarbon fuels. But there are ways to achieve a coal exit, cut emissions and protect health.

LONDON, 30 March, 2020 − A fast coal exit and a switch away from all fossil fuels will offer multiple global benefits. In almost all circumstances, electric cars will be more climate-friendly than petrol-driven machines, even when that electricity is generated by coal combustion.

And nations that so far rely on coal will save substantially on health costs and environmental damage if they close the pits and convert to renewable energy.

The making and use of concrete – a big source of greenhouse gas emissions into the atmosphere – remains an obdurate source of global warming. But even so there are ways to cut the climate and health damage costs of cement and mortar by more than 40%.

Each of these three studies is a reminder that there is for the moment no way to stop all carbon emissions in human economies. But each also confirms that a switch away from fossil fuels continues to make economic sense.

Clear reduction

Almost one fourth of all the fossil fuel combustion emissions that threaten a climate crisis come from passenger road transport and household heating. It takes energy to manufacture an electric car, or a heat pump, and it takes energy to generate the electricity to make them function.

Dutch and British researchers report in the journal Nature Sustainability that they considered the challenge in 59 regions of the globe and found that in 53 of their studies the switch to electric meant a clear reduction in climate-damaging emissions.

By 2050, half of all cars on the road could be electric. This would cut global emissions by up to 1.5 billion tonnes of carbon dioxide a year. This is about what Russia puts into the atmosphere now.

The switch from homes heated by gas, coal or oil to electric pumps could save 800 million tonnes. This is about the same as Germany’s current greenhouse gas emissions.

Mythical increase

Lifetime emissions from electric cars in Sweden and France − which already get most of their electricity from renewables or nuclear power − would be up to 70% lower than from petrol-driven cars, and 30% lower in the UK.

“The answer is clear: to reduce carbon emissions, we should choose electric cars and household heat pumps over fossil-fuel alternatives,” said Florian Knobloch, of Radboud University in the Netherlands and Cambridge in the UK.

“In other words, the idea that electric vehicles or electric heat pumps could increase emissions is a myth. We’ve seen a lot of discussion of this recently, with lots of disinformation going around. Here is a definitive study that can dispel those myths.”

The 53 regions in the study represent 95% of world transport and heating demand. The scientists took into account energy use from the production chain at the beginning of a car’s or a heating system’s life, and the waste processing at the end, to find that the only exceptions were in places like Poland, which is still heavily dependent on coal.

“We decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far”

In 2015, the world’s nations agreed at an historic Paris meeting to attempt to limit average planetary warming to “well below” 2°C by the century’s end. Right now, by 2100 global temperatures could rise by a catastrophic 3°C.

A new study in Nature Climate Change confirms that to get to the 2°C target it doesn’t just make climate sense to shut the mines and close down the coal-burning power stations: it would save money as well, just in terms of reducing the health hazards associated with pollution and the damage to ecosystems and the loss of wildlife.

“We’re well into the 21st century now and still rely heavily on burning coal, making it one of the biggest threats to our climate, our health and our environment.

“That’s why we decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far,” said Sebastian Rauner of the Potsdam Institute for Climate Impact Research, who led the study.

Concrete burden

And his colleague Gunnar Luderer added: “Benefits from reduced health and ecosystem impacts clearly overcompensate the direct economic costs of a coal exit – they amount to a net saving of about 1.5% of global economic output by 2050. That is, $370 (£300) for every human on Earth in 2050.”

Around 8% of all greenhouse gases come from the concrete industry: it too is a source of air pollution and environmental destruction. Cement has to be baked from stone, and aggregate has to be gathered, hauled and brought to building sites, and the two have to be mixed.

US researchers report in Nature Climate Change that they quantified the costs in terms of climate, death and illness from the industry and arrived at damages of about $335bn a year.

They looked at ways of cleaner combustion in kiln fuel, the more efficient use of mineral additions that might replace cement, and the applications of clean energy: all of them available now.

Neglect of health

Methods to capture and store carbon emissions from the process are not yet ready: these could reduce climate damage costs by 50% to 65%.

If manufacturers used a fuel that burned more efficiently, they could reduce health damages by 14%. A mix of already available methods could, together, reduce climate and health damage by 44%.

“There is a high emissions burden associated with the production of concrete because there is so much demand for it,” said Sabbie Miller of the University of California Davis, who led the study.

“We clearly care a great deal about greenhouse gas emissions. But we haven’t paid as much attention to health burdens, which are also driven in large part by this demand.” − Climate News Network

Human economies still depend on hydrocarbon fuels. But there are ways to achieve a coal exit, cut emissions and protect health.

LONDON, 30 March, 2020 − A fast coal exit and a switch away from all fossil fuels will offer multiple global benefits. In almost all circumstances, electric cars will be more climate-friendly than petrol-driven machines, even when that electricity is generated by coal combustion.

And nations that so far rely on coal will save substantially on health costs and environmental damage if they close the pits and convert to renewable energy.

The making and use of concrete – a big source of greenhouse gas emissions into the atmosphere – remains an obdurate source of global warming. But even so there are ways to cut the climate and health damage costs of cement and mortar by more than 40%.

Each of these three studies is a reminder that there is for the moment no way to stop all carbon emissions in human economies. But each also confirms that a switch away from fossil fuels continues to make economic sense.

Clear reduction

Almost one fourth of all the fossil fuel combustion emissions that threaten a climate crisis come from passenger road transport and household heating. It takes energy to manufacture an electric car, or a heat pump, and it takes energy to generate the electricity to make them function.

Dutch and British researchers report in the journal Nature Sustainability that they considered the challenge in 59 regions of the globe and found that in 53 of their studies the switch to electric meant a clear reduction in climate-damaging emissions.

By 2050, half of all cars on the road could be electric. This would cut global emissions by up to 1.5 billion tonnes of carbon dioxide a year. This is about what Russia puts into the atmosphere now.

The switch from homes heated by gas, coal or oil to electric pumps could save 800 million tonnes. This is about the same as Germany’s current greenhouse gas emissions.

Mythical increase

Lifetime emissions from electric cars in Sweden and France − which already get most of their electricity from renewables or nuclear power − would be up to 70% lower than from petrol-driven cars, and 30% lower in the UK.

“The answer is clear: to reduce carbon emissions, we should choose electric cars and household heat pumps over fossil-fuel alternatives,” said Florian Knobloch, of Radboud University in the Netherlands and Cambridge in the UK.

“In other words, the idea that electric vehicles or electric heat pumps could increase emissions is a myth. We’ve seen a lot of discussion of this recently, with lots of disinformation going around. Here is a definitive study that can dispel those myths.”

The 53 regions in the study represent 95% of world transport and heating demand. The scientists took into account energy use from the production chain at the beginning of a car’s or a heating system’s life, and the waste processing at the end, to find that the only exceptions were in places like Poland, which is still heavily dependent on coal.

“We decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far”

In 2015, the world’s nations agreed at an historic Paris meeting to attempt to limit average planetary warming to “well below” 2°C by the century’s end. Right now, by 2100 global temperatures could rise by a catastrophic 3°C.

A new study in Nature Climate Change confirms that to get to the 2°C target it doesn’t just make climate sense to shut the mines and close down the coal-burning power stations: it would save money as well, just in terms of reducing the health hazards associated with pollution and the damage to ecosystems and the loss of wildlife.

“We’re well into the 21st century now and still rely heavily on burning coal, making it one of the biggest threats to our climate, our health and our environment.

“That’s why we decided to comprehensively test the case for a global coal exit: does it add up, economically speaking? The short answer is: yes, by far,” said Sebastian Rauner of the Potsdam Institute for Climate Impact Research, who led the study.

Concrete burden

And his colleague Gunnar Luderer added: “Benefits from reduced health and ecosystem impacts clearly overcompensate the direct economic costs of a coal exit – they amount to a net saving of about 1.5% of global economic output by 2050. That is, $370 (£300) for every human on Earth in 2050.”

Around 8% of all greenhouse gases come from the concrete industry: it too is a source of air pollution and environmental destruction. Cement has to be baked from stone, and aggregate has to be gathered, hauled and brought to building sites, and the two have to be mixed.

US researchers report in Nature Climate Change that they quantified the costs in terms of climate, death and illness from the industry and arrived at damages of about $335bn a year.

They looked at ways of cleaner combustion in kiln fuel, the more efficient use of mineral additions that might replace cement, and the applications of clean energy: all of them available now.

Neglect of health

Methods to capture and store carbon emissions from the process are not yet ready: these could reduce climate damage costs by 50% to 65%.

If manufacturers used a fuel that burned more efficiently, they could reduce health damages by 14%. A mix of already available methods could, together, reduce climate and health damage by 44%.

“There is a high emissions burden associated with the production of concrete because there is so much demand for it,” said Sabbie Miller of the University of California Davis, who led the study.

“We clearly care a great deal about greenhouse gas emissions. But we haven’t paid as much attention to health burdens, which are also driven in large part by this demand.” − Climate News Network

Hunger threat as tropical fish seek cooler waters

As climate heating drives tropical fish to seek survival elsewhere, humans will be left without the protein they need.

LONDON, 2 March, 2020 − Stocks of tropical fish that have provided vital protein for local people for generations may soon disappear as the oceans warm, leaving empty seas in their wake, scientists believe. But there could be help in international protection schemes.

Already researchers have found that fish are voting with their fins by diving deeper or migrating away from equatorial seas to find cooler waters. But now they have calculated, in a study published in the journal Nature, that tropical countries stand to lose most if not all of their fish stocks, with few if any species moving in to replace them.

Although scientists have known that the composition of stocks is changing in many world fisheries, they have not until now fully appreciated the devastating effect the climate crisis will have on tropical countries.

In the North Sea, for example, when fish like cod move north to find cooler and more congenial conditions for breeding, they are replaced by fish from further south which also have a commercial value, such as Mediterranean species like red mullet. But when fish move from the tropics there are no species from nearer the equator that are acclimatised to the hotter water and able to take their place.

Now Jorge García Molinos of Hokkaido University and colleagues in Japan and the US have undertaaken a comprehensive study of 779 commercial fish species to see how they would expand or contract their range under both moderate and more severe global warming between 2015 and 2100, using 2012 as a baseline for their distribution.

“The exit of many fishery stocks from these climate change-vulnerable nations is inevitable, but carefully designed international cooperation could significantly ease the impact on those nations”

The computer model they used showed that under moderate ocean warming tropical countries would lose 15% of their fish species by the end of this century. But if higher greenhouse gas emissions continued, fuelling more severe heat, that would rise to 40%.

The worst-affected countries would be along the north-west African seaboard, while south-east Asia, the Caribbean and Central America would also experience steep declines.

Alarmed by their findings, because of the effect they would have on the nutrition of the people who relied on fish protein for their survival, the scientists examined existing fisheries agreements to see if they took into account the fact that stocks might move because of climate change.

Analysis of 127 publicly-available international agreements showed that none contained language to deal with climate change or stock movements to other waters.

Some dealt with short-term stock fluctuations but not permanent movements, and did not deal with the possible over-fishing of replacement stocks.

Global help

The scientists suggest an urgent look at the issue at the annual UN climate talks because of the loss of fish stocks and the financial damage that warming seas will do to the economies of some of the world’s poorest countries.

They go further, suggesting that poor countries could apply for compensation for damage to their fisheries during negotiations under the Warsaw International Mechanism for Loss and Damage associated with Climate Change Impacts (WIM), and also raise the possibility of help from the Green Climate Fund, set up to help the poorest countries adapt to and mitigate the effects of climate change.

Professor García Molinos, based at Hokkaido’s Arctic Research Center,  said: “The exit of many fishery stocks from these climate-change vulnerable nations is inevitable, but carefully designed international cooperation together with the strictest enforcement of ambitious reductions of greenhouse gas emissions, especially by the highest-emitter countries, could significantly ease the impact on those nations.”

While the research relies on computer models to see how fish will react to warming seas in the future, the scientific evidence available shows that they are already responding. It also shows that keeping the world temperature increase down to 1.5°C, the preferred maximum agreed at the 2015 Paris climate talks, would help fisheries globally.

And the Hokkaido research demonstrates yet again how it is the poorest nations, which have contributed least to the carbon dioxide and other greenhouse gas emissions causing climate change, that will suffer most from their effects. − Climate News Network

As climate heating drives tropical fish to seek survival elsewhere, humans will be left without the protein they need.

LONDON, 2 March, 2020 − Stocks of tropical fish that have provided vital protein for local people for generations may soon disappear as the oceans warm, leaving empty seas in their wake, scientists believe. But there could be help in international protection schemes.

Already researchers have found that fish are voting with their fins by diving deeper or migrating away from equatorial seas to find cooler waters. But now they have calculated, in a study published in the journal Nature, that tropical countries stand to lose most if not all of their fish stocks, with few if any species moving in to replace them.

Although scientists have known that the composition of stocks is changing in many world fisheries, they have not until now fully appreciated the devastating effect the climate crisis will have on tropical countries.

In the North Sea, for example, when fish like cod move north to find cooler and more congenial conditions for breeding, they are replaced by fish from further south which also have a commercial value, such as Mediterranean species like red mullet. But when fish move from the tropics there are no species from nearer the equator that are acclimatised to the hotter water and able to take their place.

Now Jorge García Molinos of Hokkaido University and colleagues in Japan and the US have undertaaken a comprehensive study of 779 commercial fish species to see how they would expand or contract their range under both moderate and more severe global warming between 2015 and 2100, using 2012 as a baseline for their distribution.

“The exit of many fishery stocks from these climate change-vulnerable nations is inevitable, but carefully designed international cooperation could significantly ease the impact on those nations”

The computer model they used showed that under moderate ocean warming tropical countries would lose 15% of their fish species by the end of this century. But if higher greenhouse gas emissions continued, fuelling more severe heat, that would rise to 40%.

The worst-affected countries would be along the north-west African seaboard, while south-east Asia, the Caribbean and Central America would also experience steep declines.

Alarmed by their findings, because of the effect they would have on the nutrition of the people who relied on fish protein for their survival, the scientists examined existing fisheries agreements to see if they took into account the fact that stocks might move because of climate change.

Analysis of 127 publicly-available international agreements showed that none contained language to deal with climate change or stock movements to other waters.

Some dealt with short-term stock fluctuations but not permanent movements, and did not deal with the possible over-fishing of replacement stocks.

Global help

The scientists suggest an urgent look at the issue at the annual UN climate talks because of the loss of fish stocks and the financial damage that warming seas will do to the economies of some of the world’s poorest countries.

They go further, suggesting that poor countries could apply for compensation for damage to their fisheries during negotiations under the Warsaw International Mechanism for Loss and Damage associated with Climate Change Impacts (WIM), and also raise the possibility of help from the Green Climate Fund, set up to help the poorest countries adapt to and mitigate the effects of climate change.

Professor García Molinos, based at Hokkaido’s Arctic Research Center,  said: “The exit of many fishery stocks from these climate-change vulnerable nations is inevitable, but carefully designed international cooperation together with the strictest enforcement of ambitious reductions of greenhouse gas emissions, especially by the highest-emitter countries, could significantly ease the impact on those nations.”

While the research relies on computer models to see how fish will react to warming seas in the future, the scientific evidence available shows that they are already responding. It also shows that keeping the world temperature increase down to 1.5°C, the preferred maximum agreed at the 2015 Paris climate talks, would help fisheries globally.

And the Hokkaido research demonstrates yet again how it is the poorest nations, which have contributed least to the carbon dioxide and other greenhouse gas emissions causing climate change, that will suffer most from their effects. − Climate News Network

Greenhouse gases have a puzzling double effect

Lustier plant growth as greenhouse gases climb should counter global heating and atmospheric carbon build-up. But it’s not quite so simple.

LONDON, 21 February, 2020 – The Arctic is getting greener as greenhouse gases abound and the global thermometer rises. The vegetation of the high latitudes is moving further north, growing taller, becoming more substantial, more abundant and budding earlier, according to new studies by 40 scientists from 36 European and US institutions.

And the whole planet is getting greener too, according to a separate study in a second journal, as more carbon dioxide in the atmosphere – the chief cause of global heating – also acts as a fertiliser to stimulate plant growth.

It is as if researchers have finally identified a genuine negative feedback effect: as the world warms because of higher levels of greenhouse gases, the plant world responds by absorbing more of the carbon in the atmosphere and modifying the overall impact.

But both studies identify problems with what might be a comforting conclusion: it isn’t clear why in some Arctic regions the green things are getting greener, while in others the vegetation cover is becoming poorer.

And worldwide, it might be that much of the global greening can be attributed to human action – the advance of industrial-scale agriculture and commercial forest plantation – in which case most of the absorbed carbon dioxide will be returned to the atmosphere sooner or later.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming”

Both studies confirm the value of a closer look at the evidence so far – and the need for further study.

In the journal Nature Climate Change, scientists report that they checked the big picture of polar greening based on four decades of data from large-scale satellite observation against more detailed evidence over smaller sample regions collected by sensors mounted on drones and on aircraft, as well as direct examination on the once-frozen ground.

The Arctic is the fastest-warming region of the planet: it is warming twice as fast as the globe as a whole. Snow melts earlier, plants leaf sooner. Shrubs that once stayed close to the slushy snow surface are now taller, and new species are colonising once hostile terrain.

This is expected to destabilise the Arctic tundra, the region of year-round permafrost that masks a vast reservoir of carbon buried in the frozen soils.

Natural response

So botanists and climate scientists in the high latitudes now have to begin some tricky calculations in their pursuit of reliable estimates of the global carbon budget. How much carbon will the new green growth absorb and store? And how much carbon buried for the last 100,000 years or so will escape into the atmosphere with the advance of the northern greenery and the thawing of the soils?

But at least, according to a paper in the journal Nature Reviews Earth and Environment, the observed greening of the Arctic is a natural response to rising average temperatures and greater carbon dioxide fertilisation as a consequence of ever-higher levels of greenhouse gas emissions and consequent climate change.

Svalbard in the high Arctic is almost 2°C warmer in summer than it was in 1986, and at least 30% greener. But the Arctic is a region with limited human settlement and low industrial investment.

A team of researchers from China, the US, France and Norway combed through 250 earlier studies, and revisited satellite data, climate models and field observations, to make sense of the evidence of a planet that has grown a lot greener: half of all the world’s vegetated lands are leafier than they once were.

And they concluded that it was possible that the growth of global greening in the last 40 years may have slowed the rate of global heating by as much as 0.25°C.

Human footprint

But the same greening can be seen as evidence of rapid human impact on the planet as a whole: much of it can be explained by more intensive use of farmland and forest plantation, especially in the world’s most populous countries, India and China.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming,” said one author, Jarle Bjerke of the Norwegian Institute for Nature Research.

And his co-author Phillipe Ciais, of France’s Laboratory of Climate and Environmental Sciences, said: “Plants are actively defending against the dangers of carbon pollution by not only sequestering carbon on land but also by wetting the atmosphere through transpiration of ground water and evaporation of precipitation intercepted by their bodies.

“Stopping deforestation and promoting sustainable, ecologically sensible afforestation could be one of the simplest and most cost-effective, though not sufficient, defences against climate change.” – Climate News Network

Lustier plant growth as greenhouse gases climb should counter global heating and atmospheric carbon build-up. But it’s not quite so simple.

LONDON, 21 February, 2020 – The Arctic is getting greener as greenhouse gases abound and the global thermometer rises. The vegetation of the high latitudes is moving further north, growing taller, becoming more substantial, more abundant and budding earlier, according to new studies by 40 scientists from 36 European and US institutions.

And the whole planet is getting greener too, according to a separate study in a second journal, as more carbon dioxide in the atmosphere – the chief cause of global heating – also acts as a fertiliser to stimulate plant growth.

It is as if researchers have finally identified a genuine negative feedback effect: as the world warms because of higher levels of greenhouse gases, the plant world responds by absorbing more of the carbon in the atmosphere and modifying the overall impact.

But both studies identify problems with what might be a comforting conclusion: it isn’t clear why in some Arctic regions the green things are getting greener, while in others the vegetation cover is becoming poorer.

And worldwide, it might be that much of the global greening can be attributed to human action – the advance of industrial-scale agriculture and commercial forest plantation – in which case most of the absorbed carbon dioxide will be returned to the atmosphere sooner or later.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming”

Both studies confirm the value of a closer look at the evidence so far – and the need for further study.

In the journal Nature Climate Change, scientists report that they checked the big picture of polar greening based on four decades of data from large-scale satellite observation against more detailed evidence over smaller sample regions collected by sensors mounted on drones and on aircraft, as well as direct examination on the once-frozen ground.

The Arctic is the fastest-warming region of the planet: it is warming twice as fast as the globe as a whole. Snow melts earlier, plants leaf sooner. Shrubs that once stayed close to the slushy snow surface are now taller, and new species are colonising once hostile terrain.

This is expected to destabilise the Arctic tundra, the region of year-round permafrost that masks a vast reservoir of carbon buried in the frozen soils.

Natural response

So botanists and climate scientists in the high latitudes now have to begin some tricky calculations in their pursuit of reliable estimates of the global carbon budget. How much carbon will the new green growth absorb and store? And how much carbon buried for the last 100,000 years or so will escape into the atmosphere with the advance of the northern greenery and the thawing of the soils?

But at least, according to a paper in the journal Nature Reviews Earth and Environment, the observed greening of the Arctic is a natural response to rising average temperatures and greater carbon dioxide fertilisation as a consequence of ever-higher levels of greenhouse gas emissions and consequent climate change.

Svalbard in the high Arctic is almost 2°C warmer in summer than it was in 1986, and at least 30% greener. But the Arctic is a region with limited human settlement and low industrial investment.

A team of researchers from China, the US, France and Norway combed through 250 earlier studies, and revisited satellite data, climate models and field observations, to make sense of the evidence of a planet that has grown a lot greener: half of all the world’s vegetated lands are leafier than they once were.

And they concluded that it was possible that the growth of global greening in the last 40 years may have slowed the rate of global heating by as much as 0.25°C.

Human footprint

But the same greening can be seen as evidence of rapid human impact on the planet as a whole: much of it can be explained by more intensive use of farmland and forest plantation, especially in the world’s most populous countries, India and China.

“It is ironic that the very same carbon emissions responsible for harmful changes to climate are also fertilising plant growth, which in turn is somewhat moderating global warming,” said one author, Jarle Bjerke of the Norwegian Institute for Nature Research.

And his co-author Phillipe Ciais, of France’s Laboratory of Climate and Environmental Sciences, said: “Plants are actively defending against the dangers of carbon pollution by not only sequestering carbon on land but also by wetting the atmosphere through transpiration of ground water and evaporation of precipitation intercepted by their bodies.

“Stopping deforestation and promoting sustainable, ecologically sensible afforestation could be one of the simplest and most cost-effective, though not sufficient, defences against climate change.” – Climate News Network

Renewable energy could power the world by 2050

Wind, water and solar sources − the renewable energy trio − could meet almost all the needs of our power-hungry society in 30 years.

LONDON, 19 February, 2020 − Virtually all the world’s demand for electricity to run transport and to heat and cool homes and offices, as well as to provide the power demanded by industry, could be met by renewable energy by mid-century.

This is the consensus of 47 peer-reviewed research papers from 13 independent groups with a total of 91 authors that have been brought together by Stanford University in California.

Some of the papers take a broad sweep across the world, adding together the potential for each technology to see if individual countries or whole regions could survive on renewables.

Special examinations of small island states, sub-Saharan Africa and individual countries like Germany look to see what are the barriers to progress and how they could be removed.

In every case the findings are that the technology exists to achieve 100% renewable power if the political will to achieve it can be mustered.

“It seems that every part of the world can now find a system that edges fossil fuels out in costs”

The collection of papers is a powerful rebuff to those who say that renewables are not reliable or cannot be expanded fast enough to take over from fossil fuels and nuclear power.

Once proper energy efficiency measures are in place, a combination of wind, solar and water power, with various forms of storage capacity, can add up to 100% of energy needs in every part of the planet.

Stanford puts one of its own papers at the top of the list. It studies the impacts of the Green New Deal proposals on grid stability, costs, jobs, health and climate in 143 countries.

With the world already approaching 1.5°C of heating, it says, seven million people killed by air pollution annually, and limited fossil fuel resources potentially sparking conflict, Stanford’s researchers wanted to compare business-as-usual with a 100% transition to wind-water-solar energy, efficiency and storage by 2050 – with at least 80% by 2030.

By grouping the countries of the world together into 24 regions co-operating on grid stability and storage solutions, supply could match demand by 2050-2052 with 100% reliance on renewables. The amount of energy used overall would be reduced by 57.1%, costs would fall by a similar amount, and 28.6 million more long-term full-time jobs would be created than under business-as-usual.

Clean air bonus

The remarkable consensus among researchers is perhaps surprising, since climate and weather conditions differ so much in different latitudes. It seems though that as the cost of renewables, particularly wind and solar, has tumbled, and energy storage solutions multiplied, every part of the world can now find a system that edges fossil fuels out in costs.

That, plus the benefit of clean air, particularly in Asian countries like India and China, makes renewables far more beneficial on any cost-benefit analysis.

The appearance of so many papers mirrors the consensus that climate scientists have managed to achieve in warning the world’s political leaders that time is running out for them to act to keep the temperature below dangerous levels.

Since in total the solutions offered cover countries producing more than 97% of the world’s greenhouse gases, they provide a blueprint for the next round of UN climate talks, to be held in Glasgow in November. At COP-26, as the conference is called, politicians will be asked to make new commitments to avoid dangerous climate change.

This Stanford file shows them that all they need is political will for them to be able to achieve climate stability. − Climate News Network

Wind, water and solar sources − the renewable energy trio − could meet almost all the needs of our power-hungry society in 30 years.

LONDON, 19 February, 2020 − Virtually all the world’s demand for electricity to run transport and to heat and cool homes and offices, as well as to provide the power demanded by industry, could be met by renewable energy by mid-century.

This is the consensus of 47 peer-reviewed research papers from 13 independent groups with a total of 91 authors that have been brought together by Stanford University in California.

Some of the papers take a broad sweep across the world, adding together the potential for each technology to see if individual countries or whole regions could survive on renewables.

Special examinations of small island states, sub-Saharan Africa and individual countries like Germany look to see what are the barriers to progress and how they could be removed.

In every case the findings are that the technology exists to achieve 100% renewable power if the political will to achieve it can be mustered.

“It seems that every part of the world can now find a system that edges fossil fuels out in costs”

The collection of papers is a powerful rebuff to those who say that renewables are not reliable or cannot be expanded fast enough to take over from fossil fuels and nuclear power.

Once proper energy efficiency measures are in place, a combination of wind, solar and water power, with various forms of storage capacity, can add up to 100% of energy needs in every part of the planet.

Stanford puts one of its own papers at the top of the list. It studies the impacts of the Green New Deal proposals on grid stability, costs, jobs, health and climate in 143 countries.

With the world already approaching 1.5°C of heating, it says, seven million people killed by air pollution annually, and limited fossil fuel resources potentially sparking conflict, Stanford’s researchers wanted to compare business-as-usual with a 100% transition to wind-water-solar energy, efficiency and storage by 2050 – with at least 80% by 2030.

By grouping the countries of the world together into 24 regions co-operating on grid stability and storage solutions, supply could match demand by 2050-2052 with 100% reliance on renewables. The amount of energy used overall would be reduced by 57.1%, costs would fall by a similar amount, and 28.6 million more long-term full-time jobs would be created than under business-as-usual.

Clean air bonus

The remarkable consensus among researchers is perhaps surprising, since climate and weather conditions differ so much in different latitudes. It seems though that as the cost of renewables, particularly wind and solar, has tumbled, and energy storage solutions multiplied, every part of the world can now find a system that edges fossil fuels out in costs.

That, plus the benefit of clean air, particularly in Asian countries like India and China, makes renewables far more beneficial on any cost-benefit analysis.

The appearance of so many papers mirrors the consensus that climate scientists have managed to achieve in warning the world’s political leaders that time is running out for them to act to keep the temperature below dangerous levels.

Since in total the solutions offered cover countries producing more than 97% of the world’s greenhouse gases, they provide a blueprint for the next round of UN climate talks, to be held in Glasgow in November. At COP-26, as the conference is called, politicians will be asked to make new commitments to avoid dangerous climate change.

This Stanford file shows them that all they need is political will for them to be able to achieve climate stability. − Climate News Network

UK airports must shut to reach 2050 climate target

All UK airports must close by 2050 for the country to reach its target of net zero climate emissions by then, scientists say.

LONDON, 18 February, 2020 − If it is to achieve its target of net zero climate emissions by 2050, all UK airports must close by mid-century and the country will have to make other drastic and fundamental lifestyle changes, says a report from a research group backed by the government in London.

With the UK due to host this year’s round of crucial UN climate talks in Glasgow in November, a group of academics has embarrassed the British government by showing it has currently no chance of meeting its own legally binding target to reduce greenhouse gas emissions to nothing within 30 years.

Their report, Absolute Zero, published by the University of Cambridge, says no amount of government or public wishful thinking will hide the fact that the country will not reach zero emissions by 2050 without barely conceivable changes to policies, industrial processes and lifestyles. Its authors include colleagues from five other British universities.

All are members of a group from UK Fires, a research programme sponsored by the UK government, aiming to support a 20% cut in the country’s true emissions by 2050 by placing resource efficiency at the heart of its future industrial strategy. The report was paid for under the UK Fires programme.

As well as a temporary halt to flying, the report also says British people cannot go on driving heavier cars and turning up the heating in their homes.

“The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping”

The government, industry and the public, it says, cannot continue to indulge themselves in these ways in the belief that new technologies will somehow save them – everyone will have to work together change their way of life.

Because electric or zero-emission aircraft cannot be developed in time, most British airports will need to close by the end of this decade, and all flying will have to stop by 2050 until non-polluting versions are available.

Electrification of surface transport, rail and road, needs to be rapid, with the phasing out of all development of petrol and diesel cars immediately. Even if all private cars are electric, the amount of traffic will have to fall to 60% of 2020 levels by 2050, and all cars will have to be smaller.

The report also suggests that ships, currently heavy users of fossil fuels, need to convert to electric propulsion in order to allow for necessary imports and exports.

Not enough time

The reasoning behind the report is that technologies to cut greenhouse gas emissions, like carbon capture and storage, will not be developed in time and on a large enough scale to make a difference to emission reductions by 2050.

Nor is it any use exporting energy-intensive industries like steel-making, because the emissions will still take place abroad.

Instead, homegrown industries need to be developed that use no fossil fuels but are powered by electricity. The report says blast furnaces need to be phased out and replaced by existing technologies that recycle steel using renewable electricity.

It calls for public debate and discussion about the lifestyle changes that will be essential. Although such luxuries as flying away on holiday and driving large cars will have to be foregone, and eating beef and lamb curtailed, the scientists say that life could be just as rich as today.

They say: “… sports, social life, eating, hobbies, games, computing, reading, TV, music, radio, volunteering (and sleeping!) We can all do more of these without any impact on emissions”.

Offsets won’t work

They want the public to help by lobbying for airport closures, more trains, no new roads and more renewable electricity.

The report insists that the government should not try to hide any of its emissions by importing goods: “The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping.”

Nor can there be any meaningful “carbon offsets.” The only short-term option we have of reducing emissions – at least by 2050 – is to plant trees. “Even a massive increase in forestry would only have a small effect compared to today’s emissions.”

The authors comment: “There are no invisible solutions to climate change. We urgently need to engage everyone in the process of delivering the changes that will lead to zero emissions.” − Climate News Network

All UK airports must close by 2050 for the country to reach its target of net zero climate emissions by then, scientists say.

LONDON, 18 February, 2020 − If it is to achieve its target of net zero climate emissions by 2050, all UK airports must close by mid-century and the country will have to make other drastic and fundamental lifestyle changes, says a report from a research group backed by the government in London.

With the UK due to host this year’s round of crucial UN climate talks in Glasgow in November, a group of academics has embarrassed the British government by showing it has currently no chance of meeting its own legally binding target to reduce greenhouse gas emissions to nothing within 30 years.

Their report, Absolute Zero, published by the University of Cambridge, says no amount of government or public wishful thinking will hide the fact that the country will not reach zero emissions by 2050 without barely conceivable changes to policies, industrial processes and lifestyles. Its authors include colleagues from five other British universities.

All are members of a group from UK Fires, a research programme sponsored by the UK government, aiming to support a 20% cut in the country’s true emissions by 2050 by placing resource efficiency at the heart of its future industrial strategy. The report was paid for under the UK Fires programme.

As well as a temporary halt to flying, the report also says British people cannot go on driving heavier cars and turning up the heating in their homes.

“The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping”

The government, industry and the public, it says, cannot continue to indulge themselves in these ways in the belief that new technologies will somehow save them – everyone will have to work together change their way of life.

Because electric or zero-emission aircraft cannot be developed in time, most British airports will need to close by the end of this decade, and all flying will have to stop by 2050 until non-polluting versions are available.

Electrification of surface transport, rail and road, needs to be rapid, with the phasing out of all development of petrol and diesel cars immediately. Even if all private cars are electric, the amount of traffic will have to fall to 60% of 2020 levels by 2050, and all cars will have to be smaller.

The report also suggests that ships, currently heavy users of fossil fuels, need to convert to electric propulsion in order to allow for necessary imports and exports.

Not enough time

The reasoning behind the report is that technologies to cut greenhouse gas emissions, like carbon capture and storage, will not be developed in time and on a large enough scale to make a difference to emission reductions by 2050.

Nor is it any use exporting energy-intensive industries like steel-making, because the emissions will still take place abroad.

Instead, homegrown industries need to be developed that use no fossil fuels but are powered by electricity. The report says blast furnaces need to be phased out and replaced by existing technologies that recycle steel using renewable electricity.

It calls for public debate and discussion about the lifestyle changes that will be essential. Although such luxuries as flying away on holiday and driving large cars will have to be foregone, and eating beef and lamb curtailed, the scientists say that life could be just as rich as today.

They say: “… sports, social life, eating, hobbies, games, computing, reading, TV, music, radio, volunteering (and sleeping!) We can all do more of these without any impact on emissions”.

Offsets won’t work

They want the public to help by lobbying for airport closures, more trains, no new roads and more renewable electricity.

The report insists that the government should not try to hide any of its emissions by importing goods: “The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping.”

Nor can there be any meaningful “carbon offsets.” The only short-term option we have of reducing emissions – at least by 2050 – is to plant trees. “Even a massive increase in forestry would only have a small effect compared to today’s emissions.”

The authors comment: “There are no invisible solutions to climate change. We urgently need to engage everyone in the process of delivering the changes that will lead to zero emissions.” − Climate News Network

Reliance on coal divides European states

Two European states with a traditional reliance on coal are taking radically different paths as the climate crisis worsens.

LONDON, 3 February, 2020 − Both countries are in the European Union, both have for years been known for their reliance on coal. But now their policies could not differ more: one is turning away from coal, the most polluting fossil fuel, while the other is enthusiastically developing it.

At one end of the spectrum is Spain: it plans to close its last operating coal mine by the end of 2021. Not so long ago the country was heavily dependent on coal for its power: last year coal generated less than 5% of Spain’s electricity.

At the other extreme is Poland. Despite EU-wide commitments to phase out the use of coal over the coming years, Poland is still opening new coal pits and coal-fired power plants.

In recent days the government in Warsaw granted POLSKA PGE, the state-owned energy company, a permit to expand a lignite mine at Turów, on Poland’s borders with Germany and the Czech Republic.

According to campaign groups, the permit was rushed through without an environmental impact assessment being completed and before an appeals process was allowed to start.

Both Germany and the Czech Republic have protested about the mine.

“There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal”

Belchatow power station in central Poland is Europe’s biggest coal-burning power station. Emitting an estimated 30 million tonnes of climate-changing greenhouse gases each year, it is also the most polluting. More than 80% of Poland’s electricity is generated from coal.

In Spain, more than 50,000 people were employed in coal mining in the mid-1990s, mainly in the northern province of Asturias. Mining communities formed an integral part of the country’s social fabric and played an important role in its history, having launched attacks against the forces of the dictator General Franco during Spain’s bitter civil war.

Over recent years the Spanish government has inaugurated a series of initiatives with mining communities, promising early retirement packages, money, and jobs in renewable power industries.

Analysts say a number of additional factors have helped Spain wean itself off coal. State subsidies to the industry have been cut.

Renewables flourish

The EU’s Emissions Trading System (ETS) has, after many years of inactivity and failed policy objectives, finally managed to set a price on carbon emissions which discourages large users of fossil fuels.

Falling prices for gas – a fossil fuel, but one with far lower emissions than coal – have helped Spain’s power turnaround. Spain has also made big investments in renewables such as wind and solar power.

But all is not rosy in Spain on the emissions front. While coal-burning emissions have fallen dramatically in recent years, greenhouse gas emissions from the transport and other sectors have risen by well above the EU average.

Poland does not have the solar advantages of sunny Spain. It also requires far more energy for heating purposes. Like Spain, Poland has a long coal-mining tradition and, despite many mine closures following the collapse of communism in the early 1990s, mining unions remain strong and exert considerable political influence.

Poland’s ruling populist Law and Justice Party has consistently backed the country’s coal lobby and the mining unions: large subsidies are still granted to the sector and legislation has recently come into force making it easier for operators to open new mines.

Independence cherished

There are wider political and security issues at play: historically, coal has been seen in Poland as vital, ensuring the country’s independence. Warsaw is acutely suspicious of any form of reliance on gas supplies from Russia for its energy needs.

But change could be on the way. There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal. Protests have been held in several towns and cities about the impact of coal-mining on air quality and water supplies.

The EU is exerting more pressure on states to cut back on fossil fuel use and meet emission reduction targets.

In the end finance – or the lack of it – could be the key to reducing coal use. Financial institutions and insurers are becoming increasingly wary about investing or supporting coal projects.

Coal, within the EU and worldwide, is rapidly running out of friends. – Climate News Network

Two European states with a traditional reliance on coal are taking radically different paths as the climate crisis worsens.

LONDON, 3 February, 2020 − Both countries are in the European Union, both have for years been known for their reliance on coal. But now their policies could not differ more: one is turning away from coal, the most polluting fossil fuel, while the other is enthusiastically developing it.

At one end of the spectrum is Spain: it plans to close its last operating coal mine by the end of 2021. Not so long ago the country was heavily dependent on coal for its power: last year coal generated less than 5% of Spain’s electricity.

At the other extreme is Poland. Despite EU-wide commitments to phase out the use of coal over the coming years, Poland is still opening new coal pits and coal-fired power plants.

In recent days the government in Warsaw granted POLSKA PGE, the state-owned energy company, a permit to expand a lignite mine at Turów, on Poland’s borders with Germany and the Czech Republic.

According to campaign groups, the permit was rushed through without an environmental impact assessment being completed and before an appeals process was allowed to start.

Both Germany and the Czech Republic have protested about the mine.

“There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal”

Belchatow power station in central Poland is Europe’s biggest coal-burning power station. Emitting an estimated 30 million tonnes of climate-changing greenhouse gases each year, it is also the most polluting. More than 80% of Poland’s electricity is generated from coal.

In Spain, more than 50,000 people were employed in coal mining in the mid-1990s, mainly in the northern province of Asturias. Mining communities formed an integral part of the country’s social fabric and played an important role in its history, having launched attacks against the forces of the dictator General Franco during Spain’s bitter civil war.

Over recent years the Spanish government has inaugurated a series of initiatives with mining communities, promising early retirement packages, money, and jobs in renewable power industries.

Analysts say a number of additional factors have helped Spain wean itself off coal. State subsidies to the industry have been cut.

Renewables flourish

The EU’s Emissions Trading System (ETS) has, after many years of inactivity and failed policy objectives, finally managed to set a price on carbon emissions which discourages large users of fossil fuels.

Falling prices for gas – a fossil fuel, but one with far lower emissions than coal – have helped Spain’s power turnaround. Spain has also made big investments in renewables such as wind and solar power.

But all is not rosy in Spain on the emissions front. While coal-burning emissions have fallen dramatically in recent years, greenhouse gas emissions from the transport and other sectors have risen by well above the EU average.

Poland does not have the solar advantages of sunny Spain. It also requires far more energy for heating purposes. Like Spain, Poland has a long coal-mining tradition and, despite many mine closures following the collapse of communism in the early 1990s, mining unions remain strong and exert considerable political influence.

Poland’s ruling populist Law and Justice Party has consistently backed the country’s coal lobby and the mining unions: large subsidies are still granted to the sector and legislation has recently come into force making it easier for operators to open new mines.

Independence cherished

There are wider political and security issues at play: historically, coal has been seen in Poland as vital, ensuring the country’s independence. Warsaw is acutely suspicious of any form of reliance on gas supplies from Russia for its energy needs.

But change could be on the way. There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal. Protests have been held in several towns and cities about the impact of coal-mining on air quality and water supplies.

The EU is exerting more pressure on states to cut back on fossil fuel use and meet emission reduction targets.

In the end finance – or the lack of it – could be the key to reducing coal use. Financial institutions and insurers are becoming increasingly wary about investing or supporting coal projects.

Coal, within the EU and worldwide, is rapidly running out of friends. – Climate News Network

Paris climate goals may be beyond reach

Scientists find carbon dioxide is more potent than thought, meaning the Paris climate goals on cutting greenhouse gases may be unattainable.

LONDON, 23 January, 2020 − The fevered arguments about how the world can reach the Paris climate goals on cutting the greenhouse gases which are driving global heating may be a waste of time. An international team of scientists has learned more about the main greenhouse gas, carbon dioxide (CO2) − and it’s not good news.

Teams in six countries, using new climate models, say the warming potential of CO2 has been underestimated for years. The new models will be used in revised UN temperature projections next year. If they are accurate, the Paris targets of keeping temperature rise below 2°C − or preferably 1.5°C − will belong to a fantasy world.

Vastly more data and computing power has become available since the current Intergovernmental Panel on Climate Change (IPCC) projections were finalised in 2013. “We have better models now,” Olivier Boucher, head of the Institut Pierre Simon Laplace Climate Modelling Centre in Paris, told the French news agency AFP, and they “represent current climate trends more accurately”.

Projections from government-backed teams using the models in the US, UK, France and Canada suggest a much warmer future unless the world acts fast: CO2 concentrations which have till now been expected to produce a world only 3°C warmer than pre-industrial levels would more probably heat the Earth’s surface by four or five degrees Celsius.

“If you think the new models give a more realistic picture, then it will, of course, be harder to achieve the Paris targets, whether it is 1.5°C or two degrees Celsius,” Mark Zelinka told AFP. Dr Zelinka, from the Lawrence Livermore National Laboratory in California, is the lead author of the first peer-reviewed assessment of the new generation of models, published earlier this month in the journal Geophysical Research Letters.

“Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous”

Scientists want to establish how much the Earth’s surface will warm over time if the amount of CO2 in the atmosphere doubles. The resulting temperature increase, known as Earth’s climate sensitivity, is a key indicator of the probable future climate. The part played in it by clouds is crucial.

“How clouds evolve in a warmer climate and whether they will exert a tempering or amplifying effect has long been a major source of uncertainty,” said Imperial College London researcher Joeri Rogelj, the lead author for the Intergovernmental Panel on Climate Change (IPCC) on the global carbon budget − the amount of greenhouse gases that can be emitted without exceeding a given temperature cap. The new models reflect a better understanding of cloud dynamics that reinforce the warming impact of CO2.

For most of the last 10,000 years the concentration of CO2 in the atmosphere was a nearly constant 280 parts per million (ppm). But at the start of the 19th century and of the industrial revolution, fuelled by oil, gas and coal, the number of CO2 molecules in the air rose sharply. Today the concentration stands at 412 ppm, a 45% rise − half of it in the last three decades.

Last year alone, human activity injected more than 41 billion tonnes of CO2 into the atmosphere, about five million tonnes every hour.

Impacts already evident

With only one degree Celsius of warming above historic levels so far, the world is already having to cope with increasingly deadly heatwaves, droughts, floods and tropical cyclones made more destructive by rising seas.

By the late 1970s scientists had settled on a probable climate sensitivity of 3°C (plus-or-minus 1.5°C), corresponding to about 560 ppm of CO2 in the atmosphere. That assessment remained largely unchanged − until now.

“Right now, there is an enormously heated debate within the climate modelling community,” said Earth system scientist Johan Rockström, director of Germany’s Potsdam Institute for Climate Impact Research.

“You have 12 or 13 models showing sensitivity which is no longer 3°C, but rather 5°C or 6°C with a doubling of CO2,” he told AFP. “What is particularly worrying is that these are not the outliers.”

Serious science

Models from France, the US Department of Energy, Britain’s Met Office and Canada show climate sensitivity of 4.9°C, 5.3°C, 5.5°C and 5.6°C respectively, Dr Zelinka said. “You have to take these models seriously − they are highly developed, state-of-the-art.”

Among the 27 new models examined in his study, these were also among those that best matched climate change over the last 75 years, suggesting a further validation of their accuracy.

But other models that will feed into the IPCC’s next major Assessment Report found significantly smaller increases, though almost all were higher than earlier estimates. Scientists will test and challenge the new models rigorously.

“The jury is still out, but it is worrying,” said Rockstrom. “Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous.” − Climate News Network

Scientists find carbon dioxide is more potent than thought, meaning the Paris climate goals on cutting greenhouse gases may be unattainable.

LONDON, 23 January, 2020 − The fevered arguments about how the world can reach the Paris climate goals on cutting the greenhouse gases which are driving global heating may be a waste of time. An international team of scientists has learned more about the main greenhouse gas, carbon dioxide (CO2) − and it’s not good news.

Teams in six countries, using new climate models, say the warming potential of CO2 has been underestimated for years. The new models will be used in revised UN temperature projections next year. If they are accurate, the Paris targets of keeping temperature rise below 2°C − or preferably 1.5°C − will belong to a fantasy world.

Vastly more data and computing power has become available since the current Intergovernmental Panel on Climate Change (IPCC) projections were finalised in 2013. “We have better models now,” Olivier Boucher, head of the Institut Pierre Simon Laplace Climate Modelling Centre in Paris, told the French news agency AFP, and they “represent current climate trends more accurately”.

Projections from government-backed teams using the models in the US, UK, France and Canada suggest a much warmer future unless the world acts fast: CO2 concentrations which have till now been expected to produce a world only 3°C warmer than pre-industrial levels would more probably heat the Earth’s surface by four or five degrees Celsius.

“If you think the new models give a more realistic picture, then it will, of course, be harder to achieve the Paris targets, whether it is 1.5°C or two degrees Celsius,” Mark Zelinka told AFP. Dr Zelinka, from the Lawrence Livermore National Laboratory in California, is the lead author of the first peer-reviewed assessment of the new generation of models, published earlier this month in the journal Geophysical Research Letters.

“Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous”

Scientists want to establish how much the Earth’s surface will warm over time if the amount of CO2 in the atmosphere doubles. The resulting temperature increase, known as Earth’s climate sensitivity, is a key indicator of the probable future climate. The part played in it by clouds is crucial.

“How clouds evolve in a warmer climate and whether they will exert a tempering or amplifying effect has long been a major source of uncertainty,” said Imperial College London researcher Joeri Rogelj, the lead author for the Intergovernmental Panel on Climate Change (IPCC) on the global carbon budget − the amount of greenhouse gases that can be emitted without exceeding a given temperature cap. The new models reflect a better understanding of cloud dynamics that reinforce the warming impact of CO2.

For most of the last 10,000 years the concentration of CO2 in the atmosphere was a nearly constant 280 parts per million (ppm). But at the start of the 19th century and of the industrial revolution, fuelled by oil, gas and coal, the number of CO2 molecules in the air rose sharply. Today the concentration stands at 412 ppm, a 45% rise − half of it in the last three decades.

Last year alone, human activity injected more than 41 billion tonnes of CO2 into the atmosphere, about five million tonnes every hour.

Impacts already evident

With only one degree Celsius of warming above historic levels so far, the world is already having to cope with increasingly deadly heatwaves, droughts, floods and tropical cyclones made more destructive by rising seas.

By the late 1970s scientists had settled on a probable climate sensitivity of 3°C (plus-or-minus 1.5°C), corresponding to about 560 ppm of CO2 in the atmosphere. That assessment remained largely unchanged − until now.

“Right now, there is an enormously heated debate within the climate modelling community,” said Earth system scientist Johan Rockström, director of Germany’s Potsdam Institute for Climate Impact Research.

“You have 12 or 13 models showing sensitivity which is no longer 3°C, but rather 5°C or 6°C with a doubling of CO2,” he told AFP. “What is particularly worrying is that these are not the outliers.”

Serious science

Models from France, the US Department of Energy, Britain’s Met Office and Canada show climate sensitivity of 4.9°C, 5.3°C, 5.5°C and 5.6°C respectively, Dr Zelinka said. “You have to take these models seriously − they are highly developed, state-of-the-art.”

Among the 27 new models examined in his study, these were also among those that best matched climate change over the last 75 years, suggesting a further validation of their accuracy.

But other models that will feed into the IPCC’s next major Assessment Report found significantly smaller increases, though almost all were higher than earlier estimates. Scientists will test and challenge the new models rigorously.

“The jury is still out, but it is worrying,” said Rockstrom. “Climate sensitivity has been in the range of 1.5°C to 4.5°C for more than 30 years. If it is now moving to between 3°C and 7°C, that would be tremendously dangerous.” − Climate News Network

Germany’s green energy quest stalls

Despite its ambitious goals and promising start, Germany’s green energy quest is faltering, and it has missed a key target.

LONDON, 8 January, 2020 – The city of Munich – one of Europe’s wealthiest urban conurbations – has expansive plans to tackle the fast-growing problems associated with climate change: its policies are a good example of Germany’s green energy quest, the Energiewende.

At the end of last year Munich, Germany’s third largest city with a population of just under one and a half million, joined a rapidly expanding group of countries, cities, towns and councils around the world in declaring a climate emergency.

Munich’s council has already announced plans to source all the city’s electricity from renewable sources by 2025. It has also pledged to make the city – its transport systems and building sector as well as its energy supplies – carbon neutral by 2035.

As the UK-based Rapid Transition Alliance and other similar organisations point out, switching energy sources away from fossil fuels, while vital for the future of the planet, is a considerable challenge. And transitions which start off at a gallop may as time passes risk slowing to a trot.

Under its Energiewende or energy transition policy unveiled 20 years ago, Germany has made substantial progress in transforming its energy sector, reducing the use of climate-changing fossil fuels and boosting energy from renewable sources.

“Critics of the Energiewende say the phase-out of nuclear power has meant that coal has continued to play a dominant role in Germany’s energy sector”

According to the latest figures, renewables – wind, hydro-power, biomass and solar – now account for just over 40% of Germany’s total energy production.

Along with this transition, there’s been a 30% drop in Germany’s greenhouse gas emissions (GHGs) over the last 30 years.

But, though the Energiewende policy was initially successful, making further progress on replacing fossil fuels with renewables and cutting back on GHG emissions is now proving ever more difficult.

The initial aim was to achieve an overall 40% drop in GHG emissions by the end of 2019 as compared to 1990 levels: clearly that target has not been met.

Several factors are in play: despite early progress on cutting back on coal use, Germany – which has Europe’s largest economy – has so far failed to wean itself off its dependence on what is the dirtiest of fossil fuels.

Coal burning persists

More than 25% of Germany’s total energy production comes from coal – one of the highest rates among European countries. Most of the coal burned is lignite, the most polluting form of the fossil fuel.

In 2011, in the aftermath of the Fukushima nuclear disaster in Japan, Germany announced it would be phasing out its use of nuclear power. Since then, 11 of its 17 nuclear reactors have closed, the latest at the end of 2019.

Critics of the Energiewende say the phase-out of nuclear power has meant that coal has continued to play a dominant role in Germany’s energy sector.

The German government says it will shut its more than 100 coal-fired power stations by 2038. Some say this is far too late, while others question Germany’s increasing reliance on imported energy – particularly gas from Russia.

Other factors are hindering the Energiewende. Though many German households and small businesses are switching to solar power, a large proportion of the country’s renewable energy – about 20% – is sourced from wind power, most of it land-based.

Out of sight

In recent years there’s been growing concern about the proliferation of land-based wind turbines: more restrictions have been brought in on their construction, resulting in a drastic cut-back in wind project start-ups.

All this means that the goals of the Energiewende will be tough to achieve for Munich – and for Germany.

Munich is the capital city of the southern state of Bavaria, home to BMW and many other leading German industries.

The state has brought in some of the country’s most stringent restrictions on wind power projects: to meet its ambitious decarbonisation targets and, at the same time, ensure its energy supply, Munich is now having to invest in wind power installations abroad, some as distant as Norway.

But such enterprises carry their own set of problems. Environmental groups in Norway have raised objections to wind power turbine installations which they say threaten the beauty of the landscape. In particular they criticise the construction of such projects solely for the export of energy. – Climate News Network

* * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

Despite its ambitious goals and promising start, Germany’s green energy quest is faltering, and it has missed a key target.

LONDON, 8 January, 2020 – The city of Munich – one of Europe’s wealthiest urban conurbations – has expansive plans to tackle the fast-growing problems associated with climate change: its policies are a good example of Germany’s green energy quest, the Energiewende.

At the end of last year Munich, Germany’s third largest city with a population of just under one and a half million, joined a rapidly expanding group of countries, cities, towns and councils around the world in declaring a climate emergency.

Munich’s council has already announced plans to source all the city’s electricity from renewable sources by 2025. It has also pledged to make the city – its transport systems and building sector as well as its energy supplies – carbon neutral by 2035.

As the UK-based Rapid Transition Alliance and other similar organisations point out, switching energy sources away from fossil fuels, while vital for the future of the planet, is a considerable challenge. And transitions which start off at a gallop may as time passes risk slowing to a trot.

Under its Energiewende or energy transition policy unveiled 20 years ago, Germany has made substantial progress in transforming its energy sector, reducing the use of climate-changing fossil fuels and boosting energy from renewable sources.

“Critics of the Energiewende say the phase-out of nuclear power has meant that coal has continued to play a dominant role in Germany’s energy sector”

According to the latest figures, renewables – wind, hydro-power, biomass and solar – now account for just over 40% of Germany’s total energy production.

Along with this transition, there’s been a 30% drop in Germany’s greenhouse gas emissions (GHGs) over the last 30 years.

But, though the Energiewende policy was initially successful, making further progress on replacing fossil fuels with renewables and cutting back on GHG emissions is now proving ever more difficult.

The initial aim was to achieve an overall 40% drop in GHG emissions by the end of 2019 as compared to 1990 levels: clearly that target has not been met.

Several factors are in play: despite early progress on cutting back on coal use, Germany – which has Europe’s largest economy – has so far failed to wean itself off its dependence on what is the dirtiest of fossil fuels.

Coal burning persists

More than 25% of Germany’s total energy production comes from coal – one of the highest rates among European countries. Most of the coal burned is lignite, the most polluting form of the fossil fuel.

In 2011, in the aftermath of the Fukushima nuclear disaster in Japan, Germany announced it would be phasing out its use of nuclear power. Since then, 11 of its 17 nuclear reactors have closed, the latest at the end of 2019.

Critics of the Energiewende say the phase-out of nuclear power has meant that coal has continued to play a dominant role in Germany’s energy sector.

The German government says it will shut its more than 100 coal-fired power stations by 2038. Some say this is far too late, while others question Germany’s increasing reliance on imported energy – particularly gas from Russia.

Other factors are hindering the Energiewende. Though many German households and small businesses are switching to solar power, a large proportion of the country’s renewable energy – about 20% – is sourced from wind power, most of it land-based.

Out of sight

In recent years there’s been growing concern about the proliferation of land-based wind turbines: more restrictions have been brought in on their construction, resulting in a drastic cut-back in wind project start-ups.

All this means that the goals of the Energiewende will be tough to achieve for Munich – and for Germany.

Munich is the capital city of the southern state of Bavaria, home to BMW and many other leading German industries.

The state has brought in some of the country’s most stringent restrictions on wind power projects: to meet its ambitious decarbonisation targets and, at the same time, ensure its energy supply, Munich is now having to invest in wind power installations abroad, some as distant as Norway.

But such enterprises carry their own set of problems. Environmental groups in Norway have raised objections to wind power turbine installations which they say threaten the beauty of the landscape. In particular they criticise the construction of such projects solely for the export of energy. – Climate News Network

* * * * *

The Rapid Transition Alliance is coordinated by the New Weather Institute, the STEPS Centre at the Institute of  Development Studies, and the School of Global Studies at the University of Sussex, UK. The Climate News Network is partnering with and supported by the Rapid Transition Alliance, and will be reporting regularly on its work. If you would like to see more stories of evidence-based hope for rapid transition, please sign up here.

Do you know a story of rapid transition? If so, we’d like to hear from you. Please send us a brief outline on info@climatenewsnetwork.net. Thank you.

Bank of England unveils climate stress test

Tackling climate change isn’t just about replacing fossil fuels with renewables, or planting more trees. It’s about confronting climate stress across society.

LONDON, 1 January, 2020 – The warming world means climate stress now permeates every part of society. And so an entire financial system which has underpinned the growth of a global economy largely dependent on fossil fuels must be reoriented to deal with what is fast becoming a full-blown crisis.

A campaign to halt or withdraw multi-million dollar investments from industries associated with fossil fuel use is gaining momentum. And the central banks – the institutions responsible for regulating countries’ financial systems – are now taking action.

Leading the charge is the venerable Bank of England (BOE), one of the oldest such institutions in the world. In December it became the first central bank to announce what it terms a banking stress test on climate change.

Under the BOE’s stress test framework, banks and insurance companies will be required to go through their books to evaluate their exposure to the impacts of climate change.

If, for instance, a British bank has loaned money to a company building a coal-fired power plant, the BOE will require the bank concerned to hold a substantial amount of additional capital to cover the risks of the project being abandoned because of new regulations or other climate change-related factors.

“A question for every company, every financial institution, every asset manager, pension fund or insurer is what’s your plan on climate change”

In the same way, if an insurance group has granted cover to houses on a flood plain, or to coastal properties which could be subject to rises in sea level – or if a bank has granted mortgages on such properties – the BOE will require additional capital to be held to cover the financial risks involved.

Other financial institutions are examining ways in which their activities can be protected from the more serious impacts of a warming world.  Several insurance groups have announced plans to withdraw cover from fossil fuel projects.

Central banks are following the BOE’s lead: a body with the somewhat cumbersome title of the Network of Central Banks and Supervisors for Greening the Financial System (NGFS) now has more than 40 members – all involved in monitoring the risks climate change poses to the finance sector.

The BOE’s action has two aims. One is to ensure the financial system can withstand the considerable financial costs posed by climate change. The other is to encourage financial institutions to invest their funds in more sustainable, environmentally friendly projects.

Mark Carney, the outgoing BOE governor who is soon to take up a post as UN special envoy for climate action and finance, describes the BOE stress test as the first comprehensive assessment of whether the financial system is on track to help deliver a transition to a sustainable future.

Worthless assets possible

“A question for every company, every financial institution, every asset manager, pension fund or insurer is what’s your plan (on climate change)”, Carney told the BBC.

He says that unless the finance sector and large companies wake up to the scale of the climate crisis, many of the assets they now hold in fossil fuels and other enterprises will become worthless.

Some financial institutions are taking action, says the BOE governor, divesting from investments in fossil fuels and becoming involved in more sustainable projects, but progress is still far too slow. Time is of the essence.

“The climate emergency continues to build. The next year will be critical”, says Carney. – Climate News Network

Tackling climate change isn’t just about replacing fossil fuels with renewables, or planting more trees. It’s about confronting climate stress across society.

LONDON, 1 January, 2020 – The warming world means climate stress now permeates every part of society. And so an entire financial system which has underpinned the growth of a global economy largely dependent on fossil fuels must be reoriented to deal with what is fast becoming a full-blown crisis.

A campaign to halt or withdraw multi-million dollar investments from industries associated with fossil fuel use is gaining momentum. And the central banks – the institutions responsible for regulating countries’ financial systems – are now taking action.

Leading the charge is the venerable Bank of England (BOE), one of the oldest such institutions in the world. In December it became the first central bank to announce what it terms a banking stress test on climate change.

Under the BOE’s stress test framework, banks and insurance companies will be required to go through their books to evaluate their exposure to the impacts of climate change.

If, for instance, a British bank has loaned money to a company building a coal-fired power plant, the BOE will require the bank concerned to hold a substantial amount of additional capital to cover the risks of the project being abandoned because of new regulations or other climate change-related factors.

“A question for every company, every financial institution, every asset manager, pension fund or insurer is what’s your plan on climate change”

In the same way, if an insurance group has granted cover to houses on a flood plain, or to coastal properties which could be subject to rises in sea level – or if a bank has granted mortgages on such properties – the BOE will require additional capital to be held to cover the financial risks involved.

Other financial institutions are examining ways in which their activities can be protected from the more serious impacts of a warming world.  Several insurance groups have announced plans to withdraw cover from fossil fuel projects.

Central banks are following the BOE’s lead: a body with the somewhat cumbersome title of the Network of Central Banks and Supervisors for Greening the Financial System (NGFS) now has more than 40 members – all involved in monitoring the risks climate change poses to the finance sector.

The BOE’s action has two aims. One is to ensure the financial system can withstand the considerable financial costs posed by climate change. The other is to encourage financial institutions to invest their funds in more sustainable, environmentally friendly projects.

Mark Carney, the outgoing BOE governor who is soon to take up a post as UN special envoy for climate action and finance, describes the BOE stress test as the first comprehensive assessment of whether the financial system is on track to help deliver a transition to a sustainable future.

Worthless assets possible

“A question for every company, every financial institution, every asset manager, pension fund or insurer is what’s your plan (on climate change)”, Carney told the BBC.

He says that unless the finance sector and large companies wake up to the scale of the climate crisis, many of the assets they now hold in fossil fuels and other enterprises will become worthless.

Some financial institutions are taking action, says the BOE governor, divesting from investments in fossil fuels and becoming involved in more sustainable projects, but progress is still far too slow. Time is of the essence.

“The climate emergency continues to build. The next year will be critical”, says Carney. – Climate News Network