Tag Archives: Impacts

Water stress rises as more wells run dry

Soon, communities and even nations could be drawing water faster than the skies can replenish it. As the wells run dry, so will the rivers.

LONDON, 9 October, 2019 − Within three decades, almost 80% of the lands that depend on groundwater will start to reach their natural irrigation limits as the wells run dry.

In a world of increasing extremes of drought and rainfall, driven by rising global temperatures and potentially catastrophic climate change, the water will start to run out.

It is happening already: in 20% of those water catchments in which farmers and cities rely on pumped groundwater, the flow of streams and rivers has fallen and the surface flow has dwindled, changed direction or stopped altogether.

“The effects can be seen already in the Midwest of the United States and in the Indus Valley project between Afghanistan and Pakistan,” said Inge de Graaf, a hydrologist at the University of Freiburg.

Groundwater – the billions of tonnes locked in the soils and bedrock, held in vast chalk and limestone aquifers and silently flowing through cracks in other sediments – is the terrestrial planet’s biggest single store of the liquid that sustains all life.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached for regions in southern and central Europe as well as in North African countries”

Groundwater supplies the inland streams and rivers, and the flow from tributaries is an indicator of the levels of water already in the ground.

For thousands of years, communities have drawn water from wells in the dry season and relied on wet season rainfall to replenish it. But as human numbers have grown, as agriculture has commandeered more and more of the land, and as cities have burgeoned, demand has in some places begun to outstrip supply. The fear is that rising average temperatures will intensify the problem.

Dr de Graaf and colleagues from the Netherlands and Canada report in the journal Nature that they used computer simulations to establish the likely pattern of withdrawal and flow. The news is not good.

“We estimate that, by 2050, environmental flow limits will be reached for approximately 42% to 79% of the watershed in which there is groundwater pumping worldwide, and this will generally occur before substantial losses in groundwater storage are experienced,” they write.

That drylands – home to billions of people – will experience water stress with rising temperatures is not news. Climate scientists have been issuing warnings for years.

Ground level drops

And demand for groundwater has increased with the growth of the population and the worldwide growth of the cities: some US cities are at risk of coastal flooding just because so much groundwater has been extracted that the ground itself has been lowered.

The important thing about the latest research is that it sets – albeit broadly – a timetable and a map of where the water stress is likely to be experienced first.

In a hotter world, plants and animals will demand more water. But in a hotter world, the probability of extremes of drought increases.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached also for regions in southern and central Europe – such as Portugal, Spain and Italy – as well as in North African countries,” Dr de Graaf warned.

“Climate change may even accelerate this process, as we expect less precipitation, which will further increase the extraction of groundwater and cause dry areas to dry out completely.” − Climate News Network

Soon, communities and even nations could be drawing water faster than the skies can replenish it. As the wells run dry, so will the rivers.

LONDON, 9 October, 2019 − Within three decades, almost 80% of the lands that depend on groundwater will start to reach their natural irrigation limits as the wells run dry.

In a world of increasing extremes of drought and rainfall, driven by rising global temperatures and potentially catastrophic climate change, the water will start to run out.

It is happening already: in 20% of those water catchments in which farmers and cities rely on pumped groundwater, the flow of streams and rivers has fallen and the surface flow has dwindled, changed direction or stopped altogether.

“The effects can be seen already in the Midwest of the United States and in the Indus Valley project between Afghanistan and Pakistan,” said Inge de Graaf, a hydrologist at the University of Freiburg.

Groundwater – the billions of tonnes locked in the soils and bedrock, held in vast chalk and limestone aquifers and silently flowing through cracks in other sediments – is the terrestrial planet’s biggest single store of the liquid that sustains all life.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached for regions in southern and central Europe as well as in North African countries”

Groundwater supplies the inland streams and rivers, and the flow from tributaries is an indicator of the levels of water already in the ground.

For thousands of years, communities have drawn water from wells in the dry season and relied on wet season rainfall to replenish it. But as human numbers have grown, as agriculture has commandeered more and more of the land, and as cities have burgeoned, demand has in some places begun to outstrip supply. The fear is that rising average temperatures will intensify the problem.

Dr de Graaf and colleagues from the Netherlands and Canada report in the journal Nature that they used computer simulations to establish the likely pattern of withdrawal and flow. The news is not good.

“We estimate that, by 2050, environmental flow limits will be reached for approximately 42% to 79% of the watershed in which there is groundwater pumping worldwide, and this will generally occur before substantial losses in groundwater storage are experienced,” they write.

That drylands – home to billions of people – will experience water stress with rising temperatures is not news. Climate scientists have been issuing warnings for years.

Ground level drops

And demand for groundwater has increased with the growth of the population and the worldwide growth of the cities: some US cities are at risk of coastal flooding just because so much groundwater has been extracted that the ground itself has been lowered.

The important thing about the latest research is that it sets – albeit broadly – a timetable and a map of where the water stress is likely to be experienced first.

In a hotter world, plants and animals will demand more water. But in a hotter world, the probability of extremes of drought increases.

“If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached also for regions in southern and central Europe – such as Portugal, Spain and Italy – as well as in North African countries,” Dr de Graaf warned.

“Climate change may even accelerate this process, as we expect less precipitation, which will further increase the extraction of groundwater and cause dry areas to dry out completely.” − Climate News Network

Nuclear war could ruin Earth and leave only losers

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

As the potential for nuclear war in Asia hots up, scientists have chilling news for those far from the battleground: we will all suffer.

LONDON, 3 October, 2019 − Nobody can emerge from a nuclear war as a winner, says a US team of scientists, and the planet they inherit may be ravaged by mass starvation.

Their scenario is stark. The year is 2025, they suggest. A dangerous tension has grown more dangerous with the years and suddenly India and Pakistan begin a nuclear exchange. The outcome? More people will die almost immediately than were killed in the entire Second World War.

And the global climate inevitably will feel the heat of the exchange. Up to 36 million tonnes of smoke and soot from subcontinental cities incinerated by even modest nuclear warheads will be blasted high into the upper atmosphere, spread around the globe and darken the skies.

Planetary average temperatures will drop by at least 2°C and by as much as 5°C, and for the next 10 years regional temperatures could plummet to levels characteristic of the last Ice Age. Rainfall will diminish by 15% to 30%, and so will the productivity of the oceans, terrestrial forests, grasslands and croplands.

Rapid build-up

This would be enough to trigger mass starvation around the rest of the globe, according to the scientists’ study, published in the journal Science Advances.

“Nine countries have nuclear weapons, but Pakistan and India are the only ones rapidly increasing their arsenals,” said Alan Robock, of Rutgers University in the US. “Because of the continuing unrest between these two nuclear-armed countries, particularly over Kashmir, it is important to understand the consequences of nuclear war.”

The world’s nuclear arsenal totals around 13,900 weapons: nine-tenths of them held by Russia and the United States. But Britain, France, China, Israel, India and Pakistan are thought to have between 100 and 300 each, and none of these states is bound by treaties that require them to reveal the number of launchers or the number of warheads carried by missiles.

Of these states, Pakistan and India have a long history of military tension – including four conventional wars in 1947, 1965, 1971 and 1999, and a long history of claim and counter-claim to the territory of Kashmir.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders. The only way to prevent this is to eliminate them”

Professor Robock and nine other scientists, led by Owen Brian Toon of the University of Colorado at Boulder, consulted military and policy experts to develop a simple scenario of how a nuclear war might happen, and then made estimates of the likely yield of 250 weapons that might be used by both nations in the first week of conflict.

India has 400 cities with more than 100,000 people, and by 2025 Pakistan could have an arsenal big enough to attack two-thirds of them; Pakistan has about 60 such dense conurbations and India could react and hit all of them with two weapons each. The expected almost-immediate death toll would be between 50 million and 125 million.

The scientists examined accounts of the only time nuclear weapons were used in anger – over Hiroshima and Nagasaki in Japan in 1945 – and made calculations of the impact of nuclear weaponry on brick and steel, cement and stone, pitch and tile, concluding that between 16 and 36 million tonnes of black carbon would rise into the upper atmosphere, spread around the planet and screen the sunlight, for up to a decade, to set up the conditions for poor harvests or no harvests, and severe food shortages.

“An India-Pakistan war could double the normal death rate in the world,” Professor Toon said. “This is a war that would have no precedent in human experience.”

Lesson from wildfires

This is not the first such study: in 2017 a group of scientists revived concerns about a potential “nuclear autumn” with deadly consequences that would follow a nuclear exchange.

In August this year Professor Robock and colleagues looked at the smoke from devastating Canadian wildfires in 2017 and used these as a lesson for the conflagration and clouds of smoke that would follow thermonuclear strikes on cities, with, once again, deadly consequences for parts of the world far from the conflict zone.

And Professor Toon was part of the team of scientists that – in 1983, around the most tense months of the Cold War – first developed the theory of “nuclear winter” that might follow all-out global thermonuclear war, to propose that there could be no winners, and no safe neutral zones, in such a conflict.

“Nuclear weapons cannot be used in any rational scenario but could be used by accident or as a result of hacking, panic or deranged world leaders,” Professor Robock said. “The only way to prevent this is to eliminate them.” − Climate News Network

Scientists back global climate strike

20 September sees the start of a week-long youth-led global climate strike. Students will be voicing their demands for action − backed by many scientists.

LONDON, 20 September, 2019 − Leading scientists have declared their support for the global climate strike which starts today.

In a statement published by the Earth League, headed Humanity is Tipping the Scales of the World, 20 respected scientists throw their weight into the argument. Among a stellar company, they number Lord Nicholas Stern, Johan Rockström from the Potsdam Institute for Climate Impact Research in Germany, and Hans Joachim Schellnhuber, its founder.

The world is approaching a dual tipping point of social and environmental systems that will arguably determine the future of life-support systems on Earth, they say.

On the one hand, young people across the world are struggling to tip the social scale towards swift and concerted climate action.

“If that tipping towards sustainability does not happen quickly, we risk crossing different kinds of tipping points – those in the Earth System that may threaten the stability of life on our planet.

“Humanity is tipping the scales of our planet’s future”

“Tropical coral reef systems and the Arctic summer ice are at risk already at 1.5°C warming and we now know that there is a likely tipping point for the destabilisation of the Greenland Ice sheet, which may be as low as 2°C.”

Much of the factual material they explain is by now all too well-known; many of their specific warnings, however acutely they present them, echo with leaden but still necessary familiarity. But there is a new note to what they have to tell the world: that time really is running out.

“Humanity may tend to take the benign conditions of the past 10,000 years for granted, but we are already experiencing the highest global mean temperature on Earth since the last Ice Age”, they write.

“If anything, there is a growing understanding that expert assessments, which are usually conservative in the best sense of the word, have contributed to allow decision-makers to underestimate – not overestimate – the risks of climate impacts. Now it is apparent that impacts are happening much sooner and more severely than expected.

“In each report since 2001, the Intergovernmental Panel on Climate Change has corrected its assessments of the so-called ‘reasons for concern’ upwards, i.e., to higher levels of worry.

Irreversible change

“The world is following a path which even at a conservative assessment will result in more than 3°C of warming – with definite irreversible tipping points – by the end of this century. Last time we had this level of warming on Earth was 4-5 million years ago.”

The scientists echo the call of the young strikers: “This is not a single-generation issue”, they say. “Humanity is tipping the scales of our planet’s future.”

Serious scientists are usually cautious people, unwilling to stick their necks out and speak out on something about which they are not absolutely certain. But today’s statement is not like that − and it is not the first of its kind.

Three other experts, all renowned in their fields, last April urged support for the school strikers, declaring: “The world’s youth have begun to persistently demonstrate for the protection of the climate and other foundations of human well-being … Their concerns are justified and supported by the best available science. The current measures for protecting the climate and biosphere are deeply inadequate.”

They attracted the support of more than 6,000 of their colleagues. When scientists are prepared to voice their fears as openly as they are now doing, where does that leave the rest of us? − Climate News Network

20 September sees the start of a week-long youth-led global climate strike. Students will be voicing their demands for action − backed by many scientists.

LONDON, 20 September, 2019 − Leading scientists have declared their support for the global climate strike which starts today.

In a statement published by the Earth League, headed Humanity is Tipping the Scales of the World, 20 respected scientists throw their weight into the argument. Among a stellar company, they number Lord Nicholas Stern, Johan Rockström from the Potsdam Institute for Climate Impact Research in Germany, and Hans Joachim Schellnhuber, its founder.

The world is approaching a dual tipping point of social and environmental systems that will arguably determine the future of life-support systems on Earth, they say.

On the one hand, young people across the world are struggling to tip the social scale towards swift and concerted climate action.

“If that tipping towards sustainability does not happen quickly, we risk crossing different kinds of tipping points – those in the Earth System that may threaten the stability of life on our planet.

“Humanity is tipping the scales of our planet’s future”

“Tropical coral reef systems and the Arctic summer ice are at risk already at 1.5°C warming and we now know that there is a likely tipping point for the destabilisation of the Greenland Ice sheet, which may be as low as 2°C.”

Much of the factual material they explain is by now all too well-known; many of their specific warnings, however acutely they present them, echo with leaden but still necessary familiarity. But there is a new note to what they have to tell the world: that time really is running out.

“Humanity may tend to take the benign conditions of the past 10,000 years for granted, but we are already experiencing the highest global mean temperature on Earth since the last Ice Age”, they write.

“If anything, there is a growing understanding that expert assessments, which are usually conservative in the best sense of the word, have contributed to allow decision-makers to underestimate – not overestimate – the risks of climate impacts. Now it is apparent that impacts are happening much sooner and more severely than expected.

“In each report since 2001, the Intergovernmental Panel on Climate Change has corrected its assessments of the so-called ‘reasons for concern’ upwards, i.e., to higher levels of worry.

Irreversible change

“The world is following a path which even at a conservative assessment will result in more than 3°C of warming – with definite irreversible tipping points – by the end of this century. Last time we had this level of warming on Earth was 4-5 million years ago.”

The scientists echo the call of the young strikers: “This is not a single-generation issue”, they say. “Humanity is tipping the scales of our planet’s future.”

Serious scientists are usually cautious people, unwilling to stick their necks out and speak out on something about which they are not absolutely certain. But today’s statement is not like that − and it is not the first of its kind.

Three other experts, all renowned in their fields, last April urged support for the school strikers, declaring: “The world’s youth have begun to persistently demonstrate for the protection of the climate and other foundations of human well-being … Their concerns are justified and supported by the best available science. The current measures for protecting the climate and biosphere are deeply inadequate.”

They attracted the support of more than 6,000 of their colleagues. When scientists are prepared to voice their fears as openly as they are now doing, where does that leave the rest of us? − Climate News Network

Faster global warming may bring much more heat

Climate scientists are haunted by a global temperature rise 56 million years ago, which could mean much more heat very soon.

LONDON,19 September, 2019 − We could in the near future be experiencing much more heat than we now expect. As carbon dioxide levels rise, global warming could accelerate, rather than merely keep pace with the levels of greenhouse gases in the atmosphere.

This is a lesson to be drawn from new computer simulations of the conditions that must have precipitated a dramatic shift in global climate 56 million years ago, when atmospheric carbon dioxide levels rose at least 1000 parts per million (ppm) and perhaps substantially higher.

For most of human history, carbon dioxide levels stood at around 285ppm. They have now passed 400ppm. By the century’s end, if humans go on burning ever greater quantities of fossil fuels to drive global heating, then these could reach 1000 ppm.

The last time that happened, during a period known as the Early Eocene 56 million years ago, the surface temperatures became up to 9°C hotter than today. The period has been repeatedly explored as a lesson for the pattern of events that might follow from global heating by profligate combustion of fossil fuels.

“The temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us”

The polar ice melted. Antarctic ocean temperatures reached 20°C. Sea levels rose dramatically, oceans became increasingly acidic, mammals evolved to smaller dimensions and crocodiles haunted the Arctic.

It is a principle of geology that the present is a key to the past – and it follows that the past must contain lessons for the future. So climate scientists have always taken a close interest in the Early Eocene.

US scientists report in the journal Science Advances that, for the first time, they were able to simulate the extreme surface warmth of the Early Eocene in a computer model. After decades of geological investigation, there is not much argument about the real conditions 56 million years ago, and the immensely high levels of carbon dioxide. What is not clear is quite how the link between atmosphere and temperature in that vanished era must have played out.

Research of this kind is based on mathematical simulation, which is only a tentative guide to what might actually happen on a rapidly changing planet, but the scientists count their results a success. Previous attempts have simply been built around the rise in atmospheric carbon dioxide.

Temperatures too low

This study managed to incorporate models of water vapour, cloud formation, atmospheric aerosols and other factors that would have set up a system of feedbacks that might lead to the sweltering tropics and the very warm polar regions of the era.

“For decades, the models have underestimated these temperatures, and the community has long assumed that the problem was with the geological data, or that there was a warming mechanism that had not been recognized,” said Christopher Poulsen, of the University of Michigan.

His co-author Jessica Tierney of the University of Arizona said: “For the first time a climate model matches the geological evidence out of the box − that is, without deliberate tweaks made to the model. It’s a breakthrough in our understanding of past climates.”

Other scientists have already predicted that what happened in the Early Eocene could turn out to be a lesson for what is happening now. The finding may play into the larger puzzle of something called “climate sensitivity”: that is, how so much extra carbon dioxide might lead to so much average global temperature rise?

Risk of underestimation

Researchers have assumed that the one would be in step with the other. But the latest finding also raises the possibility that warming might indeed accelerate as carbon dioxide concentrations rise. So far, the world has warmed by around 1°C in the last century, with the planet perhaps on track to pass 3°C by 2100.

But more recent studies have warned that this could be a serious underestimate. The lesson of the Early Eocene, a period of change that played out over hundreds of thousands of years, is that the questions of climate sensitivity have yet to be settled.

“We were surprised that the climate sensitivity increased as much as it did with increasing carbon dioxide levels,” said Jiang Zhu, of the University of Michigan, who led the study.

“It is a scary finding because it indicates that the temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us.” − Climate News Network

Climate scientists are haunted by a global temperature rise 56 million years ago, which could mean much more heat very soon.

LONDON,19 September, 2019 − We could in the near future be experiencing much more heat than we now expect. As carbon dioxide levels rise, global warming could accelerate, rather than merely keep pace with the levels of greenhouse gases in the atmosphere.

This is a lesson to be drawn from new computer simulations of the conditions that must have precipitated a dramatic shift in global climate 56 million years ago, when atmospheric carbon dioxide levels rose at least 1000 parts per million (ppm) and perhaps substantially higher.

For most of human history, carbon dioxide levels stood at around 285ppm. They have now passed 400ppm. By the century’s end, if humans go on burning ever greater quantities of fossil fuels to drive global heating, then these could reach 1000 ppm.

The last time that happened, during a period known as the Early Eocene 56 million years ago, the surface temperatures became up to 9°C hotter than today. The period has been repeatedly explored as a lesson for the pattern of events that might follow from global heating by profligate combustion of fossil fuels.

“The temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us”

The polar ice melted. Antarctic ocean temperatures reached 20°C. Sea levels rose dramatically, oceans became increasingly acidic, mammals evolved to smaller dimensions and crocodiles haunted the Arctic.

It is a principle of geology that the present is a key to the past – and it follows that the past must contain lessons for the future. So climate scientists have always taken a close interest in the Early Eocene.

US scientists report in the journal Science Advances that, for the first time, they were able to simulate the extreme surface warmth of the Early Eocene in a computer model. After decades of geological investigation, there is not much argument about the real conditions 56 million years ago, and the immensely high levels of carbon dioxide. What is not clear is quite how the link between atmosphere and temperature in that vanished era must have played out.

Research of this kind is based on mathematical simulation, which is only a tentative guide to what might actually happen on a rapidly changing planet, but the scientists count their results a success. Previous attempts have simply been built around the rise in atmospheric carbon dioxide.

Temperatures too low

This study managed to incorporate models of water vapour, cloud formation, atmospheric aerosols and other factors that would have set up a system of feedbacks that might lead to the sweltering tropics and the very warm polar regions of the era.

“For decades, the models have underestimated these temperatures, and the community has long assumed that the problem was with the geological data, or that there was a warming mechanism that had not been recognized,” said Christopher Poulsen, of the University of Michigan.

His co-author Jessica Tierney of the University of Arizona said: “For the first time a climate model matches the geological evidence out of the box − that is, without deliberate tweaks made to the model. It’s a breakthrough in our understanding of past climates.”

Other scientists have already predicted that what happened in the Early Eocene could turn out to be a lesson for what is happening now. The finding may play into the larger puzzle of something called “climate sensitivity”: that is, how so much extra carbon dioxide might lead to so much average global temperature rise?

Risk of underestimation

Researchers have assumed that the one would be in step with the other. But the latest finding also raises the possibility that warming might indeed accelerate as carbon dioxide concentrations rise. So far, the world has warmed by around 1°C in the last century, with the planet perhaps on track to pass 3°C by 2100.

But more recent studies have warned that this could be a serious underestimate. The lesson of the Early Eocene, a period of change that played out over hundreds of thousands of years, is that the questions of climate sensitivity have yet to be settled.

“We were surprised that the climate sensitivity increased as much as it did with increasing carbon dioxide levels,” said Jiang Zhu, of the University of Michigan, who led the study.

“It is a scary finding because it indicates that the temperature response to an increase in carbon dioxide in the future might be larger than the response to the same increase in CO2 now. This is not good news for us.” − Climate News Network

Worse US Atlantic floods need planned retreat

Its coasts are at ever-greater risk from rising seas, and US Atlantic floods will soon force people to move. Why not start planning now?

LONDON, 3 September, 2019 − What are now considered once-in-a-hundred-years floods are on the increase in the US. Later this century, they could happen to northern coastal states every year.

And even in the more fortunate cities along the south-east Atlantic and the Gulf of Mexico coasts, the once-in-a-century floods will happen a lot more often: somewhere between every 30 years and every year.

In a second study, a team of distinguished scientists argues that the US should face the inevitable and begin to plan for a managed, strategic retreat from its own coasts.

At the heart of both studies is a set of new realities imposed by a rapidly-heating ocean and higher air temperatures worldwide. As the icecaps of Greenland and Antarctica melt, and as the glaciers of Canada and Alaska retreat, so sea levels have begun to rise inexorably.

But as the oceans increase in average temperature, thanks to an ever-warmer atmosphere driven by greenhouse gases from profligate combustion of fossil fuels, so the oceans have begun to expand: warmer waters are less dense, and thus higher.

“We need to stop picturing our relationship with nature as a war. We’re not winning or losing, we’re adjusting to changes in nature”

And there is a third factor. With warmer seas there will be more frequent and more violent hurricanes and windstorms, more damaging storm surges and yet more torrential rainfall.

Researchers from Princeton University report in the journal Nature Communications that they considered all three factors to create a flood hazard map of the US. Simply because of rising waters, New England states can expect to see what were once rare events almost every year.

“For the Gulf of Mexico, we found the effect of storm surge is compatible with or more significant than the effect of sea level rise for 40% of counties,” said Ning Lin, a Princeton engineer.

“So if we neglect the effects of storm climatology change, we would significantly underestimate the impact of climate change for these regions.”

Growing Atlantic danger

Exercises of this kind are about planning for the worst: were the Princeton research the only such study, city chiefs could afford to relax. But it is not.

For years climate scientists and oceanographers have been warning of ever-greater hazard to Atlantic America. They have warned of ever more torrential rains and the hazards of ever more damaging floods even in disparate cities such as Charleston and Seattle; they have even warned of high tide floods on a daily basis in some cities, and they have proposed that an estimated 13 million Americans could become climate refugees, driven by the advancing seas from their own homes.

All of which is why a trio of researchers argue for the need to accept the inevitable and step back from the sea, and they say so in the journal Science. They argue that the US should start to prepare for retreat by limiting development in the areas most at risk.

“Fighting the ocean is a losing battle,” said A R Siders of Harvard and the University of Delaware. “The only way to win against water is not to fight. We need to stop picturing our relationship with nature as a war. We’re not winning or losing, we’re adjusting to changes in nature.” − Climate News Network

Its coasts are at ever-greater risk from rising seas, and US Atlantic floods will soon force people to move. Why not start planning now?

LONDON, 3 September, 2019 − What are now considered once-in-a-hundred-years floods are on the increase in the US. Later this century, they could happen to northern coastal states every year.

And even in the more fortunate cities along the south-east Atlantic and the Gulf of Mexico coasts, the once-in-a-century floods will happen a lot more often: somewhere between every 30 years and every year.

In a second study, a team of distinguished scientists argues that the US should face the inevitable and begin to plan for a managed, strategic retreat from its own coasts.

At the heart of both studies is a set of new realities imposed by a rapidly-heating ocean and higher air temperatures worldwide. As the icecaps of Greenland and Antarctica melt, and as the glaciers of Canada and Alaska retreat, so sea levels have begun to rise inexorably.

But as the oceans increase in average temperature, thanks to an ever-warmer atmosphere driven by greenhouse gases from profligate combustion of fossil fuels, so the oceans have begun to expand: warmer waters are less dense, and thus higher.

“We need to stop picturing our relationship with nature as a war. We’re not winning or losing, we’re adjusting to changes in nature”

And there is a third factor. With warmer seas there will be more frequent and more violent hurricanes and windstorms, more damaging storm surges and yet more torrential rainfall.

Researchers from Princeton University report in the journal Nature Communications that they considered all three factors to create a flood hazard map of the US. Simply because of rising waters, New England states can expect to see what were once rare events almost every year.

“For the Gulf of Mexico, we found the effect of storm surge is compatible with or more significant than the effect of sea level rise for 40% of counties,” said Ning Lin, a Princeton engineer.

“So if we neglect the effects of storm climatology change, we would significantly underestimate the impact of climate change for these regions.”

Growing Atlantic danger

Exercises of this kind are about planning for the worst: were the Princeton research the only such study, city chiefs could afford to relax. But it is not.

For years climate scientists and oceanographers have been warning of ever-greater hazard to Atlantic America. They have warned of ever more torrential rains and the hazards of ever more damaging floods even in disparate cities such as Charleston and Seattle; they have even warned of high tide floods on a daily basis in some cities, and they have proposed that an estimated 13 million Americans could become climate refugees, driven by the advancing seas from their own homes.

All of which is why a trio of researchers argue for the need to accept the inevitable and step back from the sea, and they say so in the journal Science. They argue that the US should start to prepare for retreat by limiting development in the areas most at risk.

“Fighting the ocean is a losing battle,” said A R Siders of Harvard and the University of Delaware. “The only way to win against water is not to fight. We need to stop picturing our relationship with nature as a war. We’re not winning or losing, we’re adjusting to changes in nature.” − Climate News Network

Desert treaty steps up fight for degraded land

Degraded land − drought − the spread of the world’s deserts: that’s the challenge for a UN conference starting in Delhi.

DELHI, 2 September, 2019 − The battle to halt the march of deserts across the world and the spread of degraded land, which lead to mass migration, is the focus of 169 countries meeting in India from today.

The annual United Nations climate change convention, held every year,  receives massive media coverage. In contrast the UN Convention to Combat Desertification meets once every two years to combat the spread of deserts, land degradation and drought. Its success is vital for more than half the world’s population. But it gets little attention.

Four out of five hectares of land on the planet have been altered from their natural state by humans. Much of this alteration has been damaging, making the land less fertile and productive.

This degrading of land and the spread of deserts are already affecting 3.2 billion people, mostly in the poorer parts of the world. The UN says this degradation, together with climate change and biodiversity loss, may force up to 700 million people to migrate by 2050.

Four years ago the parties to the convention agreed to reverse the continuing loss of fertile land and to achieve land degradation neutrality (LDN) by 2030. So far 120 of the 169 countries affected have come up with plans for how to reduce the risk of degradation and where to recover degrading land (known as LDN targets in the conference jargon).

“This is a poor convention for poor people from poor countries”

Although Africa usually springs to mind as one of the continents worst affected, much of South Asia with its recurring floods, droughts and other extreme weather events is facing a range of problems related to land. Coastal areas right up to the Himalayas suffer land degradation, and the problem involves all the governments in the region.

India, host to this year’s conference, has a major problem, with 30% of its land affected. It has 2.5% of the Earth’s land area, yet supports 18% of its total human population and roughly 20% of its livestock. But 96.4 million hectares (almost 240m acres)of India’s land is classed as degraded, nearly 30% of its total geographical area.

A study published in 2018 by The Energy and Resource Institute (TERI) for the government of India put the cost of the country’s desertification and land degradation at 2.5% of India’s GDP (2014-15).

This year a robust response is planned. “To fight this menace, India will convert degraded land of nearly 50 lakh (5m) hectares to fertile land in the next 10 years; it will implement the provisions of the New Delhi Declaration which is to be adopted at the end of the conference,” Prakash Javadekar, India’s minister for environment, forests and climate change told the Climate News Network.

The land due for conversion is just 5.2% of India’s total degraded land, but the minister hinted that the target could go up before the conference’s final declaration is agreed on 13 September.

Demanding target

Another south-east Asian country, Sri Lanka, has arid parts which are drying out further, and wetter regions which are becoming wetter as erratic rains and high temperatures have made the soil vulnerable.

“Sri Lanka has about one-fifth of land which is either degraded or showing signs of degradation,” said Ajith Silva of the environment ministry. “We are carrying out various government schemes that have a focus on soil conservation in plains and watershed management in hill areas,” Silva told the Climate News Network.

Sri Lanka has set a target to restore and improve degraded forest: 80% in the dry zone and 20% in the wet zone. Just as in Sri Lanka and India, Nepal, Bhutan and Bangladesh also have targets and programmes aimed at land restoration.

While governments have targets, local people, realising the dangers to their way of life, are acting independently and taking their own actions to save their land. Dhrupad Choudhury, of ICIMOD, the International Centre for Integrated Mountain Development, said: “Many good things are taking place across these countries. But apart from government efforts, those that happen at the community or village levels are not recognised.”

Across South Asia most government programmes are planned top-down, with almost no community partnership. Without ownership by the community, an important stakeholder, these remain poorly implemented. Many NGOs, on the other hand, do it right.

Rich world uninvolved

There is some resentment among the countries affected by desertification that their plight gets scant attention and very little finance from the richer states untroubled by deserts. An official of one of the South Asian nations commented: “This is a poor convention for poor people from poor countries.”

Javadekar, the Indian minister, said he believed there should be public finance from the developed world for land restoration. But to help to plug the gap he announced plans for a Centre of Excellence for Capacity Building of Developing Countries, to be created in India to help developing countries to achieve land degradation neutrality, with India offering training to other countries on financing solutions.

To try to move things along, the convention has already adopted a gender action plan and is working on innovative financing opportunities and ways to improve communications.

The Indian prime minister, Narendra Modi, is likely to make an appearance at the 14th Conference of the Parties, as the Delhi meeting is formally known.

With the New Delhi Declaration due to be announced, India has already said it will, as the host of the conference and during its two years as the convention’s president, lead from the front to ensure its goals are achieved. − Climate News Network

Degraded land − drought − the spread of the world’s deserts: that’s the challenge for a UN conference starting in Delhi.

DELHI, 2 September, 2019 − The battle to halt the march of deserts across the world and the spread of degraded land, which lead to mass migration, is the focus of 169 countries meeting in India from today.

The annual United Nations climate change convention, held every year,  receives massive media coverage. In contrast the UN Convention to Combat Desertification meets once every two years to combat the spread of deserts, land degradation and drought. Its success is vital for more than half the world’s population. But it gets little attention.

Four out of five hectares of land on the planet have been altered from their natural state by humans. Much of this alteration has been damaging, making the land less fertile and productive.

This degrading of land and the spread of deserts are already affecting 3.2 billion people, mostly in the poorer parts of the world. The UN says this degradation, together with climate change and biodiversity loss, may force up to 700 million people to migrate by 2050.

Four years ago the parties to the convention agreed to reverse the continuing loss of fertile land and to achieve land degradation neutrality (LDN) by 2030. So far 120 of the 169 countries affected have come up with plans for how to reduce the risk of degradation and where to recover degrading land (known as LDN targets in the conference jargon).

“This is a poor convention for poor people from poor countries”

Although Africa usually springs to mind as one of the continents worst affected, much of South Asia with its recurring floods, droughts and other extreme weather events is facing a range of problems related to land. Coastal areas right up to the Himalayas suffer land degradation, and the problem involves all the governments in the region.

India, host to this year’s conference, has a major problem, with 30% of its land affected. It has 2.5% of the Earth’s land area, yet supports 18% of its total human population and roughly 20% of its livestock. But 96.4 million hectares (almost 240m acres)of India’s land is classed as degraded, nearly 30% of its total geographical area.

A study published in 2018 by The Energy and Resource Institute (TERI) for the government of India put the cost of the country’s desertification and land degradation at 2.5% of India’s GDP (2014-15).

This year a robust response is planned. “To fight this menace, India will convert degraded land of nearly 50 lakh (5m) hectares to fertile land in the next 10 years; it will implement the provisions of the New Delhi Declaration which is to be adopted at the end of the conference,” Prakash Javadekar, India’s minister for environment, forests and climate change told the Climate News Network.

The land due for conversion is just 5.2% of India’s total degraded land, but the minister hinted that the target could go up before the conference’s final declaration is agreed on 13 September.

Demanding target

Another south-east Asian country, Sri Lanka, has arid parts which are drying out further, and wetter regions which are becoming wetter as erratic rains and high temperatures have made the soil vulnerable.

“Sri Lanka has about one-fifth of land which is either degraded or showing signs of degradation,” said Ajith Silva of the environment ministry. “We are carrying out various government schemes that have a focus on soil conservation in plains and watershed management in hill areas,” Silva told the Climate News Network.

Sri Lanka has set a target to restore and improve degraded forest: 80% in the dry zone and 20% in the wet zone. Just as in Sri Lanka and India, Nepal, Bhutan and Bangladesh also have targets and programmes aimed at land restoration.

While governments have targets, local people, realising the dangers to their way of life, are acting independently and taking their own actions to save their land. Dhrupad Choudhury, of ICIMOD, the International Centre for Integrated Mountain Development, said: “Many good things are taking place across these countries. But apart from government efforts, those that happen at the community or village levels are not recognised.”

Across South Asia most government programmes are planned top-down, with almost no community partnership. Without ownership by the community, an important stakeholder, these remain poorly implemented. Many NGOs, on the other hand, do it right.

Rich world uninvolved

There is some resentment among the countries affected by desertification that their plight gets scant attention and very little finance from the richer states untroubled by deserts. An official of one of the South Asian nations commented: “This is a poor convention for poor people from poor countries.”

Javadekar, the Indian minister, said he believed there should be public finance from the developed world for land restoration. But to help to plug the gap he announced plans for a Centre of Excellence for Capacity Building of Developing Countries, to be created in India to help developing countries to achieve land degradation neutrality, with India offering training to other countries on financing solutions.

To try to move things along, the convention has already adopted a gender action plan and is working on innovative financing opportunities and ways to improve communications.

The Indian prime minister, Narendra Modi, is likely to make an appearance at the 14th Conference of the Parties, as the Delhi meeting is formally known.

With the New Delhi Declaration due to be announced, India has already said it will, as the host of the conference and during its two years as the convention’s president, lead from the front to ensure its goals are achieved. − Climate News Network

Poor and rich face economic loss as world warms

Yet another study predicts economic loss as the world gets hotter. And the richer nations will also feel the pain.

LONDON, 23 August, 2019 – By the close of the century, the United States could be more than 10% poorer, thanks to the economic loss that climate change will impose.

There is bad news too for Japan, India and New Zealand, which will also be 10% worse off in a world that could be 3°C hotter than any temperatures experienced since humans began to build cities, civilisations and complex economies.

And the news is even worse for Canada, a northern and Arctic nation that could reasonably have expected some things to improve as the thermometer rose: under a “business as usual” scenario in which nations go on burning fossil fuels at ever increasing rates, the Canadian economy could shrink by 13%.

A new study by the US National Bureau of Economic Research in Cambridge, Massachusetts warns that overall the global economy will shrink by 7%, unless the world’s nations meet the target they set themselves at an historic meeting in Paris in 2015, when they agreed an ambition to keep global warming to no more than 2°C above the levels maintained until the Industrial Revolution.

“The idea that rich, temperate nations are economically immune to climate change, or could even double or triple their wealth as a result, just seems implausible”

The factor that tends to govern how bad an economy may be hit is not the global average thermometer rise, but the level of deviation from the historical normal: farmers, business people and government planners tend to bank on more or less foreseeable conditions. But conditions in a hotter world are less predictable.

“Whether cold snaps or heat waves, droughts or floods or natural disasters, all deviations of climate conditions from their historical norms have adverse economic effects,” said Kamiar Mohaddes, a co-author based at the faculty of economics at the other Cambridge, in the UK.

“Without mitigation and adaptation policies, many countries are likely to experience sustained temperature increases relative to historical norms and suffer major income losses as a result. This holds for both rich and poor countries as well as hot and cold regions.

“Canada is warming twice as fast as the rest of the world. There are risks to its physical infrastructure, coastal and northern communities, human health and wellness, ecosystems and fisheries – all of which has had a cost.”

Familiar refrain

The planet has already warmed by around 1°C in the last century, with ever more intense and frequent extremes of heat, drought and rainfall. The news that climate change could impose massive costs is not a surprise.

Researchers have been warning for decades that although the switch away from fossil fuels – along with other steps – will be costly, doing nothing will be even more expensive and, for many regions, ruinous.

Studies have warned that both Europe and the United States will pay a heavy price for failing to meet the Paris targets, and the poor in America will pay an even heavier price.

In the latest study, researchers from California, Washington DC, the UK and Taiwan started with data from 174 nations going back to 1960 to find a match between variations from normal temperatures and income levels. They then made computer simulations of what could happen under two scenarios.

Paris makes sense

They made the assumption that nations would adapt to change, but that such adaptations would take 30 years to complete. They then looked at 10 sectors of the US economy in particular, and found that across 48 states, every sector in every state suffered economically from at least one aspect of climate change.

They also found that the Paris Agreement of 2015 – which President Trump proposes to abandon – offers the best business sense. Were nations to contain global warming to the ideal of 1.5°C, both the US and Canada could expect their wealth to dwindle by no more than 2%.

“The economics of climate change stretch far beyond the impact on growing crops. Heavy rainfall prevents mountain access for mining and affects commodity prices. Cold snaps raise heating bills and high street spending drops. Heat waves cause transport networks to shut down. All these things add up,” Dr Mohaddes said.

“The idea that rich, temperate nations are economically immune to climate change, or could even double or triple their wealth as a result, just seems implausible.” – Climate News Network

Yet another study predicts economic loss as the world gets hotter. And the richer nations will also feel the pain.

LONDON, 23 August, 2019 – By the close of the century, the United States could be more than 10% poorer, thanks to the economic loss that climate change will impose.

There is bad news too for Japan, India and New Zealand, which will also be 10% worse off in a world that could be 3°C hotter than any temperatures experienced since humans began to build cities, civilisations and complex economies.

And the news is even worse for Canada, a northern and Arctic nation that could reasonably have expected some things to improve as the thermometer rose: under a “business as usual” scenario in which nations go on burning fossil fuels at ever increasing rates, the Canadian economy could shrink by 13%.

A new study by the US National Bureau of Economic Research in Cambridge, Massachusetts warns that overall the global economy will shrink by 7%, unless the world’s nations meet the target they set themselves at an historic meeting in Paris in 2015, when they agreed an ambition to keep global warming to no more than 2°C above the levels maintained until the Industrial Revolution.

“The idea that rich, temperate nations are economically immune to climate change, or could even double or triple their wealth as a result, just seems implausible”

The factor that tends to govern how bad an economy may be hit is not the global average thermometer rise, but the level of deviation from the historical normal: farmers, business people and government planners tend to bank on more or less foreseeable conditions. But conditions in a hotter world are less predictable.

“Whether cold snaps or heat waves, droughts or floods or natural disasters, all deviations of climate conditions from their historical norms have adverse economic effects,” said Kamiar Mohaddes, a co-author based at the faculty of economics at the other Cambridge, in the UK.

“Without mitigation and adaptation policies, many countries are likely to experience sustained temperature increases relative to historical norms and suffer major income losses as a result. This holds for both rich and poor countries as well as hot and cold regions.

“Canada is warming twice as fast as the rest of the world. There are risks to its physical infrastructure, coastal and northern communities, human health and wellness, ecosystems and fisheries – all of which has had a cost.”

Familiar refrain

The planet has already warmed by around 1°C in the last century, with ever more intense and frequent extremes of heat, drought and rainfall. The news that climate change could impose massive costs is not a surprise.

Researchers have been warning for decades that although the switch away from fossil fuels – along with other steps – will be costly, doing nothing will be even more expensive and, for many regions, ruinous.

Studies have warned that both Europe and the United States will pay a heavy price for failing to meet the Paris targets, and the poor in America will pay an even heavier price.

In the latest study, researchers from California, Washington DC, the UK and Taiwan started with data from 174 nations going back to 1960 to find a match between variations from normal temperatures and income levels. They then made computer simulations of what could happen under two scenarios.

Paris makes sense

They made the assumption that nations would adapt to change, but that such adaptations would take 30 years to complete. They then looked at 10 sectors of the US economy in particular, and found that across 48 states, every sector in every state suffered economically from at least one aspect of climate change.

They also found that the Paris Agreement of 2015 – which President Trump proposes to abandon – offers the best business sense. Were nations to contain global warming to the ideal of 1.5°C, both the US and Canada could expect their wealth to dwindle by no more than 2%.

“The economics of climate change stretch far beyond the impact on growing crops. Heavy rainfall prevents mountain access for mining and affects commodity prices. Cold snaps raise heating bills and high street spending drops. Heat waves cause transport networks to shut down. All these things add up,” Dr Mohaddes said.

“The idea that rich, temperate nations are economically immune to climate change, or could even double or triple their wealth as a result, just seems implausible.” – Climate News Network

Most protected areas lack proper policing

On paper, nations are protecting their wilderness areas. In practice, most protected areas lack effective policing. Nature is not safe, even in reserves.

LONDON, 13 June, 2019 − Three-quarters of all the world’s protected areas – bits of ocean and wilderness nominally made safe for animals, birds, fish, amphibians, reptiles, plants and fungi produced by 500 million years of evolution – may not be sufficiently staffed or funded.

And of 12,000 species of amphibians, birds and mammals whose ranges include protected areas, fewer than one in 10 are safely within properly policed and cared-for parks and reserves.

Researchers report in the journal Frontiers in Ecology and the Environment that they looked at a sample of more than 2,100 protected areas in Africa, South America and Asia to see which could be classed as sufficiently funded and staffed.

Only 22.4% of these – covering a total area of about 25% of the total areas assessed – could claim to be sufficiently or well resourced.

The news comes only weeks after UN chiefs warned that up to a million species around the globe could be at risk of imminent extinction, and researchers found that many areas declared protection zones for the wilderness were being reclassified, degraded or exploited by industry and agribusiness.

Protection fails

“This analysis shows that most protected areas are poorly funded and therefore failing to protect wildlife on a scale sufficient to stave off the global decline in biodiversity,” said James Watson, of the University of Queensland in Australia and the Wildlife Conservation Society.

“Nations need to do much more to ensure that protected areas fulfil their role as a major tool to mitigate the growing biodiversity crisis.”

The researchers also identified 11,919 species of bird, amphibian and mammal that might have natural ranges that included protected areas, and made estimates of those that could be sure of properly protected areas within their range.

They found that this represented 4% of amphibians, 8% of birds and 9% of mammal species in the sample. This is at least five times lower than the targets protected areas were supposed to meet.

Humans usurp nature

That there is a biodiversity crisis has been established and confirmed, again and again. It has been driven by the fourfold explosion both in human population and in the advancement of global economies just in the 20th century, as humans have colonised savannah, forest and wetland to build cities, establish farms and exploit minerals.

The climate crisis, driven by a remorseless rise in global average temperatures in turn driven by profligate use of fossil fuels, can only intensify the hazard to the other species which share the planet, recycle the air and water, scavenge detritus and provide the primary foodstuffs and fibres on which humans depend.

Researchers have also repeatedly established that properly protected wilderness areas offer a way of slowing climate change. And almost on a daily basis, fresh studies identify the cascade towards extinction.

Research in the journal Nature Ecology and Evolution reveals that since 1900, at least 571 species of seed plant have been extinguished. The researchers also say that “almost as many may have been erroneously declared extinct and then been rediscovered”, but even that caveat simply highlights the numbers that might be nearing oblivion, and reinforces the call for effective protection of natural habitat.

“Most protected areas are poorly funded and therefore failing to protect wildlife on a scale sufficient to stave off the global decline in biodiversity”

On paper, around 15% of the global terrestrial surface and about 12% of marine areas are under national protection, and nations are on track to match a global commitment to protect 17% of land surface and 10% of the seas by 2020, under an internationally agreed strategic plan for biodiversity.

The implication of the latest studies is that “on paper” isn’t good enough. Even if nations can claim to be on target, that doesn’t mean the wild things the protected areas are intended to protect are very much safer.

“While continued expansion of the world’s protected areas is necessary, a shift in emphasis from quantity to quality is critical to effectively respond to the current biodiversity crisis,” said the researchers.

And Professor Watson warned that without such a shift, conservationists could risk “sending a false message that sufficient resources are being committed to biodiversity protection.” − Climate News Network

On paper, nations are protecting their wilderness areas. In practice, most protected areas lack effective policing. Nature is not safe, even in reserves.

LONDON, 13 June, 2019 − Three-quarters of all the world’s protected areas – bits of ocean and wilderness nominally made safe for animals, birds, fish, amphibians, reptiles, plants and fungi produced by 500 million years of evolution – may not be sufficiently staffed or funded.

And of 12,000 species of amphibians, birds and mammals whose ranges include protected areas, fewer than one in 10 are safely within properly policed and cared-for parks and reserves.

Researchers report in the journal Frontiers in Ecology and the Environment that they looked at a sample of more than 2,100 protected areas in Africa, South America and Asia to see which could be classed as sufficiently funded and staffed.

Only 22.4% of these – covering a total area of about 25% of the total areas assessed – could claim to be sufficiently or well resourced.

The news comes only weeks after UN chiefs warned that up to a million species around the globe could be at risk of imminent extinction, and researchers found that many areas declared protection zones for the wilderness were being reclassified, degraded or exploited by industry and agribusiness.

Protection fails

“This analysis shows that most protected areas are poorly funded and therefore failing to protect wildlife on a scale sufficient to stave off the global decline in biodiversity,” said James Watson, of the University of Queensland in Australia and the Wildlife Conservation Society.

“Nations need to do much more to ensure that protected areas fulfil their role as a major tool to mitigate the growing biodiversity crisis.”

The researchers also identified 11,919 species of bird, amphibian and mammal that might have natural ranges that included protected areas, and made estimates of those that could be sure of properly protected areas within their range.

They found that this represented 4% of amphibians, 8% of birds and 9% of mammal species in the sample. This is at least five times lower than the targets protected areas were supposed to meet.

Humans usurp nature

That there is a biodiversity crisis has been established and confirmed, again and again. It has been driven by the fourfold explosion both in human population and in the advancement of global economies just in the 20th century, as humans have colonised savannah, forest and wetland to build cities, establish farms and exploit minerals.

The climate crisis, driven by a remorseless rise in global average temperatures in turn driven by profligate use of fossil fuels, can only intensify the hazard to the other species which share the planet, recycle the air and water, scavenge detritus and provide the primary foodstuffs and fibres on which humans depend.

Researchers have also repeatedly established that properly protected wilderness areas offer a way of slowing climate change. And almost on a daily basis, fresh studies identify the cascade towards extinction.

Research in the journal Nature Ecology and Evolution reveals that since 1900, at least 571 species of seed plant have been extinguished. The researchers also say that “almost as many may have been erroneously declared extinct and then been rediscovered”, but even that caveat simply highlights the numbers that might be nearing oblivion, and reinforces the call for effective protection of natural habitat.

“Most protected areas are poorly funded and therefore failing to protect wildlife on a scale sufficient to stave off the global decline in biodiversity”

On paper, around 15% of the global terrestrial surface and about 12% of marine areas are under national protection, and nations are on track to match a global commitment to protect 17% of land surface and 10% of the seas by 2020, under an internationally agreed strategic plan for biodiversity.

The implication of the latest studies is that “on paper” isn’t good enough. Even if nations can claim to be on target, that doesn’t mean the wild things the protected areas are intended to protect are very much safer.

“While continued expansion of the world’s protected areas is necessary, a shift in emphasis from quantity to quality is critical to effectively respond to the current biodiversity crisis,” said the researchers.

And Professor Watson warned that without such a shift, conservationists could risk “sending a false message that sufficient resources are being committed to biodiversity protection.” − Climate News Network

Desert dust cools vulnerable Red Sea corals

Desert dust whipped up by strong winds and volcanic aerosols alter the climate as the world warms.

LONDON, 20 May, 2019 − Located between two of the hottest and driest places on earth, the Red Sea is being protected by the desert dust that the winds whip up in the lands that surround it.

The dust so effectively blocks out the sun that the Red Sea is kept cool, saving its coral reefs from dangerous overheating and providing nutrients that keep its waters healthy.

The sea lies between North Africa and the Arabian Peninsula, the world’s largest region for generating dust, which strong summer winds pump down a narrowing mountain-fringed passage that forces it into the air over the widest southern portion of the sea.

The research, carried out by the King Abdullah University of Science and Technology (KAUST, the first mixed-gender university in Saudi Arabia), is part of a wider programme to discover the effect of dust in the atmosphere in changing the weather and climate.

Cooling influence

Volcanic eruptions can have a significant effect by ejecting aerosol particles into the upper atmosphere where they block out some of the sun’s rays, radiating heat back into space, a process known as radiative forcing. Dust blown from deserts also has a strong regional effect.

Sergey Osipov, postdoctoral fellow and co-author with his supervisor Georgiy Stenchikov of the Red Sea study, said: “We show that summer conditions over the Red Sea produce the world’s largest aerosol radiative forcing, and yet the impact of dust on the Red Sea was never studied − it was simply unknown.”

A surprising finding relates to biological productivity. “Dust deposition adds nutrients,” he said. “However, we find that dust radiative forcing slows down the Red Sea circulation and reduces the main nutrient supply to the Red Sea through the Bab-el Mandeb strait. The net effect on overall bioproductivity remains to be established.”

Volcanoes’ impact

Large volcanic eruptions, such as the 1991 eruption of Mount Pinatubo in the Philippines, inject vast amounts of sulphur dioxide into the upper atmosphere, where it is converted into tiny sulphate aerosol droplets.

These sulphate aerosols spread around the globe, exerting a strong radiative forcing effect, and reducing global temperature for nearly two years by 0.6°C before the dust finally settled back to earth.

The university is using its supercomputer to look at the effects of dust on the whole of the region, which is extremely arid and hurls large quantities of dust into the atmosphere, potentially changing weather patterns. It is important for future climate projections to predict droughts and famines that might cause mass migrations of the region’s peoples.

Another KAUST climate modelling study reveals potential changes in the West African monsoon caused by global warming and the dust it creates.

African monsoon

Home to more than 300 million people, West Africa has an agriculture-based economy: its food security is affected by the monsoon, making it important to understand present and future variability.

A KAUST doctoral student, Jerry Raj, simulated the monsoon under present and future climates. The results show that West Africa will become generally hotter as a result of climate change – with higher areas of the Sahel and Western Sahara projected to have increased temperatures of 4°C or more by the century’s end.

The simulations also indicate precipitation increases over the equatorial Atlantic and the Guinean coast, yet the southern Sahel appears drier. At the same time, Western Sahara experiences a moderate increase of rain.

Finally, and crucially for farmers sowing crops, the onset of the monsoon occurs earlier over the eastern part of the region, but is delayed over the western part.

“Strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood”

“Climate projection is the first and the most important step toward adaptation policies aimed at avoiding damaging environmental and socio-economic consequences,” Raj said.

Another doctoral student, Evgeniya Predybaylo, is looking further afield at the impact of large volcanic eruptions on a major natural climate variation, the El Niño‐Southern Oscillation.

This periodic warm water flush in the Pacific drives extreme weather events like hurricane and tornado activity as well as coral bleaching. It also causes floods and droughts and disrupts fish populations.

Forecasting El Niño events would help people prepare for possible collapses of fish stocks and agricultural crises, says Predybaylo. However, El Niño is notoriously difficult to predict, but volcanic eruptions may play a role.

El Niño link?

“Interestingly, strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood,” says Predybaylo.

She says the response to volcanoes partly depends on the eruption’s seasonal timing: summer eruptions induce stronger El Niños than winter or spring eruptions.
Ocean conditions prevailing at the time of the eruption also play a role.

“Radiative forcing following large eruptions generally results in surface cooling,” explains Predybaylo. “However, the tropical Pacific often shows a warming response. We show that this is due to uneven equatorial ocean cooling and changes in trade winds.”

“A Pinatubo-size eruption may partially determine the phase, magnitude and duration of El Niño, but it is crucial to account for the eruption season and ocean conditions just before the eruption,” she says. − Climate News Network

Desert dust whipped up by strong winds and volcanic aerosols alter the climate as the world warms.

LONDON, 20 May, 2019 − Located between two of the hottest and driest places on earth, the Red Sea is being protected by the desert dust that the winds whip up in the lands that surround it.

The dust so effectively blocks out the sun that the Red Sea is kept cool, saving its coral reefs from dangerous overheating and providing nutrients that keep its waters healthy.

The sea lies between North Africa and the Arabian Peninsula, the world’s largest region for generating dust, which strong summer winds pump down a narrowing mountain-fringed passage that forces it into the air over the widest southern portion of the sea.

The research, carried out by the King Abdullah University of Science and Technology (KAUST, the first mixed-gender university in Saudi Arabia), is part of a wider programme to discover the effect of dust in the atmosphere in changing the weather and climate.

Cooling influence

Volcanic eruptions can have a significant effect by ejecting aerosol particles into the upper atmosphere where they block out some of the sun’s rays, radiating heat back into space, a process known as radiative forcing. Dust blown from deserts also has a strong regional effect.

Sergey Osipov, postdoctoral fellow and co-author with his supervisor Georgiy Stenchikov of the Red Sea study, said: “We show that summer conditions over the Red Sea produce the world’s largest aerosol radiative forcing, and yet the impact of dust on the Red Sea was never studied − it was simply unknown.”

A surprising finding relates to biological productivity. “Dust deposition adds nutrients,” he said. “However, we find that dust radiative forcing slows down the Red Sea circulation and reduces the main nutrient supply to the Red Sea through the Bab-el Mandeb strait. The net effect on overall bioproductivity remains to be established.”

Volcanoes’ impact

Large volcanic eruptions, such as the 1991 eruption of Mount Pinatubo in the Philippines, inject vast amounts of sulphur dioxide into the upper atmosphere, where it is converted into tiny sulphate aerosol droplets.

These sulphate aerosols spread around the globe, exerting a strong radiative forcing effect, and reducing global temperature for nearly two years by 0.6°C before the dust finally settled back to earth.

The university is using its supercomputer to look at the effects of dust on the whole of the region, which is extremely arid and hurls large quantities of dust into the atmosphere, potentially changing weather patterns. It is important for future climate projections to predict droughts and famines that might cause mass migrations of the region’s peoples.

Another KAUST climate modelling study reveals potential changes in the West African monsoon caused by global warming and the dust it creates.

African monsoon

Home to more than 300 million people, West Africa has an agriculture-based economy: its food security is affected by the monsoon, making it important to understand present and future variability.

A KAUST doctoral student, Jerry Raj, simulated the monsoon under present and future climates. The results show that West Africa will become generally hotter as a result of climate change – with higher areas of the Sahel and Western Sahara projected to have increased temperatures of 4°C or more by the century’s end.

The simulations also indicate precipitation increases over the equatorial Atlantic and the Guinean coast, yet the southern Sahel appears drier. At the same time, Western Sahara experiences a moderate increase of rain.

Finally, and crucially for farmers sowing crops, the onset of the monsoon occurs earlier over the eastern part of the region, but is delayed over the western part.

“Strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood”

“Climate projection is the first and the most important step toward adaptation policies aimed at avoiding damaging environmental and socio-economic consequences,” Raj said.

Another doctoral student, Evgeniya Predybaylo, is looking further afield at the impact of large volcanic eruptions on a major natural climate variation, the El Niño‐Southern Oscillation.

This periodic warm water flush in the Pacific drives extreme weather events like hurricane and tornado activity as well as coral bleaching. It also causes floods and droughts and disrupts fish populations.

Forecasting El Niño events would help people prepare for possible collapses of fish stocks and agricultural crises, says Predybaylo. However, El Niño is notoriously difficult to predict, but volcanic eruptions may play a role.

El Niño link?

“Interestingly, strong equatorial volcanic eruptions often coincide with an El Niño warm phase, but the relationship is complex and poorly understood,” says Predybaylo.

She says the response to volcanoes partly depends on the eruption’s seasonal timing: summer eruptions induce stronger El Niños than winter or spring eruptions.
Ocean conditions prevailing at the time of the eruption also play a role.

“Radiative forcing following large eruptions generally results in surface cooling,” explains Predybaylo. “However, the tropical Pacific often shows a warming response. We show that this is due to uneven equatorial ocean cooling and changes in trade winds.”

“A Pinatubo-size eruption may partially determine the phase, magnitude and duration of El Niño, but it is crucial to account for the eruption season and ocean conditions just before the eruption,” she says. − Climate News Network

Crops at risk from changing climate

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network

Global warming could bring yet more challenges to a hungry world. New studies have identified precise ways in which a changing climate puts crops at risk.

LONDON, 14 May, 2019 – Climate change is leaving crops at risk. Driven by global warming – and with it ever greater extremes of heat, drought and rainfall – the rising mercury can explain up to half of all variations in harvest yields worldwide.

Unusually cold nights, ever greater numbers of extremely hot summer days, weeks with no rainfall, or torrents of storm-driven precipitation, account for somewhere between a fifth to 49% of yield losses for maize, rice, spring wheat and soy beans.

And once international scientists had eliminated the effect of temperature averages across the whole growing season, they still found that heatwaves, drought and torrential downfall accounted for 18% to 43% of losses.

In a second study, US researchers have a warning for the Midwest’s maize farmers: too much rain is just as bad for the harvest as too much heat and a long dry spell.

“While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption … making it critical for food security”

In a third study, British researchers have identified a new climate hazard for one of the tropical world’s staples: climate change has heightened the risk of a devastating fungal infection that is already ravaging banana plantations in Latin America and the Caribbean.

The impact of climate change driven by global warming fuelled by profligate fossil fuel use had been worrying ministries and agricultural researchers for years: more carbon dioxide should and sometimes could mean a greener world.

More warmth and earlier springs mean a longer growing season with lower risks of late frost. A warmer atmosphere can hold more moisture, which means ultimately more rainfall.

But the average rise in temperature worldwide of just 1°C in the last century is exactly that: an average. What cities and countryside have observed is an increase both in the number and intensity of potentially lethal heatwaves, of longer and more frequent parching in those landscapes that are normally dry, with heavier downpours in places that can depend on reliable rainfall.

Knowledge allows preparation

In Europe, the US and Africa, researchers have started to measure the cost to the grains, pulses and tubers that feed 7.7 billion people now, and will have to feed 9bn later this century.

Scientists in Australia, Germany, Spain, Switzerland and the US report in the journal Environmental Research Letters that they developed a machine-learning algorithm to make sense of climate data and harvest data collected worldwide from 1961 to 2008.

The aim was to isolate the factors within climate change that might affect harvests, on the principle that if farmers know the hazards, they can prepare.

“Interestingly, we found that the most important climate factors for yield anomalies were related to temperature, not precipitation, as one could expect, with average growing season temperature and temperature extremes playing a dominant role in predicting crop yields,” said Elisabeth Vogel of the University of Melbourne, who led the study.

Big picture reached

Nowhere was this more visible than in the figures for maize yield in Africa. “While Africa’s share of global maize production may be small, the largest part of that production goes to human consumption – compared to just 3% in North America – making it critical for food security in the region.”

Dr Vogel and her colleagues looked at crop yields, mean seasonal temperatures, extremes and regions to arrive at their big picture. But impacts of extremes vary according to region, soil, latitude and other factors too.

US scientists report in the journal Global Change Biology that yield statistics and crop insurance data from 1981 to 2016 on the Midwest maize harvest told them a slightly different story. In some years excessive rain reduced the corn yield by as much as 34%; drought and heat in turn could be linked to losses of 37%. It depended on where the crop was grown.

“As rainfall becomes more extreme, crop insurance needs to evolve to better meet planting challenges faced by farmers,” said Gary Schnitkey of the University of Urbana-Champaign, one of the authors.

Bananas in danger

And British scientists report in the Philosophical Transactions of the Royal Society B that changes in temperature and moisture linked to global warming could be bad for the banana crop.

These have increased the risk of infection by the fungus Pseudocercospora fijiensis, or Black Sigatoka disease, by more than 44% in Latin America and the Caribbean. The disease can reduce yield in infected plants by up to 80%.

“Climate change has made temperatures better for spore germination and growth, and made crop canopies wetter, raising the risk of Black Sigatoka infection in many banana-growing areas of Latin America,” said Daniel Bebber, of the University of Exeter.

“While fungus is likely to have been introduced to Honduras on plants imported from Asia for breeding research, our models indicate that climate change over the past 60 years has exacerbated its impact.” – Climate News Network