Tag Archives: Nuclear weapons

Nuclear industry’s unfounded claims let it survive

The nuclear industry’s unfounded claims let it rely on “dark arts”, ignoring much better ways to cut carbon emissions.

LONDON, 28 April, 2021 – It is the global nuclear industry’s unfounded claims – not least that it is part of the solution to climate change because it is a low-carbon source of electricity – that allow it to survive, says a devastating demolition job by one of the world’s leading environmental experts, Jonathan Porritt.

In a report, Net Zero Without Nuclear, he says the industry is in fact hindering the fight against climate change. Its claim that new types of reactor are part of the solution is, he says, like its previous promises, over-hyped and illusionary.

Porritt, a former director of Friends of the Earth UK, who was appointed chairman of the UK government’s Sustainable Development Commission after years of campaigning on green issues, has written the report in a personal capacity, but it is endorsed by an impressive group of academics and environmental campaigners.

His analysis is timely, because the nuclear industry is currently sinking billions of dollars into supporting environmental think tanks and energy “experts” who bombard politicians and news outlets with pro-nuclear propaganda.

Porritt provides a figure of 46 front groups in 18 countries practising these “dark arts”, and says it is only this “army of lobbyists and PR specialists” that is keeping the industry alive.

First he discusses the so-called levelized cost of energy (LCOE), a measure of the average net present cost of electricity generation for a generating plant over its lifetime.

“The case against nuclear power is stronger than it has ever been before”

In 2020, the LCOE of producing one megawatt of electricity in the UK showed huge variations:

  • large scale solar came out cheapest at £27 (US$38)
  • onshore wind was £30
  • the cheapest gas: £44
  • offshore wind: £63
  • coal was £83
  • nuclear – a massive £121 ($168).

Porritt argues that even if you dispute some of the methods of reaching these figures, it is important to look at trends. Over time wind and solar are constantly getting cheaper, while nuclear costs on the other hand are rising – by 26% in ten years.

His second issue is the time it takes to build a nuclear station. He concludes that the pace of building them is so slow that if western countries started building new ones now, the amount of carbon dioxide produced in manufacturing the concrete and steel needed to complete them would far outweigh any contribution the stations might make by 2050 to low carbon electricity production. New build nuclear power stations would in fact make existing net zero targets harder to reach.

“It is very misleading to make out that renewables and nuclear are equivalently low-carbon – and even more misleading to describe nuclear as zero-carbon, as a regrettably significant number of politicians and industry representatives continue to do – many of them in the full knowledge that they are lying”, he writes.

He says that the British government and all the main opposition political parties in England and Wales are pro-nuclear, effectively stifling public debate, and that the government neglects the most important way of reducing carbon emissions: energy efficiency.

Also, with the UK particularly well-endowed with wind, solar and tidal resources, it would be far quicker and cheaper to reach 100% renewable energy without harbouring any new nuclear ambitions.

The report discusses as well issues the industry would rather not examine – the unresolved problem of nuclear waste, and the immense time it takes to decommission nuclear stations. This leads on to the issue of safety, not just the difficult question of potential terrorist and cyber attacks, but also the dangers of sea level rise and other effects of climate change.

Failed expectations

These include the possibility of sea water, particularly in the Middle East, becoming too warm to cool the reactors and so rendering them difficult to operate, and rivers running low during droughts, for example in France and the US, forcing the stations to close when power is most needed.

Porritt insists he has kept an open mind on nuclear power since the 1970s and still does so, but that they have never lived up to their promises. He makes the point that he does not want existing nuclear stations to close early if they are safe, since they are producing low carbon electricity. However, he is baffled by the continuing enthusiasm among politicians for nuclear power: “The case against nuclear power is stronger than it has ever been before.”

But it is not just the politicians and industry chiefs that come in for criticism. Trade unions which advocate new nuclear power because it is a heavily unionised industry when there are far more jobs in the renewable sector are “especially repugnant.”

He also rehearses the fact that without a healthy civil nuclear industry countries would struggle to afford nuclear weapons, as it is electricity consumers that provide support for the weapons programme.

The newest argument employed by nuclear enthusiasts, the idea that green hydrogen could be produced in large quantities, is one he also debunks. It would simply be too expensive and inefficient, he says, except perhaps for the steel and concrete industries.

Porritt’s report is principally directed at the UK’s nuclear programme, where he says the government very much stands alone in Europe in its “unbridled enthusiasm for new nuclear power stations.”

This is despite the fact that the nuclear case has continued to fade for 15 years. Instead, he argues, British governments should go for what the report concentrates on: Net Zero Without Nuclear. – Climate News Network

The nuclear industry’s unfounded claims let it rely on “dark arts”, ignoring much better ways to cut carbon emissions.

LONDON, 28 April, 2021 – It is the global nuclear industry’s unfounded claims – not least that it is part of the solution to climate change because it is a low-carbon source of electricity – that allow it to survive, says a devastating demolition job by one of the world’s leading environmental experts, Jonathan Porritt.

In a report, Net Zero Without Nuclear, he says the industry is in fact hindering the fight against climate change. Its claim that new types of reactor are part of the solution is, he says, like its previous promises, over-hyped and illusionary.

Porritt, a former director of Friends of the Earth UK, who was appointed chairman of the UK government’s Sustainable Development Commission after years of campaigning on green issues, has written the report in a personal capacity, but it is endorsed by an impressive group of academics and environmental campaigners.

His analysis is timely, because the nuclear industry is currently sinking billions of dollars into supporting environmental think tanks and energy “experts” who bombard politicians and news outlets with pro-nuclear propaganda.

Porritt provides a figure of 46 front groups in 18 countries practising these “dark arts”, and says it is only this “army of lobbyists and PR specialists” that is keeping the industry alive.

First he discusses the so-called levelized cost of energy (LCOE), a measure of the average net present cost of electricity generation for a generating plant over its lifetime.

“The case against nuclear power is stronger than it has ever been before”

In 2020, the LCOE of producing one megawatt of electricity in the UK showed huge variations:

  • large scale solar came out cheapest at £27 (US$38)
  • onshore wind was £30
  • the cheapest gas: £44
  • offshore wind: £63
  • coal was £83
  • nuclear – a massive £121 ($168).

Porritt argues that even if you dispute some of the methods of reaching these figures, it is important to look at trends. Over time wind and solar are constantly getting cheaper, while nuclear costs on the other hand are rising – by 26% in ten years.

His second issue is the time it takes to build a nuclear station. He concludes that the pace of building them is so slow that if western countries started building new ones now, the amount of carbon dioxide produced in manufacturing the concrete and steel needed to complete them would far outweigh any contribution the stations might make by 2050 to low carbon electricity production. New build nuclear power stations would in fact make existing net zero targets harder to reach.

“It is very misleading to make out that renewables and nuclear are equivalently low-carbon – and even more misleading to describe nuclear as zero-carbon, as a regrettably significant number of politicians and industry representatives continue to do – many of them in the full knowledge that they are lying”, he writes.

He says that the British government and all the main opposition political parties in England and Wales are pro-nuclear, effectively stifling public debate, and that the government neglects the most important way of reducing carbon emissions: energy efficiency.

Also, with the UK particularly well-endowed with wind, solar and tidal resources, it would be far quicker and cheaper to reach 100% renewable energy without harbouring any new nuclear ambitions.

The report discusses as well issues the industry would rather not examine – the unresolved problem of nuclear waste, and the immense time it takes to decommission nuclear stations. This leads on to the issue of safety, not just the difficult question of potential terrorist and cyber attacks, but also the dangers of sea level rise and other effects of climate change.

Failed expectations

These include the possibility of sea water, particularly in the Middle East, becoming too warm to cool the reactors and so rendering them difficult to operate, and rivers running low during droughts, for example in France and the US, forcing the stations to close when power is most needed.

Porritt insists he has kept an open mind on nuclear power since the 1970s and still does so, but that they have never lived up to their promises. He makes the point that he does not want existing nuclear stations to close early if they are safe, since they are producing low carbon electricity. However, he is baffled by the continuing enthusiasm among politicians for nuclear power: “The case against nuclear power is stronger than it has ever been before.”

But it is not just the politicians and industry chiefs that come in for criticism. Trade unions which advocate new nuclear power because it is a heavily unionised industry when there are far more jobs in the renewable sector are “especially repugnant.”

He also rehearses the fact that without a healthy civil nuclear industry countries would struggle to afford nuclear weapons, as it is electricity consumers that provide support for the weapons programme.

The newest argument employed by nuclear enthusiasts, the idea that green hydrogen could be produced in large quantities, is one he also debunks. It would simply be too expensive and inefficient, he says, except perhaps for the steel and concrete industries.

Porritt’s report is principally directed at the UK’s nuclear programme, where he says the government very much stands alone in Europe in its “unbridled enthusiasm for new nuclear power stations.”

This is despite the fact that the nuclear case has continued to fade for 15 years. Instead, he argues, British governments should go for what the report concentrates on: Net Zero Without Nuclear. – Climate News Network

Small nuclear power plants no use in climate crisis

Governments are investing in a new range of small nuclear power plants, with little chance they’ll ease the climate crisis.

LONDON, 24 March, 2021 − Claims that a new generation of so-called advanced, safe and easier-to-build nuclear reactors − small nuclear power plants − will be vital to combat climate change are an illusion, and the idea should be abandoned, says a group of scientists.

Their report, “Advanced” is not always better, published by the US Union of Concerned Scientists (UCS), examines all the proposed new types of reactor under development in the US and fails to find any that could be developed in time to help deal with the urgent need to cut carbon emissions. The US government is spending $600 million on supporting these prototypes.

While the report goes into details only about the many designs of small and medium-sized reactors being developed by US companies, it is a serious blow to the worldwide nuclear industry because the technologies are all similar to those also being underwritten by taxpayers in Canada, the UK, Russia and China. This is a market the World Economic Forum claimed in January could be worth $300 billion by 2040.

Edwin Lyman, who wrote the report, and is the director of nuclear power safety in the UCS Climate and Energy Program, thinks the WEF estimate is extremely unlikely. He comments on nuclear power in general: “The technology has fundamental safety and security disadvantages compared with other low-carbon sources.

“Nuclear reactors and their associated facilities for fuel production and waste handling are vulnerable to catastrophic accidents and sabotage, and they can be misused to produce materials for nuclear weapons. The nuclear industry, policymakers, and regulators must address these shortcomings fully if the global use of nuclear power is to increase without posing unacceptable risks to public health, the environment and international peace and security.”

Cheaper options

Lyman says none of the new reactors appears to solve any of these problems. Also, he says, the industry’s claims that their designs could cost less, be built quickly, reduce the production of nuclear waste, use uranium more efficiently and reduce the risk of nuclear proliferation have yet to be proved. The developers have also yet to demonstrate that the new generation of reactors has improved safety features enabling them to shut down quickly in the event of attack or accident.

Lyman examines the idea that reactors can be placed near cities or industry so that the waste heat from their electricity generation can be used in district heating or for industrial processes.

He says there is no evidence that the public would be keen on the idea of having nuclear power stations planted in their neighbourhoods.

Another of the industry’s ideas for using the power of the new nuclear stations to produce “green hydrogen” for use in transport or back-up energy production is technically feasible, but it seems likely that renewable energies like wind and solar could produce the hydrogen far more cheaply, the report says.

“Nuclear reactors are vulnerable to catastrophic accidents and sabotage, and they can be misused to produce materials for nuclear weapons”

In reality the nuclear industry is shrinking in international importance and is likely to continue to do so, Lyman says. According to the International Energy Agency, at the end of 2010, there were 441 operating nuclear power reactors worldwide, with a total electrical power capacity of 375 gigawatts of electricity (GWe).

At the end of 2019, there were 443 operating reactors − only two more than in 2010 − with a total generating capacity of 392 GWe. This represented a decrease of over 20% in the share of global electricity demand met by nuclear energy compared with 2010.

Lyman says the US Department of Energy would be more sensible trying to address the outstanding safety, security and cost issues of existing light water reactors in the US, rather than attempting to commercialise new and unproven designs. If the idea is to tackle climate change, improving existing designs is a better bet.

The report notes that it is not just the US that is having trouble with nuclear technology: Europe is also suffering severe delays and cost overruns with new plants at Olkiluoto in Finland, Flamanville in France and Hinkley Point C in the UK.

Lyman’s comments might be of interest to the British government, which has just published its integrated review of defence and foreign policy.

Military link declared

In it the government linked the future of the civil and defence nuclear capabilities of the country, showing that a healthy civil sector was important for propping up the military. This is controversial because of the government’s decision announced in the same review to increase the number of nuclear warheads from 180 to 260, threatening an escalation of the international arms race.

Although Lyman does not mention it, there is a clear crossover between civil and nuclear industries in the US, the UK, China, Russia and France. This is made more obvious because of the few countries that have renounced nuclear weapons − for example only Germany, Italy and Spain have shown no interest in building any kind of nuclear station. This is simply because renewables are cheaper and produce low carbon power far more quickly.

But the link between civil and defence nuclear industries does explain why in the UK the government is spending £215m ($298m) on research and development into the civil use of the small medium reactors championed by a consortium headed by Rolls-Royce, which is also one of the country’s major defence contractors. Rolls-Royce wants to build 16 of these reactors in a factory and assemble them in various parts of the country. It is also looking to sell them into Europe to gain economies of scale.

Judging by the UCS analysis, this deployment of as yet unproven new nuclear technologies is unlikely to be in time to help the climate crisis – one of the claims that both the US and UK governments and Rolls-Royce itself are making. − Climate News Network

Governments are investing in a new range of small nuclear power plants, with little chance they’ll ease the climate crisis.

LONDON, 24 March, 2021 − Claims that a new generation of so-called advanced, safe and easier-to-build nuclear reactors − small nuclear power plants − will be vital to combat climate change are an illusion, and the idea should be abandoned, says a group of scientists.

Their report, “Advanced” is not always better, published by the US Union of Concerned Scientists (UCS), examines all the proposed new types of reactor under development in the US and fails to find any that could be developed in time to help deal with the urgent need to cut carbon emissions. The US government is spending $600 million on supporting these prototypes.

While the report goes into details only about the many designs of small and medium-sized reactors being developed by US companies, it is a serious blow to the worldwide nuclear industry because the technologies are all similar to those also being underwritten by taxpayers in Canada, the UK, Russia and China. This is a market the World Economic Forum claimed in January could be worth $300 billion by 2040.

Edwin Lyman, who wrote the report, and is the director of nuclear power safety in the UCS Climate and Energy Program, thinks the WEF estimate is extremely unlikely. He comments on nuclear power in general: “The technology has fundamental safety and security disadvantages compared with other low-carbon sources.

“Nuclear reactors and their associated facilities for fuel production and waste handling are vulnerable to catastrophic accidents and sabotage, and they can be misused to produce materials for nuclear weapons. The nuclear industry, policymakers, and regulators must address these shortcomings fully if the global use of nuclear power is to increase without posing unacceptable risks to public health, the environment and international peace and security.”

Cheaper options

Lyman says none of the new reactors appears to solve any of these problems. Also, he says, the industry’s claims that their designs could cost less, be built quickly, reduce the production of nuclear waste, use uranium more efficiently and reduce the risk of nuclear proliferation have yet to be proved. The developers have also yet to demonstrate that the new generation of reactors has improved safety features enabling them to shut down quickly in the event of attack or accident.

Lyman examines the idea that reactors can be placed near cities or industry so that the waste heat from their electricity generation can be used in district heating or for industrial processes.

He says there is no evidence that the public would be keen on the idea of having nuclear power stations planted in their neighbourhoods.

Another of the industry’s ideas for using the power of the new nuclear stations to produce “green hydrogen” for use in transport or back-up energy production is technically feasible, but it seems likely that renewable energies like wind and solar could produce the hydrogen far more cheaply, the report says.

“Nuclear reactors are vulnerable to catastrophic accidents and sabotage, and they can be misused to produce materials for nuclear weapons”

In reality the nuclear industry is shrinking in international importance and is likely to continue to do so, Lyman says. According to the International Energy Agency, at the end of 2010, there were 441 operating nuclear power reactors worldwide, with a total electrical power capacity of 375 gigawatts of electricity (GWe).

At the end of 2019, there were 443 operating reactors − only two more than in 2010 − with a total generating capacity of 392 GWe. This represented a decrease of over 20% in the share of global electricity demand met by nuclear energy compared with 2010.

Lyman says the US Department of Energy would be more sensible trying to address the outstanding safety, security and cost issues of existing light water reactors in the US, rather than attempting to commercialise new and unproven designs. If the idea is to tackle climate change, improving existing designs is a better bet.

The report notes that it is not just the US that is having trouble with nuclear technology: Europe is also suffering severe delays and cost overruns with new plants at Olkiluoto in Finland, Flamanville in France and Hinkley Point C in the UK.

Lyman’s comments might be of interest to the British government, which has just published its integrated review of defence and foreign policy.

Military link declared

In it the government linked the future of the civil and defence nuclear capabilities of the country, showing that a healthy civil sector was important for propping up the military. This is controversial because of the government’s decision announced in the same review to increase the number of nuclear warheads from 180 to 260, threatening an escalation of the international arms race.

Although Lyman does not mention it, there is a clear crossover between civil and nuclear industries in the US, the UK, China, Russia and France. This is made more obvious because of the few countries that have renounced nuclear weapons − for example only Germany, Italy and Spain have shown no interest in building any kind of nuclear station. This is simply because renewables are cheaper and produce low carbon power far more quickly.

But the link between civil and defence nuclear industries does explain why in the UK the government is spending £215m ($298m) on research and development into the civil use of the small medium reactors championed by a consortium headed by Rolls-Royce, which is also one of the country’s major defence contractors. Rolls-Royce wants to build 16 of these reactors in a factory and assemble them in various parts of the country. It is also looking to sell them into Europe to gain economies of scale.

Judging by the UCS analysis, this deployment of as yet unproven new nuclear technologies is unlikely to be in time to help the climate crisis – one of the claims that both the US and UK governments and Rolls-Royce itself are making. − Climate News Network

The poor pay for the grim legacy of uranium mining

Uranium mining costs humans dearly. The nuclear industry prefers not to discuss the price paid by miners and their families.

LONDON, 31 July, 2020 – The scars left on barren landscapes by uranium mining are rendered more frightening in many countries – in the former Soviet bloc, for example – by the signs warning would-be visitors of their presence, decorated with little more than a skull-and-crossbones.

The signs use few words to explain that vast areas of land, containing small mountains of mine tailings, will be dangerous to intruders for billions of years, by which time the deadly alpha particles in the dust should have decayed.

But the terrible price paid by the poor miners and indigenous peoples who have had their lands torn apart to get at the uranium ore is now laid bare  in a new publication, The Uranium Atlas, Facts and Data about the Raw Material of the Nuclear Age. It is the work of a band of researchers from around the world, first published in German and now updated in English.

The central message of the Atlas is uncompromising: “The price for keeping the nuclear power stations in South Korea, China, Japan, Russia, the EU and USA online is paid by the people in the mining regions: their health and livelihoods are destroyed.”

The particles inhaled by uranium miners bring lung cancer, and the dust carried back to their homes endangers their families, even unborn children. Although uranium is everywhere, even in seawater, extracting it for use in nuclear power stations is a messy business.

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided”

The Atlas shows how extracting uranium from the ore is carried out in remote locations, often on the lands of indigenous peoples, for example in Canada, Australia and the US. More recently, though, two African states, Namibia and Niger, have joined the list of prime examples.

At the mines large quantities of rock have to be crushed and treated with chemicals to leach out the uranium. For a uranium content of 0.1%, 10,000 tonnes of ore must be mined to yield one tonne of uranium.

The ore is then ground down and the uranium chemically extracted, producing a form of powdered concentrate called yellowcake, totalling 7.11 kgs of usable material left over from the original 10,000 tonnes of ore.

The yellowcake then has to be transported long distances to the countries which use nuclear power so that they can extract the fissile material needed to fuel power stations and make nuclear weapons – uranium-235.

Little European mining

The point the “Atlas” is making is that supposedly civilised and crowded countries that rely on nuclear power to keep the lights on will not allow uranium mining at home because of the destruction it causes and the danger to the health of their citizens.

The authors write: ”At the start of 2020 there were still 124 nuclear power plants in operation in the EU, making it the world’s largest consumer of uranium. The nuclear fuel is imported from outside the EU and there is strong opposition to any new uranium mining in Europe.”

With maps and diagrams the Atlas traces the history and current operations of the uranium mining business, but comments: “The exact pathway of uranium is hard to follow: the mining companies do not disclose where they deliver the uranium and the power plant operators do not reveal where the uranium for their power plants comes from.”

Not surprisingly, the researchers conclude that nuclear power has no place in the modern world, and that renewable technologies are both cheaper and safer than power from uranium.

They say: “One kilogram of uranium-235 contains enough energy to generate 24 million kilowatt hours of heat; one kilogram of coal can generate only eight. As a result the nuclear industry has always promoted nuclear power as a better alternative to fossil fuels, and is now using the climate crisis to justify its continued – and expanded – use.

High subsidies

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided.

“For almost 70 years the nuclear industry has been highly subsidised and has never been able to stand on its own two feet economically.

“From cleaning up the damage caused by uranium mining, to routine operations, to decommissioning and final storage of nuclear waste, the industry has neither calculated the real costs of its activities nor has it adequately disclosed its financial conditions.

“Viewed as an essential component of the construction of nuclear weapons and the maintenance of nuclear submarine fleets, the nuclear power industry has always been a steady recipient of generous state subsidies.” – Climate News Network

Uranium mining costs humans dearly. The nuclear industry prefers not to discuss the price paid by miners and their families.

LONDON, 31 July, 2020 – The scars left on barren landscapes by uranium mining are rendered more frightening in many countries – in the former Soviet bloc, for example – by the signs warning would-be visitors of their presence, decorated with little more than a skull-and-crossbones.

The signs use few words to explain that vast areas of land, containing small mountains of mine tailings, will be dangerous to intruders for billions of years, by which time the deadly alpha particles in the dust should have decayed.

But the terrible price paid by the poor miners and indigenous peoples who have had their lands torn apart to get at the uranium ore is now laid bare  in a new publication, The Uranium Atlas, Facts and Data about the Raw Material of the Nuclear Age. It is the work of a band of researchers from around the world, first published in German and now updated in English.

The central message of the Atlas is uncompromising: “The price for keeping the nuclear power stations in South Korea, China, Japan, Russia, the EU and USA online is paid by the people in the mining regions: their health and livelihoods are destroyed.”

The particles inhaled by uranium miners bring lung cancer, and the dust carried back to their homes endangers their families, even unborn children. Although uranium is everywhere, even in seawater, extracting it for use in nuclear power stations is a messy business.

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided”

The Atlas shows how extracting uranium from the ore is carried out in remote locations, often on the lands of indigenous peoples, for example in Canada, Australia and the US. More recently, though, two African states, Namibia and Niger, have joined the list of prime examples.

At the mines large quantities of rock have to be crushed and treated with chemicals to leach out the uranium. For a uranium content of 0.1%, 10,000 tonnes of ore must be mined to yield one tonne of uranium.

The ore is then ground down and the uranium chemically extracted, producing a form of powdered concentrate called yellowcake, totalling 7.11 kgs of usable material left over from the original 10,000 tonnes of ore.

The yellowcake then has to be transported long distances to the countries which use nuclear power so that they can extract the fissile material needed to fuel power stations and make nuclear weapons – uranium-235.

Little European mining

The point the “Atlas” is making is that supposedly civilised and crowded countries that rely on nuclear power to keep the lights on will not allow uranium mining at home because of the destruction it causes and the danger to the health of their citizens.

The authors write: ”At the start of 2020 there were still 124 nuclear power plants in operation in the EU, making it the world’s largest consumer of uranium. The nuclear fuel is imported from outside the EU and there is strong opposition to any new uranium mining in Europe.”

With maps and diagrams the Atlas traces the history and current operations of the uranium mining business, but comments: “The exact pathway of uranium is hard to follow: the mining companies do not disclose where they deliver the uranium and the power plant operators do not reveal where the uranium for their power plants comes from.”

Not surprisingly, the researchers conclude that nuclear power has no place in the modern world, and that renewable technologies are both cheaper and safer than power from uranium.

They say: “One kilogram of uranium-235 contains enough energy to generate 24 million kilowatt hours of heat; one kilogram of coal can generate only eight. As a result the nuclear industry has always promoted nuclear power as a better alternative to fossil fuels, and is now using the climate crisis to justify its continued – and expanded – use.

High subsidies

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided.

“For almost 70 years the nuclear industry has been highly subsidised and has never been able to stand on its own two feet economically.

“From cleaning up the damage caused by uranium mining, to routine operations, to decommissioning and final storage of nuclear waste, the industry has neither calculated the real costs of its activities nor has it adequately disclosed its financial conditions.

“Viewed as an essential component of the construction of nuclear weapons and the maintenance of nuclear submarine fleets, the nuclear power industry has always been a steady recipient of generous state subsidies.” – Climate News Network

UK plutonium stockpile is a costly headache

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The end of reprocessing spent nuclear fuel has left an expensive UK plutonium stockpile with no peaceful use.

LONDON, 23 April, 2020 − For 70 years Britain has been dissolving spent nuclear fuel in acid, separating the plutonium and uranium it contains and stockpiling the plutonium in the hope of finding some peaceful use for it, to no avail: all it has to show today is a UK plutonium stockpile.

To comply with its international obligations not to discharge any more liquid radioactive waste into the Irish Sea, the United Kingdom government agreed more than 20 years ago under the Ospar Convention on the protection of the north-east Atlantic to shut its nuclear fuel reprocessing works at Sellafield in northwestern England at the end of this year.

As well as 139 tonnes of plutonium, which has to be both carefully stored to prevent a nuclear chain reaction and protected by armed guards as well, to avoid terrorist attack, there are thousands of tonnes of depleted uranium at Sellafield.

The reprocessing plant shut down prematurely as a result of a Covid-19 outbreak among its employees, and most of the 11,500 workers there have been sent home, leaving a skeleton staff to keep the site safe. Whether the plant will be restarted after the epidemic is unknown.

Fewer than half Sellafield’s workers are involved in reprocessing. Most are engaged in cleaning up after decades of nuclear energy generation and related experiments. There are 200 buildings at the massive site, many of them disused. It costs British taxpayers around £2.3 billion (US$2.8bn) a year to run Sellafield and keep it safe.

Solution needed soon

While the British government has been reluctant to make any decision on what to do about its stockpiled plutonium and uranium, the Bulletin of the Atomic Scientists has expressed alarm about the danger it poses.

“The United Kingdom has to find a solution for its plutonium stockpile, and quickly,” its report says.

The scientists point out that there is enough plutonium to make hundreds of thousands of nuclear weapons, and that it is a permanent proliferation risk. The annual cost of £73m to keep the plutonium safe is dwarfed by the much larger cost of trying to make safe the whole site with its thousands of tonnes of nuclear waste.

The Bulletin reports that the original reason for the reprocessing works was to produce plutonium for nuclear weapons. The UK supplied the US at times, as well as producing its own weapons. A 2014 agreement between the British and US governments gives an outline of the nuclear links which then existed between them.

“The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource”

For decades there were also plans to use plutonium in fast breeder reactors and to blend it with uranium to make Mixed Oxide Fuel (MOX) .

This was a time when governments believed that the world’s supply of uranium would run out and that re-using it with plutonium would be a way of generating large amounts of electricity, as a way to avoid burning fossil fuels and as part of the solution to climate change.

MOX was one possible fuel. Using recycled plutonium in fast breeder reactors was another possibility. And a third option was new-style reactors that burned plutonium, theoretically possible but never built.

But uranium did not run out, and MOX did not prove economic. It and the new reactors proved so technically difficult they were abandoned.

Despite these setbacks, successive British governments have continued reprocessing, always refusing to class plutonium as a waste, while still exploring ways of using it in some kind of new reactor. This is likely to remain the official position even after reprocessing ends in December.

The UK’s Nuclear Decommissioning Authority, the agency that runs Sellafield, faced by this indecision, continues to store the plutonium behind three barbed-wire barricades, guarded by the only armed civilian police force in the country.

Here to stay?

One of the tricky political problems is that 23 tonnes of the plutonium is owned by Japan, which sent its spent fuel to be reprocessed at Sellafield but is unable to use the recycled material, which cannot be returned to Japan in its current state because of nuclear proliferation concerns.

The Bulletin of the Atomic Scientists has examined all the potential options suggested to put the 139 tonnes of plutonium to some useful peaceful purpose (in other words, to create energy), but concludes that none of them is viable.

It says: “The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource, and authority should again take a closer look at immobilisation options.”

Among the solutions that have been suggested is to mix the plutonium with ceramics to immobilise and stabilise it, so that it can be safely stored or disposed of, not used for weapons. The government has so far rejected that option. − Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The end of reprocessing spent nuclear fuel has left an expensive UK plutonium stockpile with no peaceful use.

LONDON, 23 April, 2020 − For 70 years Britain has been dissolving spent nuclear fuel in acid, separating the plutonium and uranium it contains and stockpiling the plutonium in the hope of finding some peaceful use for it, to no avail: all it has to show today is a UK plutonium stockpile.

To comply with its international obligations not to discharge any more liquid radioactive waste into the Irish Sea, the United Kingdom government agreed more than 20 years ago under the Ospar Convention on the protection of the north-east Atlantic to shut its nuclear fuel reprocessing works at Sellafield in northwestern England at the end of this year.

As well as 139 tonnes of plutonium, which has to be both carefully stored to prevent a nuclear chain reaction and protected by armed guards as well, to avoid terrorist attack, there are thousands of tonnes of depleted uranium at Sellafield.

The reprocessing plant shut down prematurely as a result of a Covid-19 outbreak among its employees, and most of the 11,500 workers there have been sent home, leaving a skeleton staff to keep the site safe. Whether the plant will be restarted after the epidemic is unknown.

Fewer than half Sellafield’s workers are involved in reprocessing. Most are engaged in cleaning up after decades of nuclear energy generation and related experiments. There are 200 buildings at the massive site, many of them disused. It costs British taxpayers around £2.3 billion (US$2.8bn) a year to run Sellafield and keep it safe.

Solution needed soon

While the British government has been reluctant to make any decision on what to do about its stockpiled plutonium and uranium, the Bulletin of the Atomic Scientists has expressed alarm about the danger it poses.

“The United Kingdom has to find a solution for its plutonium stockpile, and quickly,” its report says.

The scientists point out that there is enough plutonium to make hundreds of thousands of nuclear weapons, and that it is a permanent proliferation risk. The annual cost of £73m to keep the plutonium safe is dwarfed by the much larger cost of trying to make safe the whole site with its thousands of tonnes of nuclear waste.

The Bulletin reports that the original reason for the reprocessing works was to produce plutonium for nuclear weapons. The UK supplied the US at times, as well as producing its own weapons. A 2014 agreement between the British and US governments gives an outline of the nuclear links which then existed between them.

“The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource”

For decades there were also plans to use plutonium in fast breeder reactors and to blend it with uranium to make Mixed Oxide Fuel (MOX) .

This was a time when governments believed that the world’s supply of uranium would run out and that re-using it with plutonium would be a way of generating large amounts of electricity, as a way to avoid burning fossil fuels and as part of the solution to climate change.

MOX was one possible fuel. Using recycled plutonium in fast breeder reactors was another possibility. And a third option was new-style reactors that burned plutonium, theoretically possible but never built.

But uranium did not run out, and MOX did not prove economic. It and the new reactors proved so technically difficult they were abandoned.

Despite these setbacks, successive British governments have continued reprocessing, always refusing to class plutonium as a waste, while still exploring ways of using it in some kind of new reactor. This is likely to remain the official position even after reprocessing ends in December.

The UK’s Nuclear Decommissioning Authority, the agency that runs Sellafield, faced by this indecision, continues to store the plutonium behind three barbed-wire barricades, guarded by the only armed civilian police force in the country.

Here to stay?

One of the tricky political problems is that 23 tonnes of the plutonium is owned by Japan, which sent its spent fuel to be reprocessed at Sellafield but is unable to use the recycled material, which cannot be returned to Japan in its current state because of nuclear proliferation concerns.

The Bulletin of the Atomic Scientists has examined all the potential options suggested to put the 139 tonnes of plutonium to some useful peaceful purpose (in other words, to create energy), but concludes that none of them is viable.

It says: “The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource, and authority should again take a closer look at immobilisation options.”

Among the solutions that have been suggested is to mix the plutonium with ceramics to immobilise and stabilise it, so that it can be safely stored or disposed of, not used for weapons. The government has so far rejected that option. − Climate News Network