Tag Archives: Nuclear weapons

The poor pay for the grim legacy of uranium mining

Uranium mining costs humans dearly. The nuclear industry prefers not to discuss the price paid by miners and their families.

LONDON, 31 July, 2020 – The scars left on barren landscapes by uranium mining are rendered more frightening in many countries – in the former Soviet bloc, for example – by the signs warning would-be visitors of their presence, decorated with little more than a skull-and-crossbones.

The signs use few words to explain that vast areas of land, containing small mountains of mine tailings, will be dangerous to intruders for billions of years, by which time the deadly alpha particles in the dust should have decayed.

But the terrible price paid by the poor miners and indigenous peoples who have had their lands torn apart to get at the uranium ore is now laid bare  in a new publication, The Uranium Atlas, Facts and Data about the Raw Material of the Nuclear Age. It is the work of a band of researchers from around the world, first published in German and now updated in English.

The central message of the Atlas is uncompromising: “The price for keeping the nuclear power stations in South Korea, China, Japan, Russia, the EU and USA online is paid by the people in the mining regions: their health and livelihoods are destroyed.”

The particles inhaled by uranium miners bring lung cancer, and the dust carried back to their homes endangers their families, even unborn children. Although uranium is everywhere, even in seawater, extracting it for use in nuclear power stations is a messy business.

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided”

The Atlas shows how extracting uranium from the ore is carried out in remote locations, often on the lands of indigenous peoples, for example in Canada, Australia and the US. More recently, though, two African states, Namibia and Niger, have joined the list of prime examples.

At the mines large quantities of rock have to be crushed and treated with chemicals to leach out the uranium. For a uranium content of 0.1%, 10,000 tonnes of ore must be mined to yield one tonne of uranium.

The ore is then ground down and the uranium chemically extracted, producing a form of powdered concentrate called yellowcake, totalling 7.11 kgs of usable material left over from the original 10,000 tonnes of ore.

The yellowcake then has to be transported long distances to the countries which use nuclear power so that they can extract the fissile material needed to fuel power stations and make nuclear weapons – uranium-235.

Little European mining

The point the “Atlas” is making is that supposedly civilised and crowded countries that rely on nuclear power to keep the lights on will not allow uranium mining at home because of the destruction it causes and the danger to the health of their citizens.

The authors write: ”At the start of 2020 there were still 124 nuclear power plants in operation in the EU, making it the world’s largest consumer of uranium. The nuclear fuel is imported from outside the EU and there is strong opposition to any new uranium mining in Europe.”

With maps and diagrams the Atlas traces the history and current operations of the uranium mining business, but comments: “The exact pathway of uranium is hard to follow: the mining companies do not disclose where they deliver the uranium and the power plant operators do not reveal where the uranium for their power plants comes from.”

Not surprisingly, the researchers conclude that nuclear power has no place in the modern world, and that renewable technologies are both cheaper and safer than power from uranium.

They say: “One kilogram of uranium-235 contains enough energy to generate 24 million kilowatt hours of heat; one kilogram of coal can generate only eight. As a result the nuclear industry has always promoted nuclear power as a better alternative to fossil fuels, and is now using the climate crisis to justify its continued – and expanded – use.

High subsidies

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided.

“For almost 70 years the nuclear industry has been highly subsidised and has never been able to stand on its own two feet economically.

“From cleaning up the damage caused by uranium mining, to routine operations, to decommissioning and final storage of nuclear waste, the industry has neither calculated the real costs of its activities nor has it adequately disclosed its financial conditions.

“Viewed as an essential component of the construction of nuclear weapons and the maintenance of nuclear submarine fleets, the nuclear power industry has always been a steady recipient of generous state subsidies.” – Climate News Network

Uranium mining costs humans dearly. The nuclear industry prefers not to discuss the price paid by miners and their families.

LONDON, 31 July, 2020 – The scars left on barren landscapes by uranium mining are rendered more frightening in many countries – in the former Soviet bloc, for example – by the signs warning would-be visitors of their presence, decorated with little more than a skull-and-crossbones.

The signs use few words to explain that vast areas of land, containing small mountains of mine tailings, will be dangerous to intruders for billions of years, by which time the deadly alpha particles in the dust should have decayed.

But the terrible price paid by the poor miners and indigenous peoples who have had their lands torn apart to get at the uranium ore is now laid bare  in a new publication, The Uranium Atlas, Facts and Data about the Raw Material of the Nuclear Age. It is the work of a band of researchers from around the world, first published in German and now updated in English.

The central message of the Atlas is uncompromising: “The price for keeping the nuclear power stations in South Korea, China, Japan, Russia, the EU and USA online is paid by the people in the mining regions: their health and livelihoods are destroyed.”

The particles inhaled by uranium miners bring lung cancer, and the dust carried back to their homes endangers their families, even unborn children. Although uranium is everywhere, even in seawater, extracting it for use in nuclear power stations is a messy business.

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided”

The Atlas shows how extracting uranium from the ore is carried out in remote locations, often on the lands of indigenous peoples, for example in Canada, Australia and the US. More recently, though, two African states, Namibia and Niger, have joined the list of prime examples.

At the mines large quantities of rock have to be crushed and treated with chemicals to leach out the uranium. For a uranium content of 0.1%, 10,000 tonnes of ore must be mined to yield one tonne of uranium.

The ore is then ground down and the uranium chemically extracted, producing a form of powdered concentrate called yellowcake, totalling 7.11 kgs of usable material left over from the original 10,000 tonnes of ore.

The yellowcake then has to be transported long distances to the countries which use nuclear power so that they can extract the fissile material needed to fuel power stations and make nuclear weapons – uranium-235.

Little European mining

The point the “Atlas” is making is that supposedly civilised and crowded countries that rely on nuclear power to keep the lights on will not allow uranium mining at home because of the destruction it causes and the danger to the health of their citizens.

The authors write: ”At the start of 2020 there were still 124 nuclear power plants in operation in the EU, making it the world’s largest consumer of uranium. The nuclear fuel is imported from outside the EU and there is strong opposition to any new uranium mining in Europe.”

With maps and diagrams the Atlas traces the history and current operations of the uranium mining business, but comments: “The exact pathway of uranium is hard to follow: the mining companies do not disclose where they deliver the uranium and the power plant operators do not reveal where the uranium for their power plants comes from.”

Not surprisingly, the researchers conclude that nuclear power has no place in the modern world, and that renewable technologies are both cheaper and safer than power from uranium.

They say: “One kilogram of uranium-235 contains enough energy to generate 24 million kilowatt hours of heat; one kilogram of coal can generate only eight. As a result the nuclear industry has always promoted nuclear power as a better alternative to fossil fuels, and is now using the climate crisis to justify its continued – and expanded – use.

High subsidies

“Any mention of the health risks of uranium mining, the possibility of a nuclear meltdown, and the still unsolved issue of the ‘permanent disposal’ of highly radioactive nuclear waste is studiously avoided.

“For almost 70 years the nuclear industry has been highly subsidised and has never been able to stand on its own two feet economically.

“From cleaning up the damage caused by uranium mining, to routine operations, to decommissioning and final storage of nuclear waste, the industry has neither calculated the real costs of its activities nor has it adequately disclosed its financial conditions.

“Viewed as an essential component of the construction of nuclear weapons and the maintenance of nuclear submarine fleets, the nuclear power industry has always been a steady recipient of generous state subsidies.” – Climate News Network

UK plutonium stockpile is a costly headache

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The end of reprocessing spent nuclear fuel has left an expensive UK plutonium stockpile with no peaceful use.

LONDON, 23 April, 2020 − For 70 years Britain has been dissolving spent nuclear fuel in acid, separating the plutonium and uranium it contains and stockpiling the plutonium in the hope of finding some peaceful use for it, to no avail: all it has to show today is a UK plutonium stockpile.

To comply with its international obligations not to discharge any more liquid radioactive waste into the Irish Sea, the United Kingdom government agreed more than 20 years ago under the Ospar Convention on the protection of the north-east Atlantic to shut its nuclear fuel reprocessing works at Sellafield in northwestern England at the end of this year.

As well as 139 tonnes of plutonium, which has to be both carefully stored to prevent a nuclear chain reaction and protected by armed guards as well, to avoid terrorist attack, there are thousands of tonnes of depleted uranium at Sellafield.

The reprocessing plant shut down prematurely as a result of a Covid-19 outbreak among its employees, and most of the 11,500 workers there have been sent home, leaving a skeleton staff to keep the site safe. Whether the plant will be restarted after the epidemic is unknown.

Fewer than half Sellafield’s workers are involved in reprocessing. Most are engaged in cleaning up after decades of nuclear energy generation and related experiments. There are 200 buildings at the massive site, many of them disused. It costs British taxpayers around £2.3 billion (US$2.8bn) a year to run Sellafield and keep it safe.

Solution needed soon

While the British government has been reluctant to make any decision on what to do about its stockpiled plutonium and uranium, the Bulletin of the Atomic Scientists has expressed alarm about the danger it poses.

“The United Kingdom has to find a solution for its plutonium stockpile, and quickly,” its report says.

The scientists point out that there is enough plutonium to make hundreds of thousands of nuclear weapons, and that it is a permanent proliferation risk. The annual cost of £73m to keep the plutonium safe is dwarfed by the much larger cost of trying to make safe the whole site with its thousands of tonnes of nuclear waste.

The Bulletin reports that the original reason for the reprocessing works was to produce plutonium for nuclear weapons. The UK supplied the US at times, as well as producing its own weapons. A 2014 agreement between the British and US governments gives an outline of the nuclear links which then existed between them.

“The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource”

For decades there were also plans to use plutonium in fast breeder reactors and to blend it with uranium to make Mixed Oxide Fuel (MOX) .

This was a time when governments believed that the world’s supply of uranium would run out and that re-using it with plutonium would be a way of generating large amounts of electricity, as a way to avoid burning fossil fuels and as part of the solution to climate change.

MOX was one possible fuel. Using recycled plutonium in fast breeder reactors was another possibility. And a third option was new-style reactors that burned plutonium, theoretically possible but never built.

But uranium did not run out, and MOX did not prove economic. It and the new reactors proved so technically difficult they were abandoned.

Despite these setbacks, successive British governments have continued reprocessing, always refusing to class plutonium as a waste, while still exploring ways of using it in some kind of new reactor. This is likely to remain the official position even after reprocessing ends in December.

The UK’s Nuclear Decommissioning Authority, the agency that runs Sellafield, faced by this indecision, continues to store the plutonium behind three barbed-wire barricades, guarded by the only armed civilian police force in the country.

Here to stay?

One of the tricky political problems is that 23 tonnes of the plutonium is owned by Japan, which sent its spent fuel to be reprocessed at Sellafield but is unable to use the recycled material, which cannot be returned to Japan in its current state because of nuclear proliferation concerns.

The Bulletin of the Atomic Scientists has examined all the potential options suggested to put the 139 tonnes of plutonium to some useful peaceful purpose (in other words, to create energy), but concludes that none of them is viable.

It says: “The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource, and authority should again take a closer look at immobilisation options.”

Among the solutions that have been suggested is to mix the plutonium with ceramics to immobilise and stabilise it, so that it can be safely stored or disposed of, not used for weapons. The government has so far rejected that option. − Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

The end of reprocessing spent nuclear fuel has left an expensive UK plutonium stockpile with no peaceful use.

LONDON, 23 April, 2020 − For 70 years Britain has been dissolving spent nuclear fuel in acid, separating the plutonium and uranium it contains and stockpiling the plutonium in the hope of finding some peaceful use for it, to no avail: all it has to show today is a UK plutonium stockpile.

To comply with its international obligations not to discharge any more liquid radioactive waste into the Irish Sea, the United Kingdom government agreed more than 20 years ago under the Ospar Convention on the protection of the north-east Atlantic to shut its nuclear fuel reprocessing works at Sellafield in northwestern England at the end of this year.

As well as 139 tonnes of plutonium, which has to be both carefully stored to prevent a nuclear chain reaction and protected by armed guards as well, to avoid terrorist attack, there are thousands of tonnes of depleted uranium at Sellafield.

The reprocessing plant shut down prematurely as a result of a Covid-19 outbreak among its employees, and most of the 11,500 workers there have been sent home, leaving a skeleton staff to keep the site safe. Whether the plant will be restarted after the epidemic is unknown.

Fewer than half Sellafield’s workers are involved in reprocessing. Most are engaged in cleaning up after decades of nuclear energy generation and related experiments. There are 200 buildings at the massive site, many of them disused. It costs British taxpayers around £2.3 billion (US$2.8bn) a year to run Sellafield and keep it safe.

Solution needed soon

While the British government has been reluctant to make any decision on what to do about its stockpiled plutonium and uranium, the Bulletin of the Atomic Scientists has expressed alarm about the danger it poses.

“The United Kingdom has to find a solution for its plutonium stockpile, and quickly,” its report says.

The scientists point out that there is enough plutonium to make hundreds of thousands of nuclear weapons, and that it is a permanent proliferation risk. The annual cost of £73m to keep the plutonium safe is dwarfed by the much larger cost of trying to make safe the whole site with its thousands of tonnes of nuclear waste.

The Bulletin reports that the original reason for the reprocessing works was to produce plutonium for nuclear weapons. The UK supplied the US at times, as well as producing its own weapons. A 2014 agreement between the British and US governments gives an outline of the nuclear links which then existed between them.

“The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource”

For decades there were also plans to use plutonium in fast breeder reactors and to blend it with uranium to make Mixed Oxide Fuel (MOX) .

This was a time when governments believed that the world’s supply of uranium would run out and that re-using it with plutonium would be a way of generating large amounts of electricity, as a way to avoid burning fossil fuels and as part of the solution to climate change.

MOX was one possible fuel. Using recycled plutonium in fast breeder reactors was another possibility. And a third option was new-style reactors that burned plutonium, theoretically possible but never built.

But uranium did not run out, and MOX did not prove economic. It and the new reactors proved so technically difficult they were abandoned.

Despite these setbacks, successive British governments have continued reprocessing, always refusing to class plutonium as a waste, while still exploring ways of using it in some kind of new reactor. This is likely to remain the official position even after reprocessing ends in December.

The UK’s Nuclear Decommissioning Authority, the agency that runs Sellafield, faced by this indecision, continues to store the plutonium behind three barbed-wire barricades, guarded by the only armed civilian police force in the country.

Here to stay?

One of the tricky political problems is that 23 tonnes of the plutonium is owned by Japan, which sent its spent fuel to be reprocessed at Sellafield but is unable to use the recycled material, which cannot be returned to Japan in its current state because of nuclear proliferation concerns.

The Bulletin of the Atomic Scientists has examined all the potential options suggested to put the 139 tonnes of plutonium to some useful peaceful purpose (in other words, to create energy), but concludes that none of them is viable.

It says: “The British government, the Nuclear Decommissioning Authority, and reactor operators in general should accept that separated plutonium is a burden, not a resource, and authority should again take a closer look at immobilisation options.”

Among the solutions that have been suggested is to mix the plutonium with ceramics to immobilise and stabilise it, so that it can be safely stored or disposed of, not used for weapons. The government has so far rejected that option. − Climate News Network