Tag Archives: Renewable energy

Nuclear power uses market fix to stifle wind energy

UK wind energy is forced to shut down to let more expensive nuclear stations go on operating at full power.

LONDON, 18 June, 2020 − The United Kingdom’s nuclear industry is hindering the use of wind energy and pushing up the prices it charges consumers, because its reactors cannot be turned down when electricity production exceeds demand, campaigners say.

A report by a new British group, 100% Renewable UK, says the inflexible nature of nuclear, which means that it normally has to run at full capacity, is no longer suitable for a 21st century electricity supply.

Backed by a large group of local authorities and academic experts, the group says in the report that nuclear power stations, and the notion that they are essential for what is called baseload power, should be consigned to history.

Baseload power, it argues, is no longer needed, and the stations are in fact hindering the development of the flexible grids required in the modern world.

The report particularly studies the wind power compensation payments which the nuclear operators in Scotland had to pay to windfarms in 2017 and 2019.

“This report shows that the goal of 100% renewable energy generation can be realised much earlier than ever thought possible”

The large amounts spent in this way, called “constraint payments”, are triggered when windfarms are asked by the National Grid to shut down production, to stop the electricity network from being overloaded. When supply exceeds demand it threatens the stability of the Grid, which then gives the nuclear stations priority, allowing them to keep running at full power.

Wind farms received compensation for the electricity they would have produced but didn’t: £100 million in 2017 and £130m in 2019.

The report, using data produced by energy consultants Cornwall Insight,  showed that in 2017 94% of the wind power that was “constrained” could have been used had nuclear not been operating, or had it been turned off instead. In 2019 the figure was 77%.

The £230m payment to wind farms for lost production was used by the anti-wind and pro-nuclear lobby to claim that it was excess wind power that was costing consumers money. However, the report argues that it was the inability of the inflexible nuclear plants to turn down their power that should be singled out, saying it would be just as reasonable to blame them for the need for compensation.

What is needed, it says, is a build-up of storage capacity for excess renewable power: large-scale batteries, the use of batteries in electric cars connected to the grid, pump storage and green hydrogen, for example, and the abandonment of nuclear power altogether because it does not suit modern needs.

Wrong culprit

Dr David Toke, from the University of Aberdeen, author of the report, said: “It is wrong for wind power to be blamed by the media for these compensation payments. Inflexible operation of nuclear power plants is switching off wind turbines.

“Essentially, cheaper electricity production from wind farms is being turned off in order to protect production from nuclear power plants, whose output is much more expensive to manage.”

The report also says that the UK government’s support for more nuclear stations will only make things worse, giving priority to much more expensive and inflexible electricity production from new stations, like Hinkley Point C in the West of England, at the expense of much cheaper wind and solar power.

Councillor David Blackburn, chairman of the organisation Nuclear Free Local Authorities, who backs the campaign for 100% renewable energy by 2050, said: “The report confirms to us that the outdated baseload energy model (of nuclear power) is hindering the growth of renewable energy. It is time for a wholesale reform to a decentralised energy model that responds better to public and business needs whilst tackling the climate crisis. “

“This report shows that, with a change of policy direction, the goal of 100% renewable energy generation can be realised much earlier than ever thought possible.” − Climate News Network

UK wind energy is forced to shut down to let more expensive nuclear stations go on operating at full power.

LONDON, 18 June, 2020 − The United Kingdom’s nuclear industry is hindering the use of wind energy and pushing up the prices it charges consumers, because its reactors cannot be turned down when electricity production exceeds demand, campaigners say.

A report by a new British group, 100% Renewable UK, says the inflexible nature of nuclear, which means that it normally has to run at full capacity, is no longer suitable for a 21st century electricity supply.

Backed by a large group of local authorities and academic experts, the group says in the report that nuclear power stations, and the notion that they are essential for what is called baseload power, should be consigned to history.

Baseload power, it argues, is no longer needed, and the stations are in fact hindering the development of the flexible grids required in the modern world.

The report particularly studies the wind power compensation payments which the nuclear operators in Scotland had to pay to windfarms in 2017 and 2019.

“This report shows that the goal of 100% renewable energy generation can be realised much earlier than ever thought possible”

The large amounts spent in this way, called “constraint payments”, are triggered when windfarms are asked by the National Grid to shut down production, to stop the electricity network from being overloaded. When supply exceeds demand it threatens the stability of the Grid, which then gives the nuclear stations priority, allowing them to keep running at full power.

Wind farms received compensation for the electricity they would have produced but didn’t: £100 million in 2017 and £130m in 2019.

The report, using data produced by energy consultants Cornwall Insight,  showed that in 2017 94% of the wind power that was “constrained” could have been used had nuclear not been operating, or had it been turned off instead. In 2019 the figure was 77%.

The £230m payment to wind farms for lost production was used by the anti-wind and pro-nuclear lobby to claim that it was excess wind power that was costing consumers money. However, the report argues that it was the inability of the inflexible nuclear plants to turn down their power that should be singled out, saying it would be just as reasonable to blame them for the need for compensation.

What is needed, it says, is a build-up of storage capacity for excess renewable power: large-scale batteries, the use of batteries in electric cars connected to the grid, pump storage and green hydrogen, for example, and the abandonment of nuclear power altogether because it does not suit modern needs.

Wrong culprit

Dr David Toke, from the University of Aberdeen, author of the report, said: “It is wrong for wind power to be blamed by the media for these compensation payments. Inflexible operation of nuclear power plants is switching off wind turbines.

“Essentially, cheaper electricity production from wind farms is being turned off in order to protect production from nuclear power plants, whose output is much more expensive to manage.”

The report also says that the UK government’s support for more nuclear stations will only make things worse, giving priority to much more expensive and inflexible electricity production from new stations, like Hinkley Point C in the West of England, at the expense of much cheaper wind and solar power.

Councillor David Blackburn, chairman of the organisation Nuclear Free Local Authorities, who backs the campaign for 100% renewable energy by 2050, said: “The report confirms to us that the outdated baseload energy model (of nuclear power) is hindering the growth of renewable energy. It is time for a wholesale reform to a decentralised energy model that responds better to public and business needs whilst tackling the climate crisis. “

“This report shows that, with a change of policy direction, the goal of 100% renewable energy generation can be realised much earlier than ever thought possible.” − Climate News Network

Markets reel as oil major opts to downgrade itself

It’s all change as one oil major writes down its assets, seeing a possible 30-year slump ahead in global demand.

LONDON, 16 June, 2020 – This week, BP, one of the so-called super oil majors, said it was writing down or reducing the value of its assets by between US$13 billion (£10.35bn) and US$17.5bn (£14bn). BP’s shares fell by 5.4% after the news was announced, making it one of the biggest fallers on the FTSE 100 share index.

For several years climate scientists and others have been saying that fossil fuels must be left untapped in order to tackle the dangers posed by climate change: such resources, described as “stranded assets”, should not be included in the fossil fuel companies’ balance sheets.

In an announcement sending shock waves through the oil industry and rattling global stock markets, BP said that it was not only downgrading its own value but, as part of a review of the company’s activities, it was also rethinking future exploration plans, hinting at leaving some of its worldwide fossil fuel investments in the ground.

BP says the main reason for its action is the Covid pandemic – energy demand is slack and oil prices will likely remain at their present relatively low level for years to come. But the company also acknowledges its revaluation is a reflection of moves towards a low carbon future.

“It has finally dawned on BP that the climate emergency is going to make oil worth less ”

“BP now sees the prospect of the pandemic having an enduring impact on the global economy, with the potential for weaker demand for energy for a sustained period”, said a company statement.

“The aftermath of the pandemic will accelerate the pace of transition to a lower carbon economy.”

All this will be heartening news to those trying to prevent the world from veering toward climate catastrophe.

The oil majors have known the impact of their activities on the climate for decades but, in the pursuit of profits, chose to ignore reality. Multi-million dollar public relations campaigns have “greenwashed” their operations – and deliberately misinformed the public.

In the past BP has emphasised its green credentials, making a commitment to tackling climate change and, at one stage, labelling itself as a “beyond petroleum” company.

Net zero aim

But then came the 2010 Gulf of Mexico disaster, when an explosion on a BP-leased rig killed 11 workers: thousands of tonnes of oil leaked into the sea in what was one of the worst environmental disasters in US history.

In recent times, under Bernard Looney, its new chief executive, BP has laid out plans to become what’s termed a net zero company by 2050 or sooner.

Looney says he wants BP to be a more diversified, resilient and low carbon company in line with the 2015 Paris Agreement on climate change. This means reducing its focus on oil and gas and enlarging BP’s role in renewable projects.

Because of falling energy demand BP recently announced plans to reduce its global workforce by about 15% – a loss of 10,000 jobs.

Greenpeace, the environmental lobbying group, said BP’s revaluation would make a “huge dent” in its corporate balance sheet. “It has finally dawned on BP that the climate emergency is going to make oil worth less … BP must protect its workforce and offer training to help people move into sustainable jobs in decommissioning and offshore wind”, it said. – Climate News Network

It’s all change as one oil major writes down its assets, seeing a possible 30-year slump ahead in global demand.

LONDON, 16 June, 2020 – This week, BP, one of the so-called super oil majors, said it was writing down or reducing the value of its assets by between US$13 billion (£10.35bn) and US$17.5bn (£14bn). BP’s shares fell by 5.4% after the news was announced, making it one of the biggest fallers on the FTSE 100 share index.

For several years climate scientists and others have been saying that fossil fuels must be left untapped in order to tackle the dangers posed by climate change: such resources, described as “stranded assets”, should not be included in the fossil fuel companies’ balance sheets.

In an announcement sending shock waves through the oil industry and rattling global stock markets, BP said that it was not only downgrading its own value but, as part of a review of the company’s activities, it was also rethinking future exploration plans, hinting at leaving some of its worldwide fossil fuel investments in the ground.

BP says the main reason for its action is the Covid pandemic – energy demand is slack and oil prices will likely remain at their present relatively low level for years to come. But the company also acknowledges its revaluation is a reflection of moves towards a low carbon future.

“It has finally dawned on BP that the climate emergency is going to make oil worth less ”

“BP now sees the prospect of the pandemic having an enduring impact on the global economy, with the potential for weaker demand for energy for a sustained period”, said a company statement.

“The aftermath of the pandemic will accelerate the pace of transition to a lower carbon economy.”

All this will be heartening news to those trying to prevent the world from veering toward climate catastrophe.

The oil majors have known the impact of their activities on the climate for decades but, in the pursuit of profits, chose to ignore reality. Multi-million dollar public relations campaigns have “greenwashed” their operations – and deliberately misinformed the public.

In the past BP has emphasised its green credentials, making a commitment to tackling climate change and, at one stage, labelling itself as a “beyond petroleum” company.

Net zero aim

But then came the 2010 Gulf of Mexico disaster, when an explosion on a BP-leased rig killed 11 workers: thousands of tonnes of oil leaked into the sea in what was one of the worst environmental disasters in US history.

In recent times, under Bernard Looney, its new chief executive, BP has laid out plans to become what’s termed a net zero company by 2050 or sooner.

Looney says he wants BP to be a more diversified, resilient and low carbon company in line with the 2015 Paris Agreement on climate change. This means reducing its focus on oil and gas and enlarging BP’s role in renewable projects.

Because of falling energy demand BP recently announced plans to reduce its global workforce by about 15% – a loss of 10,000 jobs.

Greenpeace, the environmental lobbying group, said BP’s revaluation would make a “huge dent” in its corporate balance sheet. “It has finally dawned on BP that the climate emergency is going to make oil worth less … BP must protect its workforce and offer training to help people move into sustainable jobs in decommissioning and offshore wind”, it said. – Climate News Network

Carbon-neutral aircraft might work with ion drive

Ion drive works in outer space. Just possibly, plasma power could fill the skies with carbon-neutral aircraft.

LONDON, 10 June, 2020 − Chinese engineers may have designed the basis for the first carbon-neutral aircraft, perhaps a commercial jet airliner powered entirely by very hot air through an ion drive. If it works on that scale, there would be no high-octane aviation spirit, no greenhouse gas emissions and no contribution to long-term global warming.

Nor would such planes be fuelled by anything defined as ordinary matter. The driving force that delivers the thrust and overcomes gravitational pull and air friction would be plasma, the fourth state of matter, and the power source of the sun and all the stars.

Think of a jet stream of ionised atoms − dismantled atomic particles − roaring through the engines to take the vehicle to take-off speeds. That’s the ambition.

Right now, according to scientists at Wuhan University, writing in the American Institute of Physics journal AIP Advances, what they have is a propulsion thruster that utilises air plasma induced by microwave ionisation. It would simply need air and electricity to produce high temperature and pressurised plasma.

They have already assembled an experimental apparatus and used it to lift a one kilogram steel ball over a 24mm-diameter quartz tube, at half a litre per second of airflow at 400 watts to produce just 10 newtons of thrust.

“A carbon emission-free thruster could potentially be used as a jet thruster in the atmosphere”

A newton is a unit of force that will accelerate one kg of mass at one metre per second, every second. The Wuhan achievement, they say, corresponds to a jet pressure of 24,000 newtons per square metre,

That is: with higher microwave power or greater airflow, they could achieve propulsion forces and jet pressures of the kind seen every minute of every day at commercial airports.

The journey from the laboratory equipment now – a one kilowatt magnetron, a circulator, a flattened wave guide, an igniter and a quartz tube – to a set of jet engines that can carry hundreds of passengers across half the world with complete confidence is going to be a long one: right now, the experiment is an indicator simply of the astonishing ingenuity being displayed in laboratories in Asia, Europe and America to find ways of reducing dependence on fossil fuels.

And aircraft – and particularly jet aircraft – present almost intractable challenges. Until now, no tested power source other than high-quality liquid fossil fuel can deliver what is needed to fly very heavy aircraft to the upper reaches of the atmosphere.

Rocket needed first

Relatively light all-electric planes with a short range are being tested now.  The US Space Agency Nasa has already deployed plasma power – science fiction fans have long known it as ion drive – in spacecraft, but at the low thrust levels needed to change the course of a spacecraft already in very high orbit and far from the planet’s gravitational drag.

But these first space probes had to be lifted into high orbit aboard a rocket. A team at Massachusetts Institute of Technology has tested, using a different approach, a plasma-powered glider: it flew 55 metres in 12 seconds before touching down again. But the driving force would never be enough to lift a cargo or passenger plane.

Swiss scientists have explored the idea of a solar-powered plane: in effect
however this would deploy solar energy to split carbon dioxide and water and turn them into synthetic natural gas.

The Wuhan experiment has the potential for a much bigger force. For the moment, that is all it has: potential. The researchers call their prototype “a home-made device”, and they add: “Given the same power consumption, its propulsion pressure is comparable to that of conventional airplane jet engines using fossil fuels.

“Therefore, such a carbon-emission free thruster could potentially be used as a jet thruster in the atmosphere.” − Climate News Network

Ion drive works in outer space. Just possibly, plasma power could fill the skies with carbon-neutral aircraft.

LONDON, 10 June, 2020 − Chinese engineers may have designed the basis for the first carbon-neutral aircraft, perhaps a commercial jet airliner powered entirely by very hot air through an ion drive. If it works on that scale, there would be no high-octane aviation spirit, no greenhouse gas emissions and no contribution to long-term global warming.

Nor would such planes be fuelled by anything defined as ordinary matter. The driving force that delivers the thrust and overcomes gravitational pull and air friction would be plasma, the fourth state of matter, and the power source of the sun and all the stars.

Think of a jet stream of ionised atoms − dismantled atomic particles − roaring through the engines to take the vehicle to take-off speeds. That’s the ambition.

Right now, according to scientists at Wuhan University, writing in the American Institute of Physics journal AIP Advances, what they have is a propulsion thruster that utilises air plasma induced by microwave ionisation. It would simply need air and electricity to produce high temperature and pressurised plasma.

They have already assembled an experimental apparatus and used it to lift a one kilogram steel ball over a 24mm-diameter quartz tube, at half a litre per second of airflow at 400 watts to produce just 10 newtons of thrust.

“A carbon emission-free thruster could potentially be used as a jet thruster in the atmosphere”

A newton is a unit of force that will accelerate one kg of mass at one metre per second, every second. The Wuhan achievement, they say, corresponds to a jet pressure of 24,000 newtons per square metre,

That is: with higher microwave power or greater airflow, they could achieve propulsion forces and jet pressures of the kind seen every minute of every day at commercial airports.

The journey from the laboratory equipment now – a one kilowatt magnetron, a circulator, a flattened wave guide, an igniter and a quartz tube – to a set of jet engines that can carry hundreds of passengers across half the world with complete confidence is going to be a long one: right now, the experiment is an indicator simply of the astonishing ingenuity being displayed in laboratories in Asia, Europe and America to find ways of reducing dependence on fossil fuels.

And aircraft – and particularly jet aircraft – present almost intractable challenges. Until now, no tested power source other than high-quality liquid fossil fuel can deliver what is needed to fly very heavy aircraft to the upper reaches of the atmosphere.

Rocket needed first

Relatively light all-electric planes with a short range are being tested now.  The US Space Agency Nasa has already deployed plasma power – science fiction fans have long known it as ion drive – in spacecraft, but at the low thrust levels needed to change the course of a spacecraft already in very high orbit and far from the planet’s gravitational drag.

But these first space probes had to be lifted into high orbit aboard a rocket. A team at Massachusetts Institute of Technology has tested, using a different approach, a plasma-powered glider: it flew 55 metres in 12 seconds before touching down again. But the driving force would never be enough to lift a cargo or passenger plane.

Swiss scientists have explored the idea of a solar-powered plane: in effect
however this would deploy solar energy to split carbon dioxide and water and turn them into synthetic natural gas.

The Wuhan experiment has the potential for a much bigger force. For the moment, that is all it has: potential. The researchers call their prototype “a home-made device”, and they add: “Given the same power consumption, its propulsion pressure is comparable to that of conventional airplane jet engines using fossil fuels.

“Therefore, such a carbon-emission free thruster could potentially be used as a jet thruster in the atmosphere.” − Climate News Network

Fossil fuels: Heading down, but not yet out

Renewable energy is making rapid inroads into the market, but fossil fuels still wield enormous global influence.

LONDON, 20 May, 2020 – At a casual glance, you could be forgiven for thinking that fossil fuels are here to stay for a long time yet, although not everything on the horizon is rosy.

The world, admittedly, is awash with surplus oil. The use of coal is in sharp decline. The price of gas – in recent years the fuel of choice for an increasing number of power plants around the globe – is falling.

The fossil fuel industry – the main driver behind the growing climate crisis – is undoubtedly going through one of its worst times in decades.

The Covid 19 pandemic has resulted in a severe downturn in the global economy and a sharp drop in demand for energy.

But the fossil fuel industry’s problems, many of them of its own making, were evident well before Covid swept the globe.

At the centre of the sector’s difficulties is over-production, particularly of oil.

Shale tips the scales

In 2010 world crude oil production was running at about 86 million barrels per day (MBPD). This year production is forecast to top 100 MBPD.

Though oil consumption has grown as the global economy has expanded over recent years, production has exceeded demand as utilities and industries, particularly in Europe, China, Japan and South Korea, have become ever more efficient in the way they produce energy.

The big change in the oil market over the past decade has been the rise in US production, brought about by the boom in the shale oil and gas industry.

In 2010 the US was producing just over 5 MBPD. Earlier this year, production was running at more than 13 MBPD. Once a net importer of crude, the US is now the world’s biggest producer – ahead of Saudi Arabia and Russia.

The days when the Organization of the Petroleum Exporting Countries (OPEC) could more or less determine the global oil price by tweaking production levels have long gone: neither the US nor Russia is an OPEC member.

The big producers have argued amongst themselves and have not been able to agree on output levels. Oil prices have fluctuated wildly: in recent weeks they reached an historic low.

“Renewable energy is a cost-effective source of new power that insulates power markets and consumers from volatility”

In the US many shale oil operators who borrowed heavily to fund their operations are threatened with going bust as the price of oil falls well below production costs.

In Saudi Arabia and Russia the dramatic fall in oil revenues is threatening economic crisis – and potential political trouble as well.

Adding further to the problems of the oil and other fossil fuel producers – but at the same time contributing to the well being of the planet – has been the rise of the renewable energy industry.

In 2010 the share of renewables in the global energy mix was 8.6%. Data from the International Renewable Energy Agency (IRENA) indicate that renewables now account for more than 30% of the world’s power supply.

Massive solar and wind operations are being built around the world. Solar heating systems have been installed in millions of homes.

Concerns over a warming world and new regulations governing emissions of climate-changing greenhouse gases have in part driven the rise of renewables; dramatic falls in the price of technologies such as wind and solar have also had a big impact.

Holding on to power

The cost of producing electricity from solar power has dropped by about 80% over the past decade. The cost of wind power and other renewables has also dropped.

“Renewable energy is a cost-effective source of new power that insulates power markets and consumers from volatility”, says IRENA.

The fossil fuel sector is still able to wield immense financial and political clout and those prophesying its demise are likely to be disappointed, in the short term at least.

In the US it looks as though coal, oil and gas companies will qualify for multi-billion dollar payments under revised federal government Covid-19 bailout measures.

The Saudis and the Russians will do everything in their power to protect their fossil fuel industries on which their economies – and power structures – depend.

But big changes are under way. Maybe, just maybe, fossil fuels are in terminal decline. – Climate News Network

Renewable energy is making rapid inroads into the market, but fossil fuels still wield enormous global influence.

LONDON, 20 May, 2020 – At a casual glance, you could be forgiven for thinking that fossil fuels are here to stay for a long time yet, although not everything on the horizon is rosy.

The world, admittedly, is awash with surplus oil. The use of coal is in sharp decline. The price of gas – in recent years the fuel of choice for an increasing number of power plants around the globe – is falling.

The fossil fuel industry – the main driver behind the growing climate crisis – is undoubtedly going through one of its worst times in decades.

The Covid 19 pandemic has resulted in a severe downturn in the global economy and a sharp drop in demand for energy.

But the fossil fuel industry’s problems, many of them of its own making, were evident well before Covid swept the globe.

At the centre of the sector’s difficulties is over-production, particularly of oil.

Shale tips the scales

In 2010 world crude oil production was running at about 86 million barrels per day (MBPD). This year production is forecast to top 100 MBPD.

Though oil consumption has grown as the global economy has expanded over recent years, production has exceeded demand as utilities and industries, particularly in Europe, China, Japan and South Korea, have become ever more efficient in the way they produce energy.

The big change in the oil market over the past decade has been the rise in US production, brought about by the boom in the shale oil and gas industry.

In 2010 the US was producing just over 5 MBPD. Earlier this year, production was running at more than 13 MBPD. Once a net importer of crude, the US is now the world’s biggest producer – ahead of Saudi Arabia and Russia.

The days when the Organization of the Petroleum Exporting Countries (OPEC) could more or less determine the global oil price by tweaking production levels have long gone: neither the US nor Russia is an OPEC member.

The big producers have argued amongst themselves and have not been able to agree on output levels. Oil prices have fluctuated wildly: in recent weeks they reached an historic low.

“Renewable energy is a cost-effective source of new power that insulates power markets and consumers from volatility”

In the US many shale oil operators who borrowed heavily to fund their operations are threatened with going bust as the price of oil falls well below production costs.

In Saudi Arabia and Russia the dramatic fall in oil revenues is threatening economic crisis – and potential political trouble as well.

Adding further to the problems of the oil and other fossil fuel producers – but at the same time contributing to the well being of the planet – has been the rise of the renewable energy industry.

In 2010 the share of renewables in the global energy mix was 8.6%. Data from the International Renewable Energy Agency (IRENA) indicate that renewables now account for more than 30% of the world’s power supply.

Massive solar and wind operations are being built around the world. Solar heating systems have been installed in millions of homes.

Concerns over a warming world and new regulations governing emissions of climate-changing greenhouse gases have in part driven the rise of renewables; dramatic falls in the price of technologies such as wind and solar have also had a big impact.

Holding on to power

The cost of producing electricity from solar power has dropped by about 80% over the past decade. The cost of wind power and other renewables has also dropped.

“Renewable energy is a cost-effective source of new power that insulates power markets and consumers from volatility”, says IRENA.

The fossil fuel sector is still able to wield immense financial and political clout and those prophesying its demise are likely to be disappointed, in the short term at least.

In the US it looks as though coal, oil and gas companies will qualify for multi-billion dollar payments under revised federal government Covid-19 bailout measures.

The Saudis and the Russians will do everything in their power to protect their fossil fuel industries on which their economies – and power structures – depend.

But big changes are under way. Maybe, just maybe, fossil fuels are in terminal decline. – Climate News Network

Hot rocks can help to cool the warming Earth

Energy from hot rocks below the Earth’s crust will help to replace fossil fuels and speed Europe’s path to carbon neutrality.

LONDON, 8 May, 2020 − The Romans were the first people to exploit Europe’s geothermal energy, using underground springs warmed by hot rocks for large-scale public bathing pools and as central heating for their houses.

Two thousand years later, the European Union is using modern technology to renew its efforts to exploit the same resource to make electricity and provide district heating as part of its plan to replace fossil fuels and become carbon-neutral by 2050.

With wind and solar power and biogas already well-developed, expanding rapidly and already competing with fossil fuels, the EU has decided that geothermal energy should also now be exploited as a fourth major renewable resource.

The European Commission’s Green Deal aims to exploit what officials admit has been the neglect of a potentially large renewable energy industry, which they think should be harnessed to reduce carbon emissions. As a result, the Commission is spending €172 million (£151m) on 12 different developments, described in what it calls a Results Pack.

“The cost of harnessing geothermal energy has tumbled in recent years, making it far more competitive with coal and gas. Shallow boreholes using heat pumps have cut the cost of harnessing it by 20-30%”

Some countries in Europe with active volcanoes, notably Italy and Iceland, have been exploiting hot rocks for decades to heat water, produce steam and drive turbines to make electricity. More recently engineers in Iceland, exploring further and drilling down to 4,650 metres (15,250 feet), have reached rocks at 600°C, potentially providing vast quantities of renewable energy.

The EU believes that, with hot rocks found everywhere below the Earth’s crust, it is only a question of boring deep enough. It says the technologies being developed in Europe to exploit this heat can be used anywhere in the world, and have great potential for the international efforts to wean countries off fossil fuels.

Its Results Pack says heating and cooling accounts for about half of all the continent’s energy consumption. Currently about 75% of that is provided by fossil fuels. However, drilling deep enough would mean all Europe’s buildings could be heated and cooled using subterranean energy.

Like wind and solar, the cost of harnessing geothermal energy has tumbled in recent years, making it far more competitive with coal and gas. Shallow boreholes using heat pumps have cut the cost of harnessing it by 20-30%.

Rare metal bonus

One of the most interesting of the 12 examples in the Pack is a way of extracting heat for energy while at the same time obtaining rare and expensive metals from far below the Earth’s crust. This is being developed at the University of Miskolc in Hungary.

Cold water is pumped 4-5 kilometres into a borehole at high pressure. It passes through natural fissures in the hot rock and comes to the surface through another drill hole as hot vapour. This gas is used to produce electricity and for heating.

The rocks with their many cracks form a natural underground heat exchanger, but the scheme offers an added bonus. As the cold water is pumped through the cracks it gradually dissolves the rock, making the cracks larger and the system more efficient, and over time increasing the output of both electricity and heat.

But also important, as a potential resource, is the fact that the return borehole brings up precious metals in the vapour. Using patented gaseous diffusion techniques, the vapour can yield the metals with a near-100% recovery rate. The metals’ market value dramatically improves the return on investment, the paper says. − Climate News Network

Energy from hot rocks below the Earth’s crust will help to replace fossil fuels and speed Europe’s path to carbon neutrality.

LONDON, 8 May, 2020 − The Romans were the first people to exploit Europe’s geothermal energy, using underground springs warmed by hot rocks for large-scale public bathing pools and as central heating for their houses.

Two thousand years later, the European Union is using modern technology to renew its efforts to exploit the same resource to make electricity and provide district heating as part of its plan to replace fossil fuels and become carbon-neutral by 2050.

With wind and solar power and biogas already well-developed, expanding rapidly and already competing with fossil fuels, the EU has decided that geothermal energy should also now be exploited as a fourth major renewable resource.

The European Commission’s Green Deal aims to exploit what officials admit has been the neglect of a potentially large renewable energy industry, which they think should be harnessed to reduce carbon emissions. As a result, the Commission is spending €172 million (£151m) on 12 different developments, described in what it calls a Results Pack.

“The cost of harnessing geothermal energy has tumbled in recent years, making it far more competitive with coal and gas. Shallow boreholes using heat pumps have cut the cost of harnessing it by 20-30%”

Some countries in Europe with active volcanoes, notably Italy and Iceland, have been exploiting hot rocks for decades to heat water, produce steam and drive turbines to make electricity. More recently engineers in Iceland, exploring further and drilling down to 4,650 metres (15,250 feet), have reached rocks at 600°C, potentially providing vast quantities of renewable energy.

The EU believes that, with hot rocks found everywhere below the Earth’s crust, it is only a question of boring deep enough. It says the technologies being developed in Europe to exploit this heat can be used anywhere in the world, and have great potential for the international efforts to wean countries off fossil fuels.

Its Results Pack says heating and cooling accounts for about half of all the continent’s energy consumption. Currently about 75% of that is provided by fossil fuels. However, drilling deep enough would mean all Europe’s buildings could be heated and cooled using subterranean energy.

Like wind and solar, the cost of harnessing geothermal energy has tumbled in recent years, making it far more competitive with coal and gas. Shallow boreholes using heat pumps have cut the cost of harnessing it by 20-30%.

Rare metal bonus

One of the most interesting of the 12 examples in the Pack is a way of extracting heat for energy while at the same time obtaining rare and expensive metals from far below the Earth’s crust. This is being developed at the University of Miskolc in Hungary.

Cold water is pumped 4-5 kilometres into a borehole at high pressure. It passes through natural fissures in the hot rock and comes to the surface through another drill hole as hot vapour. This gas is used to produce electricity and for heating.

The rocks with their many cracks form a natural underground heat exchanger, but the scheme offers an added bonus. As the cold water is pumped through the cracks it gradually dissolves the rock, making the cracks larger and the system more efficient, and over time increasing the output of both electricity and heat.

But also important, as a potential resource, is the fact that the return borehole brings up precious metals in the vapour. Using patented gaseous diffusion techniques, the vapour can yield the metals with a near-100% recovery rate. The metals’ market value dramatically improves the return on investment, the paper says. − Climate News Network

How to save economy and climate together

There’s growing agreement by economists and scientists: Covid-19 needs the world to rescue both economy and climate together.

LONDON, 7 May, 2020 − The warnings are stark. With the Covid-19 crisis wreaking global havoc and the overheating atmosphere threatening far worse in the long term, especially if governments rely on the same old carbon-intensive ways, both economy and climate will sink or swim together.

“There are reasons to fear that we will leap from the Covid-19 frying pan into the climate fire”, says a new report, Will Covid-19 fiscal recovery packages accelerate or retard progress on Climate Change? Published by the Smith School of Enterprise and Environment at the University of Oxford, UK, it says now is the time for governments to restructure their economies and act decisively to tackle climate change.

“The climate emergency is like the Covid-19 emergency, just in slow motion and much graver”, says the study, written by a team of economic and climate change heavyweights including Joseph Stiglitz, Cameron Hepburn and Nicholas Stern.

Economic recovery packages emerging in the coming months will have a significant impact on whether globally agreed climate goals are met, says the report.

“The recovery packages can either kill two birds with one stone – setting the global economy on a pathway to net-zero emissions – or lock us into a fossil system from which it will be nearly impossible to escape.”

“In the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments”

The study’s authors talked to economists, finance officials and central banks around the world.

They say that putting policies aimed at tackling climate change at the centre of recovery plans makes economic as well as environmental sense.

“… Green projects create more jobs, deliver higher short-term returns per dollar spend and lead to increased long term-term cost saving, by comparison with traditional fiscal stimulus”, says the report.

“Examples include investment in renewable energy production, such as wind or solar.

“As previous research has shown, in the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments.”

Fundamental change coming

Covid-19 is causing great suffering and considerable economic hardship around the world. But it has also resulted in cleaner air and waterways, a quieter environment and far less commuting to and from work, with people in the developed countries doing more work from home.

The International Energy Agency (IEA) said in a recent survey that Covid-19 and other factors were bringing about a fundamental change in the global energy market, with the use of climate-changing fossil fuels falling sharply and prices of oil, coal and gas plummeting. The IEA also projected that global emissions of greenhouses gases would fall by 8% in 2020, more than any other year on record.

The Oxford report says that with the implementation of the right policies, these positive changes can be sustained: by tackling climate change, many economic and other problems will be solved.

Sceptics have often said that public resistance to changes in lifestyle will prevent governments from taking any substantial action on the climate issue. The study begs to differ: “The (Covid-19) crisis has also demonstrated that governments can intervene decisively once the scale of an emergency is clear and public support is present.”

Economists and finance experts are calling for the UK to play a decisive role in ensuring that economies around the world do not return to the old, high-carbon ways but instead implement green recovery packages.

Climate conference

The UK is president and co-host of COP-26, the round of UN climate talks originally due to take place in November this year but now, due to Covid, postponed to early 2021.

The round is seen as a vital part of efforts to prevent catastrophic climate change.

Mark Carney, the former governor of the Bank of England, now a finance adviser to the British prime minister for COP-26, says the UK has the opportunity to bring about fundamental changes in order to combat a warming world.

“The UK’s global leadership in financial services provides a unique opportunity to address climate change by transforming the financial system”, he says.

“To seize it, all financial decisions need to take into account the risks from climate change and the opportunities from the transition to a net zero economy.” − Climate News Network

There’s growing agreement by economists and scientists: Covid-19 needs the world to rescue both economy and climate together.

LONDON, 7 May, 2020 − The warnings are stark. With the Covid-19 crisis wreaking global havoc and the overheating atmosphere threatening far worse in the long term, especially if governments rely on the same old carbon-intensive ways, both economy and climate will sink or swim together.

“There are reasons to fear that we will leap from the Covid-19 frying pan into the climate fire”, says a new report, Will Covid-19 fiscal recovery packages accelerate or retard progress on Climate Change? Published by the Smith School of Enterprise and Environment at the University of Oxford, UK, it says now is the time for governments to restructure their economies and act decisively to tackle climate change.

“The climate emergency is like the Covid-19 emergency, just in slow motion and much graver”, says the study, written by a team of economic and climate change heavyweights including Joseph Stiglitz, Cameron Hepburn and Nicholas Stern.

Economic recovery packages emerging in the coming months will have a significant impact on whether globally agreed climate goals are met, says the report.

“The recovery packages can either kill two birds with one stone – setting the global economy on a pathway to net-zero emissions – or lock us into a fossil system from which it will be nearly impossible to escape.”

“In the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments”

The study’s authors talked to economists, finance officials and central banks around the world.

They say that putting policies aimed at tackling climate change at the centre of recovery plans makes economic as well as environmental sense.

“… Green projects create more jobs, deliver higher short-term returns per dollar spend and lead to increased long term-term cost saving, by comparison with traditional fiscal stimulus”, says the report.

“Examples include investment in renewable energy production, such as wind or solar.

“As previous research has shown, in the short term clean energy infrastructure construction is particularly labour-intensive, creating twice as many jobs per dollar as fossil fuel investments.”

Fundamental change coming

Covid-19 is causing great suffering and considerable economic hardship around the world. But it has also resulted in cleaner air and waterways, a quieter environment and far less commuting to and from work, with people in the developed countries doing more work from home.

The International Energy Agency (IEA) said in a recent survey that Covid-19 and other factors were bringing about a fundamental change in the global energy market, with the use of climate-changing fossil fuels falling sharply and prices of oil, coal and gas plummeting. The IEA also projected that global emissions of greenhouses gases would fall by 8% in 2020, more than any other year on record.

The Oxford report says that with the implementation of the right policies, these positive changes can be sustained: by tackling climate change, many economic and other problems will be solved.

Sceptics have often said that public resistance to changes in lifestyle will prevent governments from taking any substantial action on the climate issue. The study begs to differ: “The (Covid-19) crisis has also demonstrated that governments can intervene decisively once the scale of an emergency is clear and public support is present.”

Economists and finance experts are calling for the UK to play a decisive role in ensuring that economies around the world do not return to the old, high-carbon ways but instead implement green recovery packages.

Climate conference

The UK is president and co-host of COP-26, the round of UN climate talks originally due to take place in November this year but now, due to Covid, postponed to early 2021.

The round is seen as a vital part of efforts to prevent catastrophic climate change.

Mark Carney, the former governor of the Bank of England, now a finance adviser to the British prime minister for COP-26, says the UK has the opportunity to bring about fundamental changes in order to combat a warming world.

“The UK’s global leadership in financial services provides a unique opportunity to address climate change by transforming the financial system”, he says.

“To seize it, all financial decisions need to take into account the risks from climate change and the opportunities from the transition to a net zero economy.” − Climate News Network

Global fossil fuel demand’s ‘staggering’ fall

The world’s energy markets are in upheaval, as experts report an historic fall in global fossil fuel demand.

LONDON, 1 May, 2020 − One of the pillars of industrial society is tottering: global fossil fuel demand is buckling, with only renewable energy expected to show any growth this year.

Oil prices are going through the floor. The market for coal and gas is shrinking fast. And global emissions of climate-changing greenhouse gases are set to fall in 2020 by 8%, the largest annual decrease in emissions ever recorded.

The latest report by the International Energy Agency (IEA), the global energy watchdog, will make sobering reading for those involved in the fossil fuel industry – and hearten those fighting against a warming world.

The Covid-19 pandemic has brought death, pain and suffering around the world and is causing widespread economic and financial hardship.

But it’s become clear that the Covid crisis has done something that years of climate change negotiations have failed to do – it has not only forced us to change the way we live our lives, but also dramatically altered the way we use the planet’s resources, in particular its energy supplies.

‘Unheard-of slump’

“This is a historic shock to the entire energy world”, says Dr Fatih Birol, the IEA’s executive director.

“Amid today’s unparalleled health and economic crises, the plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas.

“Only renewables are holding up during the previously unheard-of slump in electricity use”, says Dr Birol.

The IEA report, its Global Energy Review 2020, looks at likely energy trends over the coming months and analyses data accumulated over the first Covid-influenced 100 days of this year.

Overall world energy demand in 2020 is set to fall by 6% − a drop seven times greater than the decline recorded in the wake of the 2008/2009 global financial crash.

“The plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas. Only renewables are holding up”

That fall is equivalent to losing the entire annual energy demand of India − or the combined yearly demand of the UK, France, Germany and Italy.

Oil demand, says the report, is expected to decline by 9% over the present year, its biggest annual drop in a quarter of a century. Demand for gas – which has consistently expanded over recent times − is expected to fall by 5%.

The economic disruption caused by the Covid pandemic is likely to hit the coal industry – already in decline − particularly hard. The IEA forecasts coal demand to drop this year by 8% compared with 2019, its biggest year-on-year decline since the end of WWII.

“It is still too early to determine the longer-term impacts, but the energy industry that emerges from this crisis will be significantly different from the one that came before”, says the report.

The study says renewable energy is the one segment of the sector that will see growth over the present year.

Decline already begun

The dominant role of fossil fuels in the energy market was already in decline before the Covid crisis. This trend is likely to continue as low operating costs and flexible access to electricity grids make renewables ever more competitive.

Moves in many countries towards cleaner energy and more climate change-related regulations will see an overall growth of 5% in renewable electricity generation in 2020.

The IEA is generally seen as a conservative body, careful not to offend powerful interests in the global energy industry.

It says the resilience of renewable energy in the midst of a global crisis could encourage fossil fuel companies to switch to generating more clean energy.

There is the possibility that countries will revert to the old ways, with fossil fuel use climbing again as economies recover.

‘Inescapable’ challenge ahead

The IEA urges governments to put clean energy at the centre of their economic recovery plans and prioritise clean energy technologies including batteries, hydrogen and carbon capture.

In an article last month Dr Birol talked of the impact the Covid crisis was having on people’s health and economic activity.

“Although they may be severe, the effects are likely to be temporary”, he wrote.

“Meanwhile the threat posed by climate change, which requires us to reduce global emissions significantly this decade, will remain.

“We should not allow today’s crisis to compromise our efforts to tackle the world’s inescapable challenge.” − Climate News Network

The world’s energy markets are in upheaval, as experts report an historic fall in global fossil fuel demand.

LONDON, 1 May, 2020 − One of the pillars of industrial society is tottering: global fossil fuel demand is buckling, with only renewable energy expected to show any growth this year.

Oil prices are going through the floor. The market for coal and gas is shrinking fast. And global emissions of climate-changing greenhouse gases are set to fall in 2020 by 8%, the largest annual decrease in emissions ever recorded.

The latest report by the International Energy Agency (IEA), the global energy watchdog, will make sobering reading for those involved in the fossil fuel industry – and hearten those fighting against a warming world.

The Covid-19 pandemic has brought death, pain and suffering around the world and is causing widespread economic and financial hardship.

But it’s become clear that the Covid crisis has done something that years of climate change negotiations have failed to do – it has not only forced us to change the way we live our lives, but also dramatically altered the way we use the planet’s resources, in particular its energy supplies.

‘Unheard-of slump’

“This is a historic shock to the entire energy world”, says Dr Fatih Birol, the IEA’s executive director.

“Amid today’s unparalleled health and economic crises, the plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas.

“Only renewables are holding up during the previously unheard-of slump in electricity use”, says Dr Birol.

The IEA report, its Global Energy Review 2020, looks at likely energy trends over the coming months and analyses data accumulated over the first Covid-influenced 100 days of this year.

Overall world energy demand in 2020 is set to fall by 6% − a drop seven times greater than the decline recorded in the wake of the 2008/2009 global financial crash.

“The plunge in demand for nearly all major fuels is staggering, especially for coal, oil and gas. Only renewables are holding up”

That fall is equivalent to losing the entire annual energy demand of India − or the combined yearly demand of the UK, France, Germany and Italy.

Oil demand, says the report, is expected to decline by 9% over the present year, its biggest annual drop in a quarter of a century. Demand for gas – which has consistently expanded over recent times − is expected to fall by 5%.

The economic disruption caused by the Covid pandemic is likely to hit the coal industry – already in decline − particularly hard. The IEA forecasts coal demand to drop this year by 8% compared with 2019, its biggest year-on-year decline since the end of WWII.

“It is still too early to determine the longer-term impacts, but the energy industry that emerges from this crisis will be significantly different from the one that came before”, says the report.

The study says renewable energy is the one segment of the sector that will see growth over the present year.

Decline already begun

The dominant role of fossil fuels in the energy market was already in decline before the Covid crisis. This trend is likely to continue as low operating costs and flexible access to electricity grids make renewables ever more competitive.

Moves in many countries towards cleaner energy and more climate change-related regulations will see an overall growth of 5% in renewable electricity generation in 2020.

The IEA is generally seen as a conservative body, careful not to offend powerful interests in the global energy industry.

It says the resilience of renewable energy in the midst of a global crisis could encourage fossil fuel companies to switch to generating more clean energy.

There is the possibility that countries will revert to the old ways, with fossil fuel use climbing again as economies recover.

‘Inescapable’ challenge ahead

The IEA urges governments to put clean energy at the centre of their economic recovery plans and prioritise clean energy technologies including batteries, hydrogen and carbon capture.

In an article last month Dr Birol talked of the impact the Covid crisis was having on people’s health and economic activity.

“Although they may be severe, the effects are likely to be temporary”, he wrote.

“Meanwhile the threat posed by climate change, which requires us to reduce global emissions significantly this decade, will remain.

“We should not allow today’s crisis to compromise our efforts to tackle the world’s inescapable challenge.” − Climate News Network

It’s a galloping goodbye to Europe’s coal

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

Europe’s coal has powered it for centuries. But with gathering speed it is now turning its back on the fuel.

LONDON, 26 April, 2020 – The energy that has powered a continent for several hundred years, driving its industry, fighting its wars and keeping its people warm, is on the way out, fast: Europe’s coal is in rapid decline.

Coal is far and away the most polluting of fossil fuels and is a major factor in the build-up of climate-changing greenhouse gases in the atmosphere.

But, according to a recent report by two of Europe’s leading energy analyst groups, the use of coal for power generation among the 27 countries of the European Union fell by a record 24% last year.

The report, by the Germany-based Agora Energiewende group and Ember, an independent London climate think-tank focused on speeding up the global electricity transition, will make stark reading for Europe’s coal lobbyists.

Renewables are on the rise across most of Europe, while coal use is in sharp decline. In 2019 wind and solar power together accounted for 18% of the EU’s power generation, while coal produced 15%. That’s the first time renewables have trumped coal in Europe’s energy generation mix.

“Europe is leading the world on rapidly replacing coal generation with wind and solar and, as a result, power sector CO2 emissions have never fallen so quickly”, says Dave Jones, an electricity specialist at Ember.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too.”

Total phase-out soon

The report says that greenhouse gas emissions from the EU’s power sector have fallen by more than 30% since 2012, with a year-on-year drop of 12% in 2019.

A number of European countries have already said goodbye to coal. In 2016 Belgium closed its last coal-fired energy plant. In April this year both Austria and Sweden followed suit.

The report highlights the way in which many EU countries have sharply reduced coal use in recent years: most plan to totally eliminate it as an energy source in the near future.

Eight years ago more than 30% of the power generated in the UK came from coal-fired power plants. Last year only 2% of power was derived from coal. The UK plans to stop using it for energy generation in four years’ time.

Germany has traditionally been one of the EU’s biggest coal users. In 2013 coal fuelled 45% of the country’s power generation: last year that figure fell to 28%.

Germany says it will eliminate coal from its power mix by 2038, though government critics say this is not nearly fast enough to meet EU-wide emission reduction targets.

A number of factors are behind coal’s decline. Economics has played a big role.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too”

In the wake of the 2008 financial crash industrial activity slowed and Europe’s coal use dropped.

The power sector became more efficient: although in recent years – before the Covid-19 pandemic – industrial activity picked up, the EU’s total electricity consumption was 4% lower in 2019 than a decade earlier.

Falling installation and operating costs for solar and wind power plants have resulted in renewable energy becoming ever more competitive: the price of natural gas – a less polluting fossil fuel than coal – has also been declining, while reforms in the European carbon trading scheme resulting in higher charges being levied on polluters have driven up the cost of coal.

All is not clean air and clear blue skies in Europe, however. Coal is still a significant source of power in Poland, the Czech Republic and Bulgaria. And while Germany has reduced its reliance on coal, it still burns large amounts of lignite or brown coal, the dirtiest form of the fuel.

Pollution and climate change do not recognise borders. Many states surrounding the EU are still reliant on coal and have plans for expanding coal-fired power plants.

China is helping Serbia to expand its coal-fired power capacity. Kosovo, which has some of the biggest reserves of lignite in the world, is also building more coal-fired power plants.

The World Bank says Kosovo has some of the worst air pollution in Europe, with emissions from its lignite-fuelled power stations causing many premature deaths each year. – Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

Europe’s coal has powered it for centuries. But with gathering speed it is now turning its back on the fuel.

LONDON, 26 April, 2020 – The energy that has powered a continent for several hundred years, driving its industry, fighting its wars and keeping its people warm, is on the way out, fast: Europe’s coal is in rapid decline.

Coal is far and away the most polluting of fossil fuels and is a major factor in the build-up of climate-changing greenhouse gases in the atmosphere.

But, according to a recent report by two of Europe’s leading energy analyst groups, the use of coal for power generation among the 27 countries of the European Union fell by a record 24% last year.

The report, by the Germany-based Agora Energiewende group and Ember, an independent London climate think-tank focused on speeding up the global electricity transition, will make stark reading for Europe’s coal lobbyists.

Renewables are on the rise across most of Europe, while coal use is in sharp decline. In 2019 wind and solar power together accounted for 18% of the EU’s power generation, while coal produced 15%. That’s the first time renewables have trumped coal in Europe’s energy generation mix.

“Europe is leading the world on rapidly replacing coal generation with wind and solar and, as a result, power sector CO2 emissions have never fallen so quickly”, says Dave Jones, an electricity specialist at Ember.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too.”

Total phase-out soon

The report says that greenhouse gas emissions from the EU’s power sector have fallen by more than 30% since 2012, with a year-on-year drop of 12% in 2019.

A number of European countries have already said goodbye to coal. In 2016 Belgium closed its last coal-fired energy plant. In April this year both Austria and Sweden followed suit.

The report highlights the way in which many EU countries have sharply reduced coal use in recent years: most plan to totally eliminate it as an energy source in the near future.

Eight years ago more than 30% of the power generated in the UK came from coal-fired power plants. Last year only 2% of power was derived from coal. The UK plans to stop using it for energy generation in four years’ time.

Germany has traditionally been one of the EU’s biggest coal users. In 2013 coal fuelled 45% of the country’s power generation: last year that figure fell to 28%.

Germany says it will eliminate coal from its power mix by 2038, though government critics say this is not nearly fast enough to meet EU-wide emission reduction targets.

A number of factors are behind coal’s decline. Economics has played a big role.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too”

In the wake of the 2008 financial crash industrial activity slowed and Europe’s coal use dropped.

The power sector became more efficient: although in recent years – before the Covid-19 pandemic – industrial activity picked up, the EU’s total electricity consumption was 4% lower in 2019 than a decade earlier.

Falling installation and operating costs for solar and wind power plants have resulted in renewable energy becoming ever more competitive: the price of natural gas – a less polluting fossil fuel than coal – has also been declining, while reforms in the European carbon trading scheme resulting in higher charges being levied on polluters have driven up the cost of coal.

All is not clean air and clear blue skies in Europe, however. Coal is still a significant source of power in Poland, the Czech Republic and Bulgaria. And while Germany has reduced its reliance on coal, it still burns large amounts of lignite or brown coal, the dirtiest form of the fuel.

Pollution and climate change do not recognise borders. Many states surrounding the EU are still reliant on coal and have plans for expanding coal-fired power plants.

China is helping Serbia to expand its coal-fired power capacity. Kosovo, which has some of the biggest reserves of lignite in the world, is also building more coal-fired power plants.

The World Bank says Kosovo has some of the worst air pollution in Europe, with emissions from its lignite-fuelled power stations causing many premature deaths each year. – Climate News Network

UK gas plans a carbon-free future with hydrogen

This story is published as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

Committed to a carbon-free future by 2050, the UK gas industry is to switch to green hydrogen and biogas.

LONDON, 20 April, 2020 − A mixture of green hydrogen produced by surplus solar and wind power and bio-methane coming from farms and waste food will ensure the British gas industry a carbon-free future in 30 years, according to the country’s gas network operators.

The ambitious plans for the first carbon-free gas grid in the world have been declared both technically possible and one of the less expensive options in solving the tricky problem of how to heat UK homes, office buildings and factories, said to be the most difficult task in decarbonising the energy system.

The programme, called Gas Goes Green, involves using the existing gas networks that supply 85% of Britain’s homes, as well as business and industry but converting boilers and other appliances to use hydrogen.

Although the plan is ambitious, its authors, the Energy Networks Association (ENA), which includes the transmission and distribution operators for gas and electricity in the UK and Ireland, point out that a similar programme was carried out in the 1970s to convert the entire British gas grid from supplying coal gas to natural gas.

The plan, which involves 23 million properties, will be closely watched across the rest of Europe and in many other developed countries that have extensive gas networks.

“Gas Goes Green will tackle some of the biggest challenges facing decarbonisation policy”

Currently Europe depends heavily on Russian natural gas, and there have been a number of disputes about pricing which have led to threats to cut off the supply.

This has led to political pressure to find alternatives, with compressed natural gas imported from the Middle East and the US a candidate to provide a possible alternative supply.

Now the pressure is on to decarbonise the sector entirely. The UK is well placed to do so because it has enormous potential for producing far more electricity than it needs from renewable sources: wind, solar and various tidal and wave schemes.

The aim of going carbon-neutral by 2050 is enshrined in UK law, but the country’s new Conservative government, elected last December, has yet to come up with a plan for achieving this. Clearly, though, the gas industry thinks it has found a solution.

The big argument so far has been that green hydrogen, produced by electrolysis from electricity, is too expensive to compete with hydrogen produced from natural gas. However, with electricity from renewable fuels falling in price and becoming ever more plentiful, the economics of green hydrogen are expected to compete with what gas can do, the industry argues.

Potential for transport

There is also increasing interest in using hydrogen for transport, including trains, to avoid the expense of electrifying lines. It has a distinct advantage over electricity: it can be stored for long periods.

ENA commissioned a report from the accountants KPMG which concluded that conversion from natural gas to hydrogen was both technically feasible and one of the cheapest options for the nation’s heating systems.

ENA, whose members pipe gas to 21.5 million UK customers, finally came up with its plan: to switch its networks entirely to hydrogen and biogas.

There are already a number of schemes that inject both fuels into the national network, and there are experiments with closed systems which provide heating and cooking on 100% hydrogen systems. The industry is confident these could be scaled up.

Matt Hindle, head of gas at ENA, told Business Green: “We’re delighted to not only be launching this exciting new programme, but also to be making clear our commitment to creating the world’s first zero-carbon gas grid.

Political impetus

“Gas Goes Green will deliver the greenprint needed to do that, and in doing so tackle some of the biggest challenges facing decarbonisation policy.”

The first step will be to work out a plan to switch UK boilers from burning natural gas to a mixture that is mostly hydrogen but contains some bio-methane.

This ambitious plan faces some competition from the advocates of ground-source heat pumps as an alternative for heating homes. The pumps have the advantage of running on green electricity, and cut out the need for gas entirely, but they need to be installed in large numbers.

The pumps’ supporters argue that scaling up green hydrogen production to fulfil the entire needs of the gas network is nearly impossible in the 30 years left until the UK should have reached carbon neutrality.

What is interesting, however, is that a number of competing technologies now exist to decarbonise heating, cooking and transport entirely. All that is still lacking is the political will to press ahead. − Climate News Network

This story is published as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

Committed to a carbon-free future by 2050, the UK gas industry is to switch to green hydrogen and biogas.

LONDON, 20 April, 2020 − A mixture of green hydrogen produced by surplus solar and wind power and bio-methane coming from farms and waste food will ensure the British gas industry a carbon-free future in 30 years, according to the country’s gas network operators.

The ambitious plans for the first carbon-free gas grid in the world have been declared both technically possible and one of the less expensive options in solving the tricky problem of how to heat UK homes, office buildings and factories, said to be the most difficult task in decarbonising the energy system.

The programme, called Gas Goes Green, involves using the existing gas networks that supply 85% of Britain’s homes, as well as business and industry but converting boilers and other appliances to use hydrogen.

Although the plan is ambitious, its authors, the Energy Networks Association (ENA), which includes the transmission and distribution operators for gas and electricity in the UK and Ireland, point out that a similar programme was carried out in the 1970s to convert the entire British gas grid from supplying coal gas to natural gas.

The plan, which involves 23 million properties, will be closely watched across the rest of Europe and in many other developed countries that have extensive gas networks.

“Gas Goes Green will tackle some of the biggest challenges facing decarbonisation policy”

Currently Europe depends heavily on Russian natural gas, and there have been a number of disputes about pricing which have led to threats to cut off the supply.

This has led to political pressure to find alternatives, with compressed natural gas imported from the Middle East and the US a candidate to provide a possible alternative supply.

Now the pressure is on to decarbonise the sector entirely. The UK is well placed to do so because it has enormous potential for producing far more electricity than it needs from renewable sources: wind, solar and various tidal and wave schemes.

The aim of going carbon-neutral by 2050 is enshrined in UK law, but the country’s new Conservative government, elected last December, has yet to come up with a plan for achieving this. Clearly, though, the gas industry thinks it has found a solution.

The big argument so far has been that green hydrogen, produced by electrolysis from electricity, is too expensive to compete with hydrogen produced from natural gas. However, with electricity from renewable fuels falling in price and becoming ever more plentiful, the economics of green hydrogen are expected to compete with what gas can do, the industry argues.

Potential for transport

There is also increasing interest in using hydrogen for transport, including trains, to avoid the expense of electrifying lines. It has a distinct advantage over electricity: it can be stored for long periods.

ENA commissioned a report from the accountants KPMG which concluded that conversion from natural gas to hydrogen was both technically feasible and one of the cheapest options for the nation’s heating systems.

ENA, whose members pipe gas to 21.5 million UK customers, finally came up with its plan: to switch its networks entirely to hydrogen and biogas.

There are already a number of schemes that inject both fuels into the national network, and there are experiments with closed systems which provide heating and cooking on 100% hydrogen systems. The industry is confident these could be scaled up.

Matt Hindle, head of gas at ENA, told Business Green: “We’re delighted to not only be launching this exciting new programme, but also to be making clear our commitment to creating the world’s first zero-carbon gas grid.

Political impetus

“Gas Goes Green will deliver the greenprint needed to do that, and in doing so tackle some of the biggest challenges facing decarbonisation policy.”

The first step will be to work out a plan to switch UK boilers from burning natural gas to a mixture that is mostly hydrogen but contains some bio-methane.

This ambitious plan faces some competition from the advocates of ground-source heat pumps as an alternative for heating homes. The pumps have the advantage of running on green electricity, and cut out the need for gas entirely, but they need to be installed in large numbers.

The pumps’ supporters argue that scaling up green hydrogen production to fulfil the entire needs of the gas network is nearly impossible in the 30 years left until the UK should have reached carbon neutrality.

What is interesting, however, is that a number of competing technologies now exist to decarbonise heating, cooking and transport entirely. All that is still lacking is the political will to press ahead. − Climate News Network

Offshore wind hopes for a livelier future

With more countries realising how offshore wind can help cut carbon emissions, a massive building boom looks likely.

LONDON, 15 April, 2020 − Generating electricity from offshore wind looks like an idea whose time has come, with the emerging technology set to grow at extraordinary speed in the next decade. But despite its great potential, deployment may still not be fast enough to avert the climate crisis.

The prospect that offshore wind energy will grow from 22 Gigawatts (GW) in 2018 to 177 GW by 2030 is based on predictions from the industry that makes and installs the turbines, with manufacturers taking orders from 12 major markets across the globe. The International Energy Agency has said it expects the sector to become a $1 trillion industry within 20 years.

Bloomberg New Energy Finance (BNEF) says there is a staggering compound annual growth rate of 19% in offshore wind faster than any other industry on the planet.

One GW is reckoned to be enough to provide electricity to 500,000 North American homes, so offshore wind will provide enough power for many a coastal city. New offshore turbines currently being developed in Europe are extremely large, generating as much as 10 MW each.

Because of their height and their marine locations, these giant turbines can tap winds that blow at constant speeds. There is almost always some breeze at sea, so their power supply is far more reliable and predictable than smaller installations can manage.

“Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years”

One reason for the renewed interest in offshore technology is that its cost has dropped dramatically. This is partly because of the increased size and improved design of the latest turbines, but also because of the growing experience in building them, both standing in shallow seas and as floating turbines anchored to the sea bottom by cables.

Until now, to encourage offshore wind, governments have guaranteed a price for the electricity produced, but the cost of generation has been falling fast. China expects to remove all subsidies by 2022, in the belief that offshore wind will by then be successfully competing with fossil fuels.

One significant feature of recent developments is that much of the installation expertise is the same as that used in the offshore oil industry. This has given Europe a head start because the North Sea oil industry is in decline and places like Aberdeen, the UK’s offshore oil capital, are repositioning themselves as offshore wind hubs instead.

The bullish predictions for offshore wind were compiled from information provided at a conference, Offshore and Floating Wind Europe 2019, where all the world’s major offshore wind contractors were represented, and are summarised in a conference report published by Reuters Events – New Energy Update.

The report predicts that while currently the UK has the most extensive offshore wind installations in the world, China, which is fast catching up, will overtake it before 2030. Currently the US, which so far has just one 5-turbine, 30-MW wind farm, off the coast of Rhode Island, is expected to install new turbines in 2021 and to be in third place by 2030. Six states on the US eastern seaboard have found potential sites and are pushing forward developments.

Eastern Europe’s enthusiasts

In western Europe Germany, Belgium, the Netherlands and Denmark already have established industries and plan more turbines. Both France, which has an extensive windy coastline, and Ireland, with enormous potential, have impressive ambitions for offshore wind, along with several other European countries.

In eastern Europe Poland, currently heavily reliant on coal for its electricity, is expected to take advantage of its coastline on the shallow Baltic Sea to diversify into offshore wind.

But it is in Asia that the largest market is expected to develop. China is already investing heavily, but Taiwan, Japan, South Korea, Vietnam and India all have ambitious programmes too.

The US, despite President Trump’s reluctance to take any action on climate change, is seen as a very large potential market. While Texas and California have been taking advantage of cheap onshore wind and solar power, it is the wealthy states on the eastern seaboard that are going for offshore wind. Many have most of their population on the coast. Cities like New York have ambitious targets to reach zero emissions and see offshore wind as vital to achieving that.

These predictions of enormous growth, though, are still not enough to solve the problem of keeping the world temperature to below 1.5°C, which governments around the world have agreed is their ambition.

Pandemic slowdown

The executive chairman of Mainstream Renewable Power, a global wind and solar power developer, is Eddie O’Connor. He says: “As an industry, we are not nearly ambitious enough to deal with global warming.

“If we are going to decarbonise in Europe, for instance, we need to build 900,000 MW (900 GW) offshore. Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years.”

With the current Covid-19 pandemic, it is not clear how much even the predicted developments will be slowed down, let alone the 10-fold increase on current projections that Mr O’Connor thinks is necessary to reach climate targets.

Another European offshore wind conference, due to be held in London in November this year, should hear an update on industry developments, if it takes place. By then it may also be clearer how the pandemic has affected the oil industry (see WindEurope’s COVID-19 Wind Information Hub).

Possibly even more oil executives may think that offshore wind is a more attractive proposition than investing more capital in their own dying industry. It presents European oil companies with an opportunity to redeploy some experienced workers, particularly as in the last few months some oil majors have already spoken of their intention to take climate change seriously. − Climate News Network

With more countries realising how offshore wind can help cut carbon emissions, a massive building boom looks likely.

LONDON, 15 April, 2020 − Generating electricity from offshore wind looks like an idea whose time has come, with the emerging technology set to grow at extraordinary speed in the next decade. But despite its great potential, deployment may still not be fast enough to avert the climate crisis.

The prospect that offshore wind energy will grow from 22 Gigawatts (GW) in 2018 to 177 GW by 2030 is based on predictions from the industry that makes and installs the turbines, with manufacturers taking orders from 12 major markets across the globe. The International Energy Agency has said it expects the sector to become a $1 trillion industry within 20 years.

Bloomberg New Energy Finance (BNEF) says there is a staggering compound annual growth rate of 19% in offshore wind faster than any other industry on the planet.

One GW is reckoned to be enough to provide electricity to 500,000 North American homes, so offshore wind will provide enough power for many a coastal city. New offshore turbines currently being developed in Europe are extremely large, generating as much as 10 MW each.

Because of their height and their marine locations, these giant turbines can tap winds that blow at constant speeds. There is almost always some breeze at sea, so their power supply is far more reliable and predictable than smaller installations can manage.

“Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years”

One reason for the renewed interest in offshore technology is that its cost has dropped dramatically. This is partly because of the increased size and improved design of the latest turbines, but also because of the growing experience in building them, both standing in shallow seas and as floating turbines anchored to the sea bottom by cables.

Until now, to encourage offshore wind, governments have guaranteed a price for the electricity produced, but the cost of generation has been falling fast. China expects to remove all subsidies by 2022, in the belief that offshore wind will by then be successfully competing with fossil fuels.

One significant feature of recent developments is that much of the installation expertise is the same as that used in the offshore oil industry. This has given Europe a head start because the North Sea oil industry is in decline and places like Aberdeen, the UK’s offshore oil capital, are repositioning themselves as offshore wind hubs instead.

The bullish predictions for offshore wind were compiled from information provided at a conference, Offshore and Floating Wind Europe 2019, where all the world’s major offshore wind contractors were represented, and are summarised in a conference report published by Reuters Events – New Energy Update.

The report predicts that while currently the UK has the most extensive offshore wind installations in the world, China, which is fast catching up, will overtake it before 2030. Currently the US, which so far has just one 5-turbine, 30-MW wind farm, off the coast of Rhode Island, is expected to install new turbines in 2021 and to be in third place by 2030. Six states on the US eastern seaboard have found potential sites and are pushing forward developments.

Eastern Europe’s enthusiasts

In western Europe Germany, Belgium, the Netherlands and Denmark already have established industries and plan more turbines. Both France, which has an extensive windy coastline, and Ireland, with enormous potential, have impressive ambitions for offshore wind, along with several other European countries.

In eastern Europe Poland, currently heavily reliant on coal for its electricity, is expected to take advantage of its coastline on the shallow Baltic Sea to diversify into offshore wind.

But it is in Asia that the largest market is expected to develop. China is already investing heavily, but Taiwan, Japan, South Korea, Vietnam and India all have ambitious programmes too.

The US, despite President Trump’s reluctance to take any action on climate change, is seen as a very large potential market. While Texas and California have been taking advantage of cheap onshore wind and solar power, it is the wealthy states on the eastern seaboard that are going for offshore wind. Many have most of their population on the coast. Cities like New York have ambitious targets to reach zero emissions and see offshore wind as vital to achieving that.

These predictions of enormous growth, though, are still not enough to solve the problem of keeping the world temperature to below 1.5°C, which governments around the world have agreed is their ambition.

Pandemic slowdown

The executive chairman of Mainstream Renewable Power, a global wind and solar power developer, is Eddie O’Connor. He says: “As an industry, we are not nearly ambitious enough to deal with global warming.

“If we are going to decarbonise in Europe, for instance, we need to build 900,000 MW (900 GW) offshore. Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years.”

With the current Covid-19 pandemic, it is not clear how much even the predicted developments will be slowed down, let alone the 10-fold increase on current projections that Mr O’Connor thinks is necessary to reach climate targets.

Another European offshore wind conference, due to be held in London in November this year, should hear an update on industry developments, if it takes place. By then it may also be clearer how the pandemic has affected the oil industry (see WindEurope’s COVID-19 Wind Information Hub).

Possibly even more oil executives may think that offshore wind is a more attractive proposition than investing more capital in their own dying industry. It presents European oil companies with an opportunity to redeploy some experienced workers, particularly as in the last few months some oil majors have already spoken of their intention to take climate change seriously. − Climate News Network