Tag Archives: Renewable energy

It’s a galloping goodbye to Europe’s coal

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

Europe’s coal has powered it for centuries. But with gathering speed it is now turning its back on the fuel.

LONDON, 26 April, 2020 – The energy that has powered a continent for several hundred years, driving its industry, fighting its wars and keeping its people warm, is on the way out, fast: Europe’s coal is in rapid decline.

Coal is far and away the most polluting of fossil fuels and is a major factor in the build-up of climate-changing greenhouse gases in the atmosphere.

But, according to a recent report by two of Europe’s leading energy analyst groups, the use of coal for power generation among the 27 countries of the European Union fell by a record 24% last year.

The report, by the Germany-based Agora Energiewende group and Ember, an independent London climate think-tank focused on speeding up the global electricity transition, will make stark reading for Europe’s coal lobbyists.

Renewables are on the rise across most of Europe, while coal use is in sharp decline. In 2019 wind and solar power together accounted for 18% of the EU’s power generation, while coal produced 15%. That’s the first time renewables have trumped coal in Europe’s energy generation mix.

“Europe is leading the world on rapidly replacing coal generation with wind and solar and, as a result, power sector CO2 emissions have never fallen so quickly”, says Dave Jones, an electricity specialist at Ember.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too.”

Total phase-out soon

The report says that greenhouse gas emissions from the EU’s power sector have fallen by more than 30% since 2012, with a year-on-year drop of 12% in 2019.

A number of European countries have already said goodbye to coal. In 2016 Belgium closed its last coal-fired energy plant. In April this year both Austria and Sweden followed suit.

The report highlights the way in which many EU countries have sharply reduced coal use in recent years: most plan to totally eliminate it as an energy source in the near future.

Eight years ago more than 30% of the power generated in the UK came from coal-fired power plants. Last year only 2% of power was derived from coal. The UK plans to stop using it for energy generation in four years’ time.

Germany has traditionally been one of the EU’s biggest coal users. In 2013 coal fuelled 45% of the country’s power generation: last year that figure fell to 28%.

Germany says it will eliminate coal from its power mix by 2038, though government critics say this is not nearly fast enough to meet EU-wide emission reduction targets.

A number of factors are behind coal’s decline. Economics has played a big role.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too”

In the wake of the 2008 financial crash industrial activity slowed and Europe’s coal use dropped.

The power sector became more efficient: although in recent years – before the Covid-19 pandemic – industrial activity picked up, the EU’s total electricity consumption was 4% lower in 2019 than a decade earlier.

Falling installation and operating costs for solar and wind power plants have resulted in renewable energy becoming ever more competitive: the price of natural gas – a less polluting fossil fuel than coal – has also been declining, while reforms in the European carbon trading scheme resulting in higher charges being levied on polluters have driven up the cost of coal.

All is not clean air and clear blue skies in Europe, however. Coal is still a significant source of power in Poland, the Czech Republic and Bulgaria. And while Germany has reduced its reliance on coal, it still burns large amounts of lignite or brown coal, the dirtiest form of the fuel.

Pollution and climate change do not recognise borders. Many states surrounding the EU are still reliant on coal and have plans for expanding coal-fired power plants.

China is helping Serbia to expand its coal-fired power capacity. Kosovo, which has some of the biggest reserves of lignite in the world, is also building more coal-fired power plants.

The World Bank says Kosovo has some of the worst air pollution in Europe, with emissions from its lignite-fuelled power stations causing many premature deaths each year. – Climate News Network

This story is a part of Covering Climate Now’s week of coverage focused on Climate Solutions, to mark the 50th anniversary of Earth Day. Covering Climate Now is a global journalism collaboration committed to strengthening coverage of the climate story.

 

Europe’s coal has powered it for centuries. But with gathering speed it is now turning its back on the fuel.

LONDON, 26 April, 2020 – The energy that has powered a continent for several hundred years, driving its industry, fighting its wars and keeping its people warm, is on the way out, fast: Europe’s coal is in rapid decline.

Coal is far and away the most polluting of fossil fuels and is a major factor in the build-up of climate-changing greenhouse gases in the atmosphere.

But, according to a recent report by two of Europe’s leading energy analyst groups, the use of coal for power generation among the 27 countries of the European Union fell by a record 24% last year.

The report, by the Germany-based Agora Energiewende group and Ember, an independent London climate think-tank focused on speeding up the global electricity transition, will make stark reading for Europe’s coal lobbyists.

Renewables are on the rise across most of Europe, while coal use is in sharp decline. In 2019 wind and solar power together accounted for 18% of the EU’s power generation, while coal produced 15%. That’s the first time renewables have trumped coal in Europe’s energy generation mix.

“Europe is leading the world on rapidly replacing coal generation with wind and solar and, as a result, power sector CO2 emissions have never fallen so quickly”, says Dave Jones, an electricity specialist at Ember.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too.”

Total phase-out soon

The report says that greenhouse gas emissions from the EU’s power sector have fallen by more than 30% since 2012, with a year-on-year drop of 12% in 2019.

A number of European countries have already said goodbye to coal. In 2016 Belgium closed its last coal-fired energy plant. In April this year both Austria and Sweden followed suit.

The report highlights the way in which many EU countries have sharply reduced coal use in recent years: most plan to totally eliminate it as an energy source in the near future.

Eight years ago more than 30% of the power generated in the UK came from coal-fired power plants. Last year only 2% of power was derived from coal. The UK plans to stop using it for energy generation in four years’ time.

Germany has traditionally been one of the EU’s biggest coal users. In 2013 coal fuelled 45% of the country’s power generation: last year that figure fell to 28%.

Germany says it will eliminate coal from its power mix by 2038, though government critics say this is not nearly fast enough to meet EU-wide emission reduction targets.

A number of factors are behind coal’s decline. Economics has played a big role.

“Europe has become a test bed for replacing coal with wind and solar power, and the fast results should give reassurance to other countries that they can rapidly phase out coal too”

In the wake of the 2008 financial crash industrial activity slowed and Europe’s coal use dropped.

The power sector became more efficient: although in recent years – before the Covid-19 pandemic – industrial activity picked up, the EU’s total electricity consumption was 4% lower in 2019 than a decade earlier.

Falling installation and operating costs for solar and wind power plants have resulted in renewable energy becoming ever more competitive: the price of natural gas – a less polluting fossil fuel than coal – has also been declining, while reforms in the European carbon trading scheme resulting in higher charges being levied on polluters have driven up the cost of coal.

All is not clean air and clear blue skies in Europe, however. Coal is still a significant source of power in Poland, the Czech Republic and Bulgaria. And while Germany has reduced its reliance on coal, it still burns large amounts of lignite or brown coal, the dirtiest form of the fuel.

Pollution and climate change do not recognise borders. Many states surrounding the EU are still reliant on coal and have plans for expanding coal-fired power plants.

China is helping Serbia to expand its coal-fired power capacity. Kosovo, which has some of the biggest reserves of lignite in the world, is also building more coal-fired power plants.

The World Bank says Kosovo has some of the worst air pollution in Europe, with emissions from its lignite-fuelled power stations causing many premature deaths each year. – Climate News Network

UK gas plans a carbon-free future with hydrogen

This story is published as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

Committed to a carbon-free future by 2050, the UK gas industry is to switch to green hydrogen and biogas.

LONDON, 20 April, 2020 − A mixture of green hydrogen produced by surplus solar and wind power and bio-methane coming from farms and waste food will ensure the British gas industry a carbon-free future in 30 years, according to the country’s gas network operators.

The ambitious plans for the first carbon-free gas grid in the world have been declared both technically possible and one of the less expensive options in solving the tricky problem of how to heat UK homes, office buildings and factories, said to be the most difficult task in decarbonising the energy system.

The programme, called Gas Goes Green, involves using the existing gas networks that supply 85% of Britain’s homes, as well as business and industry but converting boilers and other appliances to use hydrogen.

Although the plan is ambitious, its authors, the Energy Networks Association (ENA), which includes the transmission and distribution operators for gas and electricity in the UK and Ireland, point out that a similar programme was carried out in the 1970s to convert the entire British gas grid from supplying coal gas to natural gas.

The plan, which involves 23 million properties, will be closely watched across the rest of Europe and in many other developed countries that have extensive gas networks.

“Gas Goes Green will tackle some of the biggest challenges facing decarbonisation policy”

Currently Europe depends heavily on Russian natural gas, and there have been a number of disputes about pricing which have led to threats to cut off the supply.

This has led to political pressure to find alternatives, with compressed natural gas imported from the Middle East and the US a candidate to provide a possible alternative supply.

Now the pressure is on to decarbonise the sector entirely. The UK is well placed to do so because it has enormous potential for producing far more electricity than it needs from renewable sources: wind, solar and various tidal and wave schemes.

The aim of going carbon-neutral by 2050 is enshrined in UK law, but the country’s new Conservative government, elected last December, has yet to come up with a plan for achieving this. Clearly, though, the gas industry thinks it has found a solution.

The big argument so far has been that green hydrogen, produced by electrolysis from electricity, is too expensive to compete with hydrogen produced from natural gas. However, with electricity from renewable fuels falling in price and becoming ever more plentiful, the economics of green hydrogen are expected to compete with what gas can do, the industry argues.

Potential for transport

There is also increasing interest in using hydrogen for transport, including trains, to avoid the expense of electrifying lines. It has a distinct advantage over electricity: it can be stored for long periods.

ENA commissioned a report from the accountants KPMG which concluded that conversion from natural gas to hydrogen was both technically feasible and one of the cheapest options for the nation’s heating systems.

ENA, whose members pipe gas to 21.5 million UK customers, finally came up with its plan: to switch its networks entirely to hydrogen and biogas.

There are already a number of schemes that inject both fuels into the national network, and there are experiments with closed systems which provide heating and cooking on 100% hydrogen systems. The industry is confident these could be scaled up.

Matt Hindle, head of gas at ENA, told Business Green: “We’re delighted to not only be launching this exciting new programme, but also to be making clear our commitment to creating the world’s first zero-carbon gas grid.

Political impetus

“Gas Goes Green will deliver the greenprint needed to do that, and in doing so tackle some of the biggest challenges facing decarbonisation policy.”

The first step will be to work out a plan to switch UK boilers from burning natural gas to a mixture that is mostly hydrogen but contains some bio-methane.

This ambitious plan faces some competition from the advocates of ground-source heat pumps as an alternative for heating homes. The pumps have the advantage of running on green electricity, and cut out the need for gas entirely, but they need to be installed in large numbers.

The pumps’ supporters argue that scaling up green hydrogen production to fulfil the entire needs of the gas network is nearly impossible in the 30 years left until the UK should have reached carbon neutrality.

What is interesting, however, is that a number of competing technologies now exist to decarbonise heating, cooking and transport entirely. All that is still lacking is the political will to press ahead. − Climate News Network

This story is published as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

Committed to a carbon-free future by 2050, the UK gas industry is to switch to green hydrogen and biogas.

LONDON, 20 April, 2020 − A mixture of green hydrogen produced by surplus solar and wind power and bio-methane coming from farms and waste food will ensure the British gas industry a carbon-free future in 30 years, according to the country’s gas network operators.

The ambitious plans for the first carbon-free gas grid in the world have been declared both technically possible and one of the less expensive options in solving the tricky problem of how to heat UK homes, office buildings and factories, said to be the most difficult task in decarbonising the energy system.

The programme, called Gas Goes Green, involves using the existing gas networks that supply 85% of Britain’s homes, as well as business and industry but converting boilers and other appliances to use hydrogen.

Although the plan is ambitious, its authors, the Energy Networks Association (ENA), which includes the transmission and distribution operators for gas and electricity in the UK and Ireland, point out that a similar programme was carried out in the 1970s to convert the entire British gas grid from supplying coal gas to natural gas.

The plan, which involves 23 million properties, will be closely watched across the rest of Europe and in many other developed countries that have extensive gas networks.

“Gas Goes Green will tackle some of the biggest challenges facing decarbonisation policy”

Currently Europe depends heavily on Russian natural gas, and there have been a number of disputes about pricing which have led to threats to cut off the supply.

This has led to political pressure to find alternatives, with compressed natural gas imported from the Middle East and the US a candidate to provide a possible alternative supply.

Now the pressure is on to decarbonise the sector entirely. The UK is well placed to do so because it has enormous potential for producing far more electricity than it needs from renewable sources: wind, solar and various tidal and wave schemes.

The aim of going carbon-neutral by 2050 is enshrined in UK law, but the country’s new Conservative government, elected last December, has yet to come up with a plan for achieving this. Clearly, though, the gas industry thinks it has found a solution.

The big argument so far has been that green hydrogen, produced by electrolysis from electricity, is too expensive to compete with hydrogen produced from natural gas. However, with electricity from renewable fuels falling in price and becoming ever more plentiful, the economics of green hydrogen are expected to compete with what gas can do, the industry argues.

Potential for transport

There is also increasing interest in using hydrogen for transport, including trains, to avoid the expense of electrifying lines. It has a distinct advantage over electricity: it can be stored for long periods.

ENA commissioned a report from the accountants KPMG which concluded that conversion from natural gas to hydrogen was both technically feasible and one of the cheapest options for the nation’s heating systems.

ENA, whose members pipe gas to 21.5 million UK customers, finally came up with its plan: to switch its networks entirely to hydrogen and biogas.

There are already a number of schemes that inject both fuels into the national network, and there are experiments with closed systems which provide heating and cooking on 100% hydrogen systems. The industry is confident these could be scaled up.

Matt Hindle, head of gas at ENA, told Business Green: “We’re delighted to not only be launching this exciting new programme, but also to be making clear our commitment to creating the world’s first zero-carbon gas grid.

Political impetus

“Gas Goes Green will deliver the greenprint needed to do that, and in doing so tackle some of the biggest challenges facing decarbonisation policy.”

The first step will be to work out a plan to switch UK boilers from burning natural gas to a mixture that is mostly hydrogen but contains some bio-methane.

This ambitious plan faces some competition from the advocates of ground-source heat pumps as an alternative for heating homes. The pumps have the advantage of running on green electricity, and cut out the need for gas entirely, but they need to be installed in large numbers.

The pumps’ supporters argue that scaling up green hydrogen production to fulfil the entire needs of the gas network is nearly impossible in the 30 years left until the UK should have reached carbon neutrality.

What is interesting, however, is that a number of competing technologies now exist to decarbonise heating, cooking and transport entirely. All that is still lacking is the political will to press ahead. − Climate News Network

Offshore wind hopes for a livelier future

With more countries realising how offshore wind can help cut carbon emissions, a massive building boom looks likely.

LONDON, 15 April, 2020 − Generating electricity from offshore wind looks like an idea whose time has come, with the emerging technology set to grow at extraordinary speed in the next decade. But despite its great potential, deployment may still not be fast enough to avert the climate crisis.

The prospect that offshore wind energy will grow from 22 Gigawatts (GW) in 2018 to 177 GW by 2030 is based on predictions from the industry that makes and installs the turbines, with manufacturers taking orders from 12 major markets across the globe. The International Energy Agency has said it expects the sector to become a $1 trillion industry within 20 years.

Bloomberg New Energy Finance (BNEF) says there is a staggering compound annual growth rate of 19% in offshore wind faster than any other industry on the planet.

One GW is reckoned to be enough to provide electricity to 500,000 North American homes, so offshore wind will provide enough power for many a coastal city. New offshore turbines currently being developed in Europe are extremely large, generating as much as 10 MW each.

Because of their height and their marine locations, these giant turbines can tap winds that blow at constant speeds. There is almost always some breeze at sea, so their power supply is far more reliable and predictable than smaller installations can manage.

“Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years”

One reason for the renewed interest in offshore technology is that its cost has dropped dramatically. This is partly because of the increased size and improved design of the latest turbines, but also because of the growing experience in building them, both standing in shallow seas and as floating turbines anchored to the sea bottom by cables.

Until now, to encourage offshore wind, governments have guaranteed a price for the electricity produced, but the cost of generation has been falling fast. China expects to remove all subsidies by 2022, in the belief that offshore wind will by then be successfully competing with fossil fuels.

One significant feature of recent developments is that much of the installation expertise is the same as that used in the offshore oil industry. This has given Europe a head start because the North Sea oil industry is in decline and places like Aberdeen, the UK’s offshore oil capital, are repositioning themselves as offshore wind hubs instead.

The bullish predictions for offshore wind were compiled from information provided at a conference, Offshore and Floating Wind Europe 2019, where all the world’s major offshore wind contractors were represented, and are summarised in a conference report published by Reuters Events – New Energy Update.

The report predicts that while currently the UK has the most extensive offshore wind installations in the world, China, which is fast catching up, will overtake it before 2030. Currently the US, which so far has just one 5-turbine, 30-MW wind farm, off the coast of Rhode Island, is expected to install new turbines in 2021 and to be in third place by 2030. Six states on the US eastern seaboard have found potential sites and are pushing forward developments.

Eastern Europe’s enthusiasts

In western Europe Germany, Belgium, the Netherlands and Denmark already have established industries and plan more turbines. Both France, which has an extensive windy coastline, and Ireland, with enormous potential, have impressive ambitions for offshore wind, along with several other European countries.

In eastern Europe Poland, currently heavily reliant on coal for its electricity, is expected to take advantage of its coastline on the shallow Baltic Sea to diversify into offshore wind.

But it is in Asia that the largest market is expected to develop. China is already investing heavily, but Taiwan, Japan, South Korea, Vietnam and India all have ambitious programmes too.

The US, despite President Trump’s reluctance to take any action on climate change, is seen as a very large potential market. While Texas and California have been taking advantage of cheap onshore wind and solar power, it is the wealthy states on the eastern seaboard that are going for offshore wind. Many have most of their population on the coast. Cities like New York have ambitious targets to reach zero emissions and see offshore wind as vital to achieving that.

These predictions of enormous growth, though, are still not enough to solve the problem of keeping the world temperature to below 1.5°C, which governments around the world have agreed is their ambition.

Pandemic slowdown

The executive chairman of Mainstream Renewable Power, a global wind and solar power developer, is Eddie O’Connor. He says: “As an industry, we are not nearly ambitious enough to deal with global warming.

“If we are going to decarbonise in Europe, for instance, we need to build 900,000 MW (900 GW) offshore. Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years.”

With the current Covid-19 pandemic, it is not clear how much even the predicted developments will be slowed down, let alone the 10-fold increase on current projections that Mr O’Connor thinks is necessary to reach climate targets.

Another European offshore wind conference, due to be held in London in November this year, should hear an update on industry developments, if it takes place. By then it may also be clearer how the pandemic has affected the oil industry (see WindEurope’s COVID-19 Wind Information Hub).

Possibly even more oil executives may think that offshore wind is a more attractive proposition than investing more capital in their own dying industry. It presents European oil companies with an opportunity to redeploy some experienced workers, particularly as in the last few months some oil majors have already spoken of their intention to take climate change seriously. − Climate News Network

With more countries realising how offshore wind can help cut carbon emissions, a massive building boom looks likely.

LONDON, 15 April, 2020 − Generating electricity from offshore wind looks like an idea whose time has come, with the emerging technology set to grow at extraordinary speed in the next decade. But despite its great potential, deployment may still not be fast enough to avert the climate crisis.

The prospect that offshore wind energy will grow from 22 Gigawatts (GW) in 2018 to 177 GW by 2030 is based on predictions from the industry that makes and installs the turbines, with manufacturers taking orders from 12 major markets across the globe. The International Energy Agency has said it expects the sector to become a $1 trillion industry within 20 years.

Bloomberg New Energy Finance (BNEF) says there is a staggering compound annual growth rate of 19% in offshore wind faster than any other industry on the planet.

One GW is reckoned to be enough to provide electricity to 500,000 North American homes, so offshore wind will provide enough power for many a coastal city. New offshore turbines currently being developed in Europe are extremely large, generating as much as 10 MW each.

Because of their height and their marine locations, these giant turbines can tap winds that blow at constant speeds. There is almost always some breeze at sea, so their power supply is far more reliable and predictable than smaller installations can manage.

“Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years”

One reason for the renewed interest in offshore technology is that its cost has dropped dramatically. This is partly because of the increased size and improved design of the latest turbines, but also because of the growing experience in building them, both standing in shallow seas and as floating turbines anchored to the sea bottom by cables.

Until now, to encourage offshore wind, governments have guaranteed a price for the electricity produced, but the cost of generation has been falling fast. China expects to remove all subsidies by 2022, in the belief that offshore wind will by then be successfully competing with fossil fuels.

One significant feature of recent developments is that much of the installation expertise is the same as that used in the offshore oil industry. This has given Europe a head start because the North Sea oil industry is in decline and places like Aberdeen, the UK’s offshore oil capital, are repositioning themselves as offshore wind hubs instead.

The bullish predictions for offshore wind were compiled from information provided at a conference, Offshore and Floating Wind Europe 2019, where all the world’s major offshore wind contractors were represented, and are summarised in a conference report published by Reuters Events – New Energy Update.

The report predicts that while currently the UK has the most extensive offshore wind installations in the world, China, which is fast catching up, will overtake it before 2030. Currently the US, which so far has just one 5-turbine, 30-MW wind farm, off the coast of Rhode Island, is expected to install new turbines in 2021 and to be in third place by 2030. Six states on the US eastern seaboard have found potential sites and are pushing forward developments.

Eastern Europe’s enthusiasts

In western Europe Germany, Belgium, the Netherlands and Denmark already have established industries and plan more turbines. Both France, which has an extensive windy coastline, and Ireland, with enormous potential, have impressive ambitions for offshore wind, along with several other European countries.

In eastern Europe Poland, currently heavily reliant on coal for its electricity, is expected to take advantage of its coastline on the shallow Baltic Sea to diversify into offshore wind.

But it is in Asia that the largest market is expected to develop. China is already investing heavily, but Taiwan, Japan, South Korea, Vietnam and India all have ambitious programmes too.

The US, despite President Trump’s reluctance to take any action on climate change, is seen as a very large potential market. While Texas and California have been taking advantage of cheap onshore wind and solar power, it is the wealthy states on the eastern seaboard that are going for offshore wind. Many have most of their population on the coast. Cities like New York have ambitious targets to reach zero emissions and see offshore wind as vital to achieving that.

These predictions of enormous growth, though, are still not enough to solve the problem of keeping the world temperature to below 1.5°C, which governments around the world have agreed is their ambition.

Pandemic slowdown

The executive chairman of Mainstream Renewable Power, a global wind and solar power developer, is Eddie O’Connor. He says: “As an industry, we are not nearly ambitious enough to deal with global warming.

“If we are going to decarbonise in Europe, for instance, we need to build 900,000 MW (900 GW) offshore. Based upon the current forecasts, it would take around 100 years to build enough offshore wind to decarbonise Europe. We don’t have 100 years.”

With the current Covid-19 pandemic, it is not clear how much even the predicted developments will be slowed down, let alone the 10-fold increase on current projections that Mr O’Connor thinks is necessary to reach climate targets.

Another European offshore wind conference, due to be held in London in November this year, should hear an update on industry developments, if it takes place. By then it may also be clearer how the pandemic has affected the oil industry (see WindEurope’s COVID-19 Wind Information Hub).

Possibly even more oil executives may think that offshore wind is a more attractive proposition than investing more capital in their own dying industry. It presents European oil companies with an opportunity to redeploy some experienced workers, particularly as in the last few months some oil majors have already spoken of their intention to take climate change seriously. − Climate News Network

US coal economics make little sense

US coal economics? They’re odd. The dirtiest fossil fuel generates ever less American electricity, yet energy policy is unchanged.

LONDON, 13 April, 2020 – If you want a simple and satisfying job, you’d probably better avoid one which involves working in US coal economics. They’ve become fairly mystifying.

It was one of the key images in the run-up to the US 2016 election – Donald Trump in a hard hat telling miners that the coal industry would make a comeback under his leadership.

“We’re gonna put the miners back to work”, said Trump. “We’re gonna get those mines open.”

In practice, the opposite has happened.

Coal is the most polluting fossil fuel and the source of a large proportion of climate-changing greenhouse gases (GHGs).

Since Trump came to office in January 2017, US coal plants have been closing at a near-record pace.

Steep fall

Last year alone, coal-fired power plants in the US generating a total of more than 15,000 MWs of power – enough to feed the energy demand of 15 million American homes – were either closed or converted to burn other, less polluting power sources.

At the end of 2019 several of the US’s biggest coal plants – including the giant Navajo generating station in Arizona, the Bruce Mansfield plant in Pennsylvania and the Paradise facility in Kentucky – shut up shop.

In mid-March 2020, the last operating coal-fired power plant in New York state closed.

As a result, coal-fired electricity output in the US dropped 18% in 2019: according to the US Energy Information Administration (EIA), coal now generates 23% of the country’s electricity supply – its lowest level in the country’s total energy mix since the mid-1970s.

Coal’s US decline does not reflect any change of policy by the Trump administration. Since coming to office Trump – who at one time described climate change as a hoax – has sought to obstruct the battle against global warming.

His administration has rolled back several regulations aimed at improving the environment and cutting emissions. Internationally, Trump is in the process of withdrawing the US from the 2015 Paris Agreement on climate change.

Renewables gain

Coal’s decline in the US is about economics: the rise of the fracking industry means that prices for home-produced gas have been falling. The price of renewables – mainly wind and solar – has also been dropping significantly in recent years.

According to EIA figures, gas now accounts for 38% of electricity generation while the figure for renewables, near zero only 20 years ago, is 17.5%.

But the significant reduction in the use of coal has not been matched by an equivalent fall in US GHG emissions, which dropped last year by only a little over 2%. That’s because overall energy demand in the US has been growing rapidly, in line with a spurt in economic activity.

The outlook for this year is very different. In the wake of the Covid-19 pandemic and the likelihood of a global recession, there are predictions that US greenhouse gas emissions will fall by 7.5% or more in 2020.

Worldwide, the economic downturn related to the pandemic is causing similar drops in GHG emissions.

China is the world’s biggest producer and consumer of coal. Despite big investments in renewables, the country depends on coal for nearly 60% of its total energy consumption and is still building large numbers of coal-fired power plants.

“There are signs that as worries about the pandemic fade in China, coal use is on the rise again”

As economic activity has declined sharply in recent weeks, pollution levels over China and many other parts of the world have fallen dramatically.

Yet already there are signs that as worries about the pandemic fade in China, coal use is on the rise again.

India and other countries in South Asia also have plans for large-scale coal-fired power projects – at present on hold due to the fall-out from Covid-19.

Countries round the world have to break the coal habit if there is to be any hope of preventing runaway climate change and meeting the goals of the 2015 Paris Agreement.

Analysis after analysis has pointed out that coal-burning is not only catastrophic for the future of the planet but also makes no economic sense.

The most recent report by the Carbon Tracker group, an independent financial think tank which monitors energy transitions, says that investments in renewables are now cheaper than coal investments in all major energy markets. – Climate News Network

US coal economics? They’re odd. The dirtiest fossil fuel generates ever less American electricity, yet energy policy is unchanged.

LONDON, 13 April, 2020 – If you want a simple and satisfying job, you’d probably better avoid one which involves working in US coal economics. They’ve become fairly mystifying.

It was one of the key images in the run-up to the US 2016 election – Donald Trump in a hard hat telling miners that the coal industry would make a comeback under his leadership.

“We’re gonna put the miners back to work”, said Trump. “We’re gonna get those mines open.”

In practice, the opposite has happened.

Coal is the most polluting fossil fuel and the source of a large proportion of climate-changing greenhouse gases (GHGs).

Since Trump came to office in January 2017, US coal plants have been closing at a near-record pace.

Steep fall

Last year alone, coal-fired power plants in the US generating a total of more than 15,000 MWs of power – enough to feed the energy demand of 15 million American homes – were either closed or converted to burn other, less polluting power sources.

At the end of 2019 several of the US’s biggest coal plants – including the giant Navajo generating station in Arizona, the Bruce Mansfield plant in Pennsylvania and the Paradise facility in Kentucky – shut up shop.

In mid-March 2020, the last operating coal-fired power plant in New York state closed.

As a result, coal-fired electricity output in the US dropped 18% in 2019: according to the US Energy Information Administration (EIA), coal now generates 23% of the country’s electricity supply – its lowest level in the country’s total energy mix since the mid-1970s.

Coal’s US decline does not reflect any change of policy by the Trump administration. Since coming to office Trump – who at one time described climate change as a hoax – has sought to obstruct the battle against global warming.

His administration has rolled back several regulations aimed at improving the environment and cutting emissions. Internationally, Trump is in the process of withdrawing the US from the 2015 Paris Agreement on climate change.

Renewables gain

Coal’s decline in the US is about economics: the rise of the fracking industry means that prices for home-produced gas have been falling. The price of renewables – mainly wind and solar – has also been dropping significantly in recent years.

According to EIA figures, gas now accounts for 38% of electricity generation while the figure for renewables, near zero only 20 years ago, is 17.5%.

But the significant reduction in the use of coal has not been matched by an equivalent fall in US GHG emissions, which dropped last year by only a little over 2%. That’s because overall energy demand in the US has been growing rapidly, in line with a spurt in economic activity.

The outlook for this year is very different. In the wake of the Covid-19 pandemic and the likelihood of a global recession, there are predictions that US greenhouse gas emissions will fall by 7.5% or more in 2020.

Worldwide, the economic downturn related to the pandemic is causing similar drops in GHG emissions.

China is the world’s biggest producer and consumer of coal. Despite big investments in renewables, the country depends on coal for nearly 60% of its total energy consumption and is still building large numbers of coal-fired power plants.

“There are signs that as worries about the pandemic fade in China, coal use is on the rise again”

As economic activity has declined sharply in recent weeks, pollution levels over China and many other parts of the world have fallen dramatically.

Yet already there are signs that as worries about the pandemic fade in China, coal use is on the rise again.

India and other countries in South Asia also have plans for large-scale coal-fired power projects – at present on hold due to the fall-out from Covid-19.

Countries round the world have to break the coal habit if there is to be any hope of preventing runaway climate change and meeting the goals of the 2015 Paris Agreement.

Analysis after analysis has pointed out that coal-burning is not only catastrophic for the future of the planet but also makes no economic sense.

The most recent report by the Carbon Tracker group, an independent financial think tank which monitors energy transitions, says that investments in renewables are now cheaper than coal investments in all major energy markets. – Climate News Network

Blue energy revolution comes of age

With green energy from wind and solar out-competing fossil fuels, governments now hope for another boost − blue energy from the oceans.

LONDON, 31 March, 2020 − The amount of energy generated by tides and waves in the last decade has increased 10-fold. Now governments around the world are planning to scale up these ventures to tap into the oceans’ vast store of blue energy.

Although in 2019 the total amount of energy produced by “blue power” would have been enough to provide electricity to only one city the size of Paris, even that was a vast increase on the tiny experiments being carried out 10 years earlier.

Now countries across the world with access to the sea are beginning to exploit all sorts of new technologies and intending to scale them up to bolster their attempts to go carbon-neutral.

Blue energy takes many forms. One of the most difficult technically is harnessing the energy of waves with devices that produce electricity. After several false starts many successful prototypes are now being trialled for commercial use. Other experiments exploit the tidal range – using the power of rapidly rising and falling tidal streams to push water through turbines.

The most commercially successful strategies so far use underwater turbines, similar to wind turbines, to exploit the tidal currents in coastal regions.

More ambitious but along the same lines are attempts to capture the energy from the immense ocean currents that move vast quantities of water round the planet.

“Our latest report underlines the considerable international support for the marine renewable sector. The start of this new decade carries considerable promise for ocean energy”

Also included in blue energy is ocean thermal energy conversion, which exploits the temperature differences between solar energy stored as heat in the upper ocean layers and colder seawater, generally at a depth below 1000 metres.

A variation on this is to use salinity gradients, the difference between the salt content of the sea and fresh water entering from a large river system. Some of these schemes are being used to produce fresh drinking water for dry regions rather than electricity.

The potential from all these energy sources is so great that an organisation called Ocean Energy Systems (OES), an offshoot of the International Energy Agency, is pooling all the research in a bid to achieve large-scale deployment.

There are now 24 countries in the OES, including China, India, the US, most European nations with a coastline, Japan, Australia and South Africa. Most of them have already deployed some blue energy schemes and are hoping to scale them up to full commercial use in the next decade.

As with wind and solar when they were being widely developed ten years ago, energy from the oceans is currently more expensive than fossil fuels. But as the technologies are refined the costs are coming down.

Profiting already

Already China has encouraged tidal stream energy by offering a feed-in tariff three times the price of fossil fuels, similar to the rate used in many countries to launch solar and wind power. One Chinese company is already finding this incentive enough to feed power into the grid and make a profit.

Among the leading countries developing these technologies are Canada and the United Kingdom, the two countries with the highest tides in the world. Canada has a number of tidal energy schemes on its Atlantic coast in Nova Scotia, with several competing companies testing different prototypes.

Scotland, which has enormous potential because of its many islands and tidal currents, has the largest tidal array of underwater turbines in the world. The turbine output has exceeded expectations, and the MeyGen company is planning to vastly increase the number of installations.

But this is only one of more than 20 projects in the UK, some still in the research and development stage, but many already being scaled up for deployment at special testing grounds in Scotland’s Orkney islands and the West of England.

OES chairman Henry Jeffrey, from the University of Edinburgh, said the group’s new annual report communicates the sizeable global effort to identify commercialisation pathways for ocean energy technologies.

Both Canada and the US can now see big potential, and political leaders across Europe have identified ocean energy as an essential component in meeting decarbonisation targets, fostering economic growth and creating future employment opportunities.

Lower costs essential

“Our latest report underlines the considerable international support for the marine renewable sector as leading global powers attempt to rebalance energy usage and limit global warming. The start of this new decade carries considerable promise for ocean energy,” he said.

However, Jeffrey warned that while the sector continued to take huge strides forward, there were several challenges ahead “centred around affordability, reliability, installability, operability, funding availability, capacity building and standardisation.

“In particular, significant cost reductions are required for ocean energy technologies to compete with other low-carbon technologies.”

Currently the cost of wind power, taking into account construction costs over the turbines’ lifetime, is being quoted as around €0.8-10 (one eighth to one tenth of a Euro, about £0.07-9 or US$0.9-11) per kilowatt hour, but this is still going down.

The European target is to get tidal stream energy down to €0.10 by 2030 and wave power down to €0.15, which would also make them competitive with fossil fuels if gas and coal were obliged to pay for capturing and storing the carbon dioxide they produce. − Climate News Network

With green energy from wind and solar out-competing fossil fuels, governments now hope for another boost − blue energy from the oceans.

LONDON, 31 March, 2020 − The amount of energy generated by tides and waves in the last decade has increased 10-fold. Now governments around the world are planning to scale up these ventures to tap into the oceans’ vast store of blue energy.

Although in 2019 the total amount of energy produced by “blue power” would have been enough to provide electricity to only one city the size of Paris, even that was a vast increase on the tiny experiments being carried out 10 years earlier.

Now countries across the world with access to the sea are beginning to exploit all sorts of new technologies and intending to scale them up to bolster their attempts to go carbon-neutral.

Blue energy takes many forms. One of the most difficult technically is harnessing the energy of waves with devices that produce electricity. After several false starts many successful prototypes are now being trialled for commercial use. Other experiments exploit the tidal range – using the power of rapidly rising and falling tidal streams to push water through turbines.

The most commercially successful strategies so far use underwater turbines, similar to wind turbines, to exploit the tidal currents in coastal regions.

More ambitious but along the same lines are attempts to capture the energy from the immense ocean currents that move vast quantities of water round the planet.

“Our latest report underlines the considerable international support for the marine renewable sector. The start of this new decade carries considerable promise for ocean energy”

Also included in blue energy is ocean thermal energy conversion, which exploits the temperature differences between solar energy stored as heat in the upper ocean layers and colder seawater, generally at a depth below 1000 metres.

A variation on this is to use salinity gradients, the difference between the salt content of the sea and fresh water entering from a large river system. Some of these schemes are being used to produce fresh drinking water for dry regions rather than electricity.

The potential from all these energy sources is so great that an organisation called Ocean Energy Systems (OES), an offshoot of the International Energy Agency, is pooling all the research in a bid to achieve large-scale deployment.

There are now 24 countries in the OES, including China, India, the US, most European nations with a coastline, Japan, Australia and South Africa. Most of them have already deployed some blue energy schemes and are hoping to scale them up to full commercial use in the next decade.

As with wind and solar when they were being widely developed ten years ago, energy from the oceans is currently more expensive than fossil fuels. But as the technologies are refined the costs are coming down.

Profiting already

Already China has encouraged tidal stream energy by offering a feed-in tariff three times the price of fossil fuels, similar to the rate used in many countries to launch solar and wind power. One Chinese company is already finding this incentive enough to feed power into the grid and make a profit.

Among the leading countries developing these technologies are Canada and the United Kingdom, the two countries with the highest tides in the world. Canada has a number of tidal energy schemes on its Atlantic coast in Nova Scotia, with several competing companies testing different prototypes.

Scotland, which has enormous potential because of its many islands and tidal currents, has the largest tidal array of underwater turbines in the world. The turbine output has exceeded expectations, and the MeyGen company is planning to vastly increase the number of installations.

But this is only one of more than 20 projects in the UK, some still in the research and development stage, but many already being scaled up for deployment at special testing grounds in Scotland’s Orkney islands and the West of England.

OES chairman Henry Jeffrey, from the University of Edinburgh, said the group’s new annual report communicates the sizeable global effort to identify commercialisation pathways for ocean energy technologies.

Both Canada and the US can now see big potential, and political leaders across Europe have identified ocean energy as an essential component in meeting decarbonisation targets, fostering economic growth and creating future employment opportunities.

Lower costs essential

“Our latest report underlines the considerable international support for the marine renewable sector as leading global powers attempt to rebalance energy usage and limit global warming. The start of this new decade carries considerable promise for ocean energy,” he said.

However, Jeffrey warned that while the sector continued to take huge strides forward, there were several challenges ahead “centred around affordability, reliability, installability, operability, funding availability, capacity building and standardisation.

“In particular, significant cost reductions are required for ocean energy technologies to compete with other low-carbon technologies.”

Currently the cost of wind power, taking into account construction costs over the turbines’ lifetime, is being quoted as around €0.8-10 (one eighth to one tenth of a Euro, about £0.07-9 or US$0.9-11) per kilowatt hour, but this is still going down.

The European target is to get tidal stream energy down to €0.10 by 2030 and wave power down to €0.15, which would also make them competitive with fossil fuels if gas and coal were obliged to pay for capturing and storing the carbon dioxide they produce. − Climate News Network

Old batteries can be source of new energy

How to dispose of old batteries from redundant electric vehicles? The good news: we can harvest their valuable parts to make new ones.

LONDON, 24 February, 2020 − Driving an electric-powered vehicle (EV) rather than one reliant on fossil fuels is a key way to tackle climate change and improve air quality − but it does leave the old batteries behind as a nasty residue.

New technologies give rise to their own sets of problems. The all-important battery in an EV has a limited life span – due to high operating temperatures, changing discharge rates and other factors, batteries in EVs in use today are unlikely to last for more than 10 years.

The question is what to do with all those batteries once they have reached the end of their operating life. The dumping of electronic or e-waste – made up of old computers and other everyday equipment − is already a massive worldwide problem: EV industry analysts say similar difficulties could develop when EVs and their batteries reach the end of their lives.

But a recent study by scientists at the University of Birmingham, UK, and colleagues, published in the journal Nature, comes up with some solutions. It says valuable materials, including cobalt, could be extracted or “harvested” from the EV lithium-ion batteries when they no longer work: these materials could then be used to make new batteries.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed will surely be essential”

Such processes can be hazardous: the study’s authors say recycling systems with operating robots could be set up to carry out the work.

“In the future, electric vehicles may prove to be a valuable secondary resource for critical materials, and it has been argued that high cobalt-content batteries should be recycled immediately to bolster cobalt supplies”, the study says.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed by electric-vehicle battery manufacturing will surely be essential to ensure the sustainability of the automotive industry of the future.”

The study says an EV battery – much like a battery in a mobile phone – loses some of its effectiveness during its life cycle, but can still hold up to 80% of its power. While it’s not suitable for continued road use, it can be adapted for other purposes.

Powering local shops

Banks of old EV batteries could store power: they could be used to store energy to feed into the electricity grid or directly into buildings. In Japan the Toyota car company has pioneered a scheme which hooks up old EV batteries with solar panels to power convenience stores.

In 2017 more than a million EVs were sold worldwide. The study estimates that when those cars reach the end of the road they will produce 250,000 tonnes of discarded battery packs. It’s vital, say the study’s authors, that this problem be addressed now.

It’s estimated that EV global sales combined with sales of plug-in hybrid cars amounted to more than 2.2 million last year. At the same time, sales of fossil fuel cars have been falling.

All the big vehicle manufacturers are making heavy commitments to EV manufacturing. Deloitte, the market research group, forecasts global EV sales rising to 12 million in 2025 and to more than 20 million by 2030. It predicts that as economies of scale are achieved and costs of manufacturing batteries decline, the price of EVs will fall. − Climate News Network

How to dispose of old batteries from redundant electric vehicles? The good news: we can harvest their valuable parts to make new ones.

LONDON, 24 February, 2020 − Driving an electric-powered vehicle (EV) rather than one reliant on fossil fuels is a key way to tackle climate change and improve air quality − but it does leave the old batteries behind as a nasty residue.

New technologies give rise to their own sets of problems. The all-important battery in an EV has a limited life span – due to high operating temperatures, changing discharge rates and other factors, batteries in EVs in use today are unlikely to last for more than 10 years.

The question is what to do with all those batteries once they have reached the end of their operating life. The dumping of electronic or e-waste – made up of old computers and other everyday equipment − is already a massive worldwide problem: EV industry analysts say similar difficulties could develop when EVs and their batteries reach the end of their lives.

But a recent study by scientists at the University of Birmingham, UK, and colleagues, published in the journal Nature, comes up with some solutions. It says valuable materials, including cobalt, could be extracted or “harvested” from the EV lithium-ion batteries when they no longer work: these materials could then be used to make new batteries.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed will surely be essential”

Such processes can be hazardous: the study’s authors say recycling systems with operating robots could be set up to carry out the work.

“In the future, electric vehicles may prove to be a valuable secondary resource for critical materials, and it has been argued that high cobalt-content batteries should be recycled immediately to bolster cobalt supplies”, the study says.

“If tens of millions of electric vehicles are to be produced annually, careful husbandry of the resources consumed by electric-vehicle battery manufacturing will surely be essential to ensure the sustainability of the automotive industry of the future.”

The study says an EV battery – much like a battery in a mobile phone – loses some of its effectiveness during its life cycle, but can still hold up to 80% of its power. While it’s not suitable for continued road use, it can be adapted for other purposes.

Powering local shops

Banks of old EV batteries could store power: they could be used to store energy to feed into the electricity grid or directly into buildings. In Japan the Toyota car company has pioneered a scheme which hooks up old EV batteries with solar panels to power convenience stores.

In 2017 more than a million EVs were sold worldwide. The study estimates that when those cars reach the end of the road they will produce 250,000 tonnes of discarded battery packs. It’s vital, say the study’s authors, that this problem be addressed now.

It’s estimated that EV global sales combined with sales of plug-in hybrid cars amounted to more than 2.2 million last year. At the same time, sales of fossil fuel cars have been falling.

All the big vehicle manufacturers are making heavy commitments to EV manufacturing. Deloitte, the market research group, forecasts global EV sales rising to 12 million in 2025 and to more than 20 million by 2030. It predicts that as economies of scale are achieved and costs of manufacturing batteries decline, the price of EVs will fall. − Climate News Network

Renewable energy could power the world by 2050

Wind, water and solar sources − the renewable energy trio − could meet almost all the needs of our power-hungry society in 30 years.

LONDON, 19 February, 2020 − Virtually all the world’s demand for electricity to run transport and to heat and cool homes and offices, as well as to provide the power demanded by industry, could be met by renewable energy by mid-century.

This is the consensus of 47 peer-reviewed research papers from 13 independent groups with a total of 91 authors that have been brought together by Stanford University in California.

Some of the papers take a broad sweep across the world, adding together the potential for each technology to see if individual countries or whole regions could survive on renewables.

Special examinations of small island states, sub-Saharan Africa and individual countries like Germany look to see what are the barriers to progress and how they could be removed.

In every case the findings are that the technology exists to achieve 100% renewable power if the political will to achieve it can be mustered.

“It seems that every part of the world can now find a system that edges fossil fuels out in costs”

The collection of papers is a powerful rebuff to those who say that renewables are not reliable or cannot be expanded fast enough to take over from fossil fuels and nuclear power.

Once proper energy efficiency measures are in place, a combination of wind, solar and water power, with various forms of storage capacity, can add up to 100% of energy needs in every part of the planet.

Stanford puts one of its own papers at the top of the list. It studies the impacts of the Green New Deal proposals on grid stability, costs, jobs, health and climate in 143 countries.

With the world already approaching 1.5°C of heating, it says, seven million people killed by air pollution annually, and limited fossil fuel resources potentially sparking conflict, Stanford’s researchers wanted to compare business-as-usual with a 100% transition to wind-water-solar energy, efficiency and storage by 2050 – with at least 80% by 2030.

By grouping the countries of the world together into 24 regions co-operating on grid stability and storage solutions, supply could match demand by 2050-2052 with 100% reliance on renewables. The amount of energy used overall would be reduced by 57.1%, costs would fall by a similar amount, and 28.6 million more long-term full-time jobs would be created than under business-as-usual.

Clean air bonus

The remarkable consensus among researchers is perhaps surprising, since climate and weather conditions differ so much in different latitudes. It seems though that as the cost of renewables, particularly wind and solar, has tumbled, and energy storage solutions multiplied, every part of the world can now find a system that edges fossil fuels out in costs.

That, plus the benefit of clean air, particularly in Asian countries like India and China, makes renewables far more beneficial on any cost-benefit analysis.

The appearance of so many papers mirrors the consensus that climate scientists have managed to achieve in warning the world’s political leaders that time is running out for them to act to keep the temperature below dangerous levels.

Since in total the solutions offered cover countries producing more than 97% of the world’s greenhouse gases, they provide a blueprint for the next round of UN climate talks, to be held in Glasgow in November. At COP-26, as the conference is called, politicians will be asked to make new commitments to avoid dangerous climate change.

This Stanford file shows them that all they need is political will for them to be able to achieve climate stability. − Climate News Network

Wind, water and solar sources − the renewable energy trio − could meet almost all the needs of our power-hungry society in 30 years.

LONDON, 19 February, 2020 − Virtually all the world’s demand for electricity to run transport and to heat and cool homes and offices, as well as to provide the power demanded by industry, could be met by renewable energy by mid-century.

This is the consensus of 47 peer-reviewed research papers from 13 independent groups with a total of 91 authors that have been brought together by Stanford University in California.

Some of the papers take a broad sweep across the world, adding together the potential for each technology to see if individual countries or whole regions could survive on renewables.

Special examinations of small island states, sub-Saharan Africa and individual countries like Germany look to see what are the barriers to progress and how they could be removed.

In every case the findings are that the technology exists to achieve 100% renewable power if the political will to achieve it can be mustered.

“It seems that every part of the world can now find a system that edges fossil fuels out in costs”

The collection of papers is a powerful rebuff to those who say that renewables are not reliable or cannot be expanded fast enough to take over from fossil fuels and nuclear power.

Once proper energy efficiency measures are in place, a combination of wind, solar and water power, with various forms of storage capacity, can add up to 100% of energy needs in every part of the planet.

Stanford puts one of its own papers at the top of the list. It studies the impacts of the Green New Deal proposals on grid stability, costs, jobs, health and climate in 143 countries.

With the world already approaching 1.5°C of heating, it says, seven million people killed by air pollution annually, and limited fossil fuel resources potentially sparking conflict, Stanford’s researchers wanted to compare business-as-usual with a 100% transition to wind-water-solar energy, efficiency and storage by 2050 – with at least 80% by 2030.

By grouping the countries of the world together into 24 regions co-operating on grid stability and storage solutions, supply could match demand by 2050-2052 with 100% reliance on renewables. The amount of energy used overall would be reduced by 57.1%, costs would fall by a similar amount, and 28.6 million more long-term full-time jobs would be created than under business-as-usual.

Clean air bonus

The remarkable consensus among researchers is perhaps surprising, since climate and weather conditions differ so much in different latitudes. It seems though that as the cost of renewables, particularly wind and solar, has tumbled, and energy storage solutions multiplied, every part of the world can now find a system that edges fossil fuels out in costs.

That, plus the benefit of clean air, particularly in Asian countries like India and China, makes renewables far more beneficial on any cost-benefit analysis.

The appearance of so many papers mirrors the consensus that climate scientists have managed to achieve in warning the world’s political leaders that time is running out for them to act to keep the temperature below dangerous levels.

Since in total the solutions offered cover countries producing more than 97% of the world’s greenhouse gases, they provide a blueprint for the next round of UN climate talks, to be held in Glasgow in November. At COP-26, as the conference is called, politicians will be asked to make new commitments to avoid dangerous climate change.

This Stanford file shows them that all they need is political will for them to be able to achieve climate stability. − Climate News Network

UK airports must shut to reach 2050 climate target

All UK airports must close by 2050 for the country to reach its target of net zero climate emissions by then, scientists say.

LONDON, 18 February, 2020 − If it is to achieve its target of net zero climate emissions by 2050, all UK airports must close by mid-century and the country will have to make other drastic and fundamental lifestyle changes, says a report from a research group backed by the government in London.

With the UK due to host this year’s round of crucial UN climate talks in Glasgow in November, a group of academics has embarrassed the British government by showing it has currently no chance of meeting its own legally binding target to reduce greenhouse gas emissions to nothing within 30 years.

Their report, Absolute Zero, published by the University of Cambridge, says no amount of government or public wishful thinking will hide the fact that the country will not reach zero emissions by 2050 without barely conceivable changes to policies, industrial processes and lifestyles. Its authors include colleagues from five other British universities.

All are members of a group from UK Fires, a research programme sponsored by the UK government, aiming to support a 20% cut in the country’s true emissions by 2050 by placing resource efficiency at the heart of its future industrial strategy. The report was paid for under the UK Fires programme.

As well as a temporary halt to flying, the report also says British people cannot go on driving heavier cars and turning up the heating in their homes.

“The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping”

The government, industry and the public, it says, cannot continue to indulge themselves in these ways in the belief that new technologies will somehow save them – everyone will have to work together change their way of life.

Because electric or zero-emission aircraft cannot be developed in time, most British airports will need to close by the end of this decade, and all flying will have to stop by 2050 until non-polluting versions are available.

Electrification of surface transport, rail and road, needs to be rapid, with the phasing out of all development of petrol and diesel cars immediately. Even if all private cars are electric, the amount of traffic will have to fall to 60% of 2020 levels by 2050, and all cars will have to be smaller.

The report also suggests that ships, currently heavy users of fossil fuels, need to convert to electric propulsion in order to allow for necessary imports and exports.

Not enough time

The reasoning behind the report is that technologies to cut greenhouse gas emissions, like carbon capture and storage, will not be developed in time and on a large enough scale to make a difference to emission reductions by 2050.

Nor is it any use exporting energy-intensive industries like steel-making, because the emissions will still take place abroad.

Instead, homegrown industries need to be developed that use no fossil fuels but are powered by electricity. The report says blast furnaces need to be phased out and replaced by existing technologies that recycle steel using renewable electricity.

It calls for public debate and discussion about the lifestyle changes that will be essential. Although such luxuries as flying away on holiday and driving large cars will have to be foregone, and eating beef and lamb curtailed, the scientists say that life could be just as rich as today.

They say: “… sports, social life, eating, hobbies, games, computing, reading, TV, music, radio, volunteering (and sleeping!) We can all do more of these without any impact on emissions”.

Offsets won’t work

They want the public to help by lobbying for airport closures, more trains, no new roads and more renewable electricity.

The report insists that the government should not try to hide any of its emissions by importing goods: “The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping.”

Nor can there be any meaningful “carbon offsets.” The only short-term option we have of reducing emissions – at least by 2050 – is to plant trees. “Even a massive increase in forestry would only have a small effect compared to today’s emissions.”

The authors comment: “There are no invisible solutions to climate change. We urgently need to engage everyone in the process of delivering the changes that will lead to zero emissions.” − Climate News Network

All UK airports must close by 2050 for the country to reach its target of net zero climate emissions by then, scientists say.

LONDON, 18 February, 2020 − If it is to achieve its target of net zero climate emissions by 2050, all UK airports must close by mid-century and the country will have to make other drastic and fundamental lifestyle changes, says a report from a research group backed by the government in London.

With the UK due to host this year’s round of crucial UN climate talks in Glasgow in November, a group of academics has embarrassed the British government by showing it has currently no chance of meeting its own legally binding target to reduce greenhouse gas emissions to nothing within 30 years.

Their report, Absolute Zero, published by the University of Cambridge, says no amount of government or public wishful thinking will hide the fact that the country will not reach zero emissions by 2050 without barely conceivable changes to policies, industrial processes and lifestyles. Its authors include colleagues from five other British universities.

All are members of a group from UK Fires, a research programme sponsored by the UK government, aiming to support a 20% cut in the country’s true emissions by 2050 by placing resource efficiency at the heart of its future industrial strategy. The report was paid for under the UK Fires programme.

As well as a temporary halt to flying, the report also says British people cannot go on driving heavier cars and turning up the heating in their homes.

“The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping”

The government, industry and the public, it says, cannot continue to indulge themselves in these ways in the belief that new technologies will somehow save them – everyone will have to work together change their way of life.

Because electric or zero-emission aircraft cannot be developed in time, most British airports will need to close by the end of this decade, and all flying will have to stop by 2050 until non-polluting versions are available.

Electrification of surface transport, rail and road, needs to be rapid, with the phasing out of all development of petrol and diesel cars immediately. Even if all private cars are electric, the amount of traffic will have to fall to 60% of 2020 levels by 2050, and all cars will have to be smaller.

The report also suggests that ships, currently heavy users of fossil fuels, need to convert to electric propulsion in order to allow for necessary imports and exports.

Not enough time

The reasoning behind the report is that technologies to cut greenhouse gas emissions, like carbon capture and storage, will not be developed in time and on a large enough scale to make a difference to emission reductions by 2050.

Nor is it any use exporting energy-intensive industries like steel-making, because the emissions will still take place abroad.

Instead, homegrown industries need to be developed that use no fossil fuels but are powered by electricity. The report says blast furnaces need to be phased out and replaced by existing technologies that recycle steel using renewable electricity.

It calls for public debate and discussion about the lifestyle changes that will be essential. Although such luxuries as flying away on holiday and driving large cars will have to be foregone, and eating beef and lamb curtailed, the scientists say that life could be just as rich as today.

They say: “… sports, social life, eating, hobbies, games, computing, reading, TV, music, radio, volunteering (and sleeping!) We can all do more of these without any impact on emissions”.

Offsets won’t work

They want the public to help by lobbying for airport closures, more trains, no new roads and more renewable electricity.

The report insists that the government should not try to hide any of its emissions by importing goods: “The UK is responsible for all emissions caused by its purchasing, including imported goods, international flights and shipping.”

Nor can there be any meaningful “carbon offsets.” The only short-term option we have of reducing emissions – at least by 2050 – is to plant trees. “Even a massive increase in forestry would only have a small effect compared to today’s emissions.”

The authors comment: “There are no invisible solutions to climate change. We urgently need to engage everyone in the process of delivering the changes that will lead to zero emissions.” − Climate News Network

Europe fails to keep up on solar power

Europe needs new factories to harness solar power, with a huge effort to install the panels they’ll make, for the world to avoid catastrophic warming.

LONDON, 6 February, 2020 − Europe is falling well behind in the race to install enough solar power to keep the rise in global temperatures below dangerous levels, and to reach its own renewable energy targets. But it’s  not impossible.

Once a world leader in the technology and manufacture of solar panels, Europe now lags far behind China and other Asian countries. It faces shortages of supplies and disruption to them, according to the annual PV status report of the European Commission’s Science Hub.

The report says the installation rate of panels has to increase “drastically” − more than five times by 2025, and double that again if Europe is to convert to electric cars and fuels like hydrogen.

It says current policies in place to limit global greenhouse gas emissions are insufficient to keep the temperature increase below 2°C above historic levels, considered by governments to be the maximum acceptable to avoid dangerous climate change.

To keep below that level the decarbonisation of the energy system is the single most important element, but it is moving far too slowly.

“There are huge opportunities for PV in the future, but such developments will not happen on their own”

In order to reach the world’s climate targets the power sector has to be fully decarbonised – not by 2060, but well before 2050 – and photo-voltaic solar energy (PV) is one of the key technologies for implementing this shift.

“PV is a key technology option for decarbonising the power sector. It can be deployed in a modular way almost anywhere, solar resources in the world are abundant and they cannot be monopolised by one country”, said JRC director Piotr Szymanski.

The report’s author, Arnulf Jäger-Waldau, added: “Although (last year) the new installed capacity increased worldwide by 7% and solar power attracted the largest share of new investments in renewable energies for the ninth year in a row, a much more rapid increase in the installation rate is needed to decarbonise the power sector by 2050”.

Current capacity equips the EU to provide just under 5% of its electricity demand from solar PV. There was an installed capacity of 117 GW at the end of 2018, and in 2019 the EU lost further ground in the worldwide market.

Marked drop

Its share of global installed capacity was about 23%. This is a steep decline from the 66 % recorded at the end of 2012.

The report looks at the state of solar PV in individual countries across Europe and in large players across the world and shows how governments are failing to support the industry while they continue to subsidise fossil fuels on a large scale.

The report says that instead of lagging further behind, the EU needs to increase its solar capacity by five times to over 630GW by 2025, and then by five times again by 2050 if it is to cover all its electricity needs with renewables – and that is including the very large share of the market taken by wind and other technologies like hydro-power.

One of the problems for the EU is that it has lost all but a few of its panel manufacturers and needs to re-open solar panel factories or face a shortage of supply.

Until 2006 solar cell production was dominated by Japan and Europe, but in 2014 a new trend emerged which saw China and Taiwan rapidly increase their production capacities. Since then, other Asian countries such as India, Malaysia, Thailand, the Philippines and Vietnam have followed their lead.

Costs head downwards

The rapid cost reduction in PV manufacturing would merit a fresh look at the potential to bring PV factories back to Europe. The investment costs required by PV manufacturing have decreased by about 90% over the past 10 years, and the European manufacturing chain could be competitive with factories with an annual production volume from 5 to 10 GW.

“There are huge opportunities for PV in the future, but such developments will not happen on their own. It will require a sustained effort and support of all stakeholders to implement the change to a sustainable energy supply, with PV delivering a major part”, Dr Jäger-Waldau concluded.

The massive drop in the cost of producing electricity from solar power – about 80% in the last decade – makes it competitive with fossil fuels across the world. Regardless of how fast energy prices increase in the future, and of the reasons behind these increases, PV and other renewable energies are the only ones offering stable prices in future, or even a reduction.

The report says the main barriers to the changes needed include regulatory frameworks and the limitations of the existing electricity transmission and distribution systems. − Climate News Network

Europe needs new factories to harness solar power, with a huge effort to install the panels they’ll make, for the world to avoid catastrophic warming.

LONDON, 6 February, 2020 − Europe is falling well behind in the race to install enough solar power to keep the rise in global temperatures below dangerous levels, and to reach its own renewable energy targets. But it’s  not impossible.

Once a world leader in the technology and manufacture of solar panels, Europe now lags far behind China and other Asian countries. It faces shortages of supplies and disruption to them, according to the annual PV status report of the European Commission’s Science Hub.

The report says the installation rate of panels has to increase “drastically” − more than five times by 2025, and double that again if Europe is to convert to electric cars and fuels like hydrogen.

It says current policies in place to limit global greenhouse gas emissions are insufficient to keep the temperature increase below 2°C above historic levels, considered by governments to be the maximum acceptable to avoid dangerous climate change.

To keep below that level the decarbonisation of the energy system is the single most important element, but it is moving far too slowly.

“There are huge opportunities for PV in the future, but such developments will not happen on their own”

In order to reach the world’s climate targets the power sector has to be fully decarbonised – not by 2060, but well before 2050 – and photo-voltaic solar energy (PV) is one of the key technologies for implementing this shift.

“PV is a key technology option for decarbonising the power sector. It can be deployed in a modular way almost anywhere, solar resources in the world are abundant and they cannot be monopolised by one country”, said JRC director Piotr Szymanski.

The report’s author, Arnulf Jäger-Waldau, added: “Although (last year) the new installed capacity increased worldwide by 7% and solar power attracted the largest share of new investments in renewable energies for the ninth year in a row, a much more rapid increase in the installation rate is needed to decarbonise the power sector by 2050”.

Current capacity equips the EU to provide just under 5% of its electricity demand from solar PV. There was an installed capacity of 117 GW at the end of 2018, and in 2019 the EU lost further ground in the worldwide market.

Marked drop

Its share of global installed capacity was about 23%. This is a steep decline from the 66 % recorded at the end of 2012.

The report looks at the state of solar PV in individual countries across Europe and in large players across the world and shows how governments are failing to support the industry while they continue to subsidise fossil fuels on a large scale.

The report says that instead of lagging further behind, the EU needs to increase its solar capacity by five times to over 630GW by 2025, and then by five times again by 2050 if it is to cover all its electricity needs with renewables – and that is including the very large share of the market taken by wind and other technologies like hydro-power.

One of the problems for the EU is that it has lost all but a few of its panel manufacturers and needs to re-open solar panel factories or face a shortage of supply.

Until 2006 solar cell production was dominated by Japan and Europe, but in 2014 a new trend emerged which saw China and Taiwan rapidly increase their production capacities. Since then, other Asian countries such as India, Malaysia, Thailand, the Philippines and Vietnam have followed their lead.

Costs head downwards

The rapid cost reduction in PV manufacturing would merit a fresh look at the potential to bring PV factories back to Europe. The investment costs required by PV manufacturing have decreased by about 90% over the past 10 years, and the European manufacturing chain could be competitive with factories with an annual production volume from 5 to 10 GW.

“There are huge opportunities for PV in the future, but such developments will not happen on their own. It will require a sustained effort and support of all stakeholders to implement the change to a sustainable energy supply, with PV delivering a major part”, Dr Jäger-Waldau concluded.

The massive drop in the cost of producing electricity from solar power – about 80% in the last decade – makes it competitive with fossil fuels across the world. Regardless of how fast energy prices increase in the future, and of the reasons behind these increases, PV and other renewable energies are the only ones offering stable prices in future, or even a reduction.

The report says the main barriers to the changes needed include regulatory frameworks and the limitations of the existing electricity transmission and distribution systems. − Climate News Network

Reliance on coal divides European states

Two European states with a traditional reliance on coal are taking radically different paths as the climate crisis worsens.

LONDON, 3 February, 2020 − Both countries are in the European Union, both have for years been known for their reliance on coal. But now their policies could not differ more: one is turning away from coal, the most polluting fossil fuel, while the other is enthusiastically developing it.

At one end of the spectrum is Spain: it plans to close its last operating coal mine by the end of 2021. Not so long ago the country was heavily dependent on coal for its power: last year coal generated less than 5% of Spain’s electricity.

At the other extreme is Poland. Despite EU-wide commitments to phase out the use of coal over the coming years, Poland is still opening new coal pits and coal-fired power plants.

In recent days the government in Warsaw granted POLSKA PGE, the state-owned energy company, a permit to expand a lignite mine at Turów, on Poland’s borders with Germany and the Czech Republic.

According to campaign groups, the permit was rushed through without an environmental impact assessment being completed and before an appeals process was allowed to start.

Both Germany and the Czech Republic have protested about the mine.

“There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal”

Belchatow power station in central Poland is Europe’s biggest coal-burning power station. Emitting an estimated 30 million tonnes of climate-changing greenhouse gases each year, it is also the most polluting. More than 80% of Poland’s electricity is generated from coal.

In Spain, more than 50,000 people were employed in coal mining in the mid-1990s, mainly in the northern province of Asturias. Mining communities formed an integral part of the country’s social fabric and played an important role in its history, having launched attacks against the forces of the dictator General Franco during Spain’s bitter civil war.

Over recent years the Spanish government has inaugurated a series of initiatives with mining communities, promising early retirement packages, money, and jobs in renewable power industries.

Analysts say a number of additional factors have helped Spain wean itself off coal. State subsidies to the industry have been cut.

Renewables flourish

The EU’s Emissions Trading System (ETS) has, after many years of inactivity and failed policy objectives, finally managed to set a price on carbon emissions which discourages large users of fossil fuels.

Falling prices for gas – a fossil fuel, but one with far lower emissions than coal – have helped Spain’s power turnaround. Spain has also made big investments in renewables such as wind and solar power.

But all is not rosy in Spain on the emissions front. While coal-burning emissions have fallen dramatically in recent years, greenhouse gas emissions from the transport and other sectors have risen by well above the EU average.

Poland does not have the solar advantages of sunny Spain. It also requires far more energy for heating purposes. Like Spain, Poland has a long coal-mining tradition and, despite many mine closures following the collapse of communism in the early 1990s, mining unions remain strong and exert considerable political influence.

Poland’s ruling populist Law and Justice Party has consistently backed the country’s coal lobby and the mining unions: large subsidies are still granted to the sector and legislation has recently come into force making it easier for operators to open new mines.

Independence cherished

There are wider political and security issues at play: historically, coal has been seen in Poland as vital, ensuring the country’s independence. Warsaw is acutely suspicious of any form of reliance on gas supplies from Russia for its energy needs.

But change could be on the way. There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal. Protests have been held in several towns and cities about the impact of coal-mining on air quality and water supplies.

The EU is exerting more pressure on states to cut back on fossil fuel use and meet emission reduction targets.

In the end finance – or the lack of it – could be the key to reducing coal use. Financial institutions and insurers are becoming increasingly wary about investing or supporting coal projects.

Coal, within the EU and worldwide, is rapidly running out of friends. – Climate News Network

Two European states with a traditional reliance on coal are taking radically different paths as the climate crisis worsens.

LONDON, 3 February, 2020 − Both countries are in the European Union, both have for years been known for their reliance on coal. But now their policies could not differ more: one is turning away from coal, the most polluting fossil fuel, while the other is enthusiastically developing it.

At one end of the spectrum is Spain: it plans to close its last operating coal mine by the end of 2021. Not so long ago the country was heavily dependent on coal for its power: last year coal generated less than 5% of Spain’s electricity.

At the other extreme is Poland. Despite EU-wide commitments to phase out the use of coal over the coming years, Poland is still opening new coal pits and coal-fired power plants.

In recent days the government in Warsaw granted POLSKA PGE, the state-owned energy company, a permit to expand a lignite mine at Turów, on Poland’s borders with Germany and the Czech Republic.

According to campaign groups, the permit was rushed through without an environmental impact assessment being completed and before an appeals process was allowed to start.

Both Germany and the Czech Republic have protested about the mine.

“There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal”

Belchatow power station in central Poland is Europe’s biggest coal-burning power station. Emitting an estimated 30 million tonnes of climate-changing greenhouse gases each year, it is also the most polluting. More than 80% of Poland’s electricity is generated from coal.

In Spain, more than 50,000 people were employed in coal mining in the mid-1990s, mainly in the northern province of Asturias. Mining communities formed an integral part of the country’s social fabric and played an important role in its history, having launched attacks against the forces of the dictator General Franco during Spain’s bitter civil war.

Over recent years the Spanish government has inaugurated a series of initiatives with mining communities, promising early retirement packages, money, and jobs in renewable power industries.

Analysts say a number of additional factors have helped Spain wean itself off coal. State subsidies to the industry have been cut.

Renewables flourish

The EU’s Emissions Trading System (ETS) has, after many years of inactivity and failed policy objectives, finally managed to set a price on carbon emissions which discourages large users of fossil fuels.

Falling prices for gas – a fossil fuel, but one with far lower emissions than coal – have helped Spain’s power turnaround. Spain has also made big investments in renewables such as wind and solar power.

But all is not rosy in Spain on the emissions front. While coal-burning emissions have fallen dramatically in recent years, greenhouse gas emissions from the transport and other sectors have risen by well above the EU average.

Poland does not have the solar advantages of sunny Spain. It also requires far more energy for heating purposes. Like Spain, Poland has a long coal-mining tradition and, despite many mine closures following the collapse of communism in the early 1990s, mining unions remain strong and exert considerable political influence.

Poland’s ruling populist Law and Justice Party has consistently backed the country’s coal lobby and the mining unions: large subsidies are still granted to the sector and legislation has recently come into force making it easier for operators to open new mines.

Independence cherished

There are wider political and security issues at play: historically, coal has been seen in Poland as vital, ensuring the country’s independence. Warsaw is acutely suspicious of any form of reliance on gas supplies from Russia for its energy needs.

But change could be on the way. There is growing awareness in Poland about the dangers to the climate as a whole – and to the health of the population – of continued reliance on coal. Protests have been held in several towns and cities about the impact of coal-mining on air quality and water supplies.

The EU is exerting more pressure on states to cut back on fossil fuel use and meet emission reduction targets.

In the end finance – or the lack of it – could be the key to reducing coal use. Financial institutions and insurers are becoming increasingly wary about investing or supporting coal projects.

Coal, within the EU and worldwide, is rapidly running out of friends. – Climate News Network