Tag Archives: Renewable energy

Recovering atmospheric carbon can make new fuel

Taking atmospheric carbon dioxide from the air to make fuel could tackle two threats: greenhouse gases and oil shortage.

LONDON, 4 February, 2021 − British scientists have worked out a way of recovering atmospheric carbon, meaning they can conjure aviation jet fuel from thin air, using an inexpensive catalyst to turn carbon dioxide into a range of hydrocarbons so far produced from crude oil.

More than 6,000 miles to the east, chemists have produced an aerogel, one kilogramme of which is capable of producing − again just from the ambient air − 17 litres of fresh water in a day.

Both these solutions to a growing demand for fuel and water are only at the demonstration stage. Commercial production is a long way off.

Both are yet more evidence of the enormous ingenuity and invention at work in the world’s laboratories and universities as they address the energy dilemma: how to power human society without generating the greenhouse gases that could also − through climate change driven by global heating − ultimately destroy it.

“[This is] a vision for the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector”

For years researchers have addressed one power paradox: that the world is driven by fossil fuels which in combustion emit the greenhouse gas carbon dioxide. But fossil fuels are already fashioned − over millions of years − from organic material composed ultimately of carbon dioxide.

That is: all hydrocarbons must have once just been the greenhouse gas. So there might just be a clever way to shorten the process, and turn atmospheric carbon directly into butane or ethylene or kerosene.

Researchers from Oxford University report in the journal Nature Communications that with help from an organic compound − they used citric acid − they have fashioned a catalyst from iron, manganese and potassium that could directly convert atmospheric carbon dioxide into hydrocarbons very like jet fuel, with a bonus of ethylene and other products important to the petrochemical industry as well.

The researchers call their work “a significant advance” and a vision for “the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector.”

Renewable water supply

The air we breathe is not just oxygen, nitrogen, argon and carbon dioxide: it also contains colossal amounts of water vapour, enough to fill 500 thousand billion Olympic-sized swimming pools.

Researchers at the National University of Singapore report in the journal Science Advances that they have fashioned an aerogel − think of a jelly made from air rather than water − that of itself collects water molecules from the air, condenses them into a liquid and releases the water: 95% of the vapour that goes in is released as water.

It needs no power source, the water meets World Health Organisation standards for drinking water, and in laboratory tests one aerogel sample went on for months.

Since vapour is constantly renewed by sun-driven evaporation, once again, the water supply becomes renewable. The next step is to find an industrial partner and a market where clean water is scarce. − Climate News Network

Taking atmospheric carbon dioxide from the air to make fuel could tackle two threats: greenhouse gases and oil shortage.

LONDON, 4 February, 2021 − British scientists have worked out a way of recovering atmospheric carbon, meaning they can conjure aviation jet fuel from thin air, using an inexpensive catalyst to turn carbon dioxide into a range of hydrocarbons so far produced from crude oil.

More than 6,000 miles to the east, chemists have produced an aerogel, one kilogramme of which is capable of producing − again just from the ambient air − 17 litres of fresh water in a day.

Both these solutions to a growing demand for fuel and water are only at the demonstration stage. Commercial production is a long way off.

Both are yet more evidence of the enormous ingenuity and invention at work in the world’s laboratories and universities as they address the energy dilemma: how to power human society without generating the greenhouse gases that could also − through climate change driven by global heating − ultimately destroy it.

“[This is] a vision for the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector”

For years researchers have addressed one power paradox: that the world is driven by fossil fuels which in combustion emit the greenhouse gas carbon dioxide. But fossil fuels are already fashioned − over millions of years − from organic material composed ultimately of carbon dioxide.

That is: all hydrocarbons must have once just been the greenhouse gas. So there might just be a clever way to shorten the process, and turn atmospheric carbon directly into butane or ethylene or kerosene.

Researchers from Oxford University report in the journal Nature Communications that with help from an organic compound − they used citric acid − they have fashioned a catalyst from iron, manganese and potassium that could directly convert atmospheric carbon dioxide into hydrocarbons very like jet fuel, with a bonus of ethylene and other products important to the petrochemical industry as well.

The researchers call their work “a significant advance” and a vision for “the route to achieving net-zero carbon emissions from aviation; a fulcrum of a future global zero-carbon aviation sector.”

Renewable water supply

The air we breathe is not just oxygen, nitrogen, argon and carbon dioxide: it also contains colossal amounts of water vapour, enough to fill 500 thousand billion Olympic-sized swimming pools.

Researchers at the National University of Singapore report in the journal Science Advances that they have fashioned an aerogel − think of a jelly made from air rather than water − that of itself collects water molecules from the air, condenses them into a liquid and releases the water: 95% of the vapour that goes in is released as water.

It needs no power source, the water meets World Health Organisation standards for drinking water, and in laboratory tests one aerogel sample went on for months.

Since vapour is constantly renewed by sun-driven evaporation, once again, the water supply becomes renewable. The next step is to find an industrial partner and a market where clean water is scarce. − Climate News Network

Energy efficiency boosts jobs and cuts climate heat

Creating millions of jobs in energy efficiency schemes is the fastest way to restore prosperity and cut climate heating.

LONDON, 26 January, 2021 − Improving energy efficiency creates far more jobs than generating it, and at the same time provides a way out of the Covid crisis by bringing prosperity.

That’s the verdict of a report by the International Energy Agency (IEA), which says efficiency-related stimulus packages that have been announced already will create 1.8 million jobs in the next two years, with many more to come if governments spend their money wisely.

Two-thirds of the jobs would be in the building sector, most of them in retrofitting homes, factories and offices with insulation and other efficiency measures. One of the main benefits of the scheme, the IEA says, would be for young people with few academic qualifications, currently the worst hit by unemployment, who would be needed for most of the building jobs. The remaining jobs would be in transport (20%) and industry (16%).

Based on information received by the IEA by December, when the report was published, 80% of these new jobs would be created in Europe. At the time the US was the largest employer of workers in energy efficiency, despite the anti-climate policies of the Trump administration. With Joe Biden now occupying the presidency and rejoining the Paris Agreement, jobs in energy efficiency in the US are expected to snowball.

“Energy efficiency investments are one of the most attractive investments in the energy sector for governments seeking to protect existing or generate new jobs”

Altogether the scope for jobs in the sector across the world is enormous, with the developing world yet to take energy efficiency seriously. Before the pandemic hit, the IEA estimated that there were 2.4 million energy efficiency jobs in the US, up to 3 million in Europe, but fewer than 750,000 in China and a maximum of 62,000 in Brazil.

With China now taking climate change far more seriously and pledging to be carbon neutral by 2060, energy efficiency is likely to create a boom for building workers there.

Although many building jobs have been lost because of Covid-19, the IEA estimates that the labour-intensive nature of many energy efficiency upgrades means spending US$1million on improving efficiency will generate between six and 15 jobs on average, depending on the sector. Investments announced to date have created 3.4 million new job years (one job for one year) in the sector.

The report says: “As energy efficiency investments can also be mobilised quickly, they are one of the most attractive investments in the energy sector for governments seeking to protect existing jobs or generate new jobs during the recession.”

Best for new jobs

As part of their public relations drives when suggesting potentially unpopular new developments, most energy industries stress how many jobs will result. For example, building a nuclear power station in the UK, Sizewell C, is said by the would-be builders to promise the creation of  more than 5,000 jobs.

However, figures compiled by the UK Office for National Statistics show that energy efficiency trumps all other energy industries for job creation.

In the UK’s low-carbon and renewables energy sector, which includes all nuclear and renewable energy options, energy efficiency formed easily the largest component of jobs, with 114,000 full-time employees (51%) in 2018. There were 49,800 people employed in renewable activity, wind and solar for example, and only 12,400 in the whole nuclear energy sector, most of them in reprocessing spent fuel.

As the IEA notes, scaled-up world wide there are potentially millions of jobs in energy efficiency, and it is clearly the single quickest and cheapest way of reducing carbon emissions, since it both reduces existing demand for energy and makes new fossil fuel power stations unnecessary. − Climate News Network

Creating millions of jobs in energy efficiency schemes is the fastest way to restore prosperity and cut climate heating.

LONDON, 26 January, 2021 − Improving energy efficiency creates far more jobs than generating it, and at the same time provides a way out of the Covid crisis by bringing prosperity.

That’s the verdict of a report by the International Energy Agency (IEA), which says efficiency-related stimulus packages that have been announced already will create 1.8 million jobs in the next two years, with many more to come if governments spend their money wisely.

Two-thirds of the jobs would be in the building sector, most of them in retrofitting homes, factories and offices with insulation and other efficiency measures. One of the main benefits of the scheme, the IEA says, would be for young people with few academic qualifications, currently the worst hit by unemployment, who would be needed for most of the building jobs. The remaining jobs would be in transport (20%) and industry (16%).

Based on information received by the IEA by December, when the report was published, 80% of these new jobs would be created in Europe. At the time the US was the largest employer of workers in energy efficiency, despite the anti-climate policies of the Trump administration. With Joe Biden now occupying the presidency and rejoining the Paris Agreement, jobs in energy efficiency in the US are expected to snowball.

“Energy efficiency investments are one of the most attractive investments in the energy sector for governments seeking to protect existing or generate new jobs”

Altogether the scope for jobs in the sector across the world is enormous, with the developing world yet to take energy efficiency seriously. Before the pandemic hit, the IEA estimated that there were 2.4 million energy efficiency jobs in the US, up to 3 million in Europe, but fewer than 750,000 in China and a maximum of 62,000 in Brazil.

With China now taking climate change far more seriously and pledging to be carbon neutral by 2060, energy efficiency is likely to create a boom for building workers there.

Although many building jobs have been lost because of Covid-19, the IEA estimates that the labour-intensive nature of many energy efficiency upgrades means spending US$1million on improving efficiency will generate between six and 15 jobs on average, depending on the sector. Investments announced to date have created 3.4 million new job years (one job for one year) in the sector.

The report says: “As energy efficiency investments can also be mobilised quickly, they are one of the most attractive investments in the energy sector for governments seeking to protect existing jobs or generate new jobs during the recession.”

Best for new jobs

As part of their public relations drives when suggesting potentially unpopular new developments, most energy industries stress how many jobs will result. For example, building a nuclear power station in the UK, Sizewell C, is said by the would-be builders to promise the creation of  more than 5,000 jobs.

However, figures compiled by the UK Office for National Statistics show that energy efficiency trumps all other energy industries for job creation.

In the UK’s low-carbon and renewables energy sector, which includes all nuclear and renewable energy options, energy efficiency formed easily the largest component of jobs, with 114,000 full-time employees (51%) in 2018. There were 49,800 people employed in renewable activity, wind and solar for example, and only 12,400 in the whole nuclear energy sector, most of them in reprocessing spent fuel.

As the IEA notes, scaled-up world wide there are potentially millions of jobs in energy efficiency, and it is clearly the single quickest and cheapest way of reducing carbon emissions, since it both reduces existing demand for energy and makes new fossil fuel power stations unnecessary. − Climate News Network

A new city rises in the desert, under a fake moon

The world’s biggest oil exporter, Saudi Arabia, is planing a new city entirely dependent on clean energy.

LONDON, 18 January, 2021 − Crown Prince Mohammed bin Salman of Saudi Arabia, who has not till now shown any great enthusiasm for tackling climate chaos, is working on designs for an environmentally-friendly new city in the kingdom.

At successive international climate meetings Saudi Arabia, the world’s biggest oil exporter, has been among those states which have obstructed rather than encouraged attempts to tackle the increasingly urgent problems associated with a fast-warming world.

But recently Prince Mohammed, seen very much as the power behind the Saudi throne, has been talking of building a zero emissions city and establishing what he describes as “a blueprint for how people and planet can co-exist in harmony.”

In a glitzy presentation high on vision but low on detail, the prince outlined plans for a new, futuristic urban area to be carved out of the desert in the province of Tabuk, in north-west Saudi Arabia.

The city, to be called The Line, will stretch inwards for 106 miles from the Saudi Red Sea coast. It will be powered by 100% clean energy, says the prince, with no roads or cars. Instead “a belt of hyper-connected future communities” will be established.

Future techno-hub

There will be flying taxis, and scores of robot servants. The whole scheme will be built around nature, Prince Mohammed says. “Why should we sacrifice nature for the sake of development?”, he asks. “Why should seven million people die every year because of pollution?”

The cost of the project will be between US$100-200 billion: initial construction work will begin early next year, and an airport has already been built.

The Line is just one element in an overall Saudi plan called Vision 2030,  which seeks to wean the country off its dependence on oil revenues – which account for a major part of gross domestic product.

The aim is to turn Saudi Arabia into one of the world’s technological hubs. A multi-billion dollar tourist industry will also be established. Eventually, says Prince Mohammed, desert lands bordering Egypt and Jordan covering more than 10,000 square miles – an area roughly the size of Belgium – will be developed.

The Line, built to house a million people, will form part of a much larger US$500bn project called Neom – a combination of the Greek word Neos, meaning new, and the Arabic word mustaqbal, or future.

“Why should we sacrifice nature for the sake of development? Why should seven million people die every year because of pollution?”

Details about Neom are scarce: the project website says it will be home to both a Saudi and an international community, composed of “dreamers and doers.”

Attractions will include beaches with glow-in-the-dark-sand. There will even be a large fake moon to light the sky on cloudy nights.

If all this sounds a trifle fantastical, look no further than the Gulf cities of Dubai and Abu Dhabi where, over a relatively short time, small fishing and trading settlements have been turned into international centres of commerce and tourism. Prince Mohammed’s ambitions, though – and his talk of a sustainable, emissions-free future – are open to doubt.

Saudi Arabia is one of the world’s most profligate users of energy – almost all of it derived from the country’s plentiful reserves of fossil fuels. Renewable energy projects, announced in the past with much fanfare, have often come to nothing.

The Arabian peninsula is among the fastest-warming areas on the planet. For several years scientists have been warning that parts of the region will become uninhabitable if temperatures continue to rise.

Champion desalinator

Saudi Arabia has severely depleted water resources: the Neom project says it will help tackle this problem through extensive cloud seeding. Whether this will work is also open to question: cloud seeding can lead to its own set of environmental problems.

The project and its offshoot The Line will need to process water by using desalination technology. Saudi Arabia is already home to more desalination plants than any other country: the brine discharged in large quantities by such plants is harmful, particularly in such fragile ecological areas as the Red Sea.

Prince Mohammed and the Saudi planners have made little mention of those living in the north-west of the country who will be severely disrupted by Neom. The Huwaitat tribe, native to the area, say they are being forcibly relocated. A spokesman for the tribe was killed recently: reports say he was shot by government security forces.

Whether The Line and Prince Mohammed’s emissions-free Neom zone are built might ultimately depend on finance. Even for the deep-pocketed Saudis, the cost of the scheme represents a considerable challenge.

The project’s backers are wooing international investors: though many foreign companies will be licking their lips at the prospect of being involved in Neom, international banks and other financial institutions might be reluctant to invest funds, particularly in the wake of the brutal killing of Jamal Khashoggi, the Saudi dissident, and the ongoing imprisonment of others who voice any opposition to the prince and the kingdom’s hierarchy. − Climate News Network

The world’s biggest oil exporter, Saudi Arabia, is planing a new city entirely dependent on clean energy.

LONDON, 18 January, 2021 − Crown Prince Mohammed bin Salman of Saudi Arabia, who has not till now shown any great enthusiasm for tackling climate chaos, is working on designs for an environmentally-friendly new city in the kingdom.

At successive international climate meetings Saudi Arabia, the world’s biggest oil exporter, has been among those states which have obstructed rather than encouraged attempts to tackle the increasingly urgent problems associated with a fast-warming world.

But recently Prince Mohammed, seen very much as the power behind the Saudi throne, has been talking of building a zero emissions city and establishing what he describes as “a blueprint for how people and planet can co-exist in harmony.”

In a glitzy presentation high on vision but low on detail, the prince outlined plans for a new, futuristic urban area to be carved out of the desert in the province of Tabuk, in north-west Saudi Arabia.

The city, to be called The Line, will stretch inwards for 106 miles from the Saudi Red Sea coast. It will be powered by 100% clean energy, says the prince, with no roads or cars. Instead “a belt of hyper-connected future communities” will be established.

Future techno-hub

There will be flying taxis, and scores of robot servants. The whole scheme will be built around nature, Prince Mohammed says. “Why should we sacrifice nature for the sake of development?”, he asks. “Why should seven million people die every year because of pollution?”

The cost of the project will be between US$100-200 billion: initial construction work will begin early next year, and an airport has already been built.

The Line is just one element in an overall Saudi plan called Vision 2030,  which seeks to wean the country off its dependence on oil revenues – which account for a major part of gross domestic product.

The aim is to turn Saudi Arabia into one of the world’s technological hubs. A multi-billion dollar tourist industry will also be established. Eventually, says Prince Mohammed, desert lands bordering Egypt and Jordan covering more than 10,000 square miles – an area roughly the size of Belgium – will be developed.

The Line, built to house a million people, will form part of a much larger US$500bn project called Neom – a combination of the Greek word Neos, meaning new, and the Arabic word mustaqbal, or future.

“Why should we sacrifice nature for the sake of development? Why should seven million people die every year because of pollution?”

Details about Neom are scarce: the project website says it will be home to both a Saudi and an international community, composed of “dreamers and doers.”

Attractions will include beaches with glow-in-the-dark-sand. There will even be a large fake moon to light the sky on cloudy nights.

If all this sounds a trifle fantastical, look no further than the Gulf cities of Dubai and Abu Dhabi where, over a relatively short time, small fishing and trading settlements have been turned into international centres of commerce and tourism. Prince Mohammed’s ambitions, though – and his talk of a sustainable, emissions-free future – are open to doubt.

Saudi Arabia is one of the world’s most profligate users of energy – almost all of it derived from the country’s plentiful reserves of fossil fuels. Renewable energy projects, announced in the past with much fanfare, have often come to nothing.

The Arabian peninsula is among the fastest-warming areas on the planet. For several years scientists have been warning that parts of the region will become uninhabitable if temperatures continue to rise.

Champion desalinator

Saudi Arabia has severely depleted water resources: the Neom project says it will help tackle this problem through extensive cloud seeding. Whether this will work is also open to question: cloud seeding can lead to its own set of environmental problems.

The project and its offshoot The Line will need to process water by using desalination technology. Saudi Arabia is already home to more desalination plants than any other country: the brine discharged in large quantities by such plants is harmful, particularly in such fragile ecological areas as the Red Sea.

Prince Mohammed and the Saudi planners have made little mention of those living in the north-west of the country who will be severely disrupted by Neom. The Huwaitat tribe, native to the area, say they are being forcibly relocated. A spokesman for the tribe was killed recently: reports say he was shot by government security forces.

Whether The Line and Prince Mohammed’s emissions-free Neom zone are built might ultimately depend on finance. Even for the deep-pocketed Saudis, the cost of the scheme represents a considerable challenge.

The project’s backers are wooing international investors: though many foreign companies will be licking their lips at the prospect of being involved in Neom, international banks and other financial institutions might be reluctant to invest funds, particularly in the wake of the brutal killing of Jamal Khashoggi, the Saudi dissident, and the ongoing imprisonment of others who voice any opposition to the prince and the kingdom’s hierarchy. − Climate News Network

Rising heat forces big growth in electricity demand

As temperatures increase, rising heat will mean many power stations falter, leaving homes dark, chilly and short of energy.

LONDON, 13 January, 2021 − US scientists have identified a new anxiety for a world of heat extremes. As the thermometer climbs, they warn, the efficiency of thermal power plants will fall, as the rising heat makes it harder to keep the generators cool.

In a world in which billions of urban dwellers could be exposed to temperatures at the moment experienced in the Sahara desert and other  hotspots, and in which heat and humidity could reach potentially lethal  levels, the problems ahead for energy companies may seem of less consequence.

But rising city temperatures will inevitably be matched by ever-greater demand for electrically-driven air conditioning. And as air and water temperatures rise, and demand increases, turbines driven by coal, oil and gas combustion must, to operate efficiently, be cooled by air or water.

But if the air and water are warmer too, efficiency and then capacity could fall, by as much as 10%, causing periods when power suddenly becomes unavailable.

“We are already feeling the impacts of global warming. Governments should be preparing for the large increases in electricity demand that will come with increased temperatures”

And on the latest calculations, in the journal Environmental Research Letters, if global average temperatures increase by 2°C, then the number of outages on hot days could double.

In fact, global average temperatures have already climbed by more than 1°C, and could hit 1.5°C as early as 2027. Demand for air conditioning has already begun to affect US energy supplies.

“Our work demonstrates a harmful interaction between human adaptation and infrastructure vulnerability in a warming world,” said Ethan Coffel, a geographer at Syracuse University in New York, who led the research into the likely impacts of rising heat.

“As hot days become more frequent, people will want air conditioners to protect themselves from unpleasant and dangerous heat. But these air conditioners need electricity, which further increases the greenhouse emissions that drive global warming further.”

Big shortfall

And that puts a strain on the grid that distributes power around a nation. It also sets a challenge to those nations that have yet to invest heavily in renewable energy sources such as wind power and photovoltaic cells, and to phase out thermal generators.

“By the middle of the century we find that 100 to 200 additional average-sized global power plants could be required to make up for the electricity generating capacity lost due to heat,” Dr Coffel warned.

“Major progress has been made to reduce the cost of wind and solar power − these zero-carbon sources are now often cheaper than fossil fuels. So making the transition away from coal, oil and gas not only makes climate sense, but also economic sense.

“However, we are already feeling the impacts of global warming. Governments should be preparing for the large increases in electricity demand that will come with increased temperatures.” − Climate News Network

As temperatures increase, rising heat will mean many power stations falter, leaving homes dark, chilly and short of energy.

LONDON, 13 January, 2021 − US scientists have identified a new anxiety for a world of heat extremes. As the thermometer climbs, they warn, the efficiency of thermal power plants will fall, as the rising heat makes it harder to keep the generators cool.

In a world in which billions of urban dwellers could be exposed to temperatures at the moment experienced in the Sahara desert and other  hotspots, and in which heat and humidity could reach potentially lethal  levels, the problems ahead for energy companies may seem of less consequence.

But rising city temperatures will inevitably be matched by ever-greater demand for electrically-driven air conditioning. And as air and water temperatures rise, and demand increases, turbines driven by coal, oil and gas combustion must, to operate efficiently, be cooled by air or water.

But if the air and water are warmer too, efficiency and then capacity could fall, by as much as 10%, causing periods when power suddenly becomes unavailable.

“We are already feeling the impacts of global warming. Governments should be preparing for the large increases in electricity demand that will come with increased temperatures”

And on the latest calculations, in the journal Environmental Research Letters, if global average temperatures increase by 2°C, then the number of outages on hot days could double.

In fact, global average temperatures have already climbed by more than 1°C, and could hit 1.5°C as early as 2027. Demand for air conditioning has already begun to affect US energy supplies.

“Our work demonstrates a harmful interaction between human adaptation and infrastructure vulnerability in a warming world,” said Ethan Coffel, a geographer at Syracuse University in New York, who led the research into the likely impacts of rising heat.

“As hot days become more frequent, people will want air conditioners to protect themselves from unpleasant and dangerous heat. But these air conditioners need electricity, which further increases the greenhouse emissions that drive global warming further.”

Big shortfall

And that puts a strain on the grid that distributes power around a nation. It also sets a challenge to those nations that have yet to invest heavily in renewable energy sources such as wind power and photovoltaic cells, and to phase out thermal generators.

“By the middle of the century we find that 100 to 200 additional average-sized global power plants could be required to make up for the electricity generating capacity lost due to heat,” Dr Coffel warned.

“Major progress has been made to reduce the cost of wind and solar power − these zero-carbon sources are now often cheaper than fossil fuels. So making the transition away from coal, oil and gas not only makes climate sense, but also economic sense.

“However, we are already feeling the impacts of global warming. Governments should be preparing for the large increases in electricity demand that will come with increased temperatures.” − Climate News Network

Cyclones reduce India’s wind power generation

The risk of damage to turbines from cyclones has cut India’s electricity output, despite a longer windy season.

CHENNAI, 5 January, 2021 − Although India’s windy season was longer than usual in 2020, a series of cyclones that hit the country’s coasts reduced the amount of electricity generated by wind. The storms forced operators to shut down the turbines to prevent damage, which caused a 20% drop in production.

India witnessed five cyclones last year, with the two latest, Nivar and Burevi, making landfall in November. Altogether the combined onslaught of the five obliged turbine operations to be suspended for two weeks.

This has knocked confidence in the renewable energy industry at a time when the government of Narendra Modi is working hard to expand it.

Wind power generation capacity has significantly increased in recent years. It is concentrated across India’s windiest southern, western and northern regions. By the end of September 2020 the total installed capacity was 38,124 megawatts (MW), surpassed only by China, the US and Germany.

Unlike other parts of the world where the wind blows in fairly regular patterns all year round, India gets 70% of its wind between May and September, coinciding with the south-west monsoon. Once the rains and the clouds have gone, solar power largely replaces wind in supplying renewable energy.

“There is a need for a clear ten-year roadmap to boost clean energy technologies and create standards for innovation”

But in 2020 the normal pattern was different, with the windy season in southern India lasting till November. This brought no benefit, though: the turbines could not be left to operate at all, as the wind speed during the cyclones was very high.

Even though World Bank experts and others are predicting a large expansion of wind power in India, including offshore, its unpredictability is sapping the market’s confidence.

It is too early to say whether climate change has anything to do with the change in weather patterns. Ajay Devaraj, secretary-general of the Indian Wind Power Association, says that although wind power production varies from one year to the next, its decline was particularly significant last year because it knocked investor confidence.

“We are hoping this shortage will be met in 2021. But we can’t promise, since wind generation is based on nature’s laws. Due to cyclones there is a 20% shortage of wind power generation in India this year. Since offshore wind projects need huge capital, that doesn’t attract investors,’’ he said in 2020.

There was also a safety issue with some of the older turbines in very high winds, although if in good condition they could continue to operate for far longer, Dr Devaraj said. The alternative was to “repower” wind farms, replacing smaller turbines with larger, more efficient ones − which were also more expensive.

Renewable energy critical

But instead of repowering, he suggested the government could simply check turbine safety. This would encourage their owners to stay in business instead of disinvesting. Turbines as old as 30 years were still in operation in countries like Germany and Denmark, he said.

India produced 37,505 MW of wind power in 2019. It also set a new target of installing 175 gigawatts (GW) of renewable energy capacity by 2022 and 450 GW by 2030. Wind energy is expected to provide the lion’s share of this target. The government recently set up a national committee to co-ordinate more urgent action on climate.

In a recent virtual event on clean energy, Amitabh Kant, who heads India’s Niti Ayog (National Institution for Transforming India), said renewable electricity generated by clean technology was critical for the country.

“We need to get into a whole range of clean energy deployments. It is very important for India to get into cutting-edge technology. There is a need for a clear ten-year roadmap to boost clean energy technologies and create standards for innovation”, he said.

“India is the only country among the G20 nations that is on track to meet its climate change mitigation commitments, made in 2015 under the Paris Agreement, and has formulated forward-looking policies for energy efficiency measures.’’ − Climate News Network

The risk of damage to turbines from cyclones has cut India’s electricity output, despite a longer windy season.

CHENNAI, 5 January, 2021 − Although India’s windy season was longer than usual in 2020, a series of cyclones that hit the country’s coasts reduced the amount of electricity generated by wind. The storms forced operators to shut down the turbines to prevent damage, which caused a 20% drop in production.

India witnessed five cyclones last year, with the two latest, Nivar and Burevi, making landfall in November. Altogether the combined onslaught of the five obliged turbine operations to be suspended for two weeks.

This has knocked confidence in the renewable energy industry at a time when the government of Narendra Modi is working hard to expand it.

Wind power generation capacity has significantly increased in recent years. It is concentrated across India’s windiest southern, western and northern regions. By the end of September 2020 the total installed capacity was 38,124 megawatts (MW), surpassed only by China, the US and Germany.

Unlike other parts of the world where the wind blows in fairly regular patterns all year round, India gets 70% of its wind between May and September, coinciding with the south-west monsoon. Once the rains and the clouds have gone, solar power largely replaces wind in supplying renewable energy.

“There is a need for a clear ten-year roadmap to boost clean energy technologies and create standards for innovation”

But in 2020 the normal pattern was different, with the windy season in southern India lasting till November. This brought no benefit, though: the turbines could not be left to operate at all, as the wind speed during the cyclones was very high.

Even though World Bank experts and others are predicting a large expansion of wind power in India, including offshore, its unpredictability is sapping the market’s confidence.

It is too early to say whether climate change has anything to do with the change in weather patterns. Ajay Devaraj, secretary-general of the Indian Wind Power Association, says that although wind power production varies from one year to the next, its decline was particularly significant last year because it knocked investor confidence.

“We are hoping this shortage will be met in 2021. But we can’t promise, since wind generation is based on nature’s laws. Due to cyclones there is a 20% shortage of wind power generation in India this year. Since offshore wind projects need huge capital, that doesn’t attract investors,’’ he said in 2020.

There was also a safety issue with some of the older turbines in very high winds, although if in good condition they could continue to operate for far longer, Dr Devaraj said. The alternative was to “repower” wind farms, replacing smaller turbines with larger, more efficient ones − which were also more expensive.

Renewable energy critical

But instead of repowering, he suggested the government could simply check turbine safety. This would encourage their owners to stay in business instead of disinvesting. Turbines as old as 30 years were still in operation in countries like Germany and Denmark, he said.

India produced 37,505 MW of wind power in 2019. It also set a new target of installing 175 gigawatts (GW) of renewable energy capacity by 2022 and 450 GW by 2030. Wind energy is expected to provide the lion’s share of this target. The government recently set up a national committee to co-ordinate more urgent action on climate.

In a recent virtual event on clean energy, Amitabh Kant, who heads India’s Niti Ayog (National Institution for Transforming India), said renewable electricity generated by clean technology was critical for the country.

“We need to get into a whole range of clean energy deployments. It is very important for India to get into cutting-edge technology. There is a need for a clear ten-year roadmap to boost clean energy technologies and create standards for innovation”, he said.

“India is the only country among the G20 nations that is on track to meet its climate change mitigation commitments, made in 2015 under the Paris Agreement, and has formulated forward-looking policies for energy efficiency measures.’’ − Climate News Network

Major US pension fund plans fossil-free future

Goodbye to fossil fuels, says one major US pension fund: they’re no good for either the climate or the economy.

LONDON, 17 December, 2020 − In what’s being billed as “the biggest leap forward worldwide on climate finance action this year,” a major US pension fund has announced plans to move its money out of fossil fuels.

The New York State Common Retirement Fund has a portfolio of $226 billion worth of investments under its control. A substantial portion of that cash pile has been invested in the fossil fuel industry, including more than $1bn in the oil giant ExxonMobil.

Tom DiNapoli, the New York State comptroller, who oversees the state’s fiscal affairs, said the retirement fund was pulling its money out of fossil fuels not only for the good of the climate: the move also made financial sense.

“New York State’s pension fund is at the leading edge of investors addressing climate risk because investing for the low-carbon future is essential to protect the fund’s long-term value”, said DiNapoli.

“Divestment is a last resort, but it is an investment tool we can apply to companies that consistently put our investments’ long-term value at risk”

“We continue to assess energy sector companies in our portfolio for their future ability to provide investment returns in light of the global consensus on climate change. Divestment is a last resort, but it is an investment tool we can apply to companies that consistently put our investments’ long-term value at risk.”

The fund is the third largest public pension fund in the US, investing on behalf of more than a million past and present state and local government employees. Under the fund’s plan, investments in what’s termed the riskiest oil and gas companies will be withdrawn by 2025: by 2040 the fund aims to have no money invested in companies associated with climate-changing greenhouse gas emissions.

It says it has already withdrawn investments in more than 20 coal companies. Earlier this year, the last remaining coal-fired power plant in New York State closed.

The fund is now reviewing its investments in tar sands projects and plans further analysis of its financial holdings in fracking companies, fossil fuel service groups, oil and gas transport companies and pipeline operations.

Sandy’s warning

Climate activists in New York State have been among those at the forefront of what’s grown into a global campaign aimed at persuading investors to withdraw their money from the fossil fuel industry.

In 2012 Hurricane Sandy hit the Caribbean, the east coast of the US, and Canada. In the north-east of the US alone more than 60 people died, and the overall cost of the damage caused was estimated at more than $70bn.

In the aftermath of Sandy, a coalition of various organisations, including 350.org, was formed with the aim of persuading institutions – from religious groups to universities to sovereign wealth funds – to withdraw investments in fossil fuel enterprises.

Other organisations, such as the UK-based Fossil Free group, have boosted what is now a worldwide fossil fuel divestment movement, which has successfully campaigned for several trillion dollars’ worth of investments to be withdrawn from the fossil fuel industry. − Climate News Network

Goodbye to fossil fuels, says one major US pension fund: they’re no good for either the climate or the economy.

LONDON, 17 December, 2020 − In what’s being billed as “the biggest leap forward worldwide on climate finance action this year,” a major US pension fund has announced plans to move its money out of fossil fuels.

The New York State Common Retirement Fund has a portfolio of $226 billion worth of investments under its control. A substantial portion of that cash pile has been invested in the fossil fuel industry, including more than $1bn in the oil giant ExxonMobil.

Tom DiNapoli, the New York State comptroller, who oversees the state’s fiscal affairs, said the retirement fund was pulling its money out of fossil fuels not only for the good of the climate: the move also made financial sense.

“New York State’s pension fund is at the leading edge of investors addressing climate risk because investing for the low-carbon future is essential to protect the fund’s long-term value”, said DiNapoli.

“Divestment is a last resort, but it is an investment tool we can apply to companies that consistently put our investments’ long-term value at risk”

“We continue to assess energy sector companies in our portfolio for their future ability to provide investment returns in light of the global consensus on climate change. Divestment is a last resort, but it is an investment tool we can apply to companies that consistently put our investments’ long-term value at risk.”

The fund is the third largest public pension fund in the US, investing on behalf of more than a million past and present state and local government employees. Under the fund’s plan, investments in what’s termed the riskiest oil and gas companies will be withdrawn by 2025: by 2040 the fund aims to have no money invested in companies associated with climate-changing greenhouse gas emissions.

It says it has already withdrawn investments in more than 20 coal companies. Earlier this year, the last remaining coal-fired power plant in New York State closed.

The fund is now reviewing its investments in tar sands projects and plans further analysis of its financial holdings in fracking companies, fossil fuel service groups, oil and gas transport companies and pipeline operations.

Sandy’s warning

Climate activists in New York State have been among those at the forefront of what’s grown into a global campaign aimed at persuading investors to withdraw their money from the fossil fuel industry.

In 2012 Hurricane Sandy hit the Caribbean, the east coast of the US, and Canada. In the north-east of the US alone more than 60 people died, and the overall cost of the damage caused was estimated at more than $70bn.

In the aftermath of Sandy, a coalition of various organisations, including 350.org, was formed with the aim of persuading institutions – from religious groups to universities to sovereign wealth funds – to withdraw investments in fossil fuel enterprises.

Other organisations, such as the UK-based Fossil Free group, have boosted what is now a worldwide fossil fuel divestment movement, which has successfully campaigned for several trillion dollars’ worth of investments to be withdrawn from the fossil fuel industry. − Climate News Network

Dubai heads backwards to its clean energy future

A clean energy future is what Dubai says it’s aiming for. So why has it built a huge new coal-burning power station?

LONDON, 3 November, 2020 − Dubai, surrounded by desert but with its skyscrapers, luxury hotels, beach resorts and kilometres of shopping malls, promotes itself as a city with a clean energy future.

Yet when it comes to meeting the challenges posed by climate change, the Gulf state is going smartly backwards.

Within the next few months, what will be the Gulf’s first coal-fired power plant will start operations in the desert south of Dubai city.

The 2,400 MW Hassyan coal plant, when fully operational in 2023, aims to supply up to 20% of Dubai’s electricity, a big step towards a clean energy future.

The state-controlled Dubai Electricity and Water Authority (DEWA) describes the project as a clean coal facility fitted with the latest technology, including facilities for carbon capture and storage – the aim being to bury harmful greenhouse gas emissions from the plant deep underground.

“Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. Carbon capture and storage is still a relatively untried way of coping with carbon emissions”

But a number of questions surround the plant’s operations. Under the Dubai clean energy strategy 2050, unveiled five years ago, the emirate aims to turn itself into what it calls a global clean energy centre by mid-century, with Dubai city having the smallest carbon footprint of any urban centre in the world.

As part of its clean energy future strategy, Dubai aims to produce 75% of its energy from what it calls clean sources by 2050.

Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. No matter what equipment and technology is installed at the Hassyan plant, substantial carbon emissions will be produced.

Carbon capture and storage is still a relatively untried and disputed way of coping with carbon emissions: many power firms have shied away from implementing projects due to their complexity and great expense.

Cheaper solar

Then there is the question of the cost of the Dubai coal project. The Hassyan plant has a price tag of US$3.4bn (£2.5bn). Under prices agreed four years ago, DEWA agreed to buy electricity from Hassyan for about 5 US cents (£0.04) per kilowatt hour (kWh).

Since then solar power has expanded considerably in the emirate – with prices dropping to less that 2 US cents per kWh.

At present the bulk of Dubai’s electricity is sourced from gas-powered plants. Part of the reasoning behind the Hassyan project was worries over dependence on imports of gas from Qatar – now at loggerheads with the Emirates and Saudi Arabia. Though it awaits development, one of the world’s biggest gas fields was recently discovered in Dubai and neighbouring Abu Dhabi.

While many global financial institutions have turned their backs on funding for coal plants, China continues to be one of the biggest sponsors of coal projects around the world. China’s banks, including the state-owned Bank of China, have given loans to the Hassyan plant.

Much of the construction work there will be carried out by Chinese companies, including the giant Harbin Electrical International group.

Gulf penguins

Per capita emissions of climate-changing CO2 gases in Dubai and its fellow United Arab Emirates (UAE) states are among the highest in the world.

In order to meet ever-growing power needs, the first nuclear plant in the Arab world began operations in the UAE emirate of Abu Dhabi in August this year. The Barakah nuclear plant came on stream three years behind schedule and millions of dollars over budget.

And despite the talk of reducing emissions and clean energy targets, Dubai is still one of the most energy-wasteful territories on the planet: its desalination plants, air-conditioned shopping malls, skyscraper office blocks and luxury hotels use enormous amounts of energy, making a clean energy future a very ambitious goal.

The desert city even has an enclosed snow and ski complex, complete with a 1.5km ski slope – and penguins. − Climate News Network

A clean energy future is what Dubai says it’s aiming for. So why has it built a huge new coal-burning power station?

LONDON, 3 November, 2020 − Dubai, surrounded by desert but with its skyscrapers, luxury hotels, beach resorts and kilometres of shopping malls, promotes itself as a city with a clean energy future.

Yet when it comes to meeting the challenges posed by climate change, the Gulf state is going smartly backwards.

Within the next few months, what will be the Gulf’s first coal-fired power plant will start operations in the desert south of Dubai city.

The 2,400 MW Hassyan coal plant, when fully operational in 2023, aims to supply up to 20% of Dubai’s electricity, a big step towards a clean energy future.

The state-controlled Dubai Electricity and Water Authority (DEWA) describes the project as a clean coal facility fitted with the latest technology, including facilities for carbon capture and storage – the aim being to bury harmful greenhouse gas emissions from the plant deep underground.

“Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. Carbon capture and storage is still a relatively untried way of coping with carbon emissions”

But a number of questions surround the plant’s operations. Under the Dubai clean energy strategy 2050, unveiled five years ago, the emirate aims to turn itself into what it calls a global clean energy centre by mid-century, with Dubai city having the smallest carbon footprint of any urban centre in the world.

As part of its clean energy future strategy, Dubai aims to produce 75% of its energy from what it calls clean sources by 2050.

Talk of clean coal is a contradiction in terms. Burning coal is the most polluting way of producing energy. No matter what equipment and technology is installed at the Hassyan plant, substantial carbon emissions will be produced.

Carbon capture and storage is still a relatively untried and disputed way of coping with carbon emissions: many power firms have shied away from implementing projects due to their complexity and great expense.

Cheaper solar

Then there is the question of the cost of the Dubai coal project. The Hassyan plant has a price tag of US$3.4bn (£2.5bn). Under prices agreed four years ago, DEWA agreed to buy electricity from Hassyan for about 5 US cents (£0.04) per kilowatt hour (kWh).

Since then solar power has expanded considerably in the emirate – with prices dropping to less that 2 US cents per kWh.

At present the bulk of Dubai’s electricity is sourced from gas-powered plants. Part of the reasoning behind the Hassyan project was worries over dependence on imports of gas from Qatar – now at loggerheads with the Emirates and Saudi Arabia. Though it awaits development, one of the world’s biggest gas fields was recently discovered in Dubai and neighbouring Abu Dhabi.

While many global financial institutions have turned their backs on funding for coal plants, China continues to be one of the biggest sponsors of coal projects around the world. China’s banks, including the state-owned Bank of China, have given loans to the Hassyan plant.

Much of the construction work there will be carried out by Chinese companies, including the giant Harbin Electrical International group.

Gulf penguins

Per capita emissions of climate-changing CO2 gases in Dubai and its fellow United Arab Emirates (UAE) states are among the highest in the world.

In order to meet ever-growing power needs, the first nuclear plant in the Arab world began operations in the UAE emirate of Abu Dhabi in August this year. The Barakah nuclear plant came on stream three years behind schedule and millions of dollars over budget.

And despite the talk of reducing emissions and clean energy targets, Dubai is still one of the most energy-wasteful territories on the planet: its desalination plants, air-conditioned shopping malls, skyscraper office blocks and luxury hotels use enormous amounts of energy, making a clean energy future a very ambitious goal.

The desert city even has an enclosed snow and ski complex, complete with a 1.5km ski slope – and penguins. − Climate News Network

World Bank helps developing countries’ wind spurt

Wind power is the cheapest way to produce electricity, but some are not persuaded. The World Bank is out to change minds.

LONDON, 1 December, 2020 − Europe and the United States now accept onshore wind power as the cheapest way to generate electricity. But this novel technology still needs subsidising before some developing countries will embrace it. Enter the World Bank.

A total of US$80 billion in subsidies from the Bank has gone over 25 years to 565 developing world onshore wind projects, to persuade governments to invest in renewables rather than rely on fossil fuels.

Central and Latin American countries have received the lion’s share of this investment, but the Asia Pacific region and Eastern Europe have also seen dozens of Bank-funded developments. Now the fastest-growing market is in Africa and the Middle East.

But while continuing to campaign for more onshore wind farms, the World Bank in 2019 started encouraging target countries to embrace offshore wind as well. This uses two approaches: turbines in shallow water, which are fixed to the seabed, and also a newer technology, involving floating turbines anchored by cables at greater depth.

The extraordinary potential for offshore wind, which is being commercially developed very fast in Europe, China and the US, is now seen by the Bank as important for countries like Vietnam – which could harness enough offshore wind power to provide all its electricity needs.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets”

Other countries it has identified with enormous potential for offshore wind include Brazil, Indonesia, India, the Philippines, South Africa and Sri Lanka, all of them countries that need to keep building more power stations to connect every citizen to the national grid.

The Bank began investing in wind power in 1995, with its spending reaching billions of dollars annually in 2011. The biggest single recipient has been Brazil, receiving US$24.2 bn up to the end of 2018, 30% of the total the Bank has invested worldwide.

Many private companies have partnered with the Bank to build the wind farms. The biggest single beneficiary is Enel, the Italian energy giant, which has received US$6.1 bn to complete projects in Brazil, Mexico, South Africa, Romania, Morocco, Bulgaria, Peru, and Russia.

Among the countries now benefitting from the Bank’s continuing onshore wind programme are Egypt, Morocco, Senegal, Jordan, Vietnam, Thailand, Indonesia and the Philippines.

Offshore wind now costs less than nuclear power, and is able to compete in most countries with fossil fuels. Currently the fastest-growing industry in the world, its progress is scarcely affected by the Covid-19 pandemic.

Persistent coal demand

Particularly in Asia, some countries are continuing to burn large quantities of coal and are considering investing in yet more fossil fuel generation unless they can be persuaded that renewables are a better option.

Last year the World Bank began a pilot scheme to explore funding investment in offshore wind in these countries. Launching the scheme Riccardo Puliti, a senior director at the Bank, said: “Offshore wind is a clean, reliable and secure source of energy with massive potential to transform the energy mix in countries that have great wind resources.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets.”

Using data from the Global Wind Atlas, the Bank calculated that developing countries with shallow waters like India, Turkey and Sri Lanka had huge potential with fixed turbines, while others − the Philippines and South Africa, for example − would need floating foundations to reach greater depths, up to 1,000 metres.

For countries like Vietnam, with a mix of shallow and deep water, wind power could solve their entire electricity needs. In theory offshore wind power could produce ten times the amount of electricity that the country currently gets from all its current power stations, the Bank says. − Climate News Network

Wind power is the cheapest way to produce electricity, but some are not persuaded. The World Bank is out to change minds.

LONDON, 1 December, 2020 − Europe and the United States now accept onshore wind power as the cheapest way to generate electricity. But this novel technology still needs subsidising before some developing countries will embrace it. Enter the World Bank.

A total of US$80 billion in subsidies from the Bank has gone over 25 years to 565 developing world onshore wind projects, to persuade governments to invest in renewables rather than rely on fossil fuels.

Central and Latin American countries have received the lion’s share of this investment, but the Asia Pacific region and Eastern Europe have also seen dozens of Bank-funded developments. Now the fastest-growing market is in Africa and the Middle East.

But while continuing to campaign for more onshore wind farms, the World Bank in 2019 started encouraging target countries to embrace offshore wind as well. This uses two approaches: turbines in shallow water, which are fixed to the seabed, and also a newer technology, involving floating turbines anchored by cables at greater depth.

The extraordinary potential for offshore wind, which is being commercially developed very fast in Europe, China and the US, is now seen by the Bank as important for countries like Vietnam – which could harness enough offshore wind power to provide all its electricity needs.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets”

Other countries it has identified with enormous potential for offshore wind include Brazil, Indonesia, India, the Philippines, South Africa and Sri Lanka, all of them countries that need to keep building more power stations to connect every citizen to the national grid.

The Bank began investing in wind power in 1995, with its spending reaching billions of dollars annually in 2011. The biggest single recipient has been Brazil, receiving US$24.2 bn up to the end of 2018, 30% of the total the Bank has invested worldwide.

Many private companies have partnered with the Bank to build the wind farms. The biggest single beneficiary is Enel, the Italian energy giant, which has received US$6.1 bn to complete projects in Brazil, Mexico, South Africa, Romania, Morocco, Bulgaria, Peru, and Russia.

Among the countries now benefitting from the Bank’s continuing onshore wind programme are Egypt, Morocco, Senegal, Jordan, Vietnam, Thailand, Indonesia and the Philippines.

Offshore wind now costs less than nuclear power, and is able to compete in most countries with fossil fuels. Currently the fastest-growing industry in the world, its progress is scarcely affected by the Covid-19 pandemic.

Persistent coal demand

Particularly in Asia, some countries are continuing to burn large quantities of coal and are considering investing in yet more fossil fuel generation unless they can be persuaded that renewables are a better option.

Last year the World Bank began a pilot scheme to explore funding investment in offshore wind in these countries. Launching the scheme Riccardo Puliti, a senior director at the Bank, said: “Offshore wind is a clean, reliable and secure source of energy with massive potential to transform the energy mix in countries that have great wind resources.

“We have seen it work in Europe – we can now make use of global experience to scale up offshore wind projects in emerging markets.”

Using data from the Global Wind Atlas, the Bank calculated that developing countries with shallow waters like India, Turkey and Sri Lanka had huge potential with fixed turbines, while others − the Philippines and South Africa, for example − would need floating foundations to reach greater depths, up to 1,000 metres.

For countries like Vietnam, with a mix of shallow and deep water, wind power could solve their entire electricity needs. In theory offshore wind power could produce ten times the amount of electricity that the country currently gets from all its current power stations, the Bank says. − Climate News Network

Western Europe cools on plans for nuclear power

As more reactors face closure, governments in Europe may prefer renewable energy to replace nuclear power.

LONDON, 25 November, 2020 – News that two more reactors in the United Kingdom are to shut down on safety grounds earlier than planned has capped a depressing month for nuclear power in Europe.

The news came after weeks of unfounded speculation, based on “leaks”, that the British government was about to take a stake in a giant new French-designed nuclear power station planned at Sizewell in Suffolk on the east coast of England as part of a “Green New Deal.” Taxpayers’ backing would have enabled the heavily-indebted French company EDF to finance the project.

In the event Boris Johnson, the prime minister, in his 10-point “green” plan  for the UK, boosted a far more speculative alternative scheme from a Rolls-Royce consortium which was helping to pay for research and development into a full-blown proposal to construct 16 small modular reactors (SMRs).

He failed to mention the Sizewell scheme at all, and instead of singing the praises of nuclear power extolled the virtues of offshore wind power, in which the UK is currently the world leader.

Johnson hopes that offshore wind will produce enough electricity to power every home in Britain, leaving little room for a nuclear industry. He has referred to the UK as “becoming the Saudi Arabia of wind power.”

Meanwhile across the English Channel in Belgium the Electrabel company – the Belgian subsidiary of French utility Engie – has cancelled any further planned investment in its seven-strong nuclear reactor fleet because of the government’s intention to phase out nuclear power by 2025.

“The cause of this damage [at Hunterston] is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive”

Plans will only be re-instated if a Belgian government review fails to find enough alternative electricity supply to replace the reactors’ output. The seven Belgian reactors currently produce half the country’s electricity supply.

These reversals come seven years after British governments promised a nuclear renaissance by encouraging French, Japanese, American and finally Chinese companies to build ten nuclear power stations in the UK. Only one station has been begun, a £22 billion (US$29 bn) joint venture between EDF and Chinese backers.

The French, with a 70% stake and the Chinese with 30%, began work on the twin reactors, to be known as Hinkley Point C, in Somerset in the West of England more than two years ago. The station was due to be completed in 2025, but is behind schedule and has cost overruns.

The two partners wanted to replicate these reactors at the planned Suffolk plant, Sizewell C, but EDF has not found the necessary capital to finance it, hoping that the London government would either take a stake or impose a nuclear tax on British consumers to help pay for it.

The idea was for Hinkley Point C and Sizewell C to replace the 14 smaller reactors that EDF owns in Britain, thus keeping the nuclear industry’s 20% share of the UK’s electricity production. Johnson appears to have dashed these hopes. At best Hinkley Point C will produce 7% of the nation’s needs.

Meanwhile there is a question mark over the future of EDF’s remaining reactor fleet in Britain. Two of the 14, also at the Sizewell site, are French-designed pressurised water reactors opened in 1991, and have plenty of life left in them, but the other 12 are all older British-designed advanced gas-cooled reactors (AGRs) that use graphite blocks to control nuclear reactions.

Premature closure

A serious safety flaw has emerged in this design, involving hundreds of cracks in the graphite, causing doubts over whether the reactors could be turned off quickly in an emergency.

After a long stand-off with the UK’s nuclear safety watchdog, the Office for Nuclear Regulation, EDF decided earlier this year to prematurely close two of the worst affected reactors – both in a station known as Hunterston B in Scotland. Now, for the same reason, two further reactors at Hinkley Point B in Somerset will also close. All four reactors will be defuelled in 2022.

Currently six of these 12 AGR reactors are turned off – out of service for maintenance or safety checks. Two of them, at Dungeness B on the south-east coast of England, have been undergoing repairs since 2018 – this time because of corrosion of vital pipework – although cracks in the graphite blocks are also a safety issue here too.

While EDF remains upbeat about its prospects in developing nuclear power and is keeping its remaining ageing AGR reactors going until they can be replaced, it is hard to see where the company will get the money to build a new generation of reactors or attract government subsidies to do so.

The UK’s decision to back the British company Rolls-Royce to develop SMRs means it is unlikely the government has the money or the political inclination to back the French as well.

Rolls-Royce has been badly hit by the Covid-19 pandemic because a large part of its business relies on the struggling aviation business, while it needs support because it makes mini-reactors to power British nuclear submarines. The proposed SMR research programme will allow nuclear-trained personnel to switch between military and civilian programmes.

Long out of office

The Rolls-Royce SMRs are a long shot from the commercial point of view, since they are unproven and likely to be wildly expensive compared with renewable energy. However, they have the political advantage of being British, and their development lies so far into the future that the current government will be out of office before anyone knows whether they actually work or are economic.

As far as the current crop of reactors is concerned, it is clear that at least those with graphite cores are nearing the end of their lives. Nuclear power has some way to go before it can expect a renaissance in the UK.

Paul Dorfman is a research fellow at University College London. He told the Climate News Network: “It is apparent that the graphite cores of Hunterston B, Hinkley B, and possibly all UK AGR reactors have developed and continue to develop significant structural damage to graphite bricks, including keyway cracks in the fuelled section of the reactor.

“It is also clear that the cause of this damage is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive.

“Given that weight loss in graphite blocks and subsequent graphite cracking occurs in all UK AGRs, what’s happening with Hunterston B has significant implications for the entire UK AGR fleet.

Dr Dorfman concluded: “Given the parlous finances of EDF, who are already struggling with their own reactor up-grade bills in France, it is entirely likely that UK nuclear generation will be reduced to  just Sizewell B, with electricity generation relying almost entirely on renewables by the time Hinkley C comes online, very late and over-cost as usual.” – Climate News Network

As more reactors face closure, governments in Europe may prefer renewable energy to replace nuclear power.

LONDON, 25 November, 2020 – News that two more reactors in the United Kingdom are to shut down on safety grounds earlier than planned has capped a depressing month for nuclear power in Europe.

The news came after weeks of unfounded speculation, based on “leaks”, that the British government was about to take a stake in a giant new French-designed nuclear power station planned at Sizewell in Suffolk on the east coast of England as part of a “Green New Deal.” Taxpayers’ backing would have enabled the heavily-indebted French company EDF to finance the project.

In the event Boris Johnson, the prime minister, in his 10-point “green” plan  for the UK, boosted a far more speculative alternative scheme from a Rolls-Royce consortium which was helping to pay for research and development into a full-blown proposal to construct 16 small modular reactors (SMRs).

He failed to mention the Sizewell scheme at all, and instead of singing the praises of nuclear power extolled the virtues of offshore wind power, in which the UK is currently the world leader.

Johnson hopes that offshore wind will produce enough electricity to power every home in Britain, leaving little room for a nuclear industry. He has referred to the UK as “becoming the Saudi Arabia of wind power.”

Meanwhile across the English Channel in Belgium the Electrabel company – the Belgian subsidiary of French utility Engie – has cancelled any further planned investment in its seven-strong nuclear reactor fleet because of the government’s intention to phase out nuclear power by 2025.

“The cause of this damage [at Hunterston] is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive”

Plans will only be re-instated if a Belgian government review fails to find enough alternative electricity supply to replace the reactors’ output. The seven Belgian reactors currently produce half the country’s electricity supply.

These reversals come seven years after British governments promised a nuclear renaissance by encouraging French, Japanese, American and finally Chinese companies to build ten nuclear power stations in the UK. Only one station has been begun, a £22 billion (US$29 bn) joint venture between EDF and Chinese backers.

The French, with a 70% stake and the Chinese with 30%, began work on the twin reactors, to be known as Hinkley Point C, in Somerset in the West of England more than two years ago. The station was due to be completed in 2025, but is behind schedule and has cost overruns.

The two partners wanted to replicate these reactors at the planned Suffolk plant, Sizewell C, but EDF has not found the necessary capital to finance it, hoping that the London government would either take a stake or impose a nuclear tax on British consumers to help pay for it.

The idea was for Hinkley Point C and Sizewell C to replace the 14 smaller reactors that EDF owns in Britain, thus keeping the nuclear industry’s 20% share of the UK’s electricity production. Johnson appears to have dashed these hopes. At best Hinkley Point C will produce 7% of the nation’s needs.

Meanwhile there is a question mark over the future of EDF’s remaining reactor fleet in Britain. Two of the 14, also at the Sizewell site, are French-designed pressurised water reactors opened in 1991, and have plenty of life left in them, but the other 12 are all older British-designed advanced gas-cooled reactors (AGRs) that use graphite blocks to control nuclear reactions.

Premature closure

A serious safety flaw has emerged in this design, involving hundreds of cracks in the graphite, causing doubts over whether the reactors could be turned off quickly in an emergency.

After a long stand-off with the UK’s nuclear safety watchdog, the Office for Nuclear Regulation, EDF decided earlier this year to prematurely close two of the worst affected reactors – both in a station known as Hunterston B in Scotland. Now, for the same reason, two further reactors at Hinkley Point B in Somerset will also close. All four reactors will be defuelled in 2022.

Currently six of these 12 AGR reactors are turned off – out of service for maintenance or safety checks. Two of them, at Dungeness B on the south-east coast of England, have been undergoing repairs since 2018 – this time because of corrosion of vital pipework – although cracks in the graphite blocks are also a safety issue here too.

While EDF remains upbeat about its prospects in developing nuclear power and is keeping its remaining ageing AGR reactors going until they can be replaced, it is hard to see where the company will get the money to build a new generation of reactors or attract government subsidies to do so.

The UK’s decision to back the British company Rolls-Royce to develop SMRs means it is unlikely the government has the money or the political inclination to back the French as well.

Rolls-Royce has been badly hit by the Covid-19 pandemic because a large part of its business relies on the struggling aviation business, while it needs support because it makes mini-reactors to power British nuclear submarines. The proposed SMR research programme will allow nuclear-trained personnel to switch between military and civilian programmes.

Long out of office

The Rolls-Royce SMRs are a long shot from the commercial point of view, since they are unproven and likely to be wildly expensive compared with renewable energy. However, they have the political advantage of being British, and their development lies so far into the future that the current government will be out of office before anyone knows whether they actually work or are economic.

As far as the current crop of reactors is concerned, it is clear that at least those with graphite cores are nearing the end of their lives. Nuclear power has some way to go before it can expect a renaissance in the UK.

Paul Dorfman is a research fellow at University College London. He told the Climate News Network: “It is apparent that the graphite cores of Hunterston B, Hinkley B, and possibly all UK AGR reactors have developed and continue to develop significant structural damage to graphite bricks, including keyway cracks in the fuelled section of the reactor.

“It is also clear that the cause of this damage is not fully understood, and it is entirely possible that this form of age-related damage may be much more extensive.

“Given that weight loss in graphite blocks and subsequent graphite cracking occurs in all UK AGRs, what’s happening with Hunterston B has significant implications for the entire UK AGR fleet.

Dr Dorfman concluded: “Given the parlous finances of EDF, who are already struggling with their own reactor up-grade bills in France, it is entirely likely that UK nuclear generation will be reduced to  just Sizewell B, with electricity generation relying almost entirely on renewables by the time Hinkley C comes online, very late and over-cost as usual.” – Climate News Network

Africa’s resistance grows as climate crisis worsens

Battered by storms and droughts during a tough 2019, Africa’s resistance to the climate crisis left no room for passivity.

LONDON, 29 October, 2020 – Attempting to come to any general conclusions on the state of a vast, varied and complex continent may be a tricky business, but Africa’s resistance to the climate crisis shows it rejects any idea of settling for victimhood.

A new report, State of the Climate in Africa 2019, published by the World Meteorological Organization (WMO), makes that clear.

It reaches some grim conclusions. Increased temperatures, changing rainfall patterns, rising sea levels and more extreme weather are threatening human health and safety across the continent, says the report.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest and contributing to food insecurity, population displacement and stress on water resources”, says Petteri Taalas, the WMO secretary-general.

“In recent months we have seen devastating floods, an invasion of desert locusts and now face the looming spectre of drought because of a La Niña event”, he says. “The human and economic toll has been aggravated by the Covid-19 pandemic.”

Killer cyclone

Drought caused considerable damage in 2019, particularly across southern Africa. Much of East Africa also suffered drought but then, late in the year, there was torrential rain and serious flooding and landslides in the region.

The trend, says the report, is for continuing increases in temperature: 2019 was among the three warmest years ever recorded in Africa. The WMO predicts that rainfall is likely to decrease over northern and southern regions but increase over the Sahel.

There are also likely to be more weather-related extreme events. In March 2019 Cyclone Idai hit the coast of Mozambique and went on to devastate large areas of Malawi, Zimbabwe and surrounding countries.

Described as the most destructive cyclone ever recorded in the southern hemisphere, Idai killed hundreds of people and displaced several hundred thousand.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest”

Sea levels are rising well above the global average in many parts of Africa, the report says. Coastal degradation and erosion is a major challenge, particularly in West Africa. More than 50% of the coastlines in Benin, Côte d’Ivoire, Senegal and Togo are eroding – a trend likely to continue in future years.

The knock-on effects of these changes in climate are considerable. Approximately 60% of the total population of Africa is dependent on agriculture for a living.

Heat and drought, plus flood damage in some areas, are likely to reduce crop productivity. Changes in climate are also leading to pest outbreaks.

In what it describes as the worst case climate change scenario, the report says crop yields could drop by 13% by mid-century across West and Central Africa, 11% in North Africa and 8% in the eastern and southern regions of the continent. Rice and wheat crops would be particularly badly affected.

Combatting the crisis

Increased heat and continually changing rainfall patterns are also likely to lead to the spread of disease – and a fall-off in economic production in many countries.

But the report does point to some positive changes, showing Africa’s resistance to the crisis. Though the continent is responsible for only a small percentage of the world’s greenhouse gas emissions, many countries in Africa are taking measures aimed at tackling climate change.

Solar power is becoming more widespread, with several large-scale projects planned. Early warning systems monitoring the approach of such cataclysmic events as Cyclone Idai are being installed across the continent.
Farm incomes in many areas are increasing, due to the application of more efficient cultivation methods, such as micro-irrigation. But good planning, based on reliable data, is essential, the report says.

“The limited uptake and use of climate information services in development planning and practice in Africa is due in part to the paucity of reliable and timely climate information”, says Vera Songwe, the executive secretary of the United Nations Economic Commission for Africa. – Climate News Network

Battered by storms and droughts during a tough 2019, Africa’s resistance to the climate crisis left no room for passivity.

LONDON, 29 October, 2020 – Attempting to come to any general conclusions on the state of a vast, varied and complex continent may be a tricky business, but Africa’s resistance to the climate crisis shows it rejects any idea of settling for victimhood.

A new report, State of the Climate in Africa 2019, published by the World Meteorological Organization (WMO), makes that clear.

It reaches some grim conclusions. Increased temperatures, changing rainfall patterns, rising sea levels and more extreme weather are threatening human health and safety across the continent, says the report.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest and contributing to food insecurity, population displacement and stress on water resources”, says Petteri Taalas, the WMO secretary-general.

“In recent months we have seen devastating floods, an invasion of desert locusts and now face the looming spectre of drought because of a La Niña event”, he says. “The human and economic toll has been aggravated by the Covid-19 pandemic.”

Killer cyclone

Drought caused considerable damage in 2019, particularly across southern Africa. Much of East Africa also suffered drought but then, late in the year, there was torrential rain and serious flooding and landslides in the region.

The trend, says the report, is for continuing increases in temperature: 2019 was among the three warmest years ever recorded in Africa. The WMO predicts that rainfall is likely to decrease over northern and southern regions but increase over the Sahel.

There are also likely to be more weather-related extreme events. In March 2019 Cyclone Idai hit the coast of Mozambique and went on to devastate large areas of Malawi, Zimbabwe and surrounding countries.

Described as the most destructive cyclone ever recorded in the southern hemisphere, Idai killed hundreds of people and displaced several hundred thousand.

“Climate change is having a growing impact on the African continent, hitting the most vulnerable hardest”

Sea levels are rising well above the global average in many parts of Africa, the report says. Coastal degradation and erosion is a major challenge, particularly in West Africa. More than 50% of the coastlines in Benin, Côte d’Ivoire, Senegal and Togo are eroding – a trend likely to continue in future years.

The knock-on effects of these changes in climate are considerable. Approximately 60% of the total population of Africa is dependent on agriculture for a living.

Heat and drought, plus flood damage in some areas, are likely to reduce crop productivity. Changes in climate are also leading to pest outbreaks.

In what it describes as the worst case climate change scenario, the report says crop yields could drop by 13% by mid-century across West and Central Africa, 11% in North Africa and 8% in the eastern and southern regions of the continent. Rice and wheat crops would be particularly badly affected.

Combatting the crisis

Increased heat and continually changing rainfall patterns are also likely to lead to the spread of disease – and a fall-off in economic production in many countries.

But the report does point to some positive changes, showing Africa’s resistance to the crisis. Though the continent is responsible for only a small percentage of the world’s greenhouse gas emissions, many countries in Africa are taking measures aimed at tackling climate change.

Solar power is becoming more widespread, with several large-scale projects planned. Early warning systems monitoring the approach of such cataclysmic events as Cyclone Idai are being installed across the continent.
Farm incomes in many areas are increasing, due to the application of more efficient cultivation methods, such as micro-irrigation. But good planning, based on reliable data, is essential, the report says.

“The limited uptake and use of climate information services in development planning and practice in Africa is due in part to the paucity of reliable and timely climate information”, says Vera Songwe, the executive secretary of the United Nations Economic Commission for Africa. – Climate News Network