Tag Archives: Sea levels

Antarctic warming speed-up alarms researchers

The world’s largest reservoir of snow and ice could be melting faster than ever. Two new studies highlight Antarctic warming.

LONDON, 4 March, 2021 − Antarctic warming is accelerating: at least one of the southern continent’s ice shelves has been melting faster than ever. The polar summer of 2019-20 set a new record for temperatures above freezing point over the George VI ice shelf off the Antarctic Peninsula.

The finding is ominous: the ice shelves form a natural buttress that slows the rate of glacier flow from the continental bedrock. The faster the glaciers flow into the sea, the higher the hazard of sea level rise.

And a second study confirms that this is already happening in West Antarctica: researchers looked at 25 years of satellite observation of 14 glaciers in the Getz sector to find that meltwater is flowing into the Amundsen Sea ever faster. Between 1994 and 2018, these glaciers lost 315 billion tonnes of ice, enough to raise global sea levels by almost 1mm.

Melting rates in Antarctica have been a source of alarm for years. The latest studies confirm the picture of continuing melt.

“The high rates of increased glacier speed − coupled with ice thinning − confirm the Getz basin is losing more ice than it gains through snowfall”

US scientists report in the journal The Cryosphere that they too used satellite observation − 41 years of it − to measure summer meltwater on the ice and in the near-surface snow of the northern part of the George VI ice shelf. They identified the most widespread melt and the greatest total of melt days of any season during the 2019-2020 summer.

Air temperatures were above freezing for up to 90 hours, allowing pools of meltwater to collect on the shelf. At its peak 23% of the region was covered with water: the equivalent, in glaciology’s favourite popular measure, of 250,000 Olympic swimming pools.

“When the temperature is above zero degrees Celsius, that limits refreezing and also leads to further melting,” said Alison Banwell, of the University of Colorado at Boulder, who led the study. “Water absorbs more radiation than snow and ice, and that leads to even more melting.”

Remote and untrodden

The Getz shelf is one of the biggest of a sector of the West Antarctic known as Marie Byrd Land. A new report in Nature Communications confirms that all 14 measured glaciers there have picked up speed and reach the ocean ever more swiftly.

Three of them have accelerated by more than 44%. And over the years the loss of ice has been the equivalent of 126 million Olympic swimming pools − all of it now adding to global sea level rise.

“The Getz region of Antarctica is so remote that humans have never set foot on most of this part of the continent,” said Heather Selley, of the University of Leeds, UK, first author. “Satellite radar altimetry records have shown substantial thinning of the ice sheet.

“However, the high rates of increased glacier speed − coupled with ice thinning − now confirm the Getz basin is in dynamic imbalance, meaning that it is losing more ice than it gains through snowfall.” − Climate News Network

The world’s largest reservoir of snow and ice could be melting faster than ever. Two new studies highlight Antarctic warming.

LONDON, 4 March, 2021 − Antarctic warming is accelerating: at least one of the southern continent’s ice shelves has been melting faster than ever. The polar summer of 2019-20 set a new record for temperatures above freezing point over the George VI ice shelf off the Antarctic Peninsula.

The finding is ominous: the ice shelves form a natural buttress that slows the rate of glacier flow from the continental bedrock. The faster the glaciers flow into the sea, the higher the hazard of sea level rise.

And a second study confirms that this is already happening in West Antarctica: researchers looked at 25 years of satellite observation of 14 glaciers in the Getz sector to find that meltwater is flowing into the Amundsen Sea ever faster. Between 1994 and 2018, these glaciers lost 315 billion tonnes of ice, enough to raise global sea levels by almost 1mm.

Melting rates in Antarctica have been a source of alarm for years. The latest studies confirm the picture of continuing melt.

“The high rates of increased glacier speed − coupled with ice thinning − confirm the Getz basin is losing more ice than it gains through snowfall”

US scientists report in the journal The Cryosphere that they too used satellite observation − 41 years of it − to measure summer meltwater on the ice and in the near-surface snow of the northern part of the George VI ice shelf. They identified the most widespread melt and the greatest total of melt days of any season during the 2019-2020 summer.

Air temperatures were above freezing for up to 90 hours, allowing pools of meltwater to collect on the shelf. At its peak 23% of the region was covered with water: the equivalent, in glaciology’s favourite popular measure, of 250,000 Olympic swimming pools.

“When the temperature is above zero degrees Celsius, that limits refreezing and also leads to further melting,” said Alison Banwell, of the University of Colorado at Boulder, who led the study. “Water absorbs more radiation than snow and ice, and that leads to even more melting.”

Remote and untrodden

The Getz shelf is one of the biggest of a sector of the West Antarctic known as Marie Byrd Land. A new report in Nature Communications confirms that all 14 measured glaciers there have picked up speed and reach the ocean ever more swiftly.

Three of them have accelerated by more than 44%. And over the years the loss of ice has been the equivalent of 126 million Olympic swimming pools − all of it now adding to global sea level rise.

“The Getz region of Antarctica is so remote that humans have never set foot on most of this part of the continent,” said Heather Selley, of the University of Leeds, UK, first author. “Satellite radar altimetry records have shown substantial thinning of the ice sheet.

“However, the high rates of increased glacier speed − coupled with ice thinning − now confirm the Getz basin is in dynamic imbalance, meaning that it is losing more ice than it gains through snowfall.” − Climate News Network

Rising sea levels may make some airports unusable

High flyers could soon have a problem with high water. Rising sea levels could one day shut down airports.

LONDON, 3 February, 2021 − Passengers, prepare for splashdown. Take-off may have to wait for low tide. By 2100, thanks to rising sea levels, around 100 of the world’s airports could be below mean sea level and at least 364 will be vulnerable to flooding.

And that’s assuming the world’s nations keep a promise made in 2015 and confine global heating to no more than 2°C above the average maintained for most of human history. If humans go on burning fossil fuels and clearing forests at the present rate, then at least 572 of the world’s airports could be at risk of flooding from extreme tides, according to a new study in the journal Climate Risk Management.

These things have already happened: in 2018 a typhoon storm surge inundated Kansai International Airport in Osaka Bay, Japan. Superstorm Sandy in 2012 closed New York City’s La Guardia Airport for three days. One-tenth of the planet’s population lives on coastlines less than 10 metres above sea level.

Airports grow up around the great cities: they require flat land and a clear flight path. Coastal flood plains, wetlands and reclaimed land provide exactly that.

Serious risk

“These coastal airports are disproportionately important to the global airline network, and by 2100 between 10% and 20% of all routes will be at risk of disruption,” said Richard Dawson, an engineer at Newcastle University in the United Kingdom. “Sea level rise therefore poses a serious risk to global passenger and freight movements, with considerable cost of damage and disruption.”

He and a colleague looked at the world’s 14,000 airports and helicopter pads to identify 1,238 airports in what geographers call low elevation coastal zones: that is, down by the seaside. Of these, 199, serving 3,436 routes, were in the US; China had 30 airports serving 2,333 routes.

They found that just 20 airports at risk handled more than 800 million passengers in 2018 − approaching a fifth of the world’s passenger traffic that year − and nearly 16 million tonnes of cargo: one-fourth of all the world’s air freight that year. They then started looking at what climate change could do to all that business.

Even before the shutdown of traffic because of the global pandemic, the world’s airlines had been feeling the heat. Research teams have confirmed that ever higher global temperatures mean more atmospheric turbulence at altitude; that wind speed changes will slow flights and raise costs; that extremes of heat could even close airport runways and delay flights for extended periods.

“These coastal airports are disproportionately important to the global airline network, and by 2100 between 10% and 20% of all routes will be at risk of disruption”

Now Professor Dawson and his colleague have compiled a table of hazard rankings for flooded airstrips under a range of climate change scenarios.

Right now, 269 of the world’s airports are at some risk of coastal flooding. This number must rise: by how much, and at what cost, depends on what actions the world takes. But the researchers calculate that by 2100 the risk of disruption could increase 17-fold, or even 69-fold. And because so many important airports are already at or near sea level, up to a fifth of all the world’s routes will be at risk.

And that means higher costs for flood protection, or action to raise airport sites, or relocation. The choice is to adapt or, quite literally, to go under.

“The cost of adaptation will be modest in the context of global infrastructure expenditure,” Professor Dawson said. “However, in some locations the rate of sea level rise, limited economic resources or space for alternative locations will make some airports unviable.” − Climate News Network

High flyers could soon have a problem with high water. Rising sea levels could one day shut down airports.

LONDON, 3 February, 2021 − Passengers, prepare for splashdown. Take-off may have to wait for low tide. By 2100, thanks to rising sea levels, around 100 of the world’s airports could be below mean sea level and at least 364 will be vulnerable to flooding.

And that’s assuming the world’s nations keep a promise made in 2015 and confine global heating to no more than 2°C above the average maintained for most of human history. If humans go on burning fossil fuels and clearing forests at the present rate, then at least 572 of the world’s airports could be at risk of flooding from extreme tides, according to a new study in the journal Climate Risk Management.

These things have already happened: in 2018 a typhoon storm surge inundated Kansai International Airport in Osaka Bay, Japan. Superstorm Sandy in 2012 closed New York City’s La Guardia Airport for three days. One-tenth of the planet’s population lives on coastlines less than 10 metres above sea level.

Airports grow up around the great cities: they require flat land and a clear flight path. Coastal flood plains, wetlands and reclaimed land provide exactly that.

Serious risk

“These coastal airports are disproportionately important to the global airline network, and by 2100 between 10% and 20% of all routes will be at risk of disruption,” said Richard Dawson, an engineer at Newcastle University in the United Kingdom. “Sea level rise therefore poses a serious risk to global passenger and freight movements, with considerable cost of damage and disruption.”

He and a colleague looked at the world’s 14,000 airports and helicopter pads to identify 1,238 airports in what geographers call low elevation coastal zones: that is, down by the seaside. Of these, 199, serving 3,436 routes, were in the US; China had 30 airports serving 2,333 routes.

They found that just 20 airports at risk handled more than 800 million passengers in 2018 − approaching a fifth of the world’s passenger traffic that year − and nearly 16 million tonnes of cargo: one-fourth of all the world’s air freight that year. They then started looking at what climate change could do to all that business.

Even before the shutdown of traffic because of the global pandemic, the world’s airlines had been feeling the heat. Research teams have confirmed that ever higher global temperatures mean more atmospheric turbulence at altitude; that wind speed changes will slow flights and raise costs; that extremes of heat could even close airport runways and delay flights for extended periods.

“These coastal airports are disproportionately important to the global airline network, and by 2100 between 10% and 20% of all routes will be at risk of disruption”

Now Professor Dawson and his colleague have compiled a table of hazard rankings for flooded airstrips under a range of climate change scenarios.

Right now, 269 of the world’s airports are at some risk of coastal flooding. This number must rise: by how much, and at what cost, depends on what actions the world takes. But the researchers calculate that by 2100 the risk of disruption could increase 17-fold, or even 69-fold. And because so many important airports are already at or near sea level, up to a fifth of all the world’s routes will be at risk.

And that means higher costs for flood protection, or action to raise airport sites, or relocation. The choice is to adapt or, quite literally, to go under.

“The cost of adaptation will be modest in the context of global infrastructure expenditure,” Professor Dawson said. “However, in some locations the rate of sea level rise, limited economic resources or space for alternative locations will make some airports unviable.” − Climate News Network

Caspian Sea loss puts Asian water supplies at risk

The Caspian Sea’s decline means a climate-led water crisis for at least five Asian nations as inland seas dry up.

LONDON, 7 January, 2021 − The Caspian Sea − the world’s largest lake − is about to go down in the world. And with it could go the fortunes of some of the people of at least five nations. New research suggests that the Caspian Sea, already getting lower at the rate of several centimetres a year, is to go into even faster decline: later this century, it could be nine metres lower than it is now. Or even 18 metres lower.

In the paradoxical world of climate change, sea levels will rise to threaten coastal settlements, but many of the great inland lakes could be doomed to dwindle.

Dutch and German scientists report in the journal Communications Earth & Environment that because more water will evaporate each summer, and less ice will form each winter, the area of the Caspian − it covers 371,000 square kilometres, an area greater than Japan, or Germany − is doomed to shrink at an accelerating rate.

Lakeside communities, ports and industries in Azerbaijan, Russia, Iran, Turkmenistan and Kazakhstan, all of which border the Caspian, could be left high and dry.

Change required

“If the North Sea were to drop two or three metres, access to ports like Rotterdam, Hamburg and London would be impeded. Fishing boats and container giants alike would struggle, and all the countries of the North Sea would have a huge problem,” said Frank Wesselingh, of the University of Utrecht in the Netherlands, one of the authors. “Here we are talking about a decrease of no less than nine metres, in the best case scenario.”

His co-author Matthias Prange of the University of Bremen in Germany warned that what happens to the Caspian could and will happen to the great land-locked lakes on other continents. “This has to change. We need more studies and a better understanding of the consequences of global warming in this region.”

This is not the first such warning: although much of the world’s concern has been with the dramatic loss of water from the Aral Sea, researchers have worried about the impact of evaporation on the Caspian too. It may be salty, but it is one of the world’s great inland reservoirs of water for industry, agriculture and human settlement.

It is also host to a vast range of species, including the Caspian seal, an endangered creature that depends on winter ice to protect and rear its pups. Its shallow waters provide food for migrating birds, and serve as spawning grounds for its fish, including the sturgeon endemic to the region.

“If the North Sea were to drop two or three metres, access to ports like Rotterdam, Hamburg and London would be impeded, and all the countries of the North Sea would have a huge problem”

The Caspian Sea’s chief source of water is the Volga River: it has no connection with the ocean. So its water levels depend entirely on rainfall, evaporation and inflow. And in a world of global heating, evaporation is on the increase.

The level of rainfall, on the other hand, is likely to decline: in a world of climate change, those already semi-arid regions can expect to become more parched.

The authors expect these challenges will confront not only the dwellers by the Caspian Sea but also those hundreds of millions who live by, and depend upon, other lakes in Asia, and in Africa and North America. The consequences for these people could be just as devastating as global sea level rise will be for others. They call for higher levels of awareness, and an international task force to help address the problem.

“Immediate and co-ordinated action is needed to make up for valuable time lost,” they write. “The shrinking Caspian Sea might serve as a poster child that will help galvanise such actions.” − Climate News Network

The Caspian Sea’s decline means a climate-led water crisis for at least five Asian nations as inland seas dry up.

LONDON, 7 January, 2021 − The Caspian Sea − the world’s largest lake − is about to go down in the world. And with it could go the fortunes of some of the people of at least five nations. New research suggests that the Caspian Sea, already getting lower at the rate of several centimetres a year, is to go into even faster decline: later this century, it could be nine metres lower than it is now. Or even 18 metres lower.

In the paradoxical world of climate change, sea levels will rise to threaten coastal settlements, but many of the great inland lakes could be doomed to dwindle.

Dutch and German scientists report in the journal Communications Earth & Environment that because more water will evaporate each summer, and less ice will form each winter, the area of the Caspian − it covers 371,000 square kilometres, an area greater than Japan, or Germany − is doomed to shrink at an accelerating rate.

Lakeside communities, ports and industries in Azerbaijan, Russia, Iran, Turkmenistan and Kazakhstan, all of which border the Caspian, could be left high and dry.

Change required

“If the North Sea were to drop two or three metres, access to ports like Rotterdam, Hamburg and London would be impeded. Fishing boats and container giants alike would struggle, and all the countries of the North Sea would have a huge problem,” said Frank Wesselingh, of the University of Utrecht in the Netherlands, one of the authors. “Here we are talking about a decrease of no less than nine metres, in the best case scenario.”

His co-author Matthias Prange of the University of Bremen in Germany warned that what happens to the Caspian could and will happen to the great land-locked lakes on other continents. “This has to change. We need more studies and a better understanding of the consequences of global warming in this region.”

This is not the first such warning: although much of the world’s concern has been with the dramatic loss of water from the Aral Sea, researchers have worried about the impact of evaporation on the Caspian too. It may be salty, but it is one of the world’s great inland reservoirs of water for industry, agriculture and human settlement.

It is also host to a vast range of species, including the Caspian seal, an endangered creature that depends on winter ice to protect and rear its pups. Its shallow waters provide food for migrating birds, and serve as spawning grounds for its fish, including the sturgeon endemic to the region.

“If the North Sea were to drop two or three metres, access to ports like Rotterdam, Hamburg and London would be impeded, and all the countries of the North Sea would have a huge problem”

The Caspian Sea’s chief source of water is the Volga River: it has no connection with the ocean. So its water levels depend entirely on rainfall, evaporation and inflow. And in a world of global heating, evaporation is on the increase.

The level of rainfall, on the other hand, is likely to decline: in a world of climate change, those already semi-arid regions can expect to become more parched.

The authors expect these challenges will confront not only the dwellers by the Caspian Sea but also those hundreds of millions who live by, and depend upon, other lakes in Asia, and in Africa and North America. The consequences for these people could be just as devastating as global sea level rise will be for others. They call for higher levels of awareness, and an international task force to help address the problem.

“Immediate and co-ordinated action is needed to make up for valuable time lost,” they write. “The shrinking Caspian Sea might serve as a poster child that will help galvanise such actions.” − Climate News Network

Fire and flood menace parts of US and Bangladesh

Fire and flood are on the rise. Bangladesh and New York face more flooding: the American West may see more forests burn.

LONDON, 14 December, 2020 − More extreme weather is on the way for the hapless residents of Bangladesh, New York and the western US,  facing the prospect of worsening fire and flood.

There is a new future for New York. By the close of the century, thanks to sea level rise and global heating, parts of it could be swept by hurricane-driven catastrophic floods almost every year.

Things don’t look much brighter for much of Bangladesh. Scientists have recalculated the risk of flooding by the Brahmaputra river system to find that, even without the climate emergency, they had under-estimated the likelihood of devastating floods across the crowded, low-lying landscape.

And far away in the American west, US citizens face yet more and more devastating seasons of fire. The area incinerated by severe fires has increased eight-fold in the last 40 years, thanks to intensifying heat and drought. And thanks to climate change, drought will become more extended and more frequent. The temperatures, too, will go on rising.

All this emerged in just another week of routine climate science, as researchers try to gauge the difficulties to come, for national and civic authorities, for foresters and for farmers.

“The increase in these once-in-a-generation floods is so dramatic because the impact of sea-level rise will create greater flooding, even if the storms today stay the same”

In 2012, Hurricane Sandy hit the US to cause $70bn in damages, and even slammed unexpectedly into New York, to devastate parts of the city. It counted as a once-in-500 years event.

Researchers report in the journal Climatic Change that they looked at the probabilities of more flooding in Jamaica Bay, on Long Island, New York as sea levels rose, along with the sea surface temperatures that drive fiercer storm weather, through the century.

Floods that tend to happen every century could, by 2050, occur every nine years. By 2080 to 2100, they could become annual events. And 500-year events like the 2012 superstorm could by the end of the century happen perhaps once every four years.

“Future projections of the hurricane climatology suggest that climate change would lead to storms that move more slowly and are more intense than we have ever seen before hitting Jamaica Bay,” said Reza Marsooli, an environmental engineer at the Stevens Institute of Technology in Hoboken, New Jersey, a co-author.

“But the increase in these once-in-a-generation or even less frequent floods is so dramatic because the impact of sea-level rise will create greater flooding, even if the storms we are seeing today stayed the same.”

Prepare for worse

The hazard that faces Bangladesh − much of which is at sea level, on fertile floodplain created by the Ganges-Brahmaputra river system − is more insidious.

One of the great waterways of the world, it rises in the Himalayan snows and swells in the monsoon season to flood the rice paddies and replenish farmlands with nourishing sediments. Occasionally the floods become devastating: in 1998, some 70% of the nation was submerged. Floods have recurred, in 2007, 2010 and 2020.

Engineers have been monitoring the flow since the 1950s, and thought they knew the flood probabilities. But US, Australian and Chinese scientists report in the journal Nature Communications that they studied the growth rings in ancient trees to find that Bangladeshis have been living in unusual times: for much of the past 70 years, on the evidence told by old trees along the watershed, the river flow has been unusually dry − the driest in the last 700 years.

“The tree rings suggest that the long-term baseline conditions are much wetter than thought,” said Mukund Palat Rao, of the Lamont-Doherty Earth Observatory at Columbia University in New York, who led the research.

“Whether you consider climate models or natural variability, the message is the same. We should prepare for a higher frequency of flooding than we are currently predicting.”

Forests’ future threatened

In the past 40 years, thanks to global heating driven by ever-higher emissions of greenhouse gases from the combustion of fossil fuels, the state of California has experienced a series of droughts that lasted for years. The fire season too has begun earlier and lasted much longer.

Ecologists report in the journal Geophysical Research Letters that they defined high-severity fires as those that killed 95% of all trees. They then counted the most severe episodes of burning in four great regions of the western US from 1985 to 2017.

They found that by 2017, the area wiped out by severe fires had risen eight times, to more than 2,000 sq kms or 800 sq miles. Much of the tree cover of the US west is adapted to episodes of fire. But the frequency and intensity of recent blazes threatens the future of the forests altogether.

“As more area burns at high severity, the likelihood of conversion to different forest types or even to non-forest increases,” said Sean Parks of the US Forest Service Rocky Mountain Research Station, and the lead author.

“At the same time, the post-fire climate is making it increasingly difficult for seedlings to establish and survive, further reducing the potential for forests to return to their pre-fire condition.” − Climate News Network

Fire and flood are on the rise. Bangladesh and New York face more flooding: the American West may see more forests burn.

LONDON, 14 December, 2020 − More extreme weather is on the way for the hapless residents of Bangladesh, New York and the western US,  facing the prospect of worsening fire and flood.

There is a new future for New York. By the close of the century, thanks to sea level rise and global heating, parts of it could be swept by hurricane-driven catastrophic floods almost every year.

Things don’t look much brighter for much of Bangladesh. Scientists have recalculated the risk of flooding by the Brahmaputra river system to find that, even without the climate emergency, they had under-estimated the likelihood of devastating floods across the crowded, low-lying landscape.

And far away in the American west, US citizens face yet more and more devastating seasons of fire. The area incinerated by severe fires has increased eight-fold in the last 40 years, thanks to intensifying heat and drought. And thanks to climate change, drought will become more extended and more frequent. The temperatures, too, will go on rising.

All this emerged in just another week of routine climate science, as researchers try to gauge the difficulties to come, for national and civic authorities, for foresters and for farmers.

“The increase in these once-in-a-generation floods is so dramatic because the impact of sea-level rise will create greater flooding, even if the storms today stay the same”

In 2012, Hurricane Sandy hit the US to cause $70bn in damages, and even slammed unexpectedly into New York, to devastate parts of the city. It counted as a once-in-500 years event.

Researchers report in the journal Climatic Change that they looked at the probabilities of more flooding in Jamaica Bay, on Long Island, New York as sea levels rose, along with the sea surface temperatures that drive fiercer storm weather, through the century.

Floods that tend to happen every century could, by 2050, occur every nine years. By 2080 to 2100, they could become annual events. And 500-year events like the 2012 superstorm could by the end of the century happen perhaps once every four years.

“Future projections of the hurricane climatology suggest that climate change would lead to storms that move more slowly and are more intense than we have ever seen before hitting Jamaica Bay,” said Reza Marsooli, an environmental engineer at the Stevens Institute of Technology in Hoboken, New Jersey, a co-author.

“But the increase in these once-in-a-generation or even less frequent floods is so dramatic because the impact of sea-level rise will create greater flooding, even if the storms we are seeing today stayed the same.”

Prepare for worse

The hazard that faces Bangladesh − much of which is at sea level, on fertile floodplain created by the Ganges-Brahmaputra river system − is more insidious.

One of the great waterways of the world, it rises in the Himalayan snows and swells in the monsoon season to flood the rice paddies and replenish farmlands with nourishing sediments. Occasionally the floods become devastating: in 1998, some 70% of the nation was submerged. Floods have recurred, in 2007, 2010 and 2020.

Engineers have been monitoring the flow since the 1950s, and thought they knew the flood probabilities. But US, Australian and Chinese scientists report in the journal Nature Communications that they studied the growth rings in ancient trees to find that Bangladeshis have been living in unusual times: for much of the past 70 years, on the evidence told by old trees along the watershed, the river flow has been unusually dry − the driest in the last 700 years.

“The tree rings suggest that the long-term baseline conditions are much wetter than thought,” said Mukund Palat Rao, of the Lamont-Doherty Earth Observatory at Columbia University in New York, who led the research.

“Whether you consider climate models or natural variability, the message is the same. We should prepare for a higher frequency of flooding than we are currently predicting.”

Forests’ future threatened

In the past 40 years, thanks to global heating driven by ever-higher emissions of greenhouse gases from the combustion of fossil fuels, the state of California has experienced a series of droughts that lasted for years. The fire season too has begun earlier and lasted much longer.

Ecologists report in the journal Geophysical Research Letters that they defined high-severity fires as those that killed 95% of all trees. They then counted the most severe episodes of burning in four great regions of the western US from 1985 to 2017.

They found that by 2017, the area wiped out by severe fires had risen eight times, to more than 2,000 sq kms or 800 sq miles. Much of the tree cover of the US west is adapted to episodes of fire. But the frequency and intensity of recent blazes threatens the future of the forests altogether.

“As more area burns at high severity, the likelihood of conversion to different forest types or even to non-forest increases,” said Sean Parks of the US Forest Service Rocky Mountain Research Station, and the lead author.

“At the same time, the post-fire climate is making it increasingly difficult for seedlings to establish and survive, further reducing the potential for forests to return to their pre-fire condition.” − Climate News Network

Polar link unites far extremes of north and south

They are different worlds, one an ocean, the other a continent. But a polar link keeps them in touch with each other.

LONDON, 30 November, 2020 − The Arctic and Antarctica are literally a world apart, but for an unlikely polar link. Change in the mass of ice in the north can and does precipitate change in the furthest reaches of the southern hemisphere.

According to 40,000 years of geological evidence, when the Arctic Ocean ice retreats, global sea levels rise to start washing away the sea ice around the shelf of the vast frozen continent at the other extreme of the planet.

This pattern of action at a distance is confirmed by computer simulations: the planet’s two hemispheres are in a kind of conversation, according to a new study in the journal Nature.

“Our results highlight how interconnected the Earth system is, with changes in one part of the planet driving changes in another,” said Natalya Gomez, of McGill University in Canada, who led the study.

“In the modern era, we haven’t seen the kind of large ice sheet retreat that we might see in our future warming world. Looking to records and models of change in Earth’s history can inform us about this.”

“Ice sheets can influence each other over great distances. It’s as though they were talking to one another about sea level changes”

The Arctic is one of the fastest-warming places on the planet: what happens in the far north has reverberations throughout the hemisphere. And Antarctica, too, is changing swiftly.

Although both extremes of cold are vulnerable to global heating driven by profligate fossil fuel use and global-scale loss of forests, climate scientists have tended to consider them as separate cases.

But a closer look at geological records − ice cores and samples from the ocean bottom that offer evidence of iceberg drift across the millennia − revealed a connection. The polar link is real.

At the height of the last ice age more than 20,000 years ago, the mass of ice in the north lowered global sea levels and the Antarctic ice shelf advanced. As the world began to warm again, ice in the north began to flow into the sea. Sea levels rose in the southern hemisphere and this began to force a retreat of the Antarctic ice.

“Ice sheets can influence each other over great distances due to the water that flows between them. It’s as though they were talking to one another about sea level changes,” Dr Gomez said.

Dynamic ice

“Polar ice sheets are not just large static mounds of ice. They evolve on various different time scales and are in constant flux, with ice growing and retreating, depending on the climate and the surrounding water levels.

“They gain ice as snow piles up on top of them, then spread outwards under their own weight, and stream out into the surrounding ocean where their edges break off into icebergs.”

The evidence showed that sea level change in Antarctica and ice mass loss in the Arctic were linked, over a sequence of at least 40,000 years.

“These ice sheets are really dynamic, exciting and intriguing parts of the Earth’s climate system. It’s staggering to think of ice that is several kilometres thick, that covers an entire continent, and that is evolving on all of these different timescales with global consequences,” Dr Gomez said.

“It’s just motivation for trying to better understand these really massive systems that are so far away from us.” − Climate News Network

They are different worlds, one an ocean, the other a continent. But a polar link keeps them in touch with each other.

LONDON, 30 November, 2020 − The Arctic and Antarctica are literally a world apart, but for an unlikely polar link. Change in the mass of ice in the north can and does precipitate change in the furthest reaches of the southern hemisphere.

According to 40,000 years of geological evidence, when the Arctic Ocean ice retreats, global sea levels rise to start washing away the sea ice around the shelf of the vast frozen continent at the other extreme of the planet.

This pattern of action at a distance is confirmed by computer simulations: the planet’s two hemispheres are in a kind of conversation, according to a new study in the journal Nature.

“Our results highlight how interconnected the Earth system is, with changes in one part of the planet driving changes in another,” said Natalya Gomez, of McGill University in Canada, who led the study.

“In the modern era, we haven’t seen the kind of large ice sheet retreat that we might see in our future warming world. Looking to records and models of change in Earth’s history can inform us about this.”

“Ice sheets can influence each other over great distances. It’s as though they were talking to one another about sea level changes”

The Arctic is one of the fastest-warming places on the planet: what happens in the far north has reverberations throughout the hemisphere. And Antarctica, too, is changing swiftly.

Although both extremes of cold are vulnerable to global heating driven by profligate fossil fuel use and global-scale loss of forests, climate scientists have tended to consider them as separate cases.

But a closer look at geological records − ice cores and samples from the ocean bottom that offer evidence of iceberg drift across the millennia − revealed a connection. The polar link is real.

At the height of the last ice age more than 20,000 years ago, the mass of ice in the north lowered global sea levels and the Antarctic ice shelf advanced. As the world began to warm again, ice in the north began to flow into the sea. Sea levels rose in the southern hemisphere and this began to force a retreat of the Antarctic ice.

“Ice sheets can influence each other over great distances due to the water that flows between them. It’s as though they were talking to one another about sea level changes,” Dr Gomez said.

Dynamic ice

“Polar ice sheets are not just large static mounds of ice. They evolve on various different time scales and are in constant flux, with ice growing and retreating, depending on the climate and the surrounding water levels.

“They gain ice as snow piles up on top of them, then spread outwards under their own weight, and stream out into the surrounding ocean where their edges break off into icebergs.”

The evidence showed that sea level change in Antarctica and ice mass loss in the Arctic were linked, over a sequence of at least 40,000 years.

“These ice sheets are really dynamic, exciting and intriguing parts of the Earth’s climate system. It’s staggering to think of ice that is several kilometres thick, that covers an entire continent, and that is evolving on all of these different timescales with global consequences,” Dr Gomez said.

“It’s just motivation for trying to better understand these really massive systems that are so far away from us.” − Climate News Network

Global heating may go on for five more centuries

Global heating now means more warming for 500 years ahead, even if all greenhouse emissions stop. Or is that too simple?

LONDON, 20 November, 2020 − Norwegian scientists have mapped the future of the Earth in a regime of climate change and have come to an uncomfortable conclusion: it’s likely that global heating will persist until around the year 2500.

Even if human beings immediately ceased all use of fossil fuels that spill greenhouse gases into the planetary atmosphere, the world would be committed to warming for the next five centuries, they suggest.

By then global temperatures would be at least 3°C higher, and sea levels three metres higher, than they would have been in 1850. Even with a dramatic halt to the emissions that fuel global heating, they warn in the journal Scientific Reports, the Arctic ice would go on melting, water vapour would continue to build up in the atmosphere, the permafrost would continue to thaw and vast reservoirs of ancient carbon that had been trapped in the once-frozen ground would escape into the atmosphere.

The message − one that comes hedged with caution − is that to keep continental temperatures and sea levels as they were for most of human history, nations should have started to reduce greenhouse gas emissions six decades ago.

And to slow the warming that might now be inexorable, nations must unite to somehow remove 33 billion tonnes of carbon dioxide (CO2) − an almost unimaginable volume − from the atmosphere every year from now on.

Challenged by colleagues

Caution is necessary because, as the researchers themselves point out, the finding presents an extremely simple model of cause and effect on a simulated planet not unlike Earth, but without the untidy mosaic of natural and human processes that directly influence the rate at which CO2 builds up in the atmosphere.

And the two scientists who wrote the study directly urge other climate researchers to check their findings with more sophisticated simulations. They have made a stab at predicting the future, and they know it could be wrong.

But if it isn’t wrong, then the message is that profligate human use of fossil fuels, combined with heedless destruction of many of the planet’s natural ecosystems, and then topped with the massive construction of human cities, industries and travel networks, may have already pushed the planet past a tipping point, beyond which the slide into potentially catastrophic climate change has become inexorable.

And they are not the first to make such a suggestion. Nor are they the first to warn that what had once been trailed as a notional “worst case” scenario has of late increasingly begun to look like modern reality.

The finding has been comprehensively challenged by British scientists, not because it could be wrong, but because the simulation is too simple, and doesn’t incorporate many of the processes that happen in the real world. One distinguished researcher called it “a toy model”.

“To keep global warming to just 1.5°C this century we already know we will have to have negative carbon emissions from 2050 to 2100”

But almost all who commented also conceded that to steer the planet away from permanent and devastating climate change, nations may have left concerted and sustained action a bit late.

Reduction of carbon emissions to zero in the next three decades would be just a start. And the world would go on warming for some time, just as a reaction to the extra carbon dioxide already spilled into the atmosphere in the last three decades.

“To keep global warming to just 1.5°C this century we already know we will have to have negative carbon emissions from 2050 to 2100,” said Mark Maslin, a climatologist at University College, London.

“If this study is confirmed, then we may have to continue drawing down carbon dioxide from the atmosphere way beyond the end of this century. And I would suggest that if we have been able to successfully deal with climate change in this century, we really will not have to worry about dealing with a much smaller warming over the next 400 years.”

But even as both the authors and their critics warn that the outcome should be treated with caution, other research has almost coincidentally begun to suggest that the world may be nearing a tipping point.

Positive feedback?

Last month German scientists contemplated the increasing loss of ice in the Arctic − all the sea ice could have vanished in summer before mid-century − and in the mountain regions worldwide, and reasoned that, instead of reflecting radiation back into space, the darker ocean or rock revealed beneath the ice would absorb it, to increase rates of warming.

They warn in Nature Communications that this process alone could increase long-term global warming by 0.43°C, to accelerate yet more thawing of the permafrost: an example of the vicious circle that could go on delivering climate change by exactly the kind of positive feedback the Norwegian scientists fear.

And in one respect, their fellow scientists agree with them: further warming is already “baked in” to the future climate. Even if the world turns off greenhouse gas emissions right now, global heating will continue for decades. For how long, and how swiftly, is difficult to calculate.

“Even if the paper is right in every respect and we are already committed to at least 3°C warming if we stop emissions tomorrow, this warming will take 500 years,” said Andrew Watson, of the University of Exeter.

“This is preferable to 3°C warming over 100 years, which would be far more disruptive and might happen if we don’t cut emissions.” − Climate News Network

Global heating now means more warming for 500 years ahead, even if all greenhouse emissions stop. Or is that too simple?

LONDON, 20 November, 2020 − Norwegian scientists have mapped the future of the Earth in a regime of climate change and have come to an uncomfortable conclusion: it’s likely that global heating will persist until around the year 2500.

Even if human beings immediately ceased all use of fossil fuels that spill greenhouse gases into the planetary atmosphere, the world would be committed to warming for the next five centuries, they suggest.

By then global temperatures would be at least 3°C higher, and sea levels three metres higher, than they would have been in 1850. Even with a dramatic halt to the emissions that fuel global heating, they warn in the journal Scientific Reports, the Arctic ice would go on melting, water vapour would continue to build up in the atmosphere, the permafrost would continue to thaw and vast reservoirs of ancient carbon that had been trapped in the once-frozen ground would escape into the atmosphere.

The message − one that comes hedged with caution − is that to keep continental temperatures and sea levels as they were for most of human history, nations should have started to reduce greenhouse gas emissions six decades ago.

And to slow the warming that might now be inexorable, nations must unite to somehow remove 33 billion tonnes of carbon dioxide (CO2) − an almost unimaginable volume − from the atmosphere every year from now on.

Challenged by colleagues

Caution is necessary because, as the researchers themselves point out, the finding presents an extremely simple model of cause and effect on a simulated planet not unlike Earth, but without the untidy mosaic of natural and human processes that directly influence the rate at which CO2 builds up in the atmosphere.

And the two scientists who wrote the study directly urge other climate researchers to check their findings with more sophisticated simulations. They have made a stab at predicting the future, and they know it could be wrong.

But if it isn’t wrong, then the message is that profligate human use of fossil fuels, combined with heedless destruction of many of the planet’s natural ecosystems, and then topped with the massive construction of human cities, industries and travel networks, may have already pushed the planet past a tipping point, beyond which the slide into potentially catastrophic climate change has become inexorable.

And they are not the first to make such a suggestion. Nor are they the first to warn that what had once been trailed as a notional “worst case” scenario has of late increasingly begun to look like modern reality.

The finding has been comprehensively challenged by British scientists, not because it could be wrong, but because the simulation is too simple, and doesn’t incorporate many of the processes that happen in the real world. One distinguished researcher called it “a toy model”.

“To keep global warming to just 1.5°C this century we already know we will have to have negative carbon emissions from 2050 to 2100”

But almost all who commented also conceded that to steer the planet away from permanent and devastating climate change, nations may have left concerted and sustained action a bit late.

Reduction of carbon emissions to zero in the next three decades would be just a start. And the world would go on warming for some time, just as a reaction to the extra carbon dioxide already spilled into the atmosphere in the last three decades.

“To keep global warming to just 1.5°C this century we already know we will have to have negative carbon emissions from 2050 to 2100,” said Mark Maslin, a climatologist at University College, London.

“If this study is confirmed, then we may have to continue drawing down carbon dioxide from the atmosphere way beyond the end of this century. And I would suggest that if we have been able to successfully deal with climate change in this century, we really will not have to worry about dealing with a much smaller warming over the next 400 years.”

But even as both the authors and their critics warn that the outcome should be treated with caution, other research has almost coincidentally begun to suggest that the world may be nearing a tipping point.

Positive feedback?

Last month German scientists contemplated the increasing loss of ice in the Arctic − all the sea ice could have vanished in summer before mid-century − and in the mountain regions worldwide, and reasoned that, instead of reflecting radiation back into space, the darker ocean or rock revealed beneath the ice would absorb it, to increase rates of warming.

They warn in Nature Communications that this process alone could increase long-term global warming by 0.43°C, to accelerate yet more thawing of the permafrost: an example of the vicious circle that could go on delivering climate change by exactly the kind of positive feedback the Norwegian scientists fear.

And in one respect, their fellow scientists agree with them: further warming is already “baked in” to the future climate. Even if the world turns off greenhouse gas emissions right now, global heating will continue for decades. For how long, and how swiftly, is difficult to calculate.

“Even if the paper is right in every respect and we are already committed to at least 3°C warming if we stop emissions tomorrow, this warming will take 500 years,” said Andrew Watson, of the University of Exeter.

“This is preferable to 3°C warming over 100 years, which would be far more disruptive and might happen if we don’t cut emissions.” − Climate News Network

River deltas become even riskier as climate warms

River deltas are among the world’s richest habitats. They are also, increasingly, home to the most vulnerable people.

LONDON, 8 October, 2020 − Already, more than 30 million people worldwide are in danger of catastrophic floods − and now they face further danger from the river deltas which are their homes.

Ocean storm surges which are one threat could wash away their homes, their livelihoods, and even their lives. Another, rising tide levels, could turn their gardens to salt and sap the foundations of their lives. With many more, tropical cyclones could sweep in and literally rain their houses into the sea

What all these vulnerable people − in New Orleans, in Bangkok, in Shanghai, in the mouths of the Ganges-Brahmaputra, in any of more than 2,000 settlements − have in common is that they live on a river delta: that vital, ever-shifting zone where a great river spills its silt into the ocean.

And climate change driven by ever-rising ratios of greenhouse gases in the atmosphere − a consequence of ever-greater reliance on fossil fuels − can only make such hazards ever more dangerous. But the first challenge is: who, exactly, is most at risk? And where?

“To date, no-one has successfully quantified the global population in river deltas and assessed the cumulative impacts from climate change,” said Douglas Edmonds, of the University of Indiana in the US.

Costly endowment

“Since river deltas have long been recognised as hotspots of population growth, and with increasing impacts from climate change, we realised we needed to properly quantify what the cumulative risks are in river deltas.”

Dr Edmonds and his colleagues report in Nature Communications that they assembled a global database of 2,174 delta locations, to identity the populations settled on and around them in 2017, and the topography most at risk.

River deltas add up to perhaps 0.5% of the planet’s land surface, but they are home to 4.5% of the world’s population. Humans have settled on river deltas for at least 7,000 years: the rivers deliver nutrient-rich silts for new farmland, and the river estuaries have provided a focus for regional and international transport, to become some of the world’s greatest cities.

But such riches come at a cost: as the rivers have been contained and engineered, the land cover has changed and the land surface subsided. So as sea levels rise with climate change, deltaic areas could become 50% more vulnerable to coastal flood.

“No-one has successfully quantified the global population in river deltas and assessed the cumulative impacts from climate change”

Precisely because river deltas form at or even below sea level, they are highly prone to storm surges driven by tropical cyclones. And by 2100, these could become from 2% to 11% more intense.

The researchers found that in 2017, around 339m people had made their homes on 710,000 square kilometres of habitable land around river deltas: in this century alone, the population on deltas had grown by 34%.

Of these, 31m lived on floodplains vulnerable to the kind of storm surges that happen once a century. And of this 31m, 92% lived in developing or least-developed economies, often breathing polluted air, with poor housing and limited access to public services such as drainage. So, as usual, the poorest were also the most at risk from climate change.

In fact, as scientists have been warning for a decade or more, coastal flooding is a hazard inevitably on the increase, and an increasingly costly one, worldwide.

Even in the US, floods will become a serial nuisance in many cities and an estimated 13m Americans could eventually become climate refugees.

Very cautious estimates

Climate change is likely to deliver a hotter, wetter world with more soil erosion that could trigger catastrophic delta flooding. Hurricanes and typhoons driven by rising sea temperatures are likely to exact an ever-greater toll on human life and wealth.

The Indiana scientists warn that their estimates of those most at risk and the costs they face are likely to be highly conservative. They did not, for instance, consider the special case of what they call “compound interaction.”

This is sociological shorthand for what could happen when climate-related disaster overtakes those who are poorest, crowded into the least protected and unhealthiest zones of the cities. Altogether, 105m people have settled on the Ganges-Brahmaputra delta, half of them on low-lying farmland. The second most crowded is the Nile delta, with 45m people.

“To effectively prepare for more intense future coastal flooding,” Dr Edmonds said, “we need to reframe it as a problem that disproportionately impacts people on river deltas in developing and least developed economies.” − Climate News Network

River deltas are among the world’s richest habitats. They are also, increasingly, home to the most vulnerable people.

LONDON, 8 October, 2020 − Already, more than 30 million people worldwide are in danger of catastrophic floods − and now they face further danger from the river deltas which are their homes.

Ocean storm surges which are one threat could wash away their homes, their livelihoods, and even their lives. Another, rising tide levels, could turn their gardens to salt and sap the foundations of their lives. With many more, tropical cyclones could sweep in and literally rain their houses into the sea

What all these vulnerable people − in New Orleans, in Bangkok, in Shanghai, in the mouths of the Ganges-Brahmaputra, in any of more than 2,000 settlements − have in common is that they live on a river delta: that vital, ever-shifting zone where a great river spills its silt into the ocean.

And climate change driven by ever-rising ratios of greenhouse gases in the atmosphere − a consequence of ever-greater reliance on fossil fuels − can only make such hazards ever more dangerous. But the first challenge is: who, exactly, is most at risk? And where?

“To date, no-one has successfully quantified the global population in river deltas and assessed the cumulative impacts from climate change,” said Douglas Edmonds, of the University of Indiana in the US.

Costly endowment

“Since river deltas have long been recognised as hotspots of population growth, and with increasing impacts from climate change, we realised we needed to properly quantify what the cumulative risks are in river deltas.”

Dr Edmonds and his colleagues report in Nature Communications that they assembled a global database of 2,174 delta locations, to identity the populations settled on and around them in 2017, and the topography most at risk.

River deltas add up to perhaps 0.5% of the planet’s land surface, but they are home to 4.5% of the world’s population. Humans have settled on river deltas for at least 7,000 years: the rivers deliver nutrient-rich silts for new farmland, and the river estuaries have provided a focus for regional and international transport, to become some of the world’s greatest cities.

But such riches come at a cost: as the rivers have been contained and engineered, the land cover has changed and the land surface subsided. So as sea levels rise with climate change, deltaic areas could become 50% more vulnerable to coastal flood.

“No-one has successfully quantified the global population in river deltas and assessed the cumulative impacts from climate change”

Precisely because river deltas form at or even below sea level, they are highly prone to storm surges driven by tropical cyclones. And by 2100, these could become from 2% to 11% more intense.

The researchers found that in 2017, around 339m people had made their homes on 710,000 square kilometres of habitable land around river deltas: in this century alone, the population on deltas had grown by 34%.

Of these, 31m lived on floodplains vulnerable to the kind of storm surges that happen once a century. And of this 31m, 92% lived in developing or least-developed economies, often breathing polluted air, with poor housing and limited access to public services such as drainage. So, as usual, the poorest were also the most at risk from climate change.

In fact, as scientists have been warning for a decade or more, coastal flooding is a hazard inevitably on the increase, and an increasingly costly one, worldwide.

Even in the US, floods will become a serial nuisance in many cities and an estimated 13m Americans could eventually become climate refugees.

Very cautious estimates

Climate change is likely to deliver a hotter, wetter world with more soil erosion that could trigger catastrophic delta flooding. Hurricanes and typhoons driven by rising sea temperatures are likely to exact an ever-greater toll on human life and wealth.

The Indiana scientists warn that their estimates of those most at risk and the costs they face are likely to be highly conservative. They did not, for instance, consider the special case of what they call “compound interaction.”

This is sociological shorthand for what could happen when climate-related disaster overtakes those who are poorest, crowded into the least protected and unhealthiest zones of the cities. Altogether, 105m people have settled on the Ganges-Brahmaputra delta, half of them on low-lying farmland. The second most crowded is the Nile delta, with 45m people.

“To effectively prepare for more intense future coastal flooding,” Dr Edmonds said, “we need to reframe it as a problem that disproportionately impacts people on river deltas in developing and least developed economies.” − Climate News Network

Rivers flood, seas rise – and land faces erosion

Polar melting cannot be separated from farmland soil erosion and estuarine flooding. All are part of climate change.

LONDON, 7 September, 2020 – Climate heating often ensures that calamities don’t come singly: so don’t forget what erosion can do.

In a warmer world the glaciers will melt ever faster to raise global sea levels ever higher. In a wetter world, more and more topsoil will be swept off the farmlands and downriver into the ever-rising seas.

And the pay-off of silt-laden rivers and rising sea levels could be catastrophic floods, as swollen rivers suddenly change course. Since many of the world’s greatest cities are built on river estuaries, lives and economies will be at risk.

Three new studies in two journals deliver a sharp reminder that the consequences of global heating are not straightforward: the world responds to change in unpredictable ways.

First: the melting of the ice sheets and the mountain glaciers. Researchers warn in the journal Nature Climate Change that if the loss of ice from Antarctica, Greenland and the frozen rivers continues, then climate forecasters and government agencies will have to think again: sea levels could rise to at least 17cms higher than the worst predictions so far.

“Avulsions are the earthquakes of rivers. They are sudden and sometimes catastrophic. We are trying to understand where and when the next avulsions will occur”

That means an additional 16 million people at hazard from estuarine floods and storm surges.

In the last 30 years, the flow from the Antarctic ice cap has raised sea levels by 7.2mm, and from Greenland by 10.6mm. Every year, the world’s oceans are 4mm higher than they were the year before.

“Although we anticipated the ice sheets would lose increasing amounts of ice in response to the warming of the oceans and the atmosphere, the rate at which they are melting has accelerated faster than we could have imagined,” said Tom Slater of the University of Leeds, in the UK, who led the research.

“The melting is overtaking the climate models we use to guide us, and we are in danger of being unprepared for the risks posed by sea level rise.”

Dr Slater and his colleagues are the third team to warn in the last month that observations of climate already match the worst-case scenarios dreamed up by forecasters preparing for a range of possible climate outcomes.

Erosion risk rises

The latest reading of glacial melt rates suggests that the risk of storm surges for many of the world’s greatest cities will double by the close of the century. But coastal cities – and the farmers who already work 38% of the terrestrial surface to feed almost 8bn people – have another more immediate problem.

In a warmer world, more water evaporates. In a warmer atmosphere, the capacity of the air to hold moisture also increases, so along with more intense droughts, heavier rainfall is on the way for much of the world. And the heavier the rain, or the more prolonged the drought, the higher the risk of soil erosion.

In 2015 the world’s farmers and foresters watched 43 billion tonnes of topsoil wash away from hillsides or blow away from tilled land and into the sea. By 2070, this burden of silt swept away by water or blown by wind will have risen by between 30% and 66%: probably more than 28 bn tons of additional loss.

This could only impoverish the farmland, according to a study by Swiss scientists in the Proceedings of the National Academy of Sciences. It could also impoverish people, communities and countries. The worst hit could be in the less developed nations of the tropics and subtropics.

But the flow of ever-higher silt levels into ever-rising seas also raises a new hazard: hydrologists call it river avulsion. It’s a simple and natural process. As conditions change, so rivers will naturally change their flow to spill over new floodplains and extend coastal lands.

Survival in question

But river avulsions can also be helped along by rising sea levels. Since 10% of humanity is crowded into rich, fertile delta lands, and since some of the deadliest floods in human history – two in China in 1887 and 1931 claimed six million lives – have been caused by river avulsions, the question becomes a matter of life and death.

US scientists report, also in the Proceedings of the National Academy of Sciences, that rising sea levels alone could make abrupt river avulsion more probable, especially as delta lands could be subsiding, because of groundwater and other extraction.

The dangers of avulsion are affected by the rate of sediment deposit in the river channels, and this is likely to rise with sea levels. This in turn raises the level of the river and eventually a breach of a levee or other flood defence will force the river to find a swifter, steeper path to the sea.

Cities such as New Orleans and the coastal communities of the Mississippi delta are already vulnerable. “Avulsions are the earthquakes of rivers,” said Michael Lamb, of California Institute of Technology, one of the authors.

“They are sudden and sometimes catastrophic natural events that occur with statistical regularity, shifting the direction of major rivers. We are trying to understand where and when the next avulsions will occur.” – Climate News Network

Polar melting cannot be separated from farmland soil erosion and estuarine flooding. All are part of climate change.

LONDON, 7 September, 2020 – Climate heating often ensures that calamities don’t come singly: so don’t forget what erosion can do.

In a warmer world the glaciers will melt ever faster to raise global sea levels ever higher. In a wetter world, more and more topsoil will be swept off the farmlands and downriver into the ever-rising seas.

And the pay-off of silt-laden rivers and rising sea levels could be catastrophic floods, as swollen rivers suddenly change course. Since many of the world’s greatest cities are built on river estuaries, lives and economies will be at risk.

Three new studies in two journals deliver a sharp reminder that the consequences of global heating are not straightforward: the world responds to change in unpredictable ways.

First: the melting of the ice sheets and the mountain glaciers. Researchers warn in the journal Nature Climate Change that if the loss of ice from Antarctica, Greenland and the frozen rivers continues, then climate forecasters and government agencies will have to think again: sea levels could rise to at least 17cms higher than the worst predictions so far.

“Avulsions are the earthquakes of rivers. They are sudden and sometimes catastrophic. We are trying to understand where and when the next avulsions will occur”

That means an additional 16 million people at hazard from estuarine floods and storm surges.

In the last 30 years, the flow from the Antarctic ice cap has raised sea levels by 7.2mm, and from Greenland by 10.6mm. Every year, the world’s oceans are 4mm higher than they were the year before.

“Although we anticipated the ice sheets would lose increasing amounts of ice in response to the warming of the oceans and the atmosphere, the rate at which they are melting has accelerated faster than we could have imagined,” said Tom Slater of the University of Leeds, in the UK, who led the research.

“The melting is overtaking the climate models we use to guide us, and we are in danger of being unprepared for the risks posed by sea level rise.”

Dr Slater and his colleagues are the third team to warn in the last month that observations of climate already match the worst-case scenarios dreamed up by forecasters preparing for a range of possible climate outcomes.

Erosion risk rises

The latest reading of glacial melt rates suggests that the risk of storm surges for many of the world’s greatest cities will double by the close of the century. But coastal cities – and the farmers who already work 38% of the terrestrial surface to feed almost 8bn people – have another more immediate problem.

In a warmer world, more water evaporates. In a warmer atmosphere, the capacity of the air to hold moisture also increases, so along with more intense droughts, heavier rainfall is on the way for much of the world. And the heavier the rain, or the more prolonged the drought, the higher the risk of soil erosion.

In 2015 the world’s farmers and foresters watched 43 billion tonnes of topsoil wash away from hillsides or blow away from tilled land and into the sea. By 2070, this burden of silt swept away by water or blown by wind will have risen by between 30% and 66%: probably more than 28 bn tons of additional loss.

This could only impoverish the farmland, according to a study by Swiss scientists in the Proceedings of the National Academy of Sciences. It could also impoverish people, communities and countries. The worst hit could be in the less developed nations of the tropics and subtropics.

But the flow of ever-higher silt levels into ever-rising seas also raises a new hazard: hydrologists call it river avulsion. It’s a simple and natural process. As conditions change, so rivers will naturally change their flow to spill over new floodplains and extend coastal lands.

Survival in question

But river avulsions can also be helped along by rising sea levels. Since 10% of humanity is crowded into rich, fertile delta lands, and since some of the deadliest floods in human history – two in China in 1887 and 1931 claimed six million lives – have been caused by river avulsions, the question becomes a matter of life and death.

US scientists report, also in the Proceedings of the National Academy of Sciences, that rising sea levels alone could make abrupt river avulsion more probable, especially as delta lands could be subsiding, because of groundwater and other extraction.

The dangers of avulsion are affected by the rate of sediment deposit in the river channels, and this is likely to rise with sea levels. This in turn raises the level of the river and eventually a breach of a levee or other flood defence will force the river to find a swifter, steeper path to the sea.

Cities such as New Orleans and the coastal communities of the Mississippi delta are already vulnerable. “Avulsions are the earthquakes of rivers,” said Michael Lamb, of California Institute of Technology, one of the authors.

“They are sudden and sometimes catastrophic natural events that occur with statistical regularity, shifting the direction of major rivers. We are trying to understand where and when the next avulsions will occur.” – Climate News Network

Arctic heating races ahead of worst case estimates

Arctic heating is happening far faster than anybody had anticipated. And the ice record suggests this has happened before.

LONDON, 2 September, 2020 – An international team of scientists brings bad news about Arctic heating: the polar ocean is warming not only faster than anybody predicted, it is getting hotter at a rate faster than even the worst case climate scenario predictions have so far foreseen.

Such dramatic rises in Arctic temperatures have been recorded before, but only during the last Ice Age. Evidence from the Greenland ice cores suggests that temperatures rose by 10°C or even 12°C, over a period of between 40 years and a century, between 120,000 years and 11,000 years ago.

“We have been clearly underestimating the rate of temperature increases in the atmosphere nearest to the sea level, which has ultimately caused sea ice to disappear faster than we had anticipated,” said Jens Hesselbjerg Christensen, a physicist at the University of Copenhagen in Denmark, one of 16 scientists who report in the journal Nature Climate Change on a new analysis of 40 years of data from the Arctic region.

They found that, on average, the Arctic has been warming at the rate of 1°C per decade for the last four decades. Around Norway’s Svalbard archipelago, temperatures rose even faster, at 1.5°C every 10 years.

“We have been clearly underestimating the rate of temperature increases in the atmosphere nearest to the sea level, which has ultimately caused sea ice to disappear faster than we had anticipated”

During the last two centuries, as atmospheric levels of carbon dioxide climbed from an average of around 285 parts per million to more than 400ppm, so the global average temperature of the planet rose: by a fraction more than 1°C.

The latest study is a reminder that temperatures in the Arctic are rising far faster than that. And the news is hardly a shock: within the past few weeks, separate teams of researchers, reporting to other journals, have warned that Greenland – the biggest single reservoir of ice in the northern hemisphere – is melting faster than ever; more alarmingly, its icecap is losing mass at a rate that suggests the loss could become irreversible.

Researchers have also confirmed that the average planetary temperature  continues to rise inexorably, that the Arctic Ocean could be free of ice in  summer as early as 2035, and that the climate scientists’ “worst case” scenarios are no longer to be regarded as a warning of what could happen: the evidence is that what is happening now already matches the climate forecaster’s worst case. The latest finding implicitly and explicitly supports this flurry of ominous observation.

“We have looked at the climate models analysed and assessed by the UN Climate Panel,” said Professor Christensen. “Only those models based on the worst case scenario, with the highest carbon dioxide emissions, come close to what our temperature measurements show over the past 40 years, from 1979 to today.” – Climate News Network

Arctic heating is happening far faster than anybody had anticipated. And the ice record suggests this has happened before.

LONDON, 2 September, 2020 – An international team of scientists brings bad news about Arctic heating: the polar ocean is warming not only faster than anybody predicted, it is getting hotter at a rate faster than even the worst case climate scenario predictions have so far foreseen.

Such dramatic rises in Arctic temperatures have been recorded before, but only during the last Ice Age. Evidence from the Greenland ice cores suggests that temperatures rose by 10°C or even 12°C, over a period of between 40 years and a century, between 120,000 years and 11,000 years ago.

“We have been clearly underestimating the rate of temperature increases in the atmosphere nearest to the sea level, which has ultimately caused sea ice to disappear faster than we had anticipated,” said Jens Hesselbjerg Christensen, a physicist at the University of Copenhagen in Denmark, one of 16 scientists who report in the journal Nature Climate Change on a new analysis of 40 years of data from the Arctic region.

They found that, on average, the Arctic has been warming at the rate of 1°C per decade for the last four decades. Around Norway’s Svalbard archipelago, temperatures rose even faster, at 1.5°C every 10 years.

“We have been clearly underestimating the rate of temperature increases in the atmosphere nearest to the sea level, which has ultimately caused sea ice to disappear faster than we had anticipated”

During the last two centuries, as atmospheric levels of carbon dioxide climbed from an average of around 285 parts per million to more than 400ppm, so the global average temperature of the planet rose: by a fraction more than 1°C.

The latest study is a reminder that temperatures in the Arctic are rising far faster than that. And the news is hardly a shock: within the past few weeks, separate teams of researchers, reporting to other journals, have warned that Greenland – the biggest single reservoir of ice in the northern hemisphere – is melting faster than ever; more alarmingly, its icecap is losing mass at a rate that suggests the loss could become irreversible.

Researchers have also confirmed that the average planetary temperature  continues to rise inexorably, that the Arctic Ocean could be free of ice in  summer as early as 2035, and that the climate scientists’ “worst case” scenarios are no longer to be regarded as a warning of what could happen: the evidence is that what is happening now already matches the climate forecaster’s worst case. The latest finding implicitly and explicitly supports this flurry of ominous observation.

“We have looked at the climate models analysed and assessed by the UN Climate Panel,” said Professor Christensen. “Only those models based on the worst case scenario, with the highest carbon dioxide emissions, come close to what our temperature measurements show over the past 40 years, from 1979 to today.” – Climate News Network

In Arctic heat Greenland’s ice loss grows faster still

Greenland’s ice loss tipped a new record last year. This ominous milestone is just the latest in a run of alarming news.

LONDON, 24 August, 2020 – Its icecap is now smaller than at any time since measurements began: Greenland’s ice loss means it lost mass in 2019 at a record rate.

By the close of the year, thanks to high summer melt and low snowfall, the northern hemisphere’s biggest reservoir of ice had shed 532 billion tonnes into the sea – raising global sea levels by around 1.5mm in a year.

The previous record loss for Greenland was in 2012. In that year, the island lost 464 billion tonnes, according to studies of satellite data published by European scientists in the journal Communications Earth and Environment.

Greenland’s ice cap has been shrinking, if unsteadily, for many years. In 2017 and 2018, the losses continued, but only at around 100bn tonnes a year.

“After a two-year breather, the mass loss increased steeply and exceeded all annual losses since 1948, and probably for more than 100 years,” said Ingo Sasgen of the Alfred Wegener Institute in Bremerhaven, Germany, who led the study.

“There are increasingly frequent, stable high-pressure areas over the ice sheet, which promote the influx of warm air from the middle latitudes. We saw a similar pattern in the previous record year, 2012.”

“The ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now”

He and colleagues made their calculations from data delivered by two Nasa satellites, GRACE and GRACE-FO, that measure changes in the surface gravity of the planet: a way of calculating the mass of water stored as ice, or in aquifers, and observing sea level change.

The finding is the latest in a succession of polar climate alarms. It follows closely on a warning from US scientists that ice loss from Greenland may  have reached the point of no return.

And it also follows a sober calculation of the alarming rate of planetary temperature rise in response to ever-higher use of fossil fuels that trigger ever-higher measures of greenhouse gases in the atmosphere.

And that in turn followed a warning that the entire Arctic was now warming so swiftly that the Arctic sea ice might be all but gone in the summer of 2035.

And that was only days after another research team, looking at the big picture of climate change, warned that the scenario climate forecasters liked to use as an example of their “worst case” was now a simple description of what was already happening.

“It is devastating that 2019 was another record year of ice loss. In 2012, it had been about 150 years since the ice sheet had experienced similar melt extent, and then a further 600-plus years back to find another similar event,” said Twila Moon, of the University of Colorado at Boulder, who was not involved in the research.

Damage off the scale

“We have now had record-breaking ice loss twice in less than 10 years, and the ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now.”

The implications of continued loss of Greenland ice have been explored repeatedly: the run-off of fresh water from the ice cap to the sea is now so great that the North Atlantic is now “fresher” than at any time in the last 100 years.

And this change in water temperature and chemistry could – on the evidence of the distant past – possibly slow or switch off the circulation of the North Atlantic current, which for most of the history of human civilisation has kept the United Kingdom and north-western Europe from five to 10°C warmer than similar latitudes elsewhere.

“This tipping point in the climate system is one of the potential climate disasters facing us,” said Stuart Cunningham of the Scottish Association for Marine Science, commenting on the study.

“To transform the way we power, finance and run the world in the way we know we should is proving entirely beyond us,” said Chris Rapley, now a climate scientist at University College London, but once director of the British Antarctic Survey.

“Torpor, incompetence and indifference at the top may kill people in a health crisis, and torpedo the careers of young students in an education crisis; but the damage they are generating in the pipeline from climate change is on another scale.” – Climate News Network

Greenland’s ice loss tipped a new record last year. This ominous milestone is just the latest in a run of alarming news.

LONDON, 24 August, 2020 – Its icecap is now smaller than at any time since measurements began: Greenland’s ice loss means it lost mass in 2019 at a record rate.

By the close of the year, thanks to high summer melt and low snowfall, the northern hemisphere’s biggest reservoir of ice had shed 532 billion tonnes into the sea – raising global sea levels by around 1.5mm in a year.

The previous record loss for Greenland was in 2012. In that year, the island lost 464 billion tonnes, according to studies of satellite data published by European scientists in the journal Communications Earth and Environment.

Greenland’s ice cap has been shrinking, if unsteadily, for many years. In 2017 and 2018, the losses continued, but only at around 100bn tonnes a year.

“After a two-year breather, the mass loss increased steeply and exceeded all annual losses since 1948, and probably for more than 100 years,” said Ingo Sasgen of the Alfred Wegener Institute in Bremerhaven, Germany, who led the study.

“There are increasingly frequent, stable high-pressure areas over the ice sheet, which promote the influx of warm air from the middle latitudes. We saw a similar pattern in the previous record year, 2012.”

“The ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now”

He and colleagues made their calculations from data delivered by two Nasa satellites, GRACE and GRACE-FO, that measure changes in the surface gravity of the planet: a way of calculating the mass of water stored as ice, or in aquifers, and observing sea level change.

The finding is the latest in a succession of polar climate alarms. It follows closely on a warning from US scientists that ice loss from Greenland may  have reached the point of no return.

And it also follows a sober calculation of the alarming rate of planetary temperature rise in response to ever-higher use of fossil fuels that trigger ever-higher measures of greenhouse gases in the atmosphere.

And that in turn followed a warning that the entire Arctic was now warming so swiftly that the Arctic sea ice might be all but gone in the summer of 2035.

And that was only days after another research team, looking at the big picture of climate change, warned that the scenario climate forecasters liked to use as an example of their “worst case” was now a simple description of what was already happening.

“It is devastating that 2019 was another record year of ice loss. In 2012, it had been about 150 years since the ice sheet had experienced similar melt extent, and then a further 600-plus years back to find another similar event,” said Twila Moon, of the University of Colorado at Boulder, who was not involved in the research.

Damage off the scale

“We have now had record-breaking ice loss twice in less than 10 years, and the ice sheet has lost ice every year for the past 20. If everyone’s alarm bells were not already ringing, they must be now.”

The implications of continued loss of Greenland ice have been explored repeatedly: the run-off of fresh water from the ice cap to the sea is now so great that the North Atlantic is now “fresher” than at any time in the last 100 years.

And this change in water temperature and chemistry could – on the evidence of the distant past – possibly slow or switch off the circulation of the North Atlantic current, which for most of the history of human civilisation has kept the United Kingdom and north-western Europe from five to 10°C warmer than similar latitudes elsewhere.

“This tipping point in the climate system is one of the potential climate disasters facing us,” said Stuart Cunningham of the Scottish Association for Marine Science, commenting on the study.

“To transform the way we power, finance and run the world in the way we know we should is proving entirely beyond us,” said Chris Rapley, now a climate scientist at University College London, but once director of the British Antarctic Survey.

“Torpor, incompetence and indifference at the top may kill people in a health crisis, and torpedo the careers of young students in an education crisis; but the damage they are generating in the pipeline from climate change is on another scale.” – Climate News Network