Tag Archives: USA

*

Nine vital signs found for forest health

Forests help to moderate climate change, which can itself affect forest health. Researchers still puzzle over how the canopy affects the global carbon exchange.

LONDON, 3 January, 2019 – It is a given of climate science that forest health, the consequence of protected and biodiverse forests, will play a vital role in containing global warming. Now a new study for the first time offers foresters, botanists and conservationists the tools to test the health of a vast woodland.

And a second, separate study confirms an ominous discovery: trees can be counted upon to greedily consume ever more atmospheric carbon dioxide – but only while the natural supply of nitrogen holds out.

Trees use photosynthesis to build tissue from atmospheric carbon dioxide, and store the carbon in the form of leaves, fruits and timber while respiring oxygen. In doing so, they reduce levels of global warming.

Humans – by clearing forests, ploughing fields, grazing cattle and burning fossil fuels – tip about 34 billion tonnes of the greenhouse gas carbon dioxide into the atmosphere each year, and the world’s trees take up an estimated 11 bn tonnes of it. But quite how, and how reliably, forests store carbon is still a puzzle.

“The limes, planes, magnolias and poplars that line boulevards and shade city parks could be just as significant to carbon budget calculations as tropical rainforests”

US researchers report in the Proceedings of the National Academy of Sciences that they decided to find out. They analysed data from 421 plots of forest around the world, and took direct samples in 66 of them. They measured temperature, rainfall, vapour pressure, sunlight and wind speed.

Their search spanned 100 degrees of latitude and more than 3,300 metres in altitude. Altogether the scientists gathered information on 55,983 individual trees greater than 2 cms in diameter and divided into 2,701 tree species.

By the time they had finished they had identified nine vital signs that might help with a diagnosis of a forest’s health. These are two different measures of leaf area, as well as wood density, tree height, the counts of leaf carbon, nitrogen and phosphorus and the important ratio of nitrogen to phosphorus.

Armed with these measures, they began to look at precisely how climate might affect a tree population. Two climatic factors in particular had a disproportionate impact.

New pointers

One was temperature variability – that is, the swing from the lowest to the highest mercury levels – and the other was vapour pressure. And they confirmed that, overall, the measured traits are responding to overall global warming.

Such research offers a new set of signposts for understanding how atmosphere, climate and forests interact. The response of the woodlands has become one of the big unresolved questions.

Researchers have found, a little to their surprise, the “urban forests” – the limes, planes, magnolias and poplars that line boulevards and shade city parks – could be just as significant to carbon budget calculations as tropical rainforests.

They have measured unexpected ways in which trees have responded to the rise of 1°C in global average temperatures in the last century, as carbon dioxide levels in the atmosphere have soared from around 280 parts per million to more than 400 ppm.

Concern over nitrogen

But they have also taken serious stock of the planet’s cover of trees, to find that humans are destroying trees at the rate of 15 billion a year and that climate change and human intrusion pose the threat of extinction to many of the world’s 40,000 tropical tree species.

A second team of the US researchers is now sure of one of the mechanisms that might affect the overall health of forests in a warming world. They report in the journal Nature Ecology and Evolution on an intensive examination of the response of 15,000 trees in the wilds of West Virginia to a steady rise in atmospheric carbon dioxide.

Yes, the extra greenhouse gas is fertilising forest growth. But climate change is extending the growing season, as spring arrives earlier and autumn leaf fall happens ever later. A study of the nitrogen isotopes in the leaves suggests that the supply of that other, all-important nutrient, could be on the way down.

If so, the growth of the forests could soon peak, and with that the capacity of forests to moderate climate change could diminish. – Climate News Network

Forests help to moderate climate change, which can itself affect forest health. Researchers still puzzle over how the canopy affects the global carbon exchange.

LONDON, 3 January, 2019 – It is a given of climate science that forest health, the consequence of protected and biodiverse forests, will play a vital role in containing global warming. Now a new study for the first time offers foresters, botanists and conservationists the tools to test the health of a vast woodland.

And a second, separate study confirms an ominous discovery: trees can be counted upon to greedily consume ever more atmospheric carbon dioxide – but only while the natural supply of nitrogen holds out.

Trees use photosynthesis to build tissue from atmospheric carbon dioxide, and store the carbon in the form of leaves, fruits and timber while respiring oxygen. In doing so, they reduce levels of global warming.

Humans – by clearing forests, ploughing fields, grazing cattle and burning fossil fuels – tip about 34 billion tonnes of the greenhouse gas carbon dioxide into the atmosphere each year, and the world’s trees take up an estimated 11 bn tonnes of it. But quite how, and how reliably, forests store carbon is still a puzzle.

“The limes, planes, magnolias and poplars that line boulevards and shade city parks could be just as significant to carbon budget calculations as tropical rainforests”

US researchers report in the Proceedings of the National Academy of Sciences that they decided to find out. They analysed data from 421 plots of forest around the world, and took direct samples in 66 of them. They measured temperature, rainfall, vapour pressure, sunlight and wind speed.

Their search spanned 100 degrees of latitude and more than 3,300 metres in altitude. Altogether the scientists gathered information on 55,983 individual trees greater than 2 cms in diameter and divided into 2,701 tree species.

By the time they had finished they had identified nine vital signs that might help with a diagnosis of a forest’s health. These are two different measures of leaf area, as well as wood density, tree height, the counts of leaf carbon, nitrogen and phosphorus and the important ratio of nitrogen to phosphorus.

Armed with these measures, they began to look at precisely how climate might affect a tree population. Two climatic factors in particular had a disproportionate impact.

New pointers

One was temperature variability – that is, the swing from the lowest to the highest mercury levels – and the other was vapour pressure. And they confirmed that, overall, the measured traits are responding to overall global warming.

Such research offers a new set of signposts for understanding how atmosphere, climate and forests interact. The response of the woodlands has become one of the big unresolved questions.

Researchers have found, a little to their surprise, the “urban forests” – the limes, planes, magnolias and poplars that line boulevards and shade city parks – could be just as significant to carbon budget calculations as tropical rainforests.

They have measured unexpected ways in which trees have responded to the rise of 1°C in global average temperatures in the last century, as carbon dioxide levels in the atmosphere have soared from around 280 parts per million to more than 400 ppm.

Concern over nitrogen

But they have also taken serious stock of the planet’s cover of trees, to find that humans are destroying trees at the rate of 15 billion a year and that climate change and human intrusion pose the threat of extinction to many of the world’s 40,000 tropical tree species.

A second team of the US researchers is now sure of one of the mechanisms that might affect the overall health of forests in a warming world. They report in the journal Nature Ecology and Evolution on an intensive examination of the response of 15,000 trees in the wilds of West Virginia to a steady rise in atmospheric carbon dioxide.

Yes, the extra greenhouse gas is fertilising forest growth. But climate change is extending the growing season, as spring arrives earlier and autumn leaf fall happens ever later. A study of the nitrogen isotopes in the leaves suggests that the supply of that other, all-important nutrient, could be on the way down.

If so, the growth of the forests could soon peak, and with that the capacity of forests to moderate climate change could diminish. – Climate News Network

*

Global water supply shrinks in rainier world

The global water supply is dwindling, even though rainfall is heavier. Once again, climate change is to blame.

LONDON, 20 December, 2018 – Even in a world with more intense rain, communities could begin to run short of water. New research has confirmed that, in a warming world, extremes of drought have begun to diminish the world’s groundwater – and ever more intense rainstorms will do little to make up the loss in the global water supply.

And a second, separate study delivers support for this seeming paradox: worldwide, there is evidence that rainfall patterns are, increasingly, being disturbed. The number of record-dry months has increased overall. And so has the number of record-breaking rainy months.

Both studies match predictions in a world of climate change driven by ever-higher ratios of greenhouse gases in the atmosphere, from ever-increasing combustion of fossil fuels. But, unlike many climate studies, neither of these is based on computer simulation of predicted change.

Each is instead based on the meticulous analysis of huge quantities of on-the-ground data. Together they provide substance to a 40-year-old prediction of climate change research: that in a warming world, those regions already wet will get ever more rain, while the drylands will tend to become increasingly more arid.

As global temperatures creep up – and they have already risen by 1°C in the past century, and could be set to reach 3°C by 2100 – so does the capacity of the atmosphere to absorb more moisture. It follows that more rain must fall. But at the same time more groundwater evaporates, and the risk of damaging drought increases.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out”

Australian scientists report in the journal Water Resources Research that they studied readings from 43,000 rainfall stations and 5,300 river monitoring sites in 160 countries. And they confirm that even in a world of more intense rain, drought could become the new normal in those regions already at risk.

“This is something that has been missed. We expected rainfall to increase, since warmer air stores more moisture – and that is what climate models predicted too,” said Ashish Sharma, an environmental engineer at the University of New South Wales.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out. We believe the cause is the drying of soils in our catchments. Where once these were moist before a storm event – allowing excess rainfall to run off into rivers – they are now drier and soak up more rain, so less water makes it as flow.”

The study matches predictions. Just in the last few months, climate scientists have warned that catastrophic climate change could be on the way, and that the double hazard of heat waves and sustained drought could devastate harvests in more than one climatic zone in the same season; and that those landlocked rainfall catchment areas that are already dry are becoming increasingly more parched.

But over the same few months, researchers have established repeatedly that tomorrow’s storms will be worse and that more devastating flash floods can be expected even in one of the world’s driest continents, Australia itself.

Less water available

Of all rainfall, only 36% gets into aquifers, streams and lakes. The remaining two thirds seeps into the soils, grasslands and woodlands. But more soil evaporation means less water is available from river supplies for cities and farms.

US researchers have already confirmed that if soils are moist before a storm, 62% of rainfall leads to floods that fill catchments. If soils are dry, only 13% of the rain leads to flooding.

“It’s a double whammy. Less water is ending up where we can’t store it for later use. At the same time, more rain is overwhelming drainage infrastructure in towns and cities, leading to more urban flooding,” said Professor Sharma.

“Small floods are very important for water supply, because they refill dams and form the basis of our water supply. But they’re happening less often, because the soils are sucking up extra rain. Even when a major storm dumps a lot of rain, the soils are so dry they absorb more water than before, and less reaches the rivers and reservoirs”, he said. “We need to adapt to this emerging reality.”

In the second close look at change so far, researchers based in Germany report in the journal Geophysical Research Letters  that they analysed data from 50,000 weather stations worldwide to measure rainfall on a monthly basis.

Climate drives aridity

The US has seen a more than 25% increase of record wet months in the eastern and central regions between 1980 and 2013. Argentina has seen a 32% increase. In central and northern Europe the increase is between 19% and 37%; in Asian Russia, it has been about 20%.

But in Africa south of the Sahara the incidence of very dry months has increased by 50%. “This implies that approximately one out of three record dry months in this region would not have occurred without long-term climate change,” said Dim Coumou, of the Potsdam Institute for Climate Impact Research.

“Generally, land regions in the tropics and sub-tropics have seen more dry records, and the northern mid- to high-latitudes more wet records. This largely fits the patterns that scientists expect from human-caused climate change.”

His colleague and lead author Jascha Lehmann said: “Normally, record weather events occur by chance and we know how many would happen in a climate without warning. It’s like throwing a dice: on average one out of six times you get a six.

“But by injecting huge amounts of greenhouse gases into the atmosphere, humankind has loaded the dice. In many regions, we throw sixes much more often, with severe impacts for society and the environment.

“It is worrying that we see significant increases of such extremes with just one degree of global warming.” – Climate News Network

The global water supply is dwindling, even though rainfall is heavier. Once again, climate change is to blame.

LONDON, 20 December, 2018 – Even in a world with more intense rain, communities could begin to run short of water. New research has confirmed that, in a warming world, extremes of drought have begun to diminish the world’s groundwater – and ever more intense rainstorms will do little to make up the loss in the global water supply.

And a second, separate study delivers support for this seeming paradox: worldwide, there is evidence that rainfall patterns are, increasingly, being disturbed. The number of record-dry months has increased overall. And so has the number of record-breaking rainy months.

Both studies match predictions in a world of climate change driven by ever-higher ratios of greenhouse gases in the atmosphere, from ever-increasing combustion of fossil fuels. But, unlike many climate studies, neither of these is based on computer simulation of predicted change.

Each is instead based on the meticulous analysis of huge quantities of on-the-ground data. Together they provide substance to a 40-year-old prediction of climate change research: that in a warming world, those regions already wet will get ever more rain, while the drylands will tend to become increasingly more arid.

As global temperatures creep up – and they have already risen by 1°C in the past century, and could be set to reach 3°C by 2100 – so does the capacity of the atmosphere to absorb more moisture. It follows that more rain must fall. But at the same time more groundwater evaporates, and the risk of damaging drought increases.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out”

Australian scientists report in the journal Water Resources Research that they studied readings from 43,000 rainfall stations and 5,300 river monitoring sites in 160 countries. And they confirm that even in a world of more intense rain, drought could become the new normal in those regions already at risk.

“This is something that has been missed. We expected rainfall to increase, since warmer air stores more moisture – and that is what climate models predicted too,” said Ashish Sharma, an environmental engineer at the University of New South Wales.

“What we did not expect, despite all the extra rain everywhere in the world, is that the large rivers are drying out. We believe the cause is the drying of soils in our catchments. Where once these were moist before a storm event – allowing excess rainfall to run off into rivers – they are now drier and soak up more rain, so less water makes it as flow.”

The study matches predictions. Just in the last few months, climate scientists have warned that catastrophic climate change could be on the way, and that the double hazard of heat waves and sustained drought could devastate harvests in more than one climatic zone in the same season; and that those landlocked rainfall catchment areas that are already dry are becoming increasingly more parched.

But over the same few months, researchers have established repeatedly that tomorrow’s storms will be worse and that more devastating flash floods can be expected even in one of the world’s driest continents, Australia itself.

Less water available

Of all rainfall, only 36% gets into aquifers, streams and lakes. The remaining two thirds seeps into the soils, grasslands and woodlands. But more soil evaporation means less water is available from river supplies for cities and farms.

US researchers have already confirmed that if soils are moist before a storm, 62% of rainfall leads to floods that fill catchments. If soils are dry, only 13% of the rain leads to flooding.

“It’s a double whammy. Less water is ending up where we can’t store it for later use. At the same time, more rain is overwhelming drainage infrastructure in towns and cities, leading to more urban flooding,” said Professor Sharma.

“Small floods are very important for water supply, because they refill dams and form the basis of our water supply. But they’re happening less often, because the soils are sucking up extra rain. Even when a major storm dumps a lot of rain, the soils are so dry they absorb more water than before, and less reaches the rivers and reservoirs”, he said. “We need to adapt to this emerging reality.”

In the second close look at change so far, researchers based in Germany report in the journal Geophysical Research Letters  that they analysed data from 50,000 weather stations worldwide to measure rainfall on a monthly basis.

Climate drives aridity

The US has seen a more than 25% increase of record wet months in the eastern and central regions between 1980 and 2013. Argentina has seen a 32% increase. In central and northern Europe the increase is between 19% and 37%; in Asian Russia, it has been about 20%.

But in Africa south of the Sahara the incidence of very dry months has increased by 50%. “This implies that approximately one out of three record dry months in this region would not have occurred without long-term climate change,” said Dim Coumou, of the Potsdam Institute for Climate Impact Research.

“Generally, land regions in the tropics and sub-tropics have seen more dry records, and the northern mid- to high-latitudes more wet records. This largely fits the patterns that scientists expect from human-caused climate change.”

His colleague and lead author Jascha Lehmann said: “Normally, record weather events occur by chance and we know how many would happen in a climate without warning. It’s like throwing a dice: on average one out of six times you get a six.

“But by injecting huge amounts of greenhouse gases into the atmosphere, humankind has loaded the dice. In many regions, we throw sixes much more often, with severe impacts for society and the environment.

“It is worrying that we see significant increases of such extremes with just one degree of global warming.” – Climate News Network

*

Amazon in peril as Brazil cools on climate

The man who will become Brazil’s president next month is cold-shouldering moves to tame the pace of climate change, leaving the Amazon in peril.

SÃO PAULO, 12 December, 2018 − The election of an extreme rightwing climate sceptic as president will leave the Amazon in peril, because it radically alters Brazil’s position on climate change.

That process has already begun, with the cancellation of the outgoing president’s invitation to the United Nations to hold its 2019 climate talks, COP-25, in Brasilia.

President-elect Jair Bolsonaro is also threatening to withdraw from the Paris Agreement on tackling climate change, claiming that a plot exists to reduce Brazil’s sovereignty over the Amazon.

While he does not officially take office until 1 January, Bolsonaro has already significantly altered Brazil’s position by cancelling the present government’s offer to host COP-25 only days after it was officially made by the departing president, Michel Temer.

Due for confirmation

It was due to be confirmed at this year’s UN talks (COP-24) in the Polish city of Katowice. The COPs (meetings of the parties to the UN Framework Convention on Climate Change) are rotated between the world’s five regions, and 2019 was to be the turn of Latin America and the Caribbean.

For André Nahur, a biologist and the coordinator of WWF Brazil’s programme for climate change and energy, it is a sign that under Bolsonaro Brazil will abdicate its role as a leader in environmental questions.

He said: “Brazil has been a protagonist in international climate talks, exercising an important role in diplomatic efforts to reduce greenhouse gases … in order to achieve world targets. Brazil’s participation is vital, because at the moment it is the seventh largest producer of greenhouse gases.”

He added that the withdrawal of Brazil’s offer for COP-25 will affect the country’s economic development: “All scenarios show that in countries concerned with climate change, GDP has grown and generated jobs.”

“I am not in favour of signing a trade deal with powers that do not respect the Paris agreement”

The Climate Observatory, a Brazilian NGO (Observatório do Clima) says Bolsonaro’s decision means that Brazil is abdicating its role in one of the few areas where the country is not just relevant but necessary.

“Ignoring the climate agenda, the government is also failing to protect the population affected by a growing number of extreme weather events. Unfortunately they do not stop happening just because some people doubt their causes,” it said.

To try to justify his stated intention to withdraw Brazil from the Paris Agreement Bolsonaro has invoked the existence of a forgotten project once proposed by Gaia Colombia, known as the Triple A.

He said: “What is the ‘Triple A? It’s a big strip between the Andes, the Amazon and the Atlantic … The idea is to turn it into an ecological corridor.” This, says Bolsonaro, could result in Brazil losing its sovereignty over the area.

Doubtful explanation

The ambitious plan for the corridor, covering over 500,000 square miles of rainforest, surfaced several years ago, and is credited to Martín von Hildebrand, founder of the Gaia Amazonas NGO, but it has never been taken seriously, and it is certainly no part of the Paris Agreement.

While the president-elect evoked this non-existent problem to justify his dislike of the Paris deal, French president Emmanuel Macron hinted at the real consequences of leaving the treaty, declaring: “I say clearly that I am not in favour of signing a trade deal with powers that do not respect the Paris agreement.”

Brazil’s new position also leaves it out of step with the BRICS, the group of five big emerging countries (Brazil, Russia, India, China and South Africa).

They produced a statement at the recent G20 meeting in Buenos Aires affirming their commitment to the “full implementation of the Paris Agreement, and the importance and urgency of guaranteeing funds for the Green Climate Fund”, to increase the developing countries’ capacity for mitigation and adaptation.

Faith in Trump

Bolsonaro has chosen as his foreign minister a diplomat, Ernesto Araujo, who scoffs at what he calls “climatism” and believes that US president Donald Trump is the saviour of the Christian values of the Western world, while globalisation is a communist plot.

If Brazil were just a small banana republic this would not matter. But the South American giant, the fifth largest country in the world, in both size and population, and ninth largest economy, is too big to ignore, especially as it contains 60% of the Amazon rainforest, the world’s largest tropical forest.

But even before Bolsonaro officially takes office deforestation has soared, hitting its highest level for a decade as loggers and landgrabbers anticipate a loosening of monitoring and enforcement.

Environmentalists fear that Brazil’s change of government could have disastrous consequences for the world’s climate. − Climate News Network

The man who will become Brazil’s president next month is cold-shouldering moves to tame the pace of climate change, leaving the Amazon in peril.

SÃO PAULO, 12 December, 2018 − The election of an extreme rightwing climate sceptic as president will leave the Amazon in peril, because it radically alters Brazil’s position on climate change.

That process has already begun, with the cancellation of the outgoing president’s invitation to the United Nations to hold its 2019 climate talks, COP-25, in Brasilia.

President-elect Jair Bolsonaro is also threatening to withdraw from the Paris Agreement on tackling climate change, claiming that a plot exists to reduce Brazil’s sovereignty over the Amazon.

While he does not officially take office until 1 January, Bolsonaro has already significantly altered Brazil’s position by cancelling the present government’s offer to host COP-25 only days after it was officially made by the departing president, Michel Temer.

Due for confirmation

It was due to be confirmed at this year’s UN talks (COP-24) in the Polish city of Katowice. The COPs (meetings of the parties to the UN Framework Convention on Climate Change) are rotated between the world’s five regions, and 2019 was to be the turn of Latin America and the Caribbean.

For André Nahur, a biologist and the coordinator of WWF Brazil’s programme for climate change and energy, it is a sign that under Bolsonaro Brazil will abdicate its role as a leader in environmental questions.

He said: “Brazil has been a protagonist in international climate talks, exercising an important role in diplomatic efforts to reduce greenhouse gases … in order to achieve world targets. Brazil’s participation is vital, because at the moment it is the seventh largest producer of greenhouse gases.”

He added that the withdrawal of Brazil’s offer for COP-25 will affect the country’s economic development: “All scenarios show that in countries concerned with climate change, GDP has grown and generated jobs.”

“I am not in favour of signing a trade deal with powers that do not respect the Paris agreement”

The Climate Observatory, a Brazilian NGO (Observatório do Clima) says Bolsonaro’s decision means that Brazil is abdicating its role in one of the few areas where the country is not just relevant but necessary.

“Ignoring the climate agenda, the government is also failing to protect the population affected by a growing number of extreme weather events. Unfortunately they do not stop happening just because some people doubt their causes,” it said.

To try to justify his stated intention to withdraw Brazil from the Paris Agreement Bolsonaro has invoked the existence of a forgotten project once proposed by Gaia Colombia, known as the Triple A.

He said: “What is the ‘Triple A? It’s a big strip between the Andes, the Amazon and the Atlantic … The idea is to turn it into an ecological corridor.” This, says Bolsonaro, could result in Brazil losing its sovereignty over the area.

Doubtful explanation

The ambitious plan for the corridor, covering over 500,000 square miles of rainforest, surfaced several years ago, and is credited to Martín von Hildebrand, founder of the Gaia Amazonas NGO, but it has never been taken seriously, and it is certainly no part of the Paris Agreement.

While the president-elect evoked this non-existent problem to justify his dislike of the Paris deal, French president Emmanuel Macron hinted at the real consequences of leaving the treaty, declaring: “I say clearly that I am not in favour of signing a trade deal with powers that do not respect the Paris agreement.”

Brazil’s new position also leaves it out of step with the BRICS, the group of five big emerging countries (Brazil, Russia, India, China and South Africa).

They produced a statement at the recent G20 meeting in Buenos Aires affirming their commitment to the “full implementation of the Paris Agreement, and the importance and urgency of guaranteeing funds for the Green Climate Fund”, to increase the developing countries’ capacity for mitigation and adaptation.

Faith in Trump

Bolsonaro has chosen as his foreign minister a diplomat, Ernesto Araujo, who scoffs at what he calls “climatism” and believes that US president Donald Trump is the saviour of the Christian values of the Western world, while globalisation is a communist plot.

If Brazil were just a small banana republic this would not matter. But the South American giant, the fifth largest country in the world, in both size and population, and ninth largest economy, is too big to ignore, especially as it contains 60% of the Amazon rainforest, the world’s largest tropical forest.

But even before Bolsonaro officially takes office deforestation has soared, hitting its highest level for a decade as loggers and landgrabbers anticipate a loosening of monitoring and enforcement.

Environmentalists fear that Brazil’s change of government could have disastrous consequences for the world’s climate. − Climate News Network

*

Better land use could slash US emissions

New research confirms again that nature knows best. The US could cut a fifth of its greenhouse gas emissions through better land use.

LONDON, 7 December, 2018 – US scientists have found a new way to cut or offset 22% of the greenhouse gas emissions from American factory chimneys, car exhausts and power stations: better land use.

Their answer is to leave it to nature. What they identify as 21 natural climate solutions – better use of croplands, the restoration of forests and tidal wetlands, slowing the felling of timber and the containment of urban sprawl – could help limit global warming, slow climate change and reduce sea level rise for the nation that has over the last century emitted more greenhouse gas than any other country.

The most effective single action in a study launched by the US Nature Conservancy and 21 other institutions, and published in the journal Science Advances, would be to step up reforestation: this alone could absorb the emissions of 65 million passenger cars.

“One of America’s greatest assets is its land. Through changes in management, along with protecting and restoring natural lands, we demonstrated we could reduce carbon pollution and filter water, enhance fish and wildlife habitat, and have better soil health to grow our food — all at the same time,” said Joseph Fargione, director of science for the Nature Conservancy, who led the study.

New thinking – and old

“Nature offers us a simple, cost-effective way to help fight global warming. In combination with transitioning to zero carbon energy production, natural climate solutions can help protect our climate for future generations.”

Paradoxically, some of the solutions rely not on new thinking, but on old. If areas of the US that were forested before the European settlers arrived were returned to woodland, the land could absorb 381 million tonnes of carbon dioxide equivalent. If commercial foresters extended the cycles of logging and improved forest management practices, they could effectively save 267 million tonnes a year of CO2.

Around 4,000 square kilometres of grassland is converted to cropland in a year: the act of ploughing releases 28% of the soil carbon to the atmosphere. The scientists reckon that at least 52,000 square kilometres of marginal or unprofitable cropland could be restored to natural grassland or prairie.

Right now, 27% of US tidal wetlands are cut off from the ocean and being flooded by river water: accordingly, these release huge quantities of the potent greenhouse gas methane. All it would take to stop this would be to restore the twice-daily marine inundation: reconnection with the ocean, sometimes just by a culvert under a road, would save 12 million tonnes of CO2 equivalent a year.

“Nature offers us a simple, cost-effective way to help fight global warming”

The researchers identified just 10 of their 21 possible solutions that together could reduce emissions by more than a billion tonnes of carbon dioxide equivalent a year.

That more efficient use of land is a net benefit is not news: researchers have repeatedly argued that world food security is consistent with forest restoration, and that forests left untouched are of greater overall economic value than cleared land, and that considered changes to farming practices could both deliver more food and leave farmers better off.

But, ironically, efforts to promote natural climate solutions in the US get only 0.8% of public and private climate finance, even though these could provide 37% of the climate mitigation needed by 2030. The scientists argue that if the US is to commit to the Paris Accord of 2015, to contain global average warming to 2°C or less above the levels for most of human history, then natural climate solutions make a promising start.

Lynn Scarlett, a former acting secretary of the US Department of the Interior and now at the Nature Conservancy, said: “This study provides good news that making investments in nature will make a big difference, while offering the potential for new revenue to farmers, ranchers, foresters and coastal communities at the same time.” – Climate News Network

New research confirms again that nature knows best. The US could cut a fifth of its greenhouse gas emissions through better land use.

LONDON, 7 December, 2018 – US scientists have found a new way to cut or offset 22% of the greenhouse gas emissions from American factory chimneys, car exhausts and power stations: better land use.

Their answer is to leave it to nature. What they identify as 21 natural climate solutions – better use of croplands, the restoration of forests and tidal wetlands, slowing the felling of timber and the containment of urban sprawl – could help limit global warming, slow climate change and reduce sea level rise for the nation that has over the last century emitted more greenhouse gas than any other country.

The most effective single action in a study launched by the US Nature Conservancy and 21 other institutions, and published in the journal Science Advances, would be to step up reforestation: this alone could absorb the emissions of 65 million passenger cars.

“One of America’s greatest assets is its land. Through changes in management, along with protecting and restoring natural lands, we demonstrated we could reduce carbon pollution and filter water, enhance fish and wildlife habitat, and have better soil health to grow our food — all at the same time,” said Joseph Fargione, director of science for the Nature Conservancy, who led the study.

New thinking – and old

“Nature offers us a simple, cost-effective way to help fight global warming. In combination with transitioning to zero carbon energy production, natural climate solutions can help protect our climate for future generations.”

Paradoxically, some of the solutions rely not on new thinking, but on old. If areas of the US that were forested before the European settlers arrived were returned to woodland, the land could absorb 381 million tonnes of carbon dioxide equivalent. If commercial foresters extended the cycles of logging and improved forest management practices, they could effectively save 267 million tonnes a year of CO2.

Around 4,000 square kilometres of grassland is converted to cropland in a year: the act of ploughing releases 28% of the soil carbon to the atmosphere. The scientists reckon that at least 52,000 square kilometres of marginal or unprofitable cropland could be restored to natural grassland or prairie.

Right now, 27% of US tidal wetlands are cut off from the ocean and being flooded by river water: accordingly, these release huge quantities of the potent greenhouse gas methane. All it would take to stop this would be to restore the twice-daily marine inundation: reconnection with the ocean, sometimes just by a culvert under a road, would save 12 million tonnes of CO2 equivalent a year.

“Nature offers us a simple, cost-effective way to help fight global warming”

The researchers identified just 10 of their 21 possible solutions that together could reduce emissions by more than a billion tonnes of carbon dioxide equivalent a year.

That more efficient use of land is a net benefit is not news: researchers have repeatedly argued that world food security is consistent with forest restoration, and that forests left untouched are of greater overall economic value than cleared land, and that considered changes to farming practices could both deliver more food and leave farmers better off.

But, ironically, efforts to promote natural climate solutions in the US get only 0.8% of public and private climate finance, even though these could provide 37% of the climate mitigation needed by 2030. The scientists argue that if the US is to commit to the Paris Accord of 2015, to contain global average warming to 2°C or less above the levels for most of human history, then natural climate solutions make a promising start.

Lynn Scarlett, a former acting secretary of the US Department of the Interior and now at the Nature Conservancy, said: “This study provides good news that making investments in nature will make a big difference, while offering the potential for new revenue to farmers, ranchers, foresters and coastal communities at the same time.” – Climate News Network

*

2018 will show record carbon emissions

Record carbon emissions are set to mark 2018. And although investment in renewable energy is rising, the world is still warming dangerously fast.

LONDON, 6 December, 2018 – For the second year running, the world will have a doubtful achievement to claim by 31 December: record carbon emissions.

Even before the close of 2018, scientists behind the biggest accounting effort on the planet, the Global Carbon Budget, warn that emissions from coal, oil and gas will have dumped a record 37 billion tonnes of carbon dioxide equivalent (a way of  comparing the emissions from various greenhouse gases based on their global warming potential) into the atmosphere by the end of this month.

This is 2.7% more than last year, which also showed an increase. Human destruction of the world’s forests will add another four billion tonnes in the same 12 months.

The news comes as 190 nations negotiate in Katowice in Poland to work out how to meet the targets they set in 2015 in Paris,  to contain global warming to no more than 2°C by 2100, and if possible no more than 1.5°C.

Little time left

But in a commentary in Nature a second set of scientists warns that time is running out. At the present rate of fossil fuel use, the world is set to breach the 1.5°C target by 2030, rather than the 2040 everybody had assumed.

That is because rising emissions, declining air pollution and natural climate cycles working together will make climate change more fast and furious than expected.

There are hopeful signs: renewable energy investment has begun to accelerate, and some nations have started to reduce fossil fuel emissions.

But the confirmation of yet another record year for fossil fuel combustion – after three consecutive years, 2014-16, in which fossil fuel use seemed to have peaked and might start to fall – suggests that even those nations most concerned about climate change are not doing enough.

“This cannot continue. It must not. To give us a chance of meeting the Paris climate goals, emissions need to fall, and fast”

The biggest emitters are China, the US, India, Russia, Japan, Germany, Saudi Arabia, South Korea and Canada, but taken as a collective, the European Union elbows India out of third place.

If the UK, a self-proclaimed climate progressive country, could celebrate the exploitation of a new North Sea oil field while at the same time exploring for shale gas and expanding its biggest airport, it should be no surprise that global emissions were rising, said Kevin Anderson, professor of energy and climate change at the Tyndall Centre at the University of Manchester, UK.

“If the climate-aware EU is planning new pan-Europe pipelines to lock in high carbon gas for decades to come, is it any surprise global emissions are rising? If ever-green Sweden, currently without any major gas infrastructure, is enthusiastically building a new gas terminal in Gothenburg – is it any surprise emissions are rising?”

Aimed at negotiators

Publication of the Global Carbon Project review for 2018 is timed to focus minds in Katowice, and as a reminder of how much has yet to be done to contain climate change.

“To limit global warming to the Paris Agreement goal of 1.5°C, CO2 emissions would need to decline by 50% by 2030 and reach zero around 2050,” said Corinne Le Quéré, who directs theTyndall Centre for climate change at the University of East Anglia, UK.

“We are a long way from this, and much more needs to be done because if countries stick to commitments they have already made, we are on track to see 3°C of global warming.

“This year we have seen how climate change can already amplify the impact of heatwaves worldwide. The California wildfires are just a snapshot of the growing impacts we face if we don’t drive emissions down rapidly.”

Renewable energy grows

Paradoxically, the data in the report published in one version in Environmental Research Letters and in more detail in the journal Earth System Science Data also point to an acceleration towards renewable sources of energy: the political shorthand for this process is “decarbonisation.”

Coal consumption in Canada and the US had dropped 40% since 2005. Christiana Figueres, who in 2015 as a UN climate chief presided over the wheeling and dealing that resulted in the Paris Agreement, argues in another commentary in Nature that there are signs of promise.

Thousands of businesses in 120 countries had signed up to the Paris goals, which could bring $26 trillion in economic benefits, including 65 million new jobs in what she called the “booming” low carbon economy. “We have already achieved things that seemed unimaginable just a decade ago,” she said.

Robust accounting

“Exponential progress in key solutions is happening and on track to displace fossil fuels. Renewable energy costs have dropped by 80% in a decade, and today, over half of all new energy generation capacity is renewable.

“Before 2015 many people thought the Paris Agreement was impossible, yet thousands of people and institutions made the shift from impossible to unstoppable.”

But, warned David Reay, professor of carbon management at the University of Edinburgh, UK, the accounting within the balance sheet for the carbon budget 2018 was robust.

“Its message is more brutal than ever: we are in the red and still heading deeper. This cannot continue. It must not. To give us a chance of meeting the Paris climate goals, emissions need to fall, and fast. We knew this in 2015, we know it now. And yet they still rise.” – Climate News Network

Record carbon emissions are set to mark 2018. And although investment in renewable energy is rising, the world is still warming dangerously fast.

LONDON, 6 December, 2018 – For the second year running, the world will have a doubtful achievement to claim by 31 December: record carbon emissions.

Even before the close of 2018, scientists behind the biggest accounting effort on the planet, the Global Carbon Budget, warn that emissions from coal, oil and gas will have dumped a record 37 billion tonnes of carbon dioxide equivalent (a way of  comparing the emissions from various greenhouse gases based on their global warming potential) into the atmosphere by the end of this month.

This is 2.7% more than last year, which also showed an increase. Human destruction of the world’s forests will add another four billion tonnes in the same 12 months.

The news comes as 190 nations negotiate in Katowice in Poland to work out how to meet the targets they set in 2015 in Paris,  to contain global warming to no more than 2°C by 2100, and if possible no more than 1.5°C.

Little time left

But in a commentary in Nature a second set of scientists warns that time is running out. At the present rate of fossil fuel use, the world is set to breach the 1.5°C target by 2030, rather than the 2040 everybody had assumed.

That is because rising emissions, declining air pollution and natural climate cycles working together will make climate change more fast and furious than expected.

There are hopeful signs: renewable energy investment has begun to accelerate, and some nations have started to reduce fossil fuel emissions.

But the confirmation of yet another record year for fossil fuel combustion – after three consecutive years, 2014-16, in which fossil fuel use seemed to have peaked and might start to fall – suggests that even those nations most concerned about climate change are not doing enough.

“This cannot continue. It must not. To give us a chance of meeting the Paris climate goals, emissions need to fall, and fast”

The biggest emitters are China, the US, India, Russia, Japan, Germany, Saudi Arabia, South Korea and Canada, but taken as a collective, the European Union elbows India out of third place.

If the UK, a self-proclaimed climate progressive country, could celebrate the exploitation of a new North Sea oil field while at the same time exploring for shale gas and expanding its biggest airport, it should be no surprise that global emissions were rising, said Kevin Anderson, professor of energy and climate change at the Tyndall Centre at the University of Manchester, UK.

“If the climate-aware EU is planning new pan-Europe pipelines to lock in high carbon gas for decades to come, is it any surprise global emissions are rising? If ever-green Sweden, currently without any major gas infrastructure, is enthusiastically building a new gas terminal in Gothenburg – is it any surprise emissions are rising?”

Aimed at negotiators

Publication of the Global Carbon Project review for 2018 is timed to focus minds in Katowice, and as a reminder of how much has yet to be done to contain climate change.

“To limit global warming to the Paris Agreement goal of 1.5°C, CO2 emissions would need to decline by 50% by 2030 and reach zero around 2050,” said Corinne Le Quéré, who directs theTyndall Centre for climate change at the University of East Anglia, UK.

“We are a long way from this, and much more needs to be done because if countries stick to commitments they have already made, we are on track to see 3°C of global warming.

“This year we have seen how climate change can already amplify the impact of heatwaves worldwide. The California wildfires are just a snapshot of the growing impacts we face if we don’t drive emissions down rapidly.”

Renewable energy grows

Paradoxically, the data in the report published in one version in Environmental Research Letters and in more detail in the journal Earth System Science Data also point to an acceleration towards renewable sources of energy: the political shorthand for this process is “decarbonisation.”

Coal consumption in Canada and the US had dropped 40% since 2005. Christiana Figueres, who in 2015 as a UN climate chief presided over the wheeling and dealing that resulted in the Paris Agreement, argues in another commentary in Nature that there are signs of promise.

Thousands of businesses in 120 countries had signed up to the Paris goals, which could bring $26 trillion in economic benefits, including 65 million new jobs in what she called the “booming” low carbon economy. “We have already achieved things that seemed unimaginable just a decade ago,” she said.

Robust accounting

“Exponential progress in key solutions is happening and on track to displace fossil fuels. Renewable energy costs have dropped by 80% in a decade, and today, over half of all new energy generation capacity is renewable.

“Before 2015 many people thought the Paris Agreement was impossible, yet thousands of people and institutions made the shift from impossible to unstoppable.”

But, warned David Reay, professor of carbon management at the University of Edinburgh, UK, the accounting within the balance sheet for the carbon budget 2018 was robust.

“Its message is more brutal than ever: we are in the red and still heading deeper. This cannot continue. It must not. To give us a chance of meeting the Paris climate goals, emissions need to fall, and fast. We knew this in 2015, we know it now. And yet they still rise.” – Climate News Network

*

Worse storms in prospect as warmth rises

Once again, US government scientists warn that hurricane and flood hazard is amplified by a warming world. But worse storms are caused by big cities too.

LONDON, 19 November, 2018 – Worse storms are on the way, as many Americans know all too well. Hurricane Katrina was the costliest natural disaster ever to hit the US: it blew ashore over New Orleans in August 2005 to claim at least 1,833 lives and wreak economic damage worth, in today’s prices, $160bn.

And however bad it was, climate change made it worse. Because of global warming up to that point, up to 9% more rain fell over the city, some of it to sweep away the river defences and precipitate disastrous flooding.

A second study, also in Nature, warns: big cities make bad storms even worse. Urbanisation – all those roads, pavements, rooftops and so on – multiplies the risk of flooding on average 21-fold. The growth of Houston in Texas left a city at the mercy of Hurricane Harvey in 2017: the scale of flooding was without precedent.

The research is based on computer modelling of the impact of overall planetary warming – around 1°C in the past century – on local sea and coastal conditions.

Rising economic harm

Warmer atmospheres hold more water. With each 1°C rise, the capacity to absorb moisture increases by 7% , so in a warmer world storms will be wetter. With higher temperatures, storms are likely to be more ferocious. Researchers have repeatedly warned that because of these simple principles, as global temperatures rise, the US faces ever bigger economic losses each succeeding hurricane season.

Houston wasn’t prepared for what seemed like a once-in-a-thousand-years storm, but extreme rainstorms will become even more extreme and in Texas more Harvey-scale storms are on the way.

Water that falls on forest or wetland or coastal savannah is at least partly absorbed. Hard rain that hits tarmacadam and concrete could swiftly become a flash flood. So the latest study is a confirmation of much previous research.

“Efforts to build flood mitigation strategies must use an improved understanding of the multiple processes in place”

And although President Trump has condemned climate change science as a hoax devised by the Chinese, and announced a withdrawal from the Paris Agreement signed by 195 nations to limit global warming to if possible less than 2°C by 2100, the confirmation of greater climate change danger once again comes from a US government research base, the Lawrence Berkeley National Laboratory.

Christina Patricola, of the laboratory’s climate division, reports in Nature that she and a colleague chose 15 tropical cyclones that have occurred in the last decade in the Atlantic, the Pacific and the Indian Oceans, and then built computer simulations of those storms while changing factors such as air and ocean temperatures, humidity, and the greenhouse gas concentrations that dictate overall planetary temperatures.

The two scientists looked at the effects of climate change so far, and the shape of storms to come. They found that warming hitherto has made rainfall between 5% and 10% more intense, but may not have so far made much difference to overall hurricane windspeeds.

Strengthening winds

But if the climate continues to warm – and it could warm by 3°C or more this century, as ever greater combustion of fossil fuels puts ever more carbon dioxide into the atmosphere – peak wind speeds could increase by up to 25 knots or very nearly 50 kilometres per hour.

The scientists also found that future rainfall in such storms could increase by between 15% and 35%. And the same computer models that predict windier, wetter storms tomorrow accurately predicted the pattern of the storms that had already happened. “The fact that almost all of the 15 tropical cyclones responded in a similar way gives confidence to the results,” Dr Patricola said.

In a companion study, scientists from US universities looked at the other component of the Hurricane Harvey disaster in 2017: the changes in the city of Houston itself.

Between 25 and 30 August, Harvey dumped 1.3 metres of rain on the metropolis. Between 2000 and 2011, Houston had the largest urban growth and the fifth largest population growth in the entire US. That is, it became a bigger target, with a greater area of paving and sealed surfaces to channel the flowing water.

Slower and wetter

The changing contour of the city helped increase atmospheric drag, slowing the passage of the hurricane and delaying it for long enough to drop even more rain. And then the surface of asphalt and concrete made conditions worse.

So, the researchers concluded, the new building made the risk of catastrophic flooding somewhere between hardly at all and up to 90 times more likely, depending on which part of the city they were looking at. Altogether, the risk of more flooding on the scale of Harvey had increased 21-fold.

The message is that coastal cities must plan for the worst and keep planning. Hurricane winds and rainfall are going to intensify in the future. Cities will keep on growing as human numbers increase.

“Planning must take into account the compounded nature of these risks,” they conclude, “and efforts to build flood mitigation strategies must use an improved understanding of the multiple processes in place.” – Climate News Network

Once again, US government scientists warn that hurricane and flood hazard is amplified by a warming world. But worse storms are caused by big cities too.

LONDON, 19 November, 2018 – Worse storms are on the way, as many Americans know all too well. Hurricane Katrina was the costliest natural disaster ever to hit the US: it blew ashore over New Orleans in August 2005 to claim at least 1,833 lives and wreak economic damage worth, in today’s prices, $160bn.

And however bad it was, climate change made it worse. Because of global warming up to that point, up to 9% more rain fell over the city, some of it to sweep away the river defences and precipitate disastrous flooding.

A second study, also in Nature, warns: big cities make bad storms even worse. Urbanisation – all those roads, pavements, rooftops and so on – multiplies the risk of flooding on average 21-fold. The growth of Houston in Texas left a city at the mercy of Hurricane Harvey in 2017: the scale of flooding was without precedent.

The research is based on computer modelling of the impact of overall planetary warming – around 1°C in the past century – on local sea and coastal conditions.

Rising economic harm

Warmer atmospheres hold more water. With each 1°C rise, the capacity to absorb moisture increases by 7% , so in a warmer world storms will be wetter. With higher temperatures, storms are likely to be more ferocious. Researchers have repeatedly warned that because of these simple principles, as global temperatures rise, the US faces ever bigger economic losses each succeeding hurricane season.

Houston wasn’t prepared for what seemed like a once-in-a-thousand-years storm, but extreme rainstorms will become even more extreme and in Texas more Harvey-scale storms are on the way.

Water that falls on forest or wetland or coastal savannah is at least partly absorbed. Hard rain that hits tarmacadam and concrete could swiftly become a flash flood. So the latest study is a confirmation of much previous research.

“Efforts to build flood mitigation strategies must use an improved understanding of the multiple processes in place”

And although President Trump has condemned climate change science as a hoax devised by the Chinese, and announced a withdrawal from the Paris Agreement signed by 195 nations to limit global warming to if possible less than 2°C by 2100, the confirmation of greater climate change danger once again comes from a US government research base, the Lawrence Berkeley National Laboratory.

Christina Patricola, of the laboratory’s climate division, reports in Nature that she and a colleague chose 15 tropical cyclones that have occurred in the last decade in the Atlantic, the Pacific and the Indian Oceans, and then built computer simulations of those storms while changing factors such as air and ocean temperatures, humidity, and the greenhouse gas concentrations that dictate overall planetary temperatures.

The two scientists looked at the effects of climate change so far, and the shape of storms to come. They found that warming hitherto has made rainfall between 5% and 10% more intense, but may not have so far made much difference to overall hurricane windspeeds.

Strengthening winds

But if the climate continues to warm – and it could warm by 3°C or more this century, as ever greater combustion of fossil fuels puts ever more carbon dioxide into the atmosphere – peak wind speeds could increase by up to 25 knots or very nearly 50 kilometres per hour.

The scientists also found that future rainfall in such storms could increase by between 15% and 35%. And the same computer models that predict windier, wetter storms tomorrow accurately predicted the pattern of the storms that had already happened. “The fact that almost all of the 15 tropical cyclones responded in a similar way gives confidence to the results,” Dr Patricola said.

In a companion study, scientists from US universities looked at the other component of the Hurricane Harvey disaster in 2017: the changes in the city of Houston itself.

Between 25 and 30 August, Harvey dumped 1.3 metres of rain on the metropolis. Between 2000 and 2011, Houston had the largest urban growth and the fifth largest population growth in the entire US. That is, it became a bigger target, with a greater area of paving and sealed surfaces to channel the flowing water.

Slower and wetter

The changing contour of the city helped increase atmospheric drag, slowing the passage of the hurricane and delaying it for long enough to drop even more rain. And then the surface of asphalt and concrete made conditions worse.

So, the researchers concluded, the new building made the risk of catastrophic flooding somewhere between hardly at all and up to 90 times more likely, depending on which part of the city they were looking at. Altogether, the risk of more flooding on the scale of Harvey had increased 21-fold.

The message is that coastal cities must plan for the worst and keep planning. Hurricane winds and rainfall are going to intensify in the future. Cities will keep on growing as human numbers increase.

“Planning must take into account the compounded nature of these risks,” they conclude, “and efforts to build flood mitigation strategies must use an improved understanding of the multiple processes in place.” – Climate News Network

*

Flash floods increase as mercury climbs

Heavy rain must fall somewhere. The danger lies in where it falls and on what kind of terrain. As cities grow, the risk of flash floods rises.

LONDON, 9 November, 2018 – Scientists once again have confirmed that humankind’s actions have triggered ever-greater extremes of rainfall – and an ever-greater rise in disastrous flash floods.

The study comes close on the heels of a warning by UN scientists of a dramatic increase in economic losses from climate-related disasters. Between 1998 and 2017, natural disasters cost the world’s nations direct losses of $2.9 trillion, and although earthquake and tsunami accounted for most deaths, floods, storms and other climate-related catastrophes accounted for 77% of the economic damage.

Scientists and engineers from China and the US report in the journal Nature Communications that flash floods now cause more deaths as well as more property and agricultural losses than any other severe weather-related hazards. These losses have been increasing for the last 50 years and over the last decade worldwide have topped $30bn a year.

And, they find, extremes in run–off from increasing extremes of rainfall are driven by what humans have done, and continue to do, to their planet: in the race for economic growth, people have burned ever more coal, oil and gas to dump ever-increasing levels of carbon dioxide emissions into the atmosphere.

Heat hazard rises

They have driven up global average temperatures by around 1°C in the last century, and without drastic action this average could reach 3°C by the century’s end.

As average temperatures rise, so does the hazard of extremes of heat. With every rise of 1°C the capacity of the atmosphere to absorb moisture rises by about 7%: higher temperatures are linked to ever-harder falls of rain. And rain that falls must go somewhere.

Moisture once naturally absorbed by forests, extensive wetlands or rich natural grasslands now increasingly lands on tarmacadam, brick, cement, tile or glass, to race down city streets, threaten ever more lives and sweep away costly homes, offices and bridges.

“Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions”

Altogether one billion people are now settled in floodplains: the lives at risk are on the increase. And, the researchers warn, the losses will go on rising.

Most researchers have been unwilling to link specific floods directly to global warming. That cautious attitude shifted in the last few years as separate teams of climate scientists made connections between global warming and disastrous flooding and destructive storms in Europe, in India and in the US.

Australia – more often linked with extended drought and wildfire hazards than floods – has identified ever greater dangers from extreme rainfall.

The Nature study was based on decades of rainfall, run-off and temperature data collected on a daily basis and forms part of a widening search for ways to adapt to a danger that, inevitably, looks set to increase, particularly in the US.

Growth in extremes

“We were trying to find the physical mechanisms behind why precipitation and run-off extremes are increasing all over the globe,” said Jiabo Yin, a Wuhan University student working at the Earth Institute in the University of Columbia, who led the research.

“We know that precipitation and run-off extremes will increase significantly in the future, and we need to modify our infrastructures accordingly. Our study establishes a framework for investigating the runoff response.”

Altogether, according to the UN Office for Disaster Risk Reduction’s latest survey, the world experienced more than 7,000 major disasters in the last two decades: floods and storms accounted for 43% and 28.2% of them and were the most frequent kinds of disaster.

Together, such disasters claimed 1.3 million lives – almost 750,000 of these to a total of 563 earthquakes and tsunamis. An estimated 4.4 billion people were hurt, or lost their homes, or were displaced or placed in need of emergency help.

Biggest losers

The greatest economic losers were the US, with almost $945 billion, and China with $492bn. Storms, floods and earthquakes put three European nations in the top ten, with France, Germany and Italy losing around $50bn each in those two decades.

Once again, the UN study highlights the gap between rich and poor. “Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions,” said Deberati Guha-Sapir, head of the UN’s Centre for Research on the Epidemiology of Disasters at the Catholic University of Louvain in Belgium.

“Clearly there is great room for improvement in data collection on economic losses, but we know from our analysis … that people in low income countries are six times more likely to lose all their worldly possessions or suffer injury in a disaster than people in high income countries.” – Climate News Network

Heavy rain must fall somewhere. The danger lies in where it falls and on what kind of terrain. As cities grow, the risk of flash floods rises.

LONDON, 9 November, 2018 – Scientists once again have confirmed that humankind’s actions have triggered ever-greater extremes of rainfall – and an ever-greater rise in disastrous flash floods.

The study comes close on the heels of a warning by UN scientists of a dramatic increase in economic losses from climate-related disasters. Between 1998 and 2017, natural disasters cost the world’s nations direct losses of $2.9 trillion, and although earthquake and tsunami accounted for most deaths, floods, storms and other climate-related catastrophes accounted for 77% of the economic damage.

Scientists and engineers from China and the US report in the journal Nature Communications that flash floods now cause more deaths as well as more property and agricultural losses than any other severe weather-related hazards. These losses have been increasing for the last 50 years and over the last decade worldwide have topped $30bn a year.

And, they find, extremes in run–off from increasing extremes of rainfall are driven by what humans have done, and continue to do, to their planet: in the race for economic growth, people have burned ever more coal, oil and gas to dump ever-increasing levels of carbon dioxide emissions into the atmosphere.

Heat hazard rises

They have driven up global average temperatures by around 1°C in the last century, and without drastic action this average could reach 3°C by the century’s end.

As average temperatures rise, so does the hazard of extremes of heat. With every rise of 1°C the capacity of the atmosphere to absorb moisture rises by about 7%: higher temperatures are linked to ever-harder falls of rain. And rain that falls must go somewhere.

Moisture once naturally absorbed by forests, extensive wetlands or rich natural grasslands now increasingly lands on tarmacadam, brick, cement, tile or glass, to race down city streets, threaten ever more lives and sweep away costly homes, offices and bridges.

“Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions”

Altogether one billion people are now settled in floodplains: the lives at risk are on the increase. And, the researchers warn, the losses will go on rising.

Most researchers have been unwilling to link specific floods directly to global warming. That cautious attitude shifted in the last few years as separate teams of climate scientists made connections between global warming and disastrous flooding and destructive storms in Europe, in India and in the US.

Australia – more often linked with extended drought and wildfire hazards than floods – has identified ever greater dangers from extreme rainfall.

The Nature study was based on decades of rainfall, run-off and temperature data collected on a daily basis and forms part of a widening search for ways to adapt to a danger that, inevitably, looks set to increase, particularly in the US.

Growth in extremes

“We were trying to find the physical mechanisms behind why precipitation and run-off extremes are increasing all over the globe,” said Jiabo Yin, a Wuhan University student working at the Earth Institute in the University of Columbia, who led the research.

“We know that precipitation and run-off extremes will increase significantly in the future, and we need to modify our infrastructures accordingly. Our study establishes a framework for investigating the runoff response.”

Altogether, according to the UN Office for Disaster Risk Reduction’s latest survey, the world experienced more than 7,000 major disasters in the last two decades: floods and storms accounted for 43% and 28.2% of them and were the most frequent kinds of disaster.

Together, such disasters claimed 1.3 million lives – almost 750,000 of these to a total of 563 earthquakes and tsunamis. An estimated 4.4 billion people were hurt, or lost their homes, or were displaced or placed in need of emergency help.

Biggest losers

The greatest economic losers were the US, with almost $945 billion, and China with $492bn. Storms, floods and earthquakes put three European nations in the top ten, with France, Germany and Italy losing around $50bn each in those two decades.

Once again, the UN study highlights the gap between rich and poor. “Those who are suffering the most from climate change are those who are contributing least to greenhouse gas emissions,” said Deberati Guha-Sapir, head of the UN’s Centre for Research on the Epidemiology of Disasters at the Catholic University of Louvain in Belgium.

“Clearly there is great room for improvement in data collection on economic losses, but we know from our analysis … that people in low income countries are six times more likely to lose all their worldly possessions or suffer injury in a disaster than people in high income countries.” – Climate News Network

*

Weakened hurricanes may be wind farm bonus

When high winds meet tall sails in the right place, something’s got to give. Offshore wind farms may lead to weakened hurricanes.

LONDON, 23 October, 2018 − US scientists have identified yet another wonder of that icon of renewable energy, the offshore wind farm: they may result in weakened hurricanes. Turbines in the right place could not just take the heat out of a hurricane, they could reduce the risk of catastrophic flooding as well.

The prediction is based entirely on computer simulation: the US so far has just one 30MW commercial wind farm in operation with just five turbines, off the coast of Rhode Island.

But the reasoning begins from the basic laws of physics, and the answer delivers yet another argument for investment in renewable sources of energy, if only because the ferocity and destructive power of US hurricanes is set to increase with ever-greater emissions of greenhouse gases from fossil fuel combustion, and consequent ever-greater global warming.

Cristina Archer, a scientist at the University of Delaware, has already studied the ideal placing of wind turbines to extract maximum energy from the world’s winds, and more recently confirmed, with other researchers, that any hurricane that blew over a big enough marine wind farm would shed energy and hit the land with less destructive power.

“If you have arrays of wind turbines in the areas where there are hurricanes, you will likely see a reduction in precipitation inland”

It is an axiom of physics that energy is always conserved: if a turbine’s sails generate electrical energy from wind, then some of the kinetic energy of the wind must be surrendered.

Professor Archer and her colleagues report in the journal Environmental Research Letters that they took, among others, the case of Hurricane Harvey, which in 2017 deposited almost two thirds of a metre of rainwater on Houston, Texas, to cause devastating floods. They tested the behaviour of the simulated hurricane as it blew across a hypothetical barrier of from zero to 74,619 turbines.

When strong winds hit the turbines, they slow down. Wind scientists call this convergence. Winds slow, and are more likely to dump the water they hold, and then rise. Then the winds speed up again, a phenomenon known as divergence.

“Divergence is the opposite effect. It causes a downward motion, attracting air coming down, which is drier, and suppresses precipitation. I was wondering what would also happen when there is an offshore farm”, she said.

Multiple simulations

The researchers modelled a range of simulations with hypothetical wind farms staggered along the coasts of Texas and Louisiana. Hypothetical hurricanes caught up in a pattern of convergence would drop their rain before they hit the coast, and then begin divergence, which would mean that even less rain would be carried to landfall.

“By the time the air reaches the land, it’s been squeezed out of a lot of moisture,” Professor Archer said. “We got a 30% reduction of the precipitation with Harvey simulations. That means, potentially, if you have arrays of wind turbines in the areas where there are hurricanes, you will likely see a reduction in precipitation inland if the farm is there.”

This doesn’t mean that wind farms can always take the heat out of a hurricane: important factors include the hurricane’s precise track and the distance offshore of the turbines. There are no wind farms anywhere in the world with the tens of thousands of turbines modelled in the simulation: one of the world’s biggest, off Anholt Island, Denmark, has only 111 turbines.

“The more windfarms you have, the more impact they will have on a hurricane,” Professor Archer said. “By the time a hurricane actually makes a landfall, these arrays of turbines have been operating for days and days, extracting energy and moisture out of the storm. As a result, the storm will be weaker. Literally.” − Climate News Network

When high winds meet tall sails in the right place, something’s got to give. Offshore wind farms may lead to weakened hurricanes.

LONDON, 23 October, 2018 − US scientists have identified yet another wonder of that icon of renewable energy, the offshore wind farm: they may result in weakened hurricanes. Turbines in the right place could not just take the heat out of a hurricane, they could reduce the risk of catastrophic flooding as well.

The prediction is based entirely on computer simulation: the US so far has just one 30MW commercial wind farm in operation with just five turbines, off the coast of Rhode Island.

But the reasoning begins from the basic laws of physics, and the answer delivers yet another argument for investment in renewable sources of energy, if only because the ferocity and destructive power of US hurricanes is set to increase with ever-greater emissions of greenhouse gases from fossil fuel combustion, and consequent ever-greater global warming.

Cristina Archer, a scientist at the University of Delaware, has already studied the ideal placing of wind turbines to extract maximum energy from the world’s winds, and more recently confirmed, with other researchers, that any hurricane that blew over a big enough marine wind farm would shed energy and hit the land with less destructive power.

“If you have arrays of wind turbines in the areas where there are hurricanes, you will likely see a reduction in precipitation inland”

It is an axiom of physics that energy is always conserved: if a turbine’s sails generate electrical energy from wind, then some of the kinetic energy of the wind must be surrendered.

Professor Archer and her colleagues report in the journal Environmental Research Letters that they took, among others, the case of Hurricane Harvey, which in 2017 deposited almost two thirds of a metre of rainwater on Houston, Texas, to cause devastating floods. They tested the behaviour of the simulated hurricane as it blew across a hypothetical barrier of from zero to 74,619 turbines.

When strong winds hit the turbines, they slow down. Wind scientists call this convergence. Winds slow, and are more likely to dump the water they hold, and then rise. Then the winds speed up again, a phenomenon known as divergence.

“Divergence is the opposite effect. It causes a downward motion, attracting air coming down, which is drier, and suppresses precipitation. I was wondering what would also happen when there is an offshore farm”, she said.

Multiple simulations

The researchers modelled a range of simulations with hypothetical wind farms staggered along the coasts of Texas and Louisiana. Hypothetical hurricanes caught up in a pattern of convergence would drop their rain before they hit the coast, and then begin divergence, which would mean that even less rain would be carried to landfall.

“By the time the air reaches the land, it’s been squeezed out of a lot of moisture,” Professor Archer said. “We got a 30% reduction of the precipitation with Harvey simulations. That means, potentially, if you have arrays of wind turbines in the areas where there are hurricanes, you will likely see a reduction in precipitation inland if the farm is there.”

This doesn’t mean that wind farms can always take the heat out of a hurricane: important factors include the hurricane’s precise track and the distance offshore of the turbines. There are no wind farms anywhere in the world with the tens of thousands of turbines modelled in the simulation: one of the world’s biggest, off Anholt Island, Denmark, has only 111 turbines.

“The more windfarms you have, the more impact they will have on a hurricane,” Professor Archer said. “By the time a hurricane actually makes a landfall, these arrays of turbines have been operating for days and days, extracting energy and moisture out of the storm. As a result, the storm will be weaker. Literally.” − Climate News Network

*

UK nuclear industry has a sinking feeling

Officially the UK nuclear industry is going ahead with building a new generation of power stations. But it can’t find anyone to pay for them.

LONDON, 4 October, 2018 – The future of the UK nuclear industry looks increasingly bleak, despite the Conservative government’s continued insistence that it wants to build up to 10 new nuclear power stations.

One of the flagship schemes, the £15 billion ($19.5bn) Moorside development in Cumbria in north-west England, made 70 of its 100 staff redundant in September because the current owners, Toshiba, are unable to finance it and cannot find a buyer.

Tom Samson, the managing director of NuGen, the company set up to construct the power station, said he was fighting “tooth and nail” to save it but that there was “a real danger” the whole idea would be abandoned.

With renewable electricity becoming much cheaper than new nuclear power in the UK, the proposed stations have the added disadvantage that they are remote from population centres and would need expensive new grid connections.

There seem to be two main reasons for the government’s continued enthusiasm for nuclear power – the need to keep the nation’s nuclear weapons properly maintained, and political considerations about providing new jobs in remote areas where there are already nuclear installations that are being run down or decommissioned.

Need for jobs

Martin Forwood, from Cumbrians Opposed to a Radioactive Environment, said: “I have never thought that Moorside would go ahead. It was always about sustaining jobs at Sellafield where the nuclear reprocessing works are all being closed down. The place is the wrong end of the country from where the electricity is needed.”

Moorside was to be taken over by the Korean Electric Power Corp. (Kepco), “the preferred bidder”, and the company is still in talks with Toshiba, but has lost support from the South Korean government and is unlikely to proceed.

A similar affliction of lack of financial backers is affecting plans by another Japanese giant, Hitachi, to build an equally ambitious project at Wylfa on the isle of Anglesey in Wales. This is also a remote site with an existing but redundant nuclear station and, coincidentally, a marginal constituency where voters badly need new jobs.

Again, finding a company, or even a country, with deep enough pockets to help build this power station is proving difficult, even though the UK government has offered to underwrite part of the cost.

The only project that is going ahead so far is at Hinkley Point in Somerset in the west of England, where the French nuclear company EDF is set to build two of its new generation reactors.

Double problem

More than 3,000 people are already working on the site, but its future still remains in doubt. This is because of the difficulties both of building what appears to be a troublesome design, and of the French state-owned company’s own debts.

In France EDF has 58 ageing reactors in its fleet, most of which need upgrading to meet safety requirements, with others more than 40 years old due for closure. The costs of the upgrades plus the decommissioning will create an even bigger debt problem, making investment in new reactors virtually impossible.

This financial hurdle may yet halt construction of Hinkley Point’s twin reactors, effectively killing off nuclear new build in Britain. Officially, however, the Chinese are still hoping to build a reactor at Bradwell, east of London, and EDF two more reactors at Sizewell in Suffolk, further east on the coast of England.

Already there are doubts about these, and in any case they are years away from construction starting. Other proposed projects have disappeared from sight entirely.

At the heart of the problem is the immense amount of capital needed to finance the building of reactors, which typically double in cost during lengthy construction periods, with completion delays, in the case of the French design, stretching to ten years or more.

“The industrial capabilities and associated costs of military nuclear programmes are unsupportable without civil nuclear power”

Faced with the fact that even the largest companies with plenty of money are reluctant to invest in nuclear power, many countries have abandoned their nuclear power programmes. The exceptions are countries that have nuclear weapons, or perhaps aspire to have them in the future.

After 40 years of denials Western governments have openly admitted in the last two years that their ability to build and maintain their nuclear submarines and weapons depends on having a healthy civil reactor programme at the same time.

The military need highly skilled personnel to keep their submarines running and to constantly update their nuclear weapons, because the material they are made of is volatile and constantly needs renewing. Without a pool of “civilian” nuclear workers to draw on, the military programme would be in danger of crumbling.

Phil Johnstone, a research fellow at the University of Sussex, UK, who has researched the link between civil and nuclear power, said: “A factor in why the UK persists so intensely with an uneconomic and much-delayed new nuclear programme and rejects cheaper renewable alternatives, seems to be to maintain and cross-subsidise the already costly nuclear submarine industrial base.

“After a decade of the rhetorical separation of civil and military nuclear programmes by industry and governments, recent high-level statements in the USA, the UK, and France highlight that the industrial capabilities and associated costs of military nuclear programmes are unsupportable without civil nuclear power.”

Concern for democracy

Andy Stirling, professor of science and technology at the Science Policy Research Unit at the same university, added: “Given the remarkable lack of almost any discussion that a key driver for civil nuclear is supporting the costs of the defence nuclear programme – either in official UK energy policy or formal scrutiny by official bodies – this raises significant concerns about the state of UK democracy more broadly.”

Despite these setbacks the nuclear industry is still pushing the idea that new stations are needed if the world, and particularly the UK, are to meet their climate targets. The New Nuclear Watch Institute (NNWI), a British think tank funded by the nuclear industry, has produced a report saying that only with new nuclear stations could the UK hope to meet its greenhouse gas targets.

Tim Yeo, chairman of NNWI, said: “We often hear that new nuclear build is expensive. It turns out that, in fact, if all hidden costs are factored in, abandoning nuclear comes at an even higher price.

“Abandoning nuclear power leads unavoidably to a very big increase in carbon emissions which will prevent Britain from meeting its legally binding climate change commitments.

“If the UK is to successfully meet the challenges faced by its power sector, the world’s only source of low-carbon baseload power generation – nuclear – must feature strongly in its ambitions.” – Climate News Network

Officially the UK nuclear industry is going ahead with building a new generation of power stations. But it can’t find anyone to pay for them.

LONDON, 4 October, 2018 – The future of the UK nuclear industry looks increasingly bleak, despite the Conservative government’s continued insistence that it wants to build up to 10 new nuclear power stations.

One of the flagship schemes, the £15 billion ($19.5bn) Moorside development in Cumbria in north-west England, made 70 of its 100 staff redundant in September because the current owners, Toshiba, are unable to finance it and cannot find a buyer.

Tom Samson, the managing director of NuGen, the company set up to construct the power station, said he was fighting “tooth and nail” to save it but that there was “a real danger” the whole idea would be abandoned.

With renewable electricity becoming much cheaper than new nuclear power in the UK, the proposed stations have the added disadvantage that they are remote from population centres and would need expensive new grid connections.

There seem to be two main reasons for the government’s continued enthusiasm for nuclear power – the need to keep the nation’s nuclear weapons properly maintained, and political considerations about providing new jobs in remote areas where there are already nuclear installations that are being run down or decommissioned.

Need for jobs

Martin Forwood, from Cumbrians Opposed to a Radioactive Environment, said: “I have never thought that Moorside would go ahead. It was always about sustaining jobs at Sellafield where the nuclear reprocessing works are all being closed down. The place is the wrong end of the country from where the electricity is needed.”

Moorside was to be taken over by the Korean Electric Power Corp. (Kepco), “the preferred bidder”, and the company is still in talks with Toshiba, but has lost support from the South Korean government and is unlikely to proceed.

A similar affliction of lack of financial backers is affecting plans by another Japanese giant, Hitachi, to build an equally ambitious project at Wylfa on the isle of Anglesey in Wales. This is also a remote site with an existing but redundant nuclear station and, coincidentally, a marginal constituency where voters badly need new jobs.

Again, finding a company, or even a country, with deep enough pockets to help build this power station is proving difficult, even though the UK government has offered to underwrite part of the cost.

The only project that is going ahead so far is at Hinkley Point in Somerset in the west of England, where the French nuclear company EDF is set to build two of its new generation reactors.

Double problem

More than 3,000 people are already working on the site, but its future still remains in doubt. This is because of the difficulties both of building what appears to be a troublesome design, and of the French state-owned company’s own debts.

In France EDF has 58 ageing reactors in its fleet, most of which need upgrading to meet safety requirements, with others more than 40 years old due for closure. The costs of the upgrades plus the decommissioning will create an even bigger debt problem, making investment in new reactors virtually impossible.

This financial hurdle may yet halt construction of Hinkley Point’s twin reactors, effectively killing off nuclear new build in Britain. Officially, however, the Chinese are still hoping to build a reactor at Bradwell, east of London, and EDF two more reactors at Sizewell in Suffolk, further east on the coast of England.

Already there are doubts about these, and in any case they are years away from construction starting. Other proposed projects have disappeared from sight entirely.

At the heart of the problem is the immense amount of capital needed to finance the building of reactors, which typically double in cost during lengthy construction periods, with completion delays, in the case of the French design, stretching to ten years or more.

“The industrial capabilities and associated costs of military nuclear programmes are unsupportable without civil nuclear power”

Faced with the fact that even the largest companies with plenty of money are reluctant to invest in nuclear power, many countries have abandoned their nuclear power programmes. The exceptions are countries that have nuclear weapons, or perhaps aspire to have them in the future.

After 40 years of denials Western governments have openly admitted in the last two years that their ability to build and maintain their nuclear submarines and weapons depends on having a healthy civil reactor programme at the same time.

The military need highly skilled personnel to keep their submarines running and to constantly update their nuclear weapons, because the material they are made of is volatile and constantly needs renewing. Without a pool of “civilian” nuclear workers to draw on, the military programme would be in danger of crumbling.

Phil Johnstone, a research fellow at the University of Sussex, UK, who has researched the link between civil and nuclear power, said: “A factor in why the UK persists so intensely with an uneconomic and much-delayed new nuclear programme and rejects cheaper renewable alternatives, seems to be to maintain and cross-subsidise the already costly nuclear submarine industrial base.

“After a decade of the rhetorical separation of civil and military nuclear programmes by industry and governments, recent high-level statements in the USA, the UK, and France highlight that the industrial capabilities and associated costs of military nuclear programmes are unsupportable without civil nuclear power.”

Concern for democracy

Andy Stirling, professor of science and technology at the Science Policy Research Unit at the same university, added: “Given the remarkable lack of almost any discussion that a key driver for civil nuclear is supporting the costs of the defence nuclear programme – either in official UK energy policy or formal scrutiny by official bodies – this raises significant concerns about the state of UK democracy more broadly.”

Despite these setbacks the nuclear industry is still pushing the idea that new stations are needed if the world, and particularly the UK, are to meet their climate targets. The New Nuclear Watch Institute (NNWI), a British think tank funded by the nuclear industry, has produced a report saying that only with new nuclear stations could the UK hope to meet its greenhouse gas targets.

Tim Yeo, chairman of NNWI, said: “We often hear that new nuclear build is expensive. It turns out that, in fact, if all hidden costs are factored in, abandoning nuclear comes at an even higher price.

“Abandoning nuclear power leads unavoidably to a very big increase in carbon emissions which will prevent Britain from meeting its legally binding climate change commitments.

“If the UK is to successfully meet the challenges faced by its power sector, the world’s only source of low-carbon baseload power generation – nuclear – must feature strongly in its ambitions.” – Climate News Network

*

Warmer climate means US faces big losses

Greenhouse gas emissions impose a social cost – in ecosystem damage, in climate extremes, in human health and wealth. The US faces big losses.

LONDON, 3 October, 2018 – Of the nations that stand to be most seriously affected by climate change, perhaps surprisingly, near the top of the list, the US faces big losses.

American and European scientists have taken a fresh look at what they call the social cost of carbon (SCC): that is, the damage that greenhouse gas emissions from fossil fuel combustion will do to world economies. And whichever way they make the country-by-country comparisons, one nation is among the world leaders in self-harm – the USA.

It is not alone: India, a rapidly-growing economy, and Saudi Arabia, one of the world’s wealthiest, join the US in the top three. China, which is now the world’s highest carbon dioxide emitter, is in the top five.

Calculations about the future economic costs of something that has yet to happen in a fast-changing world are of the kind that induce migraine, and always incorporate a wide range of possible outcomes.

The US Environmental Protection Agency has proposed that by 2020, the global costs of an additional tonne of carbon dioxide in the atmosphere could range from $12 to $62. But a new study in the journal Nature Climate Change suggests that these costs could be much higher, at approximately $180 to $800 per tonne.

“It’s surprising just how consistently the US is one of the biggest losers, even when compared to other large economies”

And the price to be paid by the US alone could be $50 per tonne. Since the US – which under President Trump has announced its intention to withdraw from a 2015 global agreement to limit greenhouse gas emissions – now emits almost five billion tonnes of CO2 a year, this could be costing the US economy about $250bn.

“We all know carbon dioxide released from burning fossil fuels affects people and ecosystems around the world, today and in the future; however, these impacts are not included in market prices, creating an environmental externality whereby consumers of fossil fuel energy do not pay for and are unaware of the true costs of their consumption,” said Katharine Ricke of the University of San Diego, who led the study.

President Trump once dismissed global warming and climate change driven by profligate fossil fuel use as a “hoax” devised by the Chinese. But US climate research – often from US government agencies such as NASA and the National Atmospheric and Oceanic Administration – has consistently warned of the potentially devastating future costs to the US.

Coastal flooding could create a new class of climate refugee within the US. Hurricanes will gain in ferocity and potential devastation. Forest fires are already on the increase.

The famously arid drylands of the US west have begun to march eastwards, and the extremes of heat and drought linked to a rise in global average warming are almost certain to cause harvest losses, all as a consequence of fossil fuel emissions. Clean energy policies, conversely, could cut air pollution and save American lives.

Assumptions reversed

The San Diego research reverses some long-standing assumptions, one of which is that while strong, rich economies benefit from fossil fuel use, the developing nations pay the highest price in the social costs of carbon, or SCCs.

The new calculations suggest much more uneven outcomes: the European Union, for instance, is likely to be less harmed by increased emissions, even though it is one of the world leaders in the attempt to combat climate change.

“Our analysis demonstrates that the argument that the primary beneficiaries of reductions in carbon dioxide emissions would be other countries is a total myth,” said Dr Ricke.

“We consistently find, through hundreds of uncertainty scenarios, that the US always has one of the highest country-level SCCs. It makes a lot of sense because the larger your economy is, the more you have to lose.

“Still, it’s surprising just how consistently the US is one of the biggest losers, even when compared to other large economies.” – Climate News Network

Greenhouse gas emissions impose a social cost – in ecosystem damage, in climate extremes, in human health and wealth. The US faces big losses.

LONDON, 3 October, 2018 – Of the nations that stand to be most seriously affected by climate change, perhaps surprisingly, near the top of the list, the US faces big losses.

American and European scientists have taken a fresh look at what they call the social cost of carbon (SCC): that is, the damage that greenhouse gas emissions from fossil fuel combustion will do to world economies. And whichever way they make the country-by-country comparisons, one nation is among the world leaders in self-harm – the USA.

It is not alone: India, a rapidly-growing economy, and Saudi Arabia, one of the world’s wealthiest, join the US in the top three. China, which is now the world’s highest carbon dioxide emitter, is in the top five.

Calculations about the future economic costs of something that has yet to happen in a fast-changing world are of the kind that induce migraine, and always incorporate a wide range of possible outcomes.

The US Environmental Protection Agency has proposed that by 2020, the global costs of an additional tonne of carbon dioxide in the atmosphere could range from $12 to $62. But a new study in the journal Nature Climate Change suggests that these costs could be much higher, at approximately $180 to $800 per tonne.

“It’s surprising just how consistently the US is one of the biggest losers, even when compared to other large economies”

And the price to be paid by the US alone could be $50 per tonne. Since the US – which under President Trump has announced its intention to withdraw from a 2015 global agreement to limit greenhouse gas emissions – now emits almost five billion tonnes of CO2 a year, this could be costing the US economy about $250bn.

“We all know carbon dioxide released from burning fossil fuels affects people and ecosystems around the world, today and in the future; however, these impacts are not included in market prices, creating an environmental externality whereby consumers of fossil fuel energy do not pay for and are unaware of the true costs of their consumption,” said Katharine Ricke of the University of San Diego, who led the study.

President Trump once dismissed global warming and climate change driven by profligate fossil fuel use as a “hoax” devised by the Chinese. But US climate research – often from US government agencies such as NASA and the National Atmospheric and Oceanic Administration – has consistently warned of the potentially devastating future costs to the US.

Coastal flooding could create a new class of climate refugee within the US. Hurricanes will gain in ferocity and potential devastation. Forest fires are already on the increase.

The famously arid drylands of the US west have begun to march eastwards, and the extremes of heat and drought linked to a rise in global average warming are almost certain to cause harvest losses, all as a consequence of fossil fuel emissions. Clean energy policies, conversely, could cut air pollution and save American lives.

Assumptions reversed

The San Diego research reverses some long-standing assumptions, one of which is that while strong, rich economies benefit from fossil fuel use, the developing nations pay the highest price in the social costs of carbon, or SCCs.

The new calculations suggest much more uneven outcomes: the European Union, for instance, is likely to be less harmed by increased emissions, even though it is one of the world leaders in the attempt to combat climate change.

“Our analysis demonstrates that the argument that the primary beneficiaries of reductions in carbon dioxide emissions would be other countries is a total myth,” said Dr Ricke.

“We consistently find, through hundreds of uncertainty scenarios, that the US always has one of the highest country-level SCCs. It makes a lot of sense because the larger your economy is, the more you have to lose.

“Still, it’s surprising just how consistently the US is one of the biggest losers, even when compared to other large economies.” – Climate News Network