Tag Archives: Warming

Now ticks flee the heat by taking to the mountains

Higher temperatures are driving more creatures to climb higher for comfort. Now ticks flee the heat to stay cool.

LONDON, 30 April, 2021 – A warming climate means many fish species swim polewards in search of cooler waters. Warming can cause birds to change migration patterns, and the growing season of plants and trees also alters as temperatures rise. The latest refugees? Now ticks flee the heat by heading higher.

There’s mounting evidence that ticks – those bothersome blood-sucking creatures which take up residence on animals and humans – are changing their ways and spreading to new regions, encouraged by global warming.

Nicolas De Pelsmaeker of the University of South-Eastern Norway (USN) has been leading a team of researchers tracking the spread of ticks in the mountains of southern Norway. He and his colleagues have found ticks at altitudes of 1,000 metres.

“Before this discovery ticks had not been found at altitudes higher than 583m above sea level,” De Pelsmaeker says in an article on the Science Nordic website.

“An increase of ticks at greater heights will increase the risk of being bitten and the transmission of tick-borne diseases”

“A dramatic development has taken place over a short period of time and we do not know where it will stop. Further studies can tell us if ticks are present even higher up in the mountains.”

Ticks – there are believed to be 900 different species in the world – are amazingly resilient and tenacious. Experiments have shown that female ticks – they out-tough the males – can live without air, completely immersed in water, for up to 13 days with no sign of weakening.

Ticks can also adapt to different temperatures, and are at their most energetic in warmth. Some can live for seven years, while others have been found to go on drinking the blood of animals – and humans – for up to 20 years.

“They hibernate when the temperature falls below five or six degrees Celsius,” says De Pelsmaeker, who uses his fridge to monitor tick behaviour.

Risk to humans

“They virtually stop all their bodily functions. As soon as the temperature rises, they become active again.”

In the course of its fieldwork, the USN team captured 3500 small rodents in Norway’s southern mountains. More than 15,000 tick larvae were found on the animals.

Tick bites can be fatal for livestock. They can also spread disease among humans, causing borreliosis or Lyme disease, a debilitating condition.

“Many Norwegians spend a lot of time in the mountains,” says De Pelsmaeker. “An increase of ticks at greater heights will increase the risk of being bitten and therefore also the transmission of tick-borne diseases.”

Potential uses

As temperatures rise in various parts of the world, the incidence of Lyme disease is increasing, as is evident particularly in parts of the US.

In Norway there are signs that more tick species are arriving in the country, hitching a ride on birds migrating from warmer parts of the world. In the past these ticks from more southern regions would not have survived, but as the climate in Norway warms the chances of their survival increase.

Ticks are not all bad. Scientists are analysing whether the substance which ticks use to glue themselves to their hosts could be used to bind human skin after operations, or on wounds and injuries.

Tick saliva might be used to treat skin diseases. “Because ticks often drink blood over the course of several days, they do not want to be detected by the host,” says De Pelsmaeker. “Therefore special molecules are also present in the saliva that prevent skin irritation and itching.” – Climate News Network

Higher temperatures are driving more creatures to climb higher for comfort. Now ticks flee the heat to stay cool.

LONDON, 30 April, 2021 – A warming climate means many fish species swim polewards in search of cooler waters. Warming can cause birds to change migration patterns, and the growing season of plants and trees also alters as temperatures rise. The latest refugees? Now ticks flee the heat by heading higher.

There’s mounting evidence that ticks – those bothersome blood-sucking creatures which take up residence on animals and humans – are changing their ways and spreading to new regions, encouraged by global warming.

Nicolas De Pelsmaeker of the University of South-Eastern Norway (USN) has been leading a team of researchers tracking the spread of ticks in the mountains of southern Norway. He and his colleagues have found ticks at altitudes of 1,000 metres.

“Before this discovery ticks had not been found at altitudes higher than 583m above sea level,” De Pelsmaeker says in an article on the Science Nordic website.

“An increase of ticks at greater heights will increase the risk of being bitten and the transmission of tick-borne diseases”

“A dramatic development has taken place over a short period of time and we do not know where it will stop. Further studies can tell us if ticks are present even higher up in the mountains.”

Ticks – there are believed to be 900 different species in the world – are amazingly resilient and tenacious. Experiments have shown that female ticks – they out-tough the males – can live without air, completely immersed in water, for up to 13 days with no sign of weakening.

Ticks can also adapt to different temperatures, and are at their most energetic in warmth. Some can live for seven years, while others have been found to go on drinking the blood of animals – and humans – for up to 20 years.

“They hibernate when the temperature falls below five or six degrees Celsius,” says De Pelsmaeker, who uses his fridge to monitor tick behaviour.

Risk to humans

“They virtually stop all their bodily functions. As soon as the temperature rises, they become active again.”

In the course of its fieldwork, the USN team captured 3500 small rodents in Norway’s southern mountains. More than 15,000 tick larvae were found on the animals.

Tick bites can be fatal for livestock. They can also spread disease among humans, causing borreliosis or Lyme disease, a debilitating condition.

“Many Norwegians spend a lot of time in the mountains,” says De Pelsmaeker. “An increase of ticks at greater heights will increase the risk of being bitten and therefore also the transmission of tick-borne diseases.”

Potential uses

As temperatures rise in various parts of the world, the incidence of Lyme disease is increasing, as is evident particularly in parts of the US.

In Norway there are signs that more tick species are arriving in the country, hitching a ride on birds migrating from warmer parts of the world. In the past these ticks from more southern regions would not have survived, but as the climate in Norway warms the chances of their survival increase.

Ticks are not all bad. Scientists are analysing whether the substance which ticks use to glue themselves to their hosts could be used to bind human skin after operations, or on wounds and injuries.

Tick saliva might be used to treat skin diseases. “Because ticks often drink blood over the course of several days, they do not want to be detected by the host,” says De Pelsmaeker. “Therefore special molecules are also present in the saliva that prevent skin irritation and itching.” – Climate News Network

Human activity alters Earth’s spin on its axis

The planet may not catch fire, but climate change really has altered the Earth’s spin on its axis as it rounds the sun.

LONDON, 29 April, 2021 − Human action has altered Earth’s spin on its axis. Climate change since 1990 has altered both the rate and the direction of the drift of the north and south poles.

Chinese researchers report in the journal Geophysical Research Letters that on the basis of their calculations, the dramatic melting of the Antarctic and Greenland ice caps and the Andean glaciers of South America has shifted the weight of the global water storage system and affected the planetary drift of the poles.

This glacial loss has been compounded by massive increases in the use of groundwater − most of the planet’s fresh water is in fact stored in subterranean aquifers − which have helped to accelerate the rate of change.

It sounds like the plot of a science fiction film. It was in fact the plot of a British 1961 science fiction film, The Day the Earth Caught Fire. In that fantasia, Cold War superpower nuclear tests unintentionally alter the planet’s axis of rotation and trigger dramatic changes in climate.

In fact, in the real-life, here-and-now version of planetary rotational shift, climate change driven by economic growth powered by profligate fossil fuel use is the cause. And the superpowers have yet to decide upon a course correction.

Polar speed-up

There is a second difference: the axis of the rotational poles has always shifted, from year to year, in response to the distribution of ice and groundwater, and the oceanic currents; and from aeon to aeon in response to the movements of the continents, and the sloshing of molten iron at the Earth’s core.

What has happened since 1990 is that water loss from both the glaciated land surface and the soil beneath the inhabited surface has been so pronounced that it has tilted the North Pole away from Canada and towards Russia, and accelerated the rate at which this is happening.

Since 1990, geographic North has been tilting, in geodetic language, towards longitude 26°E at the rate of 3.28 milliseconds of arc per year. One millisecond of arc is about 3 cms.

The story has been pieced together by data from a US-German satellite system known as GRACE (short for Gravity Recovery and Climate Experiment), which has been recording ice loss and water storage for most of this century.

“The faster ice-melting under global warming was the most likely cause of the directional change of the polar drift in the 1990s”

The researchers, from the Chinese Academy of Sciences, already had access to 176 years of precision measurement of the polar axial shift. In fact, the loss of ice from both the north and south polar regions has been colossal, and has been happening at speed.

Groundwater, too, has been abstracted at accelerating rates and the study notes that while in 1989 India pumped 194 billion cubic metres from the soil, by 2010 this had reached 351 billion cubic metres. There had, too, been dramatic changes in the water levels of vast inland lakes such as the Aral Sea.

The planet is always in a state of change: the magnetic poles are on the move and scientists have confirmed that climate over very long periods is affected by changes in planetary orbit.

Other teams of researchers had separately confirmed that climate change − and the redistribution of water around the planet − must have altered the length of the day by millionths of a second in the course of a year. But the new research has established something more immediately measurable: the alteration of the pattern of rotational tilt.

“The faster ice-melting under global warming was the most likely cause of the directional change of the polar drift in the 1990s,” the researchers conclude. − Climate News Network

The planet may not catch fire, but climate change really has altered the Earth’s spin on its axis as it rounds the sun.

LONDON, 29 April, 2021 − Human action has altered Earth’s spin on its axis. Climate change since 1990 has altered both the rate and the direction of the drift of the north and south poles.

Chinese researchers report in the journal Geophysical Research Letters that on the basis of their calculations, the dramatic melting of the Antarctic and Greenland ice caps and the Andean glaciers of South America has shifted the weight of the global water storage system and affected the planetary drift of the poles.

This glacial loss has been compounded by massive increases in the use of groundwater − most of the planet’s fresh water is in fact stored in subterranean aquifers − which have helped to accelerate the rate of change.

It sounds like the plot of a science fiction film. It was in fact the plot of a British 1961 science fiction film, The Day the Earth Caught Fire. In that fantasia, Cold War superpower nuclear tests unintentionally alter the planet’s axis of rotation and trigger dramatic changes in climate.

In fact, in the real-life, here-and-now version of planetary rotational shift, climate change driven by economic growth powered by profligate fossil fuel use is the cause. And the superpowers have yet to decide upon a course correction.

Polar speed-up

There is a second difference: the axis of the rotational poles has always shifted, from year to year, in response to the distribution of ice and groundwater, and the oceanic currents; and from aeon to aeon in response to the movements of the continents, and the sloshing of molten iron at the Earth’s core.

What has happened since 1990 is that water loss from both the glaciated land surface and the soil beneath the inhabited surface has been so pronounced that it has tilted the North Pole away from Canada and towards Russia, and accelerated the rate at which this is happening.

Since 1990, geographic North has been tilting, in geodetic language, towards longitude 26°E at the rate of 3.28 milliseconds of arc per year. One millisecond of arc is about 3 cms.

The story has been pieced together by data from a US-German satellite system known as GRACE (short for Gravity Recovery and Climate Experiment), which has been recording ice loss and water storage for most of this century.

“The faster ice-melting under global warming was the most likely cause of the directional change of the polar drift in the 1990s”

The researchers, from the Chinese Academy of Sciences, already had access to 176 years of precision measurement of the polar axial shift. In fact, the loss of ice from both the north and south polar regions has been colossal, and has been happening at speed.

Groundwater, too, has been abstracted at accelerating rates and the study notes that while in 1989 India pumped 194 billion cubic metres from the soil, by 2010 this had reached 351 billion cubic metres. There had, too, been dramatic changes in the water levels of vast inland lakes such as the Aral Sea.

The planet is always in a state of change: the magnetic poles are on the move and scientists have confirmed that climate over very long periods is affected by changes in planetary orbit.

Other teams of researchers had separately confirmed that climate change − and the redistribution of water around the planet − must have altered the length of the day by millionths of a second in the course of a year. But the new research has established something more immediately measurable: the alteration of the pattern of rotational tilt.

“The faster ice-melting under global warming was the most likely cause of the directional change of the polar drift in the 1990s,” the researchers conclude. − Climate News Network

Cool homes and hot water are there on the cheap

Would you like cool homes and hot water without paying to power them? They’re already working in the laboratory.

LONDON, 27 April, 2021 − It sounds like the stuff that dreams are made of: fit equipment to provide cool homes and hot water, and then pay nothing in running costs.

US scientists have worked out how to install the equivalent of 10 kilowatts of cooling equipment without even switching on the electricity. It’s simple: paint the place white. Not just any old white, but a new ultrawhite pigment that can reflect back into the sky more than 98% of the sunlight that falls on it.

And another US team has devised a passive cooling system that could be turned into a roofing material able to lower room temperatures by 12°C by day and 14°C at night, while capturing enough solar power to heat household water to about 60°C.

Each innovation is still at the demonstration stage; neither is likely to be commercially available soon. But each is a fresh instance of the resourcefulness and ingenuity at work in the world’s laboratories to address what is soon going to be one of the hottest topics of the planet: potentially lethal extremes of summer heat as global average temperatures rise, in response to ever more profligate use of fossil fuels.

The problem could grow to nightmare proportions. Researchers have warned that in the next fifty years, up to 3bn people could face temperatures now experienced only by those who live in the Sahara desert.

Increased energy appetite

By 2100, some half a billion people could face heat extremes of 56°C − about the hottest recorded anywhere so far − and people in the cities may face even higher hazard levels.

Air-conditioning systems driven by electricity might cool the homes of the well-off, but they also heighten the demand for energy, and will raise the temperature in the streets. And once again, the poorest people in the most crowded cities will be most at risk.

So for years researchers have been examining new and sometimes ancient techniques for passive cooling. Researchers in Indiana have already devised a pigment that could reflect more than 95% of the sunlight that hits it. Now, in the American Chemical Society’s journal ACS Applied Materials and Interfaces, they report that their latest paint formulation based on barium sulphate particles can deflect up to 98.1% of the light away, while releasing infrared heat as well.

“If you were to use this paint to cover a roof area of about 1,000 square feet, we estimate that you could get a cooling power of 10 kilowatts,” said Xiulan Ruan, a mechanical engineer at Purdue University, and one of the authors. “That’s more powerful than the central air conditioners used by most houses.”

And at the University of Buffalo, New York state, electrical engineers have experimented with a passive system that under direct sunlight can not only lower the temperature of the chamber it shields: it can also capture enough solar power to heat water.

“It can retain both the heating and cooling effects in a single system with no electricity. It’s really a sort of a ‘magic’ system of ice and fire”

Right now, they say in the journal Cell Reports Physical Science, their mirror-based system is no more than 70cms squared, but it could be scaled up to cover rooftops.

It could not only reduce the need for fossil fuels to generate heat and power cooling systems; it could also one day help those with little or no access to electricity.

The mirrors, based on silver and silicon dioxide, absorb sunlight, and then convert it to heat which is funnelled into an emitter that sends the warmth back into the sky. In outdoor tests it reduced temperatures by 12°C; in the laboratory, it achieved a cooling of more than 14°C.

“Importantly, our system does not simply waste the solar input energy. Instead, the solar energy is absorbed by the solar spectral selective mirrors and it can be used for solar water heating,” said Qiaoqiang Gan, an electrical engineer at Buffalo.

“It can retain both the solar heating and radiative cooling effects in a single system with no need of electricity. It’s really a sort of a ‘magic’ system of ice and fire.” − Climate News Network

Would you like cool homes and hot water without paying to power them? They’re already working in the laboratory.

LONDON, 27 April, 2021 − It sounds like the stuff that dreams are made of: fit equipment to provide cool homes and hot water, and then pay nothing in running costs.

US scientists have worked out how to install the equivalent of 10 kilowatts of cooling equipment without even switching on the electricity. It’s simple: paint the place white. Not just any old white, but a new ultrawhite pigment that can reflect back into the sky more than 98% of the sunlight that falls on it.

And another US team has devised a passive cooling system that could be turned into a roofing material able to lower room temperatures by 12°C by day and 14°C at night, while capturing enough solar power to heat household water to about 60°C.

Each innovation is still at the demonstration stage; neither is likely to be commercially available soon. But each is a fresh instance of the resourcefulness and ingenuity at work in the world’s laboratories to address what is soon going to be one of the hottest topics of the planet: potentially lethal extremes of summer heat as global average temperatures rise, in response to ever more profligate use of fossil fuels.

The problem could grow to nightmare proportions. Researchers have warned that in the next fifty years, up to 3bn people could face temperatures now experienced only by those who live in the Sahara desert.

Increased energy appetite

By 2100, some half a billion people could face heat extremes of 56°C − about the hottest recorded anywhere so far − and people in the cities may face even higher hazard levels.

Air-conditioning systems driven by electricity might cool the homes of the well-off, but they also heighten the demand for energy, and will raise the temperature in the streets. And once again, the poorest people in the most crowded cities will be most at risk.

So for years researchers have been examining new and sometimes ancient techniques for passive cooling. Researchers in Indiana have already devised a pigment that could reflect more than 95% of the sunlight that hits it. Now, in the American Chemical Society’s journal ACS Applied Materials and Interfaces, they report that their latest paint formulation based on barium sulphate particles can deflect up to 98.1% of the light away, while releasing infrared heat as well.

“If you were to use this paint to cover a roof area of about 1,000 square feet, we estimate that you could get a cooling power of 10 kilowatts,” said Xiulan Ruan, a mechanical engineer at Purdue University, and one of the authors. “That’s more powerful than the central air conditioners used by most houses.”

And at the University of Buffalo, New York state, electrical engineers have experimented with a passive system that under direct sunlight can not only lower the temperature of the chamber it shields: it can also capture enough solar power to heat water.

“It can retain both the heating and cooling effects in a single system with no electricity. It’s really a sort of a ‘magic’ system of ice and fire”

Right now, they say in the journal Cell Reports Physical Science, their mirror-based system is no more than 70cms squared, but it could be scaled up to cover rooftops.

It could not only reduce the need for fossil fuels to generate heat and power cooling systems; it could also one day help those with little or no access to electricity.

The mirrors, based on silver and silicon dioxide, absorb sunlight, and then convert it to heat which is funnelled into an emitter that sends the warmth back into the sky. In outdoor tests it reduced temperatures by 12°C; in the laboratory, it achieved a cooling of more than 14°C.

“Importantly, our system does not simply waste the solar input energy. Instead, the solar energy is absorbed by the solar spectral selective mirrors and it can be used for solar water heating,” said Qiaoqiang Gan, an electrical engineer at Buffalo.

“It can retain both the solar heating and radiative cooling effects in a single system with no need of electricity. It’s really a sort of a ‘magic’ system of ice and fire.” − Climate News Network

Greenhouse gas levels surge despite slow economy

The global economy has been hard hit by the Covid pandemic. But greenhouse gas levels have worryingly shot upwards.

LONDON, 13 April, 2021 – It’s a set of statistics likely to send shivers down the spine of any climate scientist – or everyone concerned about the future of the planet. Despite a slowing world economy due to pandemic shutdowns and other Covid-related factors, climate-changing greenhouse gas levels in the atmosphere surged last year.

The US government’s National Oceanic and Atmospheric Administration (NOAA), one of the world’s leading scientific institutions, says the global rate of increase in CO2 (carbon dioxide) levels in 2020 was the fifth highest on record. If there had been no economic slowdown, NOAA says, the increase in CO2 levels last year would have been the highest since records began.

“Human activity is driving climate change”, says Colm Sweeney, assistant deputy director of NOAA’s global monitoring laboratory. “If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero – and even then we’ll need to look for ways to further remove greenhouse gases from the atmosphere.”

Levels of CO2 in the atmosphere are measured on a parts per million (ppm) basis. Based on measurements gathered at various monitoring stations around the world, NOAA calculates that CO2 levels increased by 2.6 ppm in 2020 to 412.5 ppm, an increase of 12% since 2000 and a concentration level believed to have last been present during the mid-Pliocene Warm Period around 3.6 million years ago.

Methane prompts concern

At that time global sea levels were more than 20 metres higher than they are today, and vast forests are believed to have covered many Arctic regions.

Of even more concern than the surge in CO2 is a jump in levels of methane (CH4) in the atmosphere last year.

Methane is generated from various sources besides fossil fuels, including decaying organic matter, rice paddies, livestock farming and landfill sites.

The worldwide fracking industry is also a significant source of methane emissions. The gas is not as longlived in the atmosphere as CO2, but it is more than 30 times as potent.

“Human activity is driving climate change. If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero”

NOAA says atmospheric concentrations of methane increased last year by the largest level since records began nearly 40 years ago. Scientists have described this jump as surprising – and disturbing.

“It is very scary indeed”, Euan Nisbet, professor of earth sciences at Royal Holloway University in the UK told the Financial Times.

NOAA says the recent increase in methane levels is likely to have more to do with biological sources such as wetlands and livestock than with emissions from fossil fuels.

One theory is that, as temperatures rise and rainfall increases in many tropical regions, more methane is released from wetlands, crops and vegetation: a climate change “tipping point” is reached, as one warming event encourages and reinforces another.

Gas plumes detected

A new generation of highly sophisticated satellites is able to target with ever-increasing accuracy separate incidents of methane escape around the world.

In recent days unusually large releases of methane – known as plumes – have been recorded over Bangladesh, a densely populated low-lying country among those most at risk from changes in climate. The Bangladesh government says the plumes are likely sourced from rice paddies, rubbish dumps and landfill sites.

Earlier this year satellites monitored large amounts of methane escaping from gas pipelines in Turkmenistan in central Asia. Similar plumes were detected over the country last year.

In May 2020 a massive methane plume was detected by satellite over Florida. Investigations are ongoing, but it is thought to have come from the state’s gas pipeline system. – Climate News Network

The global economy has been hard hit by the Covid pandemic. But greenhouse gas levels have worryingly shot upwards.

LONDON, 13 April, 2021 – It’s a set of statistics likely to send shivers down the spine of any climate scientist – or everyone concerned about the future of the planet. Despite a slowing world economy due to pandemic shutdowns and other Covid-related factors, climate-changing greenhouse gas levels in the atmosphere surged last year.

The US government’s National Oceanic and Atmospheric Administration (NOAA), one of the world’s leading scientific institutions, says the global rate of increase in CO2 (carbon dioxide) levels in 2020 was the fifth highest on record. If there had been no economic slowdown, NOAA says, the increase in CO2 levels last year would have been the highest since records began.

“Human activity is driving climate change”, says Colm Sweeney, assistant deputy director of NOAA’s global monitoring laboratory. “If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero – and even then we’ll need to look for ways to further remove greenhouse gases from the atmosphere.”

Levels of CO2 in the atmosphere are measured on a parts per million (ppm) basis. Based on measurements gathered at various monitoring stations around the world, NOAA calculates that CO2 levels increased by 2.6 ppm in 2020 to 412.5 ppm, an increase of 12% since 2000 and a concentration level believed to have last been present during the mid-Pliocene Warm Period around 3.6 million years ago.

Methane prompts concern

At that time global sea levels were more than 20 metres higher than they are today, and vast forests are believed to have covered many Arctic regions.

Of even more concern than the surge in CO2 is a jump in levels of methane (CH4) in the atmosphere last year.

Methane is generated from various sources besides fossil fuels, including decaying organic matter, rice paddies, livestock farming and landfill sites.

The worldwide fracking industry is also a significant source of methane emissions. The gas is not as longlived in the atmosphere as CO2, but it is more than 30 times as potent.

“Human activity is driving climate change. If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuel emissions to near zero”

NOAA says atmospheric concentrations of methane increased last year by the largest level since records began nearly 40 years ago. Scientists have described this jump as surprising – and disturbing.

“It is very scary indeed”, Euan Nisbet, professor of earth sciences at Royal Holloway University in the UK told the Financial Times.

NOAA says the recent increase in methane levels is likely to have more to do with biological sources such as wetlands and livestock than with emissions from fossil fuels.

One theory is that, as temperatures rise and rainfall increases in many tropical regions, more methane is released from wetlands, crops and vegetation: a climate change “tipping point” is reached, as one warming event encourages and reinforces another.

Gas plumes detected

A new generation of highly sophisticated satellites is able to target with ever-increasing accuracy separate incidents of methane escape around the world.

In recent days unusually large releases of methane – known as plumes – have been recorded over Bangladesh, a densely populated low-lying country among those most at risk from changes in climate. The Bangladesh government says the plumes are likely sourced from rice paddies, rubbish dumps and landfill sites.

Earlier this year satellites monitored large amounts of methane escaping from gas pipelines in Turkmenistan in central Asia. Similar plumes were detected over the country last year.

In May 2020 a massive methane plume was detected by satellite over Florida. Investigations are ongoing, but it is thought to have come from the state’s gas pipeline system. – Climate News Network

Plants will be hit as a warming world turns drier

If a warming world becomes a drier one, how will the green things respond? Not well, according to a new prediction.

LONDON, 26 March, 2021 − The air of planet Earth has been gradually drying this century. If this goes on, that could be bad news for humankind. In a warming world crop harvests will dwindle, even in well-watered farmlands, and trees could shrink in height.

The prospect of stunted forests and shortages of food in a world hit by global heating, climate change and rapid population growth is ominous. But if US and Canadian scientists are right, it may be a simple consequence of plant response to a rarely-discussed worldwide phenomenon known as vapour pressure deficit, which has been rising for the past 20 years as the world has warmed.

The argument isn’t a simple one. Higher global temperatures mean more evaporation. Higher atmospheric temperatures also mean that the capacity of the atmosphere to hold moisture also rises − the rule of thumb is 7% more vapour per degree Celsius rise. So a warmer world should be a wetter world.

But climate science also predicts that although those regions already rainy will get rainier, the drylands and arid zones will get even dryer as the thermometer soars.

“As we race to increase production to feed a bigger population, this is a new hurdle. Atmospheric drying could limit yields, even in regions where irrigation or soil moisture is not limiting”

Now there is another factor in the calculations: vapour pressure deficit, or the overall drying of the atmosphere, and how plants react to the problem of dwindling atmospheric moisture.

New research in the journal Global Change Biology analyses 50 years of research and 112 plant species, and 59 physiological traits in those plants. The evidence suggests that atmospheric drying reduces plant yield, as the plants adjust to new conditions.

“When there is a high vapour pressure deficit, our atmosphere pulls water from other sources: animals, plants, etc. An increase in vapour pressure deficit places greater demand on the crop to use more water. In turn, this puts more pressure on farmers to ensure this demand for water is met − either via precipitation or irrigation − so that yields do not decrease,” said Walid Sadok, of the University of Minnesota.

“We believe a climate change-driven increase in atmospheric drying will reduce plant productivity and crop yields both in Minnesota and globally.”

The paradox is that plants can adjust to a changing world but in this case by becoming more drought-resistant. Which, in the case of wheat, maize and even birch trees, means growing less.

Less productive plants

Findings such as this are tentative, and will in any case be tested by time. But they also illustrate just how much there is yet to learn about the consequence of climate change in a complex, responsive world.

Other research teams have repeatedly observed that even in the drier regions, plants have so far responded to rising greenhouse gas emissions by an increase in global greenness. But there is nothing simple about the greenhouse effect. And there has been repeated evidence too that forest conservation and more tree plantations may not provide all the answers to the challenge of growth in an ever-warmer world.

The reasoning within the new study is that plant stomata, those tiny holes in foliage through which plants breathe and release water, adjust according to new conditions. The plants become more conservative. They grow shorter, smaller and more resistant to drought, even if there is no drought. And in parallel, they become less able to fix atmospheric carbon dioxide to provide new tissue. So, overall, plant productivity is reduced.

“As we race to increase production to feed a bigger population, this is a new hurdle that will need to be cleared,” said Dr Sadok. “Atmospheric drying could limit yields, even in regions where irrigation or soil moisture is not limiting, such as Minnesota.” − Climate News Network

If a warming world becomes a drier one, how will the green things respond? Not well, according to a new prediction.

LONDON, 26 March, 2021 − The air of planet Earth has been gradually drying this century. If this goes on, that could be bad news for humankind. In a warming world crop harvests will dwindle, even in well-watered farmlands, and trees could shrink in height.

The prospect of stunted forests and shortages of food in a world hit by global heating, climate change and rapid population growth is ominous. But if US and Canadian scientists are right, it may be a simple consequence of plant response to a rarely-discussed worldwide phenomenon known as vapour pressure deficit, which has been rising for the past 20 years as the world has warmed.

The argument isn’t a simple one. Higher global temperatures mean more evaporation. Higher atmospheric temperatures also mean that the capacity of the atmosphere to hold moisture also rises − the rule of thumb is 7% more vapour per degree Celsius rise. So a warmer world should be a wetter world.

But climate science also predicts that although those regions already rainy will get rainier, the drylands and arid zones will get even dryer as the thermometer soars.

“As we race to increase production to feed a bigger population, this is a new hurdle. Atmospheric drying could limit yields, even in regions where irrigation or soil moisture is not limiting”

Now there is another factor in the calculations: vapour pressure deficit, or the overall drying of the atmosphere, and how plants react to the problem of dwindling atmospheric moisture.

New research in the journal Global Change Biology analyses 50 years of research and 112 plant species, and 59 physiological traits in those plants. The evidence suggests that atmospheric drying reduces plant yield, as the plants adjust to new conditions.

“When there is a high vapour pressure deficit, our atmosphere pulls water from other sources: animals, plants, etc. An increase in vapour pressure deficit places greater demand on the crop to use more water. In turn, this puts more pressure on farmers to ensure this demand for water is met − either via precipitation or irrigation − so that yields do not decrease,” said Walid Sadok, of the University of Minnesota.

“We believe a climate change-driven increase in atmospheric drying will reduce plant productivity and crop yields both in Minnesota and globally.”

The paradox is that plants can adjust to a changing world but in this case by becoming more drought-resistant. Which, in the case of wheat, maize and even birch trees, means growing less.

Less productive plants

Findings such as this are tentative, and will in any case be tested by time. But they also illustrate just how much there is yet to learn about the consequence of climate change in a complex, responsive world.

Other research teams have repeatedly observed that even in the drier regions, plants have so far responded to rising greenhouse gas emissions by an increase in global greenness. But there is nothing simple about the greenhouse effect. And there has been repeated evidence too that forest conservation and more tree plantations may not provide all the answers to the challenge of growth in an ever-warmer world.

The reasoning within the new study is that plant stomata, those tiny holes in foliage through which plants breathe and release water, adjust according to new conditions. The plants become more conservative. They grow shorter, smaller and more resistant to drought, even if there is no drought. And in parallel, they become less able to fix atmospheric carbon dioxide to provide new tissue. So, overall, plant productivity is reduced.

“As we race to increase production to feed a bigger population, this is a new hurdle that will need to be cleared,” said Dr Sadok. “Atmospheric drying could limit yields, even in regions where irrigation or soil moisture is not limiting, such as Minnesota.” − Climate News Network

Europe has grown drier over the last two millennia

Global heating may be to blame for the fact that Europe has grown drier over the last 2,000 years to a new high in 2015.

LONDON, 17 March, 2021 − Europe has grown drier, an outcome shown by the continent’s last five summers, which have been marked by drought that has no parallel in the last two millennia.

Researchers studied two kinds of evidence delivered by 27,000 measurements taken from 21 living oak trees and 126 samples from ancient beams and rafters, to piece together a precise picture of the climate of Germany, Switzerland and the Czech Republic over the last 2,110 years.

They report, after 2015, that drought conditions intensified suddenly, in ways that were beyond anything over that entire 2000-year tract of time. And, they add, “this hydroclimatic anomaly is probably caused by anthropogenic warming.”

Europe is also getting hotter. In 2003, 2015 and 2018 it was hit by severe summer heat waves and spells of drought that damaged plantations, crops and vines; the damage from drought was intensified by more virulent attacks from pathogens, insect outbreaks and tree death.

“Extreme conditions will become more frequent, which could be devastating for agriculture, ecosystems and societies as a whole”

In the baking summer of 2003, an estimated 70,000 people died because of extremes of heat. And, the researchers say, “a further increase in the frequency and severity of heat waves under projected global warming implies a multitude of harmful direct and indirect impacts on human health.”

In other words, things are bad now and are likely to get worse, according to a report by 17 British, European and Canadian researchers in the journal Nature Geoscience.

Dendrochronologists can and do routinely build up a picture of bygone temperatures by measuring the growth rings in trees: enough old living trees, and reliable knowledge about the felling of oaks for chateaux, cathedrals, sailing ships, fortresses and stockades can help pinpoint seasonal change on an annual basis.

But trees are also living chronicles of changes in carbon and oxygen isotope ratios − tiny atomic variations in the plant’s biochemistry − which provide evidence of rainfall and therefore a more precise picture of any growing season.

Wandering jet stream

The trees delivered mute evidence of very wet summers in 200, 720 and 1100 AD, and very dry summers in the years 40, 590, 950 and 1510 of the Common Era. But overall the big picture emerged: for the years 75 BC to 2018, Europe has slowly been getting drier.

Even so, the evidence from 2015 to 2018 shows that drought conditions in the area from which the trees were taken far exceeds anything in the previous centuries. The mostly likely explanation is the impact of ever-rising temperatures, driven by ever-higher greenhouse gas emissions from the ever-more profligate combustion of fossil fuels.

These temperatures are now considered high enough to affect the course of the stratospheric jet stream in ways that alter the long-term pattern of temperature and rainfall that defines a region’s climate.

“Climate change does not mean it will get drier everywhere,” said Ulf Büntgen, who holds research posts in the University of Cambridge, UK and the Czech Republic and Switzerland. “Some places may get wetter or colder, but extreme conditions will become more frequent, which could be devastating for agriculture, ecosystems and societies as a whole.” − Climate News Network

Global heating may be to blame for the fact that Europe has grown drier over the last 2,000 years to a new high in 2015.

LONDON, 17 March, 2021 − Europe has grown drier, an outcome shown by the continent’s last five summers, which have been marked by drought that has no parallel in the last two millennia.

Researchers studied two kinds of evidence delivered by 27,000 measurements taken from 21 living oak trees and 126 samples from ancient beams and rafters, to piece together a precise picture of the climate of Germany, Switzerland and the Czech Republic over the last 2,110 years.

They report, after 2015, that drought conditions intensified suddenly, in ways that were beyond anything over that entire 2000-year tract of time. And, they add, “this hydroclimatic anomaly is probably caused by anthropogenic warming.”

Europe is also getting hotter. In 2003, 2015 and 2018 it was hit by severe summer heat waves and spells of drought that damaged plantations, crops and vines; the damage from drought was intensified by more virulent attacks from pathogens, insect outbreaks and tree death.

“Extreme conditions will become more frequent, which could be devastating for agriculture, ecosystems and societies as a whole”

In the baking summer of 2003, an estimated 70,000 people died because of extremes of heat. And, the researchers say, “a further increase in the frequency and severity of heat waves under projected global warming implies a multitude of harmful direct and indirect impacts on human health.”

In other words, things are bad now and are likely to get worse, according to a report by 17 British, European and Canadian researchers in the journal Nature Geoscience.

Dendrochronologists can and do routinely build up a picture of bygone temperatures by measuring the growth rings in trees: enough old living trees, and reliable knowledge about the felling of oaks for chateaux, cathedrals, sailing ships, fortresses and stockades can help pinpoint seasonal change on an annual basis.

But trees are also living chronicles of changes in carbon and oxygen isotope ratios − tiny atomic variations in the plant’s biochemistry − which provide evidence of rainfall and therefore a more precise picture of any growing season.

Wandering jet stream

The trees delivered mute evidence of very wet summers in 200, 720 and 1100 AD, and very dry summers in the years 40, 590, 950 and 1510 of the Common Era. But overall the big picture emerged: for the years 75 BC to 2018, Europe has slowly been getting drier.

Even so, the evidence from 2015 to 2018 shows that drought conditions in the area from which the trees were taken far exceeds anything in the previous centuries. The mostly likely explanation is the impact of ever-rising temperatures, driven by ever-higher greenhouse gas emissions from the ever-more profligate combustion of fossil fuels.

These temperatures are now considered high enough to affect the course of the stratospheric jet stream in ways that alter the long-term pattern of temperature and rainfall that defines a region’s climate.

“Climate change does not mean it will get drier everywhere,” said Ulf Büntgen, who holds research posts in the University of Cambridge, UK and the Czech Republic and Switzerland. “Some places may get wetter or colder, but extreme conditions will become more frequent, which could be devastating for agriculture, ecosystems and societies as a whole.” − Climate News Network

Poorest people will suffer worst from cities’ heat

As ever, the poorest people will most feel the heat in a hotter world. But a green growth initiative could help them.

LONDON, 9 March, 2021 − As the summer thermometer soars, and the cities of the US Southwest are caught up in extremes of heat, the poorest people who live in the least prosperous districts may find their streets as much as 3°C hotter than those of the wealthiest 10%.

And in Los Angeles, one of the richest cities in one of the richest states of the world’s richest nation, citizens in the most heavily Latin-American districts could be as much as 3.7°C hotter than their white, well-heeled neighbours.

Excess heat is linked to heat stroke, exhaustion, respiratory and cardiovascular problems and of course death: one US group has identified 27 ways in which heat can kill, and several sets of researchers have independently established that potentially lethal heat waves are becoming more likely, more extreme and more widespread.

Californian geographers report in the International Journal of Environmental Research and Public Health that they mapped summer temperatures in 20 urban centres in California, Nevada, Utah, Arizona, Colorado, New Mexico and Texas.

“The study provides strong new evidence of climate impact disparities affecting disadvantaged communities”

They looked at the data for median household income, and for ethnic origin, to identify the ratio of Black, Latin and Asian populations in each.

They also took into account education levels. And then they looked at satellite data for radiant and atmospheric temperatures on the warmest summer days and nights.

The greatest disparities in street temperature were in California. But on average the poorest 10% of neighbourhoods in a conurbation would be 2.2°C hotter than the wealthiest 10% both on average summer days and during extremes of heat.

There is a term for this: the inner city becomes a heat island. As global temperatures rise, crowded cities become increasingly inhospitable. Paved streets and car parks absorb and retain the sun’s radiation.

Ending ‘thermal inequity’

The suburbs and the high-amenity residential districts will have tree-lined streets, private gardens, parks, flower displays, lawns and even fountains or pools, all to help lower the local temperatures.

Using the constrained language favoured by science journals, the authors write: “The implication would be that programs to increase vegetation within disadvantaged neighborhoods and reduce or lighten pavements and rooftops could help reduce thermal disparities between neighborhoods of different socio-economic characteristics.”

The researchers can hardly have been surprised by their own results: a look at published research had shown them that other groups have found evidence of what they call “thermal inequity” in Hong Kong, New York and Chicago, as well as in Santiago, Chile and in the crowded cities of Britain’s West Midlands.

“The study provides strong new evidence of climate impact disparities affecting disadvantaged communities, and of the need for proactive steps to reduce those risks,” said John Dialesandro, of the department of human ecology at the University of California Davis, who led the research. “There is a strong need for state and local governments to take action.” − Climate News Network

As ever, the poorest people will most feel the heat in a hotter world. But a green growth initiative could help them.

LONDON, 9 March, 2021 − As the summer thermometer soars, and the cities of the US Southwest are caught up in extremes of heat, the poorest people who live in the least prosperous districts may find their streets as much as 3°C hotter than those of the wealthiest 10%.

And in Los Angeles, one of the richest cities in one of the richest states of the world’s richest nation, citizens in the most heavily Latin-American districts could be as much as 3.7°C hotter than their white, well-heeled neighbours.

Excess heat is linked to heat stroke, exhaustion, respiratory and cardiovascular problems and of course death: one US group has identified 27 ways in which heat can kill, and several sets of researchers have independently established that potentially lethal heat waves are becoming more likely, more extreme and more widespread.

Californian geographers report in the International Journal of Environmental Research and Public Health that they mapped summer temperatures in 20 urban centres in California, Nevada, Utah, Arizona, Colorado, New Mexico and Texas.

“The study provides strong new evidence of climate impact disparities affecting disadvantaged communities”

They looked at the data for median household income, and for ethnic origin, to identify the ratio of Black, Latin and Asian populations in each.

They also took into account education levels. And then they looked at satellite data for radiant and atmospheric temperatures on the warmest summer days and nights.

The greatest disparities in street temperature were in California. But on average the poorest 10% of neighbourhoods in a conurbation would be 2.2°C hotter than the wealthiest 10% both on average summer days and during extremes of heat.

There is a term for this: the inner city becomes a heat island. As global temperatures rise, crowded cities become increasingly inhospitable. Paved streets and car parks absorb and retain the sun’s radiation.

Ending ‘thermal inequity’

The suburbs and the high-amenity residential districts will have tree-lined streets, private gardens, parks, flower displays, lawns and even fountains or pools, all to help lower the local temperatures.

Using the constrained language favoured by science journals, the authors write: “The implication would be that programs to increase vegetation within disadvantaged neighborhoods and reduce or lighten pavements and rooftops could help reduce thermal disparities between neighborhoods of different socio-economic characteristics.”

The researchers can hardly have been surprised by their own results: a look at published research had shown them that other groups have found evidence of what they call “thermal inequity” in Hong Kong, New York and Chicago, as well as in Santiago, Chile and in the crowded cities of Britain’s West Midlands.

“The study provides strong new evidence of climate impact disparities affecting disadvantaged communities, and of the need for proactive steps to reduce those risks,” said John Dialesandro, of the department of human ecology at the University of California Davis, who led the research. “There is a strong need for state and local governments to take action.” − Climate News Network

Carbon emissions slow, but not nearly fast enough

Global shutdown during Covid-19 has forced down carbon emissions. But no inadvertent pause can replace global resolve.

LONDON, 8 March, 2021 − Five years after a planet-wide vow to reduce carbon emissions, it happened. In 2020, the world’s nations pumped only 34 billion tonnes of carbon dioxide into the atmosphere, a drop of 2.6bn tonnes on the previous year.

For that, thank the coronavirus that triggered a global pandemic and international lockdown, rather than the determination of the planet’s leaders, businesses, energy producers, consumers and citizens.

In fact, only 64 countries have cut their carbon emissions in the years since 195 nations delivered the Paris Climate Agreement of 2015: these achieved annual cuts of 0.16bn tonnes in the years since. But emissions actually rose in 150 nations, which means that overall from 2016 to 2019 emissions grew by 0.21bn tonnes, compared with the preceding five years, 2011-2015.

And, say British, European, Australian and US scientists in the journal Nature Climate Change, the global pause during the pandemic in 2020 is not likely to continue. To make the kind of carbon emissions cuts that will fulfill the promise made in Paris to contain global heating to “well below” 2°C by 2100, the world must reduce carbon dioxide emissions each year by one to two billion tonnes.

That is an annual increase of ten times the cuts achieved so far by only 64 out of 214 countries.

“It is in everyone’s best interests to build back better to speed the urgent transition to clean energy”

Researchers have, since 2015, repeatedly made the case − in economic terms, in terms of human safety and justice, in terms of human health and nutrition − for drastic reductions in the use of the fossil fuels that, ultimately, power all economic growth.

They have also repeatedly warned that almost no nation, anywhere, is doing nearly enough to help meet the proposed goal of no more than 1.5°C warming by the end of the century. The world has already warmed by more than 1°C in the last century, thanks to human choices. Soon planetary temperatures could cross a dangerous threshold.

And although the dramatic pause in economic activity triggered by yet another zoonotic virus, the emergence of which may be yet another consequence of human disturbance of the planet’s natural ecosystems, is an indicator of new possibilities, the planet is still addicted to fossil fuels.

“The drop in CO2 emissions in response to Covid-19 highlights the scale of actions and international adherence needed to tackle climate change,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Now we need large-scale actions that are good for human health and good for the planet. It is in everyone’s best interests to build back better to speed the urgent transition to clean energy.”

Inching towards cuts

The latest accounting suggests that there has been some movement, though simply not enough. Between 2016 and 2019, carbon emissions decreased in 25 out of 36 high income countries. The USA’s fell by 0.7%, the European Union’s by 0.9% and the UK’s by 3.6%, and those emissions fell even after accounting for the carbon costs of goods imported from other nations.

Of the middle income nations, Mexico’s carbon emissions dropped by 1.3% and China’s by 0.4%, a dramatic contrast with 2011-2015, when China’s emissions had grown by 6.2% a year. But altogether, 99 upper-middle income economies accounted for 51% of global emissions in 2019, and China accounted for 28% of the global total.

Even in the US and China, money is still going into fossil fuels. The European Union, Denmark, France, the UK, Germany and Switzerland are among the few countries that have tried to limit fossil fuel power and implement some kind of economic “green” stimulus.

The message is that, after a series of years in which temperature records have been repeatedly broken, years marked by devastating fire, drought, flood and windstorm, nations need to act, and at speed, to honour the Paris promise to cut their carbon emissions.

“This pressing timeline is constantly underscored by the rapid unfolding of extreme climate impacts worldwide,” said Professor Le Quéré. − Climate News Network

Global shutdown during Covid-19 has forced down carbon emissions. But no inadvertent pause can replace global resolve.

LONDON, 8 March, 2021 − Five years after a planet-wide vow to reduce carbon emissions, it happened. In 2020, the world’s nations pumped only 34 billion tonnes of carbon dioxide into the atmosphere, a drop of 2.6bn tonnes on the previous year.

For that, thank the coronavirus that triggered a global pandemic and international lockdown, rather than the determination of the planet’s leaders, businesses, energy producers, consumers and citizens.

In fact, only 64 countries have cut their carbon emissions in the years since 195 nations delivered the Paris Climate Agreement of 2015: these achieved annual cuts of 0.16bn tonnes in the years since. But emissions actually rose in 150 nations, which means that overall from 2016 to 2019 emissions grew by 0.21bn tonnes, compared with the preceding five years, 2011-2015.

And, say British, European, Australian and US scientists in the journal Nature Climate Change, the global pause during the pandemic in 2020 is not likely to continue. To make the kind of carbon emissions cuts that will fulfill the promise made in Paris to contain global heating to “well below” 2°C by 2100, the world must reduce carbon dioxide emissions each year by one to two billion tonnes.

That is an annual increase of ten times the cuts achieved so far by only 64 out of 214 countries.

“It is in everyone’s best interests to build back better to speed the urgent transition to clean energy”

Researchers have, since 2015, repeatedly made the case − in economic terms, in terms of human safety and justice, in terms of human health and nutrition − for drastic reductions in the use of the fossil fuels that, ultimately, power all economic growth.

They have also repeatedly warned that almost no nation, anywhere, is doing nearly enough to help meet the proposed goal of no more than 1.5°C warming by the end of the century. The world has already warmed by more than 1°C in the last century, thanks to human choices. Soon planetary temperatures could cross a dangerous threshold.

And although the dramatic pause in economic activity triggered by yet another zoonotic virus, the emergence of which may be yet another consequence of human disturbance of the planet’s natural ecosystems, is an indicator of new possibilities, the planet is still addicted to fossil fuels.

“The drop in CO2 emissions in response to Covid-19 highlights the scale of actions and international adherence needed to tackle climate change,” said Corinne le Quéré, of the University of East Anglia, UK, who led the study.

“Now we need large-scale actions that are good for human health and good for the planet. It is in everyone’s best interests to build back better to speed the urgent transition to clean energy.”

Inching towards cuts

The latest accounting suggests that there has been some movement, though simply not enough. Between 2016 and 2019, carbon emissions decreased in 25 out of 36 high income countries. The USA’s fell by 0.7%, the European Union’s by 0.9% and the UK’s by 3.6%, and those emissions fell even after accounting for the carbon costs of goods imported from other nations.

Of the middle income nations, Mexico’s carbon emissions dropped by 1.3% and China’s by 0.4%, a dramatic contrast with 2011-2015, when China’s emissions had grown by 6.2% a year. But altogether, 99 upper-middle income economies accounted for 51% of global emissions in 2019, and China accounted for 28% of the global total.

Even in the US and China, money is still going into fossil fuels. The European Union, Denmark, France, the UK, Germany and Switzerland are among the few countries that have tried to limit fossil fuel power and implement some kind of economic “green” stimulus.

The message is that, after a series of years in which temperature records have been repeatedly broken, years marked by devastating fire, drought, flood and windstorm, nations need to act, and at speed, to honour the Paris promise to cut their carbon emissions.

“This pressing timeline is constantly underscored by the rapid unfolding of extreme climate impacts worldwide,” said Professor Le Quéré. − Climate News Network

Ancient tree shows result of magnetic pole switch

A preserved ancient tree trunk records the story of a climate catastrophe more than 40 millennia ago. It could happen again.

LONDON, 5 March, 2021 − Here is the news of the world from 42,000 years ago. Imagine a dramatic shift in global climate during the last Ice Age; a co-incident extinction of one human species and a range of giant Australian mammals; a devastated ozone layer and astonishing displays of auroras over the tropics, all triggered by a simple but unimaginable shift.

It happened when the north and south magnetic poles weakened, then swapped places, and then swapped back again, all in the space of about 800 years. The episode, carefully decoded from the story told by the growth rings of a vast and long-lived ancient tree preserved for 42,000 years in a New Zealand swamp, has been given its own name.

It is an Adams Transitional Geomagnetic Event, and is so called − say the authors in a literary jest rare in a respected science journal − “after the science writer Douglas Adams because of the timing … and the associated range of extinctions”. Famously if enigmatically, Douglas Adams’s book The Hitchhiker’s Guide to the Galaxy proposed that the answer to life, the universe and everything was the number 42.

And the 33 authors from Australia, New Zealand, Europe, China and Argentina claim in their study in the journal Science that their Adams Event “appears to represent a major climatic, environmental and archaeological boundary that has previously gone largely unrecognised.”

The phrase “appears to” is important: what the authors describe is what they think would have been probable, or possible. What they have established is something else: the precise sequence of an event so far not observed in human history, a magnetic reversal.

“For the first time ever we have been able to date the timing and precise environmental impacts of the last magnetic pole switch,” said Chris Turney  of the University of New South Wales.

“A magnetic pole reversal or extreme change in Sun activity would be unprecedented climate change accelerants. We urgently need to get carbon emissions down before such a random event happens again”

“The findings were made possible with ancient New Zealand kauri trees, which have been preserved in sediments for over 40,000 years. Using the ancient trees we could measure, and date, the spike in atmospheric carbon caused by the collapse of the Earth’s magnetic field.”

Just as the planet’s orbit periodically changes, with sometimes dramatic consequences, so too does the planet’s magnetic field. Such collapses and reversals are repeatedly recorded in its bedrock.

Scientists also knew there had been a temporary reversal approximately 41,000 to 42,000 years ago: what they did not have was any precise, year-on-year evidence of the progress of such a switch. Not, that is, until the first close examination of the growth rings of a kauri tree, Agathis australis, that had flourished for 1700 years, through the entire episode, before it fell, only to be preserved with its bark intact, in a bog in New Zealand’s warm, rainy Northland.

The researchers could cross-check the story told by this and other preserved trunks with radio-carbon and climate records revealed in cave deposits, marine sediments and ice cores.

The twin poles began to migrate across the planet, and in the run-up to the magnetic flip the Earth’s magnetic field fell to between zero and 6% of its present strength.

Twin  quandaries

“We had no magnetic field at all − our cosmic radiation shield was totally gone,” said Professor Turney. “Unfiltered radiation from space ripped apart air particles in Earth’s atmosphere, separating electrons and emitting light − a process called ionisation. The ionised air ‘fried’ the ozone layer, triggering a ripple of climate change across the globe.”

Australia, at that time, became more arid, and a number of large Australian vertebrates went extinct at around the same time. At around that time, too, human cave art began to flourish in Europe and Asia, and one species of European human, the Neanderthal, disappeared. How connected these events might be with any geomagnetic reversal is not proven. It remains, the authors concede, a possibility.

But in the past 170 years the Earth’s magnetic field has weakened by 9%, and the north magnetic pole has been on the move. What happened 42,000 years ago could happen again. The research confirms two things.

One is that the number 42 is an answer to something. “The more we looked at the data, the more everything pointed to 42. It was uncanny,” said Professor Turney. “Douglas Adams was clearly onto something after all.”

The other confirmation is that magnetic reversal could be accompanied by climate change. And, the scientists say, the human-triggered climate emergency is bad enough today.

“Our atmosphere is already filled with carbon at levels never seen by humanity before. A magnetic pole reversal or extreme change in Sun activity would be unprecedented climate change accelerants,” said Professor Turney. “We urgently need to get carbon emissions down before such a random event happens again.” − Climate News Network

A preserved ancient tree trunk records the story of a climate catastrophe more than 40 millennia ago. It could happen again.

LONDON, 5 March, 2021 − Here is the news of the world from 42,000 years ago. Imagine a dramatic shift in global climate during the last Ice Age; a co-incident extinction of one human species and a range of giant Australian mammals; a devastated ozone layer and astonishing displays of auroras over the tropics, all triggered by a simple but unimaginable shift.

It happened when the north and south magnetic poles weakened, then swapped places, and then swapped back again, all in the space of about 800 years. The episode, carefully decoded from the story told by the growth rings of a vast and long-lived ancient tree preserved for 42,000 years in a New Zealand swamp, has been given its own name.

It is an Adams Transitional Geomagnetic Event, and is so called − say the authors in a literary jest rare in a respected science journal − “after the science writer Douglas Adams because of the timing … and the associated range of extinctions”. Famously if enigmatically, Douglas Adams’s book The Hitchhiker’s Guide to the Galaxy proposed that the answer to life, the universe and everything was the number 42.

And the 33 authors from Australia, New Zealand, Europe, China and Argentina claim in their study in the journal Science that their Adams Event “appears to represent a major climatic, environmental and archaeological boundary that has previously gone largely unrecognised.”

The phrase “appears to” is important: what the authors describe is what they think would have been probable, or possible. What they have established is something else: the precise sequence of an event so far not observed in human history, a magnetic reversal.

“For the first time ever we have been able to date the timing and precise environmental impacts of the last magnetic pole switch,” said Chris Turney  of the University of New South Wales.

“A magnetic pole reversal or extreme change in Sun activity would be unprecedented climate change accelerants. We urgently need to get carbon emissions down before such a random event happens again”

“The findings were made possible with ancient New Zealand kauri trees, which have been preserved in sediments for over 40,000 years. Using the ancient trees we could measure, and date, the spike in atmospheric carbon caused by the collapse of the Earth’s magnetic field.”

Just as the planet’s orbit periodically changes, with sometimes dramatic consequences, so too does the planet’s magnetic field. Such collapses and reversals are repeatedly recorded in its bedrock.

Scientists also knew there had been a temporary reversal approximately 41,000 to 42,000 years ago: what they did not have was any precise, year-on-year evidence of the progress of such a switch. Not, that is, until the first close examination of the growth rings of a kauri tree, Agathis australis, that had flourished for 1700 years, through the entire episode, before it fell, only to be preserved with its bark intact, in a bog in New Zealand’s warm, rainy Northland.

The researchers could cross-check the story told by this and other preserved trunks with radio-carbon and climate records revealed in cave deposits, marine sediments and ice cores.

The twin poles began to migrate across the planet, and in the run-up to the magnetic flip the Earth’s magnetic field fell to between zero and 6% of its present strength.

Twin  quandaries

“We had no magnetic field at all − our cosmic radiation shield was totally gone,” said Professor Turney. “Unfiltered radiation from space ripped apart air particles in Earth’s atmosphere, separating electrons and emitting light − a process called ionisation. The ionised air ‘fried’ the ozone layer, triggering a ripple of climate change across the globe.”

Australia, at that time, became more arid, and a number of large Australian vertebrates went extinct at around the same time. At around that time, too, human cave art began to flourish in Europe and Asia, and one species of European human, the Neanderthal, disappeared. How connected these events might be with any geomagnetic reversal is not proven. It remains, the authors concede, a possibility.

But in the past 170 years the Earth’s magnetic field has weakened by 9%, and the north magnetic pole has been on the move. What happened 42,000 years ago could happen again. The research confirms two things.

One is that the number 42 is an answer to something. “The more we looked at the data, the more everything pointed to 42. It was uncanny,” said Professor Turney. “Douglas Adams was clearly onto something after all.”

The other confirmation is that magnetic reversal could be accompanied by climate change. And, the scientists say, the human-triggered climate emergency is bad enough today.

“Our atmosphere is already filled with carbon at levels never seen by humanity before. A magnetic pole reversal or extreme change in Sun activity would be unprecedented climate change accelerants,” said Professor Turney. “We urgently need to get carbon emissions down before such a random event happens again.” − Climate News Network

Wild flowers and bees contend with climate heat

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoides, Artemisia genipi, Cardamine resedifolia, Leucanthemopsis alpina, Gnaphalium supinum, Sedum alpestre, Minuartia sedoides, Sempervivum arachnoideum, Hieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoides, Artemisia genipi, Cardamine resedifolia, Leucanthemopsis alpina, Gnaphalium supinum, Sedum alpestre, Minuartia sedoides, Sempervivum arachnoideum, Hieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network